/* $OpenBSD: ahc_pci.c,v 1.18 2000/05/26 06:49:32 chris Exp $ */ /* $NetBSD: ahc_pci.c,v 1.9 1996/10/21 22:56:24 thorpej Exp $ */ /* * Product specific probe and attach routines for: * 3940, 2940, aic7880, aic7870, aic7860 and aic7850 SCSI controllers * * Copyright (c) 1995, 1996 Justin T. Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define AHC_PCI_IOADDR PCI_MAPREG_START /* I/O Address */ #define AHC_PCI_MEMADDR (PCI_MAPREG_START + 4) /* Mem I/O Address */ #include #include #include /* * Under normal circumstances, these messages are unnecessary * and not terribly cosmetic. */ #ifdef DEBUG #define bootverbose 1 #else #define bootverbose 0 #endif #define PCI_BASEADR0 PCI_MAPREG_START #define AHC_394X_SLOT_CHANNEL_A 4 #define AHC_394X_SLOT_CHANNEL_B 5 #define AHC_398X_SLOT_CHANNEL_A 4 #define AHC_398X_SLOT_CHANNEL_B 8 #define AHC_398X_SLOT_CHANNEL_C 12 #define DEVCONFIG 0x40 #define SCBSIZE32 0x00010000UL /* aic789X only */ #define MPORTMODE 0x00000400UL /* aic7870 only */ #define RAMPSM 0x00000200UL /* aic7870 only */ #define VOLSENSE 0x00000100UL #define SCBRAMSEL 0x00000080UL #define PCI64 0x00000080UL /* aic7891 & aic7897 only */ #define MRDCEN 0x00000040UL #define EXTSCBTIME 0x00000020UL /* aic7870 only */ #define EXTSCBPEN 0x00000010UL /* aic7870 & aic7890 only */ #define BERREN 0x00000008UL #define DACEN 0x00000004UL #define STPWLEVEL 0x00000002UL #define DIFACTNEGEN 0x00000001UL /* aic7870 only */ #define CSIZE_LATTIME 0x0c #define CACHESIZE 0x0000003ful /* only 5 bits */ #define LATTIME 0x0000ff00ul int ahc_pci_intr __P((struct ahc_softc *ahc)); static int ahc_ext_scbram_present __P((struct ahc_softc *ahc)); static void ahc_ext_scbram_config __P((struct ahc_softc *ahc, int enable, int pcheck, int fast)); static void ahc_probe_ext_scbram __P((struct ahc_softc *ahc)); static void check_extport __P((struct ahc_softc *ahc, u_int *sxfrctl1)); static void configure_termination __P((struct ahc_softc *ahc, struct seeprom_descriptor *sd, u_int adapter_control, u_int *sxfrctl1)); static void ahc_new_term_detect __P((struct ahc_softc *ahc, int *enableSEC_low, int *enableSEC_high, int *enablePRI_low, int *enablePRI_high, int *eeprom_present)); static void aic787X_cable_detect __P((struct ahc_softc *ahc, int *internal50_present, int *internal68_present, int *externalcable_present, int *eeprom_present)); static void aic785X_cable_detect __P((struct ahc_softc *ahc, int *internal50_present, int *externalcable_present, int *eeprom_present)); static void write_brdctl __P((struct ahc_softc *ahc, u_int8_t value)); static u_int8_t read_brdctl __P((struct ahc_softc *ahc)); void load_seeprom __P((struct ahc_softc *ahc)); static int acquire_seeprom __P((struct ahc_softc *ahc, struct seeprom_descriptor *sd)); static void release_seeprom __P((struct seeprom_descriptor *sd)); int ahc_probe_scbs __P((struct ahc_softc *ahc)); static u_char aic3940_count; int ahc_pci_probe __P((struct device *, void *, void *)); void ahc_pci_attach __P((struct device *, struct device *, void *)); struct cfattach ahc_pci_ca = { sizeof(struct ahc_softc), ahc_pci_probe, ahc_pci_attach }; struct ahc_pci_data { pci_chipset_tag_t pc; pcitag_t tag; u_int function; }; int ahc_pci_probe(parent, match, aux) struct device *parent; void *match, *aux; { struct pci_attach_args *pa = aux; switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_ADP: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_ADP_AIC7810: case PCI_PRODUCT_ADP_AIC7850: case PCI_PRODUCT_ADP_AIC7855: case PCI_PRODUCT_ADP_AIC5900: case PCI_PRODUCT_ADP_AIC5905: case PCI_PRODUCT_ADP_AIC7860: case PCI_PRODUCT_ADP_2940AU: case PCI_PRODUCT_ADP_AIC7870: case PCI_PRODUCT_ADP_2930CU: case PCI_PRODUCT_ADP_2940: case PCI_PRODUCT_ADP_3940: case PCI_PRODUCT_ADP_3985: case PCI_PRODUCT_ADP_2944: case PCI_PRODUCT_ADP_AIC7880: case PCI_PRODUCT_ADP_2940U: case PCI_PRODUCT_ADP_3940U: case PCI_PRODUCT_ADP_398XU: case PCI_PRODUCT_ADP_2944U: case PCI_PRODUCT_ADP_2940UWPro: case PCI_PRODUCT_ADP_7895: return (1); } break; case PCI_VENDOR_ADP2: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_ADP2_AIC7890: case PCI_PRODUCT_ADP2_2940U2: case PCI_PRODUCT_ADP2_2930U2: case PCI_PRODUCT_ADP2_AIC7892: case PCI_PRODUCT_ADP2_29160: case PCI_PRODUCT_ADP2_19160B: case PCI_PRODUCT_ADP2_3950U2B: case PCI_PRODUCT_ADP2_3950U2D: case PCI_PRODUCT_ADP2_AIC7896: case PCI_PRODUCT_ADP2_AIC7899: case PCI_PRODUCT_ADP2_3960D: return (1); } break; } return (0); } void ahc_pci_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct pci_attach_args *pa = aux; struct ahc_softc *ahc = (void *)self; bus_space_tag_t iot; bus_space_handle_t ioh; #ifdef AHC_ALLOW_MEMIO bus_space_tag_t memt; bus_space_handle_t memh; int memh_valid; #endif pci_intr_handle_t ih; pcireg_t command; const char *intrstr; unsigned opri = 0; ahc_chip ahc_c = AHC_PCI; /* we are a PCI controller */ ahc_flag ahc_flags = AHC_FNONE; ahc_feature ahc_f = AHC_FENONE; int ioh_valid; u_char ultra_enb = 0; u_char our_id = 0; u_char channel = 'A'; u_int sxfrctl1; u_int scsiseq; /* So we can access PCI configuration space after init */ struct ahc_pci_data *pd; ahc->sc_dmat = pa->pa_dmat; command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_ADP: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_ADP_7895: { pcireg_t devconfig; channel = pa->pa_function == 1 ? 'B' : 'A'; ahc_c |= AHC_AIC7895; /* The 'C' revision of the aic7895 has a few additional features */ if (PCI_REVISION(pa->pa_class) >= 4) ahc_f = AHC_AIC7895C_FE; else ahc_f = AHC_AIC7895_FE; ahc_flags |= AHC_NEWEEPROM_FMT; devconfig = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG); devconfig &= ~SCBSIZE32; pci_conf_write(pa->pa_pc, pa->pa_tag, DEVCONFIG, devconfig); } break; case PCI_PRODUCT_ADP_3940U: case PCI_PRODUCT_ADP_3940: if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ADP_3940U) { ahc_c |= AHC_AIC7880; ahc_f = AHC_AIC7880_FE; } else { ahc_c |= AHC_AIC7870; ahc_f = AHC_AIC7870_FE; } aic3940_count++; if (!(aic3940_count & 0x01)) /* Even count implies second channel */ channel = 'B'; break; case PCI_PRODUCT_ADP_2940UWPro: ahc_c |= AHC_AIC7880; ahc_f = AHC_AIC7880_FE; ahc_f |= AHC_INT50_SPEEDFLEX; case PCI_PRODUCT_ADP_2944U: case PCI_PRODUCT_ADP_2940U: ahc_c |= AHC_AIC7880; ahc_f = AHC_AIC7880_FE; break; case PCI_PRODUCT_ADP_2944: case PCI_PRODUCT_ADP_2940: ahc_c |= AHC_AIC7870; ahc_f = AHC_AIC7870_FE; break; case PCI_PRODUCT_ADP_2940AU: ahc_c |= AHC_AIC7860; ahc_f = AHC_AIC7860_FE; break; case PCI_PRODUCT_ADP_398XU: /* XXX */ case PCI_PRODUCT_ADP_AIC7880: ahc_c |= AHC_AIC7880; ahc_f = AHC_AIC7880_FE; break; case PCI_PRODUCT_ADP_AIC7870: ahc_c |= AHC_AIC7870; ahc_f = AHC_AIC7870_FE; break; case PCI_PRODUCT_ADP_AIC7860: ahc_c |= AHC_AIC7860; ahc_f = AHC_AIC7860_FE; break; case PCI_PRODUCT_ADP_AIC7855: case PCI_PRODUCT_ADP_AIC7850: ahc_c |= AHC_AIC7850; ahc_f = AHC_AIC7850_FE; break; default: /* TTT */ break; } break; case PCI_VENDOR_ADP2: switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_ADP2_AIC7890: case PCI_PRODUCT_ADP2_2940U2: case PCI_PRODUCT_ADP2_2930U2: ahc_c |= AHC_AIC7890; ahc_f = AHC_AIC7890_FE; ahc_flags |= AHC_NEWEEPROM_FMT; break; case PCI_PRODUCT_ADP2_AIC7892: case PCI_PRODUCT_ADP2_29160: case PCI_PRODUCT_ADP2_19160B: ahc_c |= AHC_AIC7892; ahc_f = AHC_AIC7892_FE; ahc_flags |= AHC_NEWEEPROM_FMT; break; case PCI_PRODUCT_ADP2_3950U2B: case PCI_PRODUCT_ADP2_3950U2D: case PCI_PRODUCT_ADP2_AIC7896: { pcireg_t devconfig; channel = pa->pa_function == 1 ? 