/* $OpenBSD: agp.c,v 1.22 2008/06/25 18:54:06 oga Exp $ */ /*- * Copyright (c) 2000 Doug Rabson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "agp_ali.h" #include "agp_amd.h" #include "agp_amd64.h" #include "agp_apple.h" #include "agp_i810.h" #include "agp_intel.h" #include "agp_sis.h" #include "agp_via.h" struct agp_memory *agp_find_memory(struct agp_softc *sc, int id); const struct agp_product *agp_lookup(struct pci_attach_args *pa); /* userland ioctl functions */ int agp_info_user(void *, agp_info *); int agp_setup_user(void *, agp_setup *); int agp_allocate_user(void *, agp_allocate *); int agp_deallocate_user(void *, int); int agp_bind_user(void *, agp_bind *); int agp_unbind_user(void *, agp_unbind *); int agp_acquire_helper(void *dev, enum agp_acquire_state state); int agp_release_helper(void *dev, enum agp_acquire_state state); const struct agp_product agp_products[] = { #if NAGP_ALI > 0 { PCI_VENDOR_ALI, -1, agp_ali_attach }, #endif #if NAGP_AMD > 0 { PCI_VENDOR_AMD, -1, agp_amd_attach }, #endif #if NAGP_I810 > 0 { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830M_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865G_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945G_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G965_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q965_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM965_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB, agp_i810_attach }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB, agp_i810_attach }, #endif #if NAGP_INTEL > 0 { PCI_VENDOR_INTEL, -1, agp_intel_attach }, #endif #if NAGP_SIS > 0 { PCI_VENDOR_SIS, -1, agp_sis_attach }, #endif #if NAGP_VIA > 0 { PCI_VENDOR_VIATECH, -1, agp_via_attach }, #endif { 0, 0, NULL } }; int agp_probe(struct device *parent, void *match, void *aux) { struct agpbus_attach_args *aaa = aux; struct pci_attach_args *pa = &aaa->apa_pci_args; /* pci_args must be a pchb */ if (PCI_CLASS(pa->pa_class) != PCI_CLASS_BRIDGE || PCI_SUBCLASS(pa->pa_class) != PCI_SUBCLASS_BRIDGE_HOST) return (0); if (agp_lookup(pa) == NULL) return (0); return (1); } void agp_attach(struct device *parent, struct device *self, void *aux) { struct agpbus_attach_args *aaa = aux; struct pci_attach_args *pa = &aaa->apa_pci_args; struct agp_softc *sc = (struct agp_softc *)self; const struct agp_product *ap; u_int memsize; int i, ret; ap = agp_lookup(pa); if (ap) { static const int agp_max[][2] = { {0, 0}, {32, 4}, {64, 28}, {128, 96}, {256, 204}, {512, 440}, {1024, 942}, {2048, 1920}, {4096, 3932} }; #define agp_max_size (sizeof(agp_max)/sizeof(agp_max[0])) /* * Work out an upper bound for agp memory allocation. This * uses a heuristic table from the Linux driver. */ memsize = ptoa(physmem) >> 20; for (i = 0; i < agp_max_size && memsize > agp_max[i][0]; i++) ; if (i == agp_max_size) i = agp_max_size - 1; sc->sc_maxmem = agp_max[i][1] << 20; /* * The lock is used to prevent re-entry to * agp_generic_bind_memory() since that function can sleep. */ rw_init(&sc->sc_lock, "agplk"); TAILQ_INIT(&sc->sc_memory); sc->sc_pcitag = pa->pa_tag; sc->sc_pc = pa->pa_pc; sc->sc_id = pa->pa_id; sc->sc_dmat = pa->pa_dmat; pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_AGP, &sc->sc_capoff, NULL); sc->vga_softc = (struct vga_pci_softc *)parent; printf(": "); ret = (*ap->ap_attach)(sc, pa); if (ret == 0) printf("aperture at 0x%lx, size 0x%lx\n", (u_long)sc->sc_apaddr, (u_long)AGP_GET_APERTURE(sc)); else { sc->sc_chipc = NULL; } } } struct cfattach agp_ca = { sizeof (struct agp_softc), agp_probe, agp_attach, NULL, NULL }; struct cfdriver agp_cd = { NULL, "agp", DV_DULL }; paddr_t agpmmap(void *v, off_t off, int prot) { struct agp_softc* sc = (struct agp_softc *)v; if (sc->sc_apaddr) { if (off > AGP_GET_APERTURE(sc)) return (-1); /* * XXX this should use bus_space_mmap() but it's not * availiable on all archs. */ return atop(sc->sc_apaddr + off); } return (-1); } int agpopen(dev_t dev, int oflags, int devtype, struct proc *p) { struct agp_softc *sc = agp_find_device(AGPUNIT(dev)); if (sc == NULL) return (ENXIO); if (sc->sc_chipc == NULL) return (ENXIO); if (!sc->sc_opened) sc->sc_opened = 1; else return (EBUSY); return (0); } int agpioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *pb) { struct agp_softc *sc = agp_find_device(AGPUNIT(dev)); if (sc ==NULL) return (ENODEV); if (sc->sc_methods == NULL || sc->sc_chipc == NULL) return (ENXIO); if (cmd != AGPIOC_INFO && !(flag & FWRITE)) return (EPERM); switch(cmd) { case AGPIOC_INFO: return (agp_info_user(sc, (agp_info *)addr)); case AGPIOC_ACQUIRE: return (agp_acquire_helper(sc, AGP_ACQUIRE_USER)); case AGPIOC_RELEASE: return (agp_release_helper(sc, AGP_ACQUIRE_USER)); case AGPIOC_SETUP: return (agp_setup_user(sc, (agp_setup *)addr)); case AGPIOC_ALLOCATE: return (agp_allocate_user(sc, (agp_allocate *)addr)); case AGPIOC_DEALLOCATE: return (agp_deallocate_user(sc, *(int *)addr)); case AGPIOC_BIND: return (agp_bind_user(sc, (agp_bind *)addr)); case AGPIOC_UNBIND: return (agp_unbind_user(sc, (agp_unbind *)addr)); default: return (ENOTTY); } } int agpclose(dev_t dev, int flags, int devtype, struct proc *p) { struct agp_softc *sc = agp_find_device(AGPUNIT(dev)); struct agp_memory *mem; /* * Clear the GATT and force release on last close */ if (sc->sc_state == AGP_ACQUIRE_USER) { while ((mem = TAILQ_FIRST(&sc->sc_memory)) != 0) { if (mem->am_is_bound) AGP_UNBIND_MEMORY(sc, mem); AGP_FREE_MEMORY(sc, mem); } agp_release_helper(sc, AGP_ACQUIRE_USER); } sc->sc_opened = 0; return (0); } struct agp_memory * agp_find_memory(struct agp_softc *sc, int id) { struct agp_memory *mem; AGP_DPF("searching for memory block %d\n", id); TAILQ_FOREACH(mem, &sc->sc_memory, am_link) { AGP_DPF("considering memory block %d\n", mem->am_id); if (mem->am_id == id) return (mem); } return (0); } const struct agp_product * agp_lookup(struct pci_attach_args *pa) { const struct agp_product *ap; /* First find the vendor. */ for (ap = agp_products; ap->ap_attach != NULL; ap++) if (ap->ap_vendor == PCI_VENDOR(pa->pa_id)) break; if (ap->ap_attach == NULL) return (NULL); /* Now find the product within the vendor's domain. */ for (; ap->ap_attach != NULL; ap++) { /* Ran out of this vendor's section of the table. */ if (ap->ap_vendor != PCI_VENDOR(pa->pa_id)) return (NULL); if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) break; /* Exact match. */ if (ap->ap_product == (u_int32_t) -1) break; /* Wildcard match. */ } if (ap->ap_attach == NULL) ap = NULL; return (ap); } int agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, u_int32_t bar, u_int32_t memtype) { /* Find the aperture. Don't map it (yet), this would eat KVA */ if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, bar, memtype, &sc->sc_apaddr, &sc->sc_apsize, &sc->sc_apflags) != 0) return (ENXIO); return (0); } u_int32_t agp_generic_get_aperture(struct agp_softc *sc) { return (sc->sc_apsize); } int agp_generic_set_aperture(struct agp_softc *sc, u_int32_t aperture) { if (aperture != AGP_GET_APERTURE(sc)) return (EINVAL); return (0); } struct agp_gatt * agp_alloc_gatt(struct agp_softc *sc) { u_int32_t apsize = AGP_GET_APERTURE(sc); u_int32_t entries = apsize >> AGP_PAGE_SHIFT; struct agp_gatt *gatt; int nseg; gatt = malloc(sizeof(*gatt), M_AGP, M_NOWAIT | M_ZERO); if (!gatt) return (NULL); gatt->ag_entries = entries; if (agp_alloc_dmamem(sc->sc_dmat, entries * sizeof(u_int32_t), 0, &gatt->ag_dmamap, (caddr_t *)&gatt->ag_virtual, &gatt->ag_physical, &gatt->ag_dmaseg, 1, &nseg) != 0) return (NULL); gatt->ag_size = entries * sizeof(u_int32_t); memset(gatt->ag_virtual, 0, gatt->ag_size); agp_flush_cache(); return (gatt); } void agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt) { agp_free_dmamem(sc->sc_dmat, gatt->ag_size, gatt->ag_dmamap, (caddr_t)gatt->ag_virtual, &gatt->ag_dmaseg, 1); free(gatt, M_AGP); } int agp_generic_detach(struct agp_softc *sc) { agp_flush_cache(); return (0); } int agp_generic_enable(struct agp_softc *sc, u_int32_t mode) { pcireg_t tstatus, mstatus; pcireg_t command; int rq, sba, fw, rate, capoff; if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_AGP, &capoff, NULL) == 0) { printf("agp_generic_enable: not an AGP capable device\n"); return (-1); } tstatus = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->sc_capoff + AGP_STATUS); mstatus = pci_conf_read(sc->sc_pc, sc->sc_pcitag, capoff + AGP_STATUS); /* Set RQ to the min of mode, tstatus and mstatus */ rq = AGP_MODE_GET_RQ(mode); if (AGP_MODE_GET_RQ(tstatus) < rq) rq = AGP_MODE_GET_RQ(tstatus); if (AGP_MODE_GET_RQ(mstatus) < rq) rq = AGP_MODE_GET_RQ(mstatus); /* Set SBA if all three can deal with SBA */ sba = (AGP_MODE_GET_SBA(tstatus) & AGP_MODE_GET_SBA(mstatus) & AGP_MODE_GET_SBA(mode)); /* Similar for FW */ fw = (AGP_MODE_GET_FW(tstatus) & AGP_MODE_GET_FW(mstatus) & AGP_MODE_GET_FW(mode)); /* Figure out the max rate */ rate = (AGP_MODE_GET_RATE(tstatus) & AGP_MODE_GET_RATE(mstatus) & AGP_MODE_GET_RATE(mode)); if (rate & AGP_MODE_RATE_4x) rate = AGP_MODE_RATE_4x; else if (rate & AGP_MODE_RATE_2x) rate = AGP_MODE_RATE_2x; else rate = AGP_MODE_RATE_1x; /* Construct the new mode word and tell the hardware */ command = AGP_MODE_SET_RQ(0, rq); command = AGP_MODE_SET_SBA(command, sba); command = AGP_MODE_SET_FW(command, fw); command = AGP_MODE_SET_RATE(command, rate); command = AGP_MODE_SET_AGP(command, 1); pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->sc_capoff + AGP_COMMAND, command); pci_conf_write(sc->sc_pc, sc->sc_pcitag, capoff + AGP_COMMAND, command); return (0); } struct agp_memory * agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size) { struct agp_memory *mem; if (type != 0) { printf("agp_generic_alloc_memory: unsupported type %d\n", type); return (0); } mem = malloc(sizeof *mem, M_AGP, M_WAITOK | M_ZERO); if (bus_dmamap_create(sc->sc_dmat, size, size / PAGE_SIZE + 1, size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) { free(mem, M_AGP); return (NULL); } mem->am_id = sc->sc_nextid++; mem->am_size = size; TAILQ_INSERT_TAIL(&sc->sc_memory, mem, am_link); sc->sc_allocated += size; return (mem); } int agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem) { if (mem->am_is_bound) return (EBUSY); sc->sc_allocated -= mem->am_size; TAILQ_REMOVE(&sc->sc_memory, mem, am_link); bus_dmamap_destroy(sc->sc_dmat, mem->am_dmamap); free(mem, M_AGP); return (0); } int agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem, off_t offset) { bus_dma_segment_t *segs, *seg; bus_size_t done, j; bus_addr_t pa; off_t i, k; int nseg, error; rw_enter_write(&sc->sc_lock); if (mem->am_is_bound) { printf("AGP: memory already bound\n"); rw_exit_write(&sc->sc_lock); return (EINVAL); } if (offset < 0 || (offset & (AGP_PAGE_SIZE - 1)) != 0 || offset + mem->am_size > AGP_GET_APERTURE(sc)) { printf("AGP: binding memory at bad offset %#lx\n", (unsigned long) offset); rw_exit_write(&sc->sc_lock); return (EINVAL); } /* * The memory here needs to be directly accessable from the * AGP video card, so it should be allocated using bus_dma. * However, it need not be contiguous, since individual pages * are translated using the GATT. */ nseg = (mem->am_size + PAGE_SIZE - 1) / PAGE_SIZE; segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK); if ((error = bus_dmamem_alloc(sc->sc_dmat, mem->am_size, PAGE_SIZE, 0, segs, nseg, &mem->am_nseg, BUS_DMA_WAITOK)) != 0) { free(segs, M_AGP); rw_exit_write(&sc->sc_lock); AGP_DPF("bus_dmamem_alloc failed %d\n", error); return (error); } if ((error = bus_dmamem_map(sc->sc_dmat, segs, mem->am_nseg, mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK)) != 0) { bus_dmamem_free(sc->sc_dmat, segs, mem->am_nseg); free(segs, M_AGP); rw_exit_write(&sc->sc_lock); AGP_DPF("bus_dmamem_map failed %d\n", error); return (error); } if ((error = bus_dmamap_load(sc->sc_dmat, mem->am_dmamap, mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK)) != 0) { bus_dmamem_unmap(sc->sc_dmat, mem->am_virtual, mem->am_size); bus_dmamem_free(sc->sc_dmat, segs, mem->am_nseg); free(segs, M_AGP); rw_exit_write(&sc->sc_lock); AGP_DPF("bus_dmamap_load failed %d\n", error); return (error); } mem->am_dmaseg = segs; /* * Bind the individual pages and flush the chipset's * TLB. */ done = 0; for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) { seg = &mem->am_dmamap->dm_segs[i]; /* * Install entries in the GATT, making sure that if * AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not * aligned to PAGE_SIZE, we don't modify too many GATT * entries. */ for (j = 0; j < seg->ds_len && (done + j) < mem->am_size; j += AGP_PAGE_SIZE) { pa = seg->ds_addr + j; AGP_DPF("binding offset %#lx to pa %#lx\n", (unsigned long)(offset + done + j), (unsigned long)pa); error = AGP_BIND_PAGE(sc, offset + done + j, pa); if (error) { /* * Bail out. Reverse all the mappings * and unwire the pages. */ for (k = 0; k < done + j; k += AGP_PAGE_SIZE) AGP_UNBIND_PAGE(sc, offset + k); bus_dmamap_unload(sc->sc_dmat, mem->am_dmamap); bus_dmamem_unmap(sc->sc_dmat, mem->am_virtual, mem->am_size); bus_dmamem_free(sc->sc_dmat, mem->am_dmaseg, mem->am_nseg); free(mem->am_dmaseg, M_AGP); rw_exit_write(&sc->sc_lock); AGP_DPF("AGP_BIND_PAGE failed %d\n", error); return (error); } } done += seg->ds_len; } /* * Flush the cpu cache since we are providing a new mapping * for these pages. */ agp_flush_cache(); /* * Make sure the chipset gets the new mappings. */ AGP_FLUSH_TLB(sc); mem->am_offset = offset; mem->am_is_bound = 1; rw_exit_write(&sc->sc_lock); return (0); } int agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem) { int i; rw_enter_write(&sc->sc_lock); if (!mem->am_is_bound) { printf("AGP: memory is not bound\n"); rw_exit_write(&sc->sc_lock); return (EINVAL); } /* * Unbind the individual pages and flush the chipset's * TLB. Unwire the pages so they can be swapped. */ for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE) AGP_UNBIND_PAGE(sc, mem->am_offset + i); agp_flush_cache(); AGP_FLUSH_TLB(sc); bus_dmamap_unload(sc->sc_dmat, mem->am_dmamap); bus_dmamem_unmap(sc->sc_dmat, mem->am_virtual, mem->am_size); bus_dmamem_free(sc->sc_dmat, mem->am_dmaseg, mem->am_nseg); free(mem->am_dmaseg, M_AGP); mem->am_offset = 0; mem->am_is_bound = 0; rw_exit_write(&sc->sc_lock); return (0); } int agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags, bus_dmamap_t *mapp, caddr_t *vaddr, bus_addr_t *baddr, bus_dma_segment_t *seg, int nseg, int *rseg) { int error, level = 0; if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0, seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0) goto out; level++; if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr, BUS_DMA_NOWAIT | flags)) != 0) goto out; level++; if ((error = bus_dmamap_create(tag, size, *rseg, size, 0, BUS_DMA_NOWAIT, mapp)) != 0) goto out; level++; if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL, BUS_DMA_NOWAIT)) != 0) goto out; *baddr = (*mapp)->dm_segs[0].ds_addr; return (0); out: switch (level) { case 3: bus_dmamap_destroy(tag, *mapp); /* FALLTHROUGH */ case 2: bus_dmamem_unmap(tag, *vaddr, size); /* FALLTHROUGH */ case 1: bus_dmamem_free(tag, seg, *rseg); break; default: break; } return (error); } void agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map, caddr_t vaddr, bus_dma_segment_t *seg, int nseg) { bus_dmamap_unload(tag, map); bus_dmamap_destroy(tag, map); bus_dmamem_unmap(tag, vaddr, size); bus_dmamem_free(tag, seg, nseg); } /* Helper functions used in both user and kernel APIs */ int agp_acquire_helper(void *dev, enum agp_acquire_state state) { struct agp_softc *sc = (struct agp_softc *)dev; if (sc->sc_state != AGP_ACQUIRE_FREE) return (EBUSY); sc->sc_state = state; return (0); } int agp_release_helper(void *dev, enum agp_acquire_state state) { struct agp_softc *sc = (struct agp_softc *)dev; struct agp_memory* mem; if (sc->sc_state == AGP_ACQUIRE_FREE) return (0); if (sc->sc_state != state) return (EBUSY); /* * Clear out the aperture and free any * outstanding memory blocks. */ TAILQ_FOREACH(mem, &sc->sc_memory, am_link) { if (mem->am_is_bound) { printf("agp_release_helper: mem %d is bound\n", mem->am_id); AGP_UNBIND_MEMORY(sc, mem); } } sc->sc_state = AGP_ACQUIRE_FREE; return (0); } /* Implementation of the userland ioctl API */ int agp_info_user(void *dev, agp_info *info) { struct agp_softc *sc = (struct agp_softc *) dev; if (!sc->sc_chipc) return (ENXIO); bzero(info, sizeof *info); info->bridge_id = sc->sc_id; if (sc->sc_capoff != 0) info->agp_mode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, AGP_STATUS + sc->sc_capoff); else info->agp_mode = 0; /* i810 doesn't have real AGP */ info->aper_base = sc->sc_apaddr; info->aper_size = AGP_GET_APERTURE(sc) >> 20; info->pg_total = info->pg_system = sc->sc_maxmem >> AGP_PAGE_SHIFT; info->pg_used = sc->sc_allocated >> AGP_PAGE_SHIFT; return (0); } int agp_setup_user(void *dev, agp_setup *setup) { struct agp_softc *sc = (struct agp_softc *) dev; return (AGP_ENABLE(sc, setup->agp_mode)); } int agp_allocate_user(void *dev, agp_allocate *alloc) { struct agp_softc *sc = (struct agp_softc *) dev; struct agp_memory* mem; size_t size = alloc->pg_count << AGP_PAGE_SHIFT; if (sc->sc_allocated + size > sc->sc_maxmem) return (EINVAL); mem = AGP_ALLOC_MEMORY(sc, alloc->type, size); if (mem) { alloc->key = mem->am_id; alloc->physical = mem->am_physical; return (0); } else return (ENOMEM); } int agp_deallocate_user(void *dev, int id) { struct agp_softc *sc = (struct agp_softc *) dev; struct agp_memory *mem = agp_find_memory(sc, id); if (mem) { AGP_FREE_MEMORY(sc, mem); return (0); } else return (ENOENT); } int agp_bind_user(void *dev, agp_bind *bind) { struct agp_softc *sc = (struct agp_softc *) dev; struct agp_memory *mem = agp_find_memory(sc, bind->key); if (!mem) return (ENOENT); return (AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT)); } int agp_unbind_user(void *dev, agp_unbind *unbind) { struct agp_softc *sc = (struct agp_softc *) dev; struct agp_memory *mem = agp_find_memory(sc, unbind->key); if (!mem) return (ENOENT); return (AGP_UNBIND_MEMORY(sc, mem)); } /* Implementation of the kernel api */ void * agp_find_device(int unit) { if (unit >= agp_cd.cd_ndevs || unit < 0) return (NULL); return (agp_cd.cd_devs[unit]); } enum agp_acquire_state agp_state(void *dev) { struct agp_softc *sc = (struct agp_softc *) dev; return (sc->sc_state); } void agp_get_info(void *dev, struct agp_info *info) { struct agp_softc *sc = (struct agp_softc *)dev; info->ai_mode = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->sc_capoff + AGP_STATUS); info->ai_aperture_base = sc->sc_apaddr; info->ai_aperture_size = sc->sc_apsize; info->ai_memory_allowed = sc->sc_maxmem; info->ai_memory_used = sc->sc_allocated; } int agp_acquire(void *dev) { struct agp_softc *sc = (struct agp_softc *)dev; return (agp_acquire_helper(sc, AGP_ACQUIRE_KERNEL)); } int agp_release(void *dev) { struct agp_softc *sc = (struct agp_softc *)dev; return (agp_release_helper(sc, AGP_ACQUIRE_KERNEL)); } int agp_enable(void *dev, u_int32_t mode) { struct agp_softc *sc = (struct agp_softc *) dev; return (AGP_ENABLE(sc, mode)); } void * agp_alloc_memory(void *dev, int type, vsize_t bytes) { struct agp_softc *sc = (struct agp_softc *)dev; return ((void *) AGP_ALLOC_MEMORY(sc, type, bytes)); } void agp_free_memory(void *dev, void *handle) { struct agp_softc *sc = (struct agp_softc *) dev; struct agp_memory *mem = (struct agp_memory *) handle; AGP_FREE_MEMORY(sc, mem); } int agp_bind_memory(void *dev, void *handle, off_t offset) { struct agp_softc *sc = (struct agp_softc *) dev; struct agp_memory *mem = (struct agp_memory *) handle; return (AGP_BIND_MEMORY(sc, mem, offset)); } int agp_unbind_memory(void *dev, void *handle) { struct agp_softc *sc = (struct agp_softc *) dev; struct agp_memory *mem = (struct agp_memory *) handle; return (AGP_UNBIND_MEMORY(sc, mem)); } void agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi) { struct agp_memory *mem = (struct agp_memory *) handle; mi->ami_size = mem->am_size; mi->ami_physical = mem->am_physical; mi->ami_offset = mem->am_offset; mi->ami_is_bound = mem->am_is_bound; }