'B' : 'A'; ahc_c |= AHC_AIC7896; ahc_f = AHC_AIC7896_FE; ahc_flags |= AHC_NEWEEPROM_FMT; devconfig = pci_conf_read(pa->pa_pc, pa->pa_tag, DEVCONFIG); /* turn off 64 bit for now XXX smurph */ devconfig &= ~PCI64; pci_conf_write(pa->pa_pc, pa->pa_tag, DEVCONFIG, devconfig); } break; case PCI_PRODUCT_ADP2_AIC7899: case PCI_PRODUCT_ADP2_3960D: ahc_c |= AHC_AIC7899; ahc_f = AHC_AIC7899_FE; ahc_flags |= AHC_NEWEEPROM_FMT; break; default: /* TTT */ } } #ifdef AHC_ALLOW_MEMIO memh_valid = (pci_mapreg_map(pa, AHC_PCI_MEMADDR, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, NULL) == 0); #endif ioh_valid = (pci_mapreg_map(pa, AHC_PCI_IOADDR, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL) == 0); if (ioh_valid) { /* do nothing */ #ifdef AHC_ALLOW_MEMIO } else if (memh_valid) { /* do nothing */ #endif } else { /* error out */ printf(": unable to map registers\n"); return; } /* Ensure busmastering is enabled */ command |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); pd = malloc(sizeof (struct ahc_pci_data), M_DEVBUF, M_NOWAIT); if (pd == NULL) { printf(": error allocating pci data\n"); return; } pd->pc = pa->pa_pc; pd->tag = pa->pa_tag; pd->function = pa->pa_function; /* setup the PCI stuff */ ahc->pci_data = pd; ahc->pci_intr_func = ahc_pci_intr; /* On all PCI adapters, we allow SCB paging */ ahc_flags |= AHC_PAGESCBS; ahc_construct(ahc, pa->pa_iot, ioh, ahc_c, ahc_flags, ahc_f, channel); /* Now we can use the ahc_inb and ahc_outb macros */ /* setup the PCI error interrupt handler */ ahc->pci_intr_func = &ahc_pci_intr; /* Remeber how the card was setup in case there is no SEEPROM */ ahc_outb(ahc, HCNTRL, ahc->pause); if ((ahc->features & AHC_ULTRA2) != 0) our_id = ahc_inb(ahc, SCSIID_ULTRA2) & OID; else our_id = ahc_inb(ahc, SCSIID) & OID; sxfrctl1 = ahc_inb(ahc, SXFRCTL1) & STPWEN; scsiseq = ahc_inb(ahc, SCSISEQ); if (ahc_reset(ahc) != 0) { /* Failed */ ahc_free(ahc); return; } if (ahc->features & AHC_ULTRA) ultra_enb = bus_space_read_1(pa->pa_iot, ioh, SXFRCTL0) & FAST20; if ((ahc->features & AHC_DT) != 0) { u_int optionmode; u_int sfunct; /* Perform ALT-Mode Setup */ sfunct = ahc_inb(ahc, SFUNCT) & ~ALT_MODE; ahc_outb(ahc, SFUNCT, sfunct | ALT_MODE); optionmode = ahc_inb(ahc, OPTIONMODE); if (bootverbose) printf("%s: OptionMode = %x\n", ahc_name(ahc), optionmode); ahc_outb(ahc, OPTIONMODE, OPTIONMODE_DEFAULTS); /* Send CRC info in target mode every 4K */ ahc_outb(ahc, TARGCRCCNT, 0); ahc_outb(ahc, TARGCRCCNT + 1, 0x10); ahc_outb(ahc, SFUNCT, sfunct); /* Normal mode setup */ ahc_outb(ahc, CRCCONTROL1, CRCVALCHKEN|CRCENDCHKEN|CRCREQCHKEN |TARGCRCENDEN|TARGCRCCNTEN); } if (pci_intr_map(pa->pa_pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf("%s: couldn't map interrupt\n", ahc->sc_dev.dv_xname); ahc_free(ahc); return; } intrstr = pci_intr_string(pa->pa_pc, ih); ahc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO, ahc_intr, ahc, ahc->sc_dev.dv_xname); if (ahc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); ahc_free(ahc); return; } if (intrstr != NULL) printf(": %s\n", intrstr); /* * Protect ourself from spurrious interrupts during * intialization. */ opri = splbio(); /* * Do aic7880/aic7870/aic7860/aic7850 specific initialization */ { u_int8_t sblkctl; u_int dscommand0; dscommand0 = ahc_inb(ahc, DSCOMMAND0); dscommand0 |= MPARCKEN; if ((ahc->features & AHC_ULTRA2) != 0) { /* * DPARCKEN doesn't work correctly on * some MBs so don't use it. */ dscommand0 &= ~(USCBSIZE32|DPARCKEN); dscommand0 |= CACHETHEN; } ahc_outb(ahc, DSCOMMAND0, dscommand0); /* See if we have an SEEPROM and perform auto-term */ check_extport(ahc, &sxfrctl1); /* * Take the LED out of diagnostic mode */ sblkctl = ahc_inb(ahc, SBLKCTL); ahc_outb(ahc, SBLKCTL, (sblkctl & ~(DIAGLEDEN|DIAGLEDON))); /* * I don't know where this is set in the SEEPROM or by the * BIOS, so we default to 100% on Ultra or slower controllers * and 75% on ULTRA2 controllers. */ if ((ahc->features & AHC_ULTRA2) != 0) { ahc_outb(ahc, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75); } else { ahc_outb(ahc, DSPCISTATUS, DFTHRSH_100); } if (ahc->flags & AHC_USEDEFAULTS) { /* * PCI Adapter default setup * Should only be used if the adapter does not have * an SEEPROM. */ /* See if someone else set us up already */ if (scsiseq != 0) { printf("%s: Using left over BIOS settings\n", ahc_name(ahc)); ahc->flags &= ~AHC_USEDEFAULTS; } else { /* * Assume only one connector and always turn * on termination. */ our_id = 0x07; sxfrctl1 = STPWEN; } ahc_outb(ahc, SCSICONF, our_id|ENSPCHK|RESET_SCSI); ahc->our_id = our_id; } } /* * Take a look to see if we have external SRAM. * We currently do not attempt to use SRAM that is * shared among multiple controllers. */ ahc_probe_ext_scbram(ahc); printf("%s: ", ahc_name(ahc)); /* * Record our termination setting for the * generic initialization routine. */ if ((sxfrctl1 & STPWEN) != 0) ahc->flags |= AHC_TERM_ENB_A; if (ahc_init(ahc)) { ahc_free(ahc); splx(opri); return; /* XXX PCI code should take return status */ } splx(opri); ahc_attach(ahc); } /* * Test for the presense of external sram in an * "unshared" configuration. */ static int ahc_ext_scbram_present(ahc) struct ahc_softc *ahc; { int ramps; int single_user; pcireg_t devconfig; struct ahc_pci_data *pd = ahc->pci_data; devconfig = pci_conf_read(pd->pc, pd->tag, DEVCONFIG); single_user = (devconfig & MPORTMODE) != 0; if ((ahc->features & AHC_ULTRA2) != 0) ramps = (ahc_inb(ahc, DSCOMMAND0) & RAMPS) != 0; else if ((ahc->chip & AHC_CHIPID_MASK) >= AHC_AIC7870) ramps = (devconfig & RAMPSM) != 0; else ramps = 0; if (ramps && single_user) return (1); return (0); } /* * Enable external scbram. */ static void ahc_ext_scbram_config(ahc, enable, pcheck, fast) struct ahc_softc *ahc; int enable; int pcheck; int fast; { pcireg_t devconfig; struct ahc_pci_data *pd = ahc->pci_data; if (ahc->features & AHC_MULTI_FUNC) { u_char channel; /* * Set the SCB Base addr (highest address bit) * depending on which channel we are. */ channel = pd->function == 1 ? 1 : 0; ahc_outb(ahc, SCBBADDR, channel); } devconfig = pci_conf_read(pd->pc, pd->tag, DEVCONFIG); if ((ahc->features & AHC_ULTRA2) != 0) { u_int dscommand0; dscommand0 = ahc_inb(ahc, DSCOMMAND0); if (enable) dscommand0 &= ~INTSCBRAMSEL; else dscommand0 |= INTSCBRAMSEL; ahc_outb(ahc, DSCOMMAND0, dscommand0); } else { if (fast) devconfig &= ~EXTSCBTIME; else devconfig |= EXTSCBTIME; if (enable) devconfig &= ~SCBRAMSEL; else devconfig |= SCBRAMSEL; } if (pcheck) devconfig |= EXTSCBPEN; else devconfig &= ~EXTSCBPEN; pci_conf_write(pd->pc, pd->tag, DEVCONFIG, devconfig); } /* * Take a look to see if we have external SRAM. * We currently do not attempt to use SRAM that is * shared among multiple controllers. */ static void ahc_probe_ext_scbram(ahc) struct ahc_softc *ahc; { int num_scbs; int test_num_scbs; int enable; int pcheck; int fast; if (ahc_ext_scbram_present(ahc) == 0) return; /* * Probe for the best parameters to use. */ enable = 0; pcheck = 0; fast = 0; ahc_ext_scbram_config(ahc, /*enable*/1, pcheck, fast); num_scbs = ahc_probe_scbs(ahc); if (num_scbs == 0) { /* The SRAM wasn't really present. */ goto done; } enable = 1; /* Now see if we can do parity */ ahc_ext_scbram_config(ahc, enable, /*pcheck*/1, fast); num_scbs = ahc_probe_scbs(ahc); if ((ahc_inb(ahc, INTSTAT) & BRKADRINT) == 0 || (ahc_inb(ahc, ERROR) & MPARERR) == 0) pcheck = 1; /* Clear any resulting parity error */ ahc_outb(ahc, CLRINT, CLRPARERR); ahc_outb(ahc, CLRINT, CLRBRKADRINT); /* Now see if we can do fast timing */ ahc_ext_scbram_config(ahc, enable, pcheck, /*fast*/1); test_num_scbs = ahc_probe_scbs(ahc); if (test_num_scbs == num_scbs && ((ahc_inb(ahc, INTSTAT) & BRKADRINT) == 0 || (ahc_inb(ahc, ERROR) & MPARERR) == 0)) fast = 1; done: /* Clear any resulting parity error */ ahc_outb(ahc, CLRINT, CLRPARERR); ahc_outb(ahc, CLRINT, CLRBRKADRINT); if (bootverbose && enable) { printf("%s: External SRAM, %dns access%s\n", ahc_name(ahc), fast ? 10 : 20, pcheck ? ", parity checking enabled" : ""); } ahc_ext_scbram_config(ahc, enable, pcheck, fast); } /* * Check the external port logic for a serial eeprom * and termination/cable detection contrls. */ static void check_extport(ahc, sxfrctl1) struct ahc_softc *ahc; u_int *sxfrctl1; { struct seeprom_descriptor sd; struct seeprom_config sc; u_int scsi_conf; u_int adapter_control; int have_seeprom; int have_autoterm; sd.sd_tag = ahc->sc_iot; sd.sd_bsh = ahc->sc_ioh; sd.sd_control_offset = SEECTL; sd.sd_status_offset = SEECTL; sd.sd_dataout_offset = SEECTL; /* * For some multi-channel devices, the c46 is simply too * small to work. For the other controller types, we can * get our information from either SEEPROM type. Set the * type to start our probe with accordingly. */ if (ahc->flags & AHC_LARGE_SEEPROM) sd.sd_chip = C56_66; else sd.sd_chip = C46; sd.sd_MS = SEEMS; sd.sd_RDY = SEERDY; sd.sd_CS = SEECS; sd.sd_CK = SEECK; sd.sd_DO = SEEDO; sd.sd_DI = SEEDI; have_seeprom = acquire_seeprom(ahc, &sd); if (have_seeprom) { if (bootverbose) printf("%s: Reading SEEPROM...", ahc_name(ahc)); for (;;) { bus_size_t start_addr; start_addr = 32 * (ahc->channel - 'A'); have_seeprom = read_seeprom(&sd, (u_int16_t *)&sc, start_addr, sizeof(sc)/2); if (have_seeprom) { /* Check checksum */ int i; int maxaddr; u_int32_t checksum; u_int16_t *scarray; maxaddr = (sizeof(sc)/2) - 1; checksum = 0; scarray = (u_int16_t *)≻ for (i = 0; i < maxaddr; i++) checksum = checksum + scarray[i]; if (checksum == 0 || (checksum & 0xFFFF) != sc.checksum) { if (bootverbose && sd.sd_chip == C56_66) printf ("checksum error\n"); have_seeprom = 0; } else { if (bootverbose) printf("done.\n"); break; } } if (sd.sd_chip == C56_66) break; sd.sd_chip = C56_66; } } if (!have_seeprom) { if (bootverbose) printf("%s: No SEEPROM available.\n", ahc_name(ahc)); ahc->flags |= AHC_USEDEFAULTS; } else { /* * Put the data we've collected down into SRAM * where ahc_init will find it. */ int i; int max_targ = sc.max_targets & CFMAXTARG; u_int16_t discenable; u_int16_t ultraenb; discenable = 0; ultraenb = 0; if ((sc.adapter_control & CFULTRAEN) != 0) { /* * Determine if this adapter has a "newstyle" * SEEPROM format. */ for (i = 0; i < max_targ; i++) { if ((sc.device_flags[i] & CFSYNCHISULTRA) != 0) { ahc->flags |= AHC_NEWEEPROM_FMT; break; } } } for (i = 0; i < max_targ; i++) { u_int scsirate; u_int16_t target_mask; target_mask = 0x01 << i; if (sc.device_flags[i] & CFDISC) discenable |= target_mask; if ((ahc->flags & AHC_NEWEEPROM_FMT) != 0) { if ((sc.device_flags[i] & CFSYNCHISULTRA) != 0) ultraenb |= target_mask; } else if ((sc.adapter_control & CFULTRAEN) != 0) { ultraenb |= target_mask; } if ((sc.device_flags[i] & CFXFER) == 0x04 && (ultraenb & target_mask) != 0) { /* Treat 10MHz as a non-ultra speed */ sc.device_flags[i] &= ~CFXFER; ultraenb &= ~target_mask; } if ((ahc->features & AHC_ULTRA2) != 0) { u_int offset; if (sc.device_flags[i] & CFSYNCH) offset = MAX_OFFSET_ULTRA2; else offset = 0; ahc_outb(ahc, TARG_OFFSET + i, offset); scsirate = (sc.device_flags[i] & CFXFER) | ((ultraenb & target_mask) ? 0x8 : 0x0); if (sc.device_flags[i] & CFWIDEB) scsirate |= WIDEXFER; } else { scsirate = (sc.device_flags[i] & CFXFER) << 4; if (sc.device_flags[i] & CFSYNCH) scsirate |= SOFS; if (sc.device_flags[i] & CFWIDEB) scsirate |= WIDEXFER; } ahc_outb(ahc, TARG_SCSIRATE + i, scsirate); } ahc->our_id = sc.brtime_id & CFSCSIID; scsi_conf = (ahc->our_id & 0x7); if (sc.adapter_control & CFSPARITY) scsi_conf |= ENSPCHK; if (sc.adapter_control & CFRESETB) scsi_conf |= RESET_SCSI; if (sc.bios_control & CFEXTEND) ahc->flags |= AHC_EXTENDED_TRANS_A; if (ahc->features & AHC_ULTRA && (ahc->flags & AHC_NEWEEPROM_FMT) == 0) { /* Should we enable Ultra mode? */ if (!(sc.adapter_control & CFULTRAEN)) /* Treat us as a non-ultra card */ ultraenb = 0; } /* Set SCSICONF info */ ahc_outb(ahc, SCSICONF, scsi_conf); ahc_outb(ahc, DISC_DSB, ~(discenable & 0xff)); ahc_outb(ahc, DISC_DSB + 1, ~((discenable >> 8) & 0xff)); ahc_outb(ahc, ULTRA_ENB, ultraenb & 0xff); ahc_outb(ahc, ULTRA_ENB + 1, (ultraenb >> 8) & 0xff); } /* * Cards that have the external logic necessary to talk to * a SEEPROM, are almost certain to have the remaining logic * necessary for auto-termination control. This assumption * hasn't failed yet... */ have_autoterm = have_seeprom; if (have_seeprom) adapter_control = sc.adapter_control; else adapter_control = CFAUTOTERM; /* * Some low-cost chips have SEEPROM and auto-term control built * in, instead of using a GAL. They can tell us directly * if the termination logic is enabled. */ if ((ahc->features & AHC_SPIOCAP) != 0) { if ((ahc_inb(ahc, SPIOCAP) & SSPIOCPS) != 0) have_autoterm = 1; else have_autoterm = 0; } if (have_autoterm) configure_termination(ahc, &sd, adapter_control, sxfrctl1); release_seeprom(&sd); } static void configure_termination(ahc, sd, adapter_control, sxfrctl1) struct ahc_softc *ahc; struct seeprom_descriptor *sd; u_int adapter_control; u_int *sxfrctl1; { u_int8_t brddat; brddat = 0; /* * Update the settings in sxfrctl1 to match the * termination settings */ *sxfrctl1 = 0; /* * SEECS must be on for the GALS to latch * the data properly. Be sure to leave MS * on or we will release the seeprom. */ SEEPROM_OUTB(sd, sd->sd_MS | sd->sd_CS); if ((adapter_control & CFAUTOTERM) != 0 || (ahc->features & AHC_NEW_TERMCTL) != 0) { int internal50_present; int internal68_present; int externalcable_present; int eeprom_present; int enableSEC_low; int enableSEC_high; int enablePRI_low; int enablePRI_high; enableSEC_low = 0; enableSEC_high = 0; enablePRI_low = 0; enablePRI_high = 0; if ((ahc->features & AHC_NEW_TERMCTL) != 0) { ahc_new_term_detect(ahc, &enableSEC_low, &enableSEC_high, &enablePRI_low, &enablePRI_high, &eeprom_present); if ((adapter_control & CFSEAUTOTERM) == 0) { if (bootverbose) printf("%s: Manual SE Termination\n", ahc_name(ahc)); enableSEC_low = (adapter_control & CFSTERM); enableSEC_high = (adapter_control & CFWSTERM); } if ((adapter_control & CFAUTOTERM) == 0) { if (bootverbose) printf("%s: Manual LVD Termination\n", ahc_name(ahc)); enablePRI_low = enablePRI_high = (adapter_control & CFLVDSTERM); } /* Make the table calculations below happy */ internal50_present = 0; internal68_present = 1; externalcable_present = 1; } else if ((ahc->features & AHC_SPIOCAP) != 0) { aic785X_cable_detect(ahc, &internal50_present, &externalcable_present, &eeprom_present); } else { aic787X_cable_detect(ahc, &internal50_present, &internal68_present, &externalcable_present, &eeprom_present); } if ((ahc->features & AHC_WIDE) == 0) internal68_present = 0; if (bootverbose) { if ((ahc->features & AHC_ULTRA2) == 0) { printf("%s: internal 50 cable %s present, " "internal 68 cable %s present\n", ahc_name(ahc), internal50_present ? "is":"not", internal68_present ? "is":"not"); printf("%s: external cable %s present\n", ahc_name(ahc), externalcable_present ? "is":"not"); } printf("%s: BIOS eeprom %s present\n", ahc_name(ahc), eeprom_present ? "is" : "not"); } if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0) { /* * The 50 pin connector is a separate bus, * so force it to always be terminated. * In the future, perform current sensing * to determine if we are in the middle of * a properly terminated bus. */ internal50_present = 0; } /* * Now set the termination based on what * we found. * Flash Enable = BRDDAT7 * Secondary High Term Enable = BRDDAT6 * Secondary Low Term Enable = BRDDAT5 (7890) * Primary High Term Enable = BRDDAT4 (7890) */ if ((ahc->features & AHC_ULTRA2) == 0 && (internal50_present != 0) && (internal68_present != 0) && (externalcable_present != 0)) { printf("%s: Illegal cable configuration!!. " "Only two connectors on the " "adapter may be used at a " "time!\n", ahc_name(ahc)); } if ((ahc->features & AHC_WIDE) != 0 && ((externalcable_present == 0) || (internal68_present == 0) || (enableSEC_high != 0))) { brddat |= BRDDAT6; if (bootverbose) { if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0) printf("%s: 68 pin termination " "Enabled\n", ahc_name(ahc)); else printf("%s: %sHigh byte termination " "Enabled\n", ahc_name(ahc), enableSEC_high ? "Secondary " : ""); } } if (((internal50_present ? 1 : 0) + (internal68_present ? 1 : 0) + (externalcable_present ? 1 : 0)) <= 1 || (enableSEC_low != 0)) { if ((ahc->features & AHC_ULTRA2) != 0) brddat |= BRDDAT5; else *sxfrctl1 |= STPWEN; if (bootverbose) { if ((ahc->flags & AHC_INT50_SPEEDFLEX) != 0) printf("%s: 50 pin termination " "Enabled\n", ahc_name(ahc)); else printf("%s: %sLow byte termination " "Enabled\n", ahc_name(ahc), enableSEC_low ? "Secondary " : ""); } } if (enablePRI_low != 0) { *sxfrctl1 |= STPWEN; if (bootverbose) printf("%s: Primary Low Byte termination " "Enabled\n", ahc_name(ahc)); } /* * Setup STPWEN before setting up the rest of * the termination per the tech note on the U160 cards. */ ahc_outb(ahc, SXFRCTL1, *sxfrctl1); if (enablePRI_high != 0) { brddat |= BRDDAT4; if (bootverbose) printf("%s: Primary High Byte " "termination Enabled\n", ahc_name(ahc)); } write_brdctl(ahc, brddat); } else { if ((adapter_control & CFSTERM) != 0) { *sxfrctl1 |= STPWEN; if (bootverbose) printf("%s: %sLow byte termination Enabled\n", ahc_name(ahc), (ahc->features & AHC_ULTRA2) ? "Primary " : ""); } if ((adapter_control & CFWSTERM) != 0) { brddat |= BRDDAT6; if (bootverbose) printf("%s: %sHigh byte termination Enabled\n", ahc_name(ahc), (ahc->features & AHC_ULTRA2) ? "Secondary " : ""); } /* * Setup STPWEN before setting up the rest of * the termination per the tech note on the U160 cards. */ ahc_outb(ahc, SXFRCTL1, *sxfrctl1); write_brdctl(ahc, brddat); } SEEPROM_OUTB(sd, sd->sd_MS); /* Clear CS */ } static void ahc_new_term_detect(ahc, enableSEC_low, enableSEC_high, enablePRI_low, enablePRI_high, eeprom_present) struct ahc_softc *ahc; int *enableSEC_low; int *enableSEC_high; int *enablePRI_low; int *enablePRI_high; int *eeprom_present; { u_int8_t brdctl; /* * BRDDAT7 = Eeprom * BRDDAT6 = Enable Secondary High Byte termination * BRDDAT5 = Enable Secondary Low Byte termination * BRDDAT4 = Enable Primary high byte termination * BRDDAT3 = Enable Primary low byte termination */ brdctl = read_brdctl(ahc); *eeprom_present = brdctl & BRDDAT7; *enableSEC_high = (brdctl & BRDDAT6); *enableSEC_low = (brdctl & BRDDAT5); *enablePRI_high = (brdctl & BRDDAT4); *enablePRI_low = (brdctl & BRDDAT3); } static void aic787X_cable_detect(ahc, internal50_present, internal68_present, externalcable_present, eeprom_present) struct ahc_softc *ahc; int *internal50_present; int *internal68_present; int *externalcable_present; int *eeprom_present; { u_int8_t brdctl; /* * First read the status of our cables. * Set the rom bank to 0 since the * bank setting serves as a multiplexor * for the cable detection logic. * BRDDAT5 controls the bank switch. */ write_brdctl(ahc, 0); /* * Now read the state of the internal * connectors. BRDDAT6 is INT50 and * BRDDAT7 is INT68. */ brdctl = read_brdctl(ahc); *internal50_present = !(brdctl & BRDDAT6); *internal68_present = !(brdctl & BRDDAT7); /* * Set the rom bank to 1 and determine * the other signals. */ write_brdctl(ahc, BRDDAT5); /* * Now read the state of the external * connectors. BRDDAT6 is EXT68 and * BRDDAT7 is EPROMPS. */ brdctl = read_brdctl(ahc); *externalcable_present = !(brdctl & BRDDAT6); *eeprom_present = brdctl & BRDDAT7; } static void aic785X_cable_detect(ahc, internal50_present, externalcable_present, eeprom_present) struct ahc_softc *ahc; int *internal50_present; int *externalcable_present; int *eeprom_present; { u_int8_t brdctl; ahc_outb(ahc, BRDCTL, BRDRW|BRDCS); ahc_outb(ahc, BRDCTL, 0); brdctl = ahc_inb(ahc, BRDCTL); *internal50_present = !(brdctl & BRDDAT5); *externalcable_present = !(brdctl & BRDDAT6); *eeprom_present = (ahc_inb(ahc, SPIOCAP) & EEPROM) != 0; } static void write_brdctl(ahc, value) struct ahc_softc *ahc; u_int8_t value; { u_int8_t brdctl; if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7895) { brdctl = BRDSTB; if (ahc->channel == 'B') brdctl |= BRDCS; } else if ((ahc->features & AHC_ULTRA2) != 0) { brdctl = 0; } else { brdctl = BRDSTB|BRDCS; } ahc_outb(ahc, BRDCTL, brdctl); DELAY(20); brdctl |= value; ahc_outb(ahc, BRDCTL, brdctl); DELAY(20); if ((ahc->features & AHC_ULTRA2) != 0) brdctl |= BRDSTB_ULTRA2; else brdctl &= ~BRDSTB; ahc_outb(ahc, BRDCTL, brdctl); DELAY(20); if ((ahc->features & AHC_ULTRA2) != 0) brdctl = 0; else brdctl &= ~BRDCS; ahc_outb(ahc, BRDCTL, brdctl); } static u_int8_t read_brdctl(ahc) struct ahc_softc *ahc; { u_int8_t brdctl; u_int8_t value; if ((ahc->chip & AHC_CHIPID_MASK) == AHC_AIC7895) { brdctl = BRDRW; if (ahc->channel == 'B') brdctl |= BRDCS; } else if ((ahc->features & AHC_ULTRA2) != 0) { brdctl = BRDRW_ULTRA2; } else { brdctl = BRDRW|BRDCS; } ahc_outb(ahc, BRDCTL, brdctl); DELAY(20); value = ahc_inb(ahc, BRDCTL); ahc_outb(ahc, BRDCTL, 0); return (value); } static int acquire_seeprom(ahc, sd) struct ahc_softc *ahc; struct seeprom_descriptor *sd; { int wait; if ((ahc->features & AHC_SPIOCAP) != 0 && (ahc_inb(ahc, SPIOCAP) & SEEPROM) == 0) return (0); /* * Request access of the memory port. When access is * granted, SEERDY will go high. We use a 1 second * timeout which should be near 1 second more than * is needed. Reason: after the chip reset, there * should be no contention. */ SEEPROM_OUTB(sd, sd->sd_MS); wait = 1000; /* 1 second timeout in msec */ while (--wait && ((SEEPROM_STATUS_INB(sd) & sd->sd_RDY) == 0)) { DELAY(1000); /* delay 1 msec */ } if ((SEEPROM_STATUS_INB(sd) & sd->sd_RDY) == 0) { SEEPROM_OUTB(sd, 0); return (0); } return (1); } static void release_seeprom(sd) struct seeprom_descriptor *sd; { /* Release access to the memory port and the serial EEPROM. */ SEEPROM_OUTB(sd, 0); } #define DPE PCI_STATUS_PARITY_DETECT #define SSE PCI_STATUS_SPECIAL_ERROR #define RMA PCI_STATUS_MASTER_ABORT #define RTA PCI_STATUS_MASTER_TARGET_ABORT #define STA PCI_STATUS_TARGET_TARGET_ABORT #define DPR PCI_STATUS_PARITY_ERROR int ahc_pci_intr(ahc) struct ahc_softc *ahc; { pcireg_t status1; struct ahc_pci_data *pd = ahc->pci_data; if ((ahc_inb(ahc, ERROR) & PCIERRSTAT) == 0) return 0; status1 = pci_conf_read(pd->pc, pd->tag, PCI_COMMAND_STATUS_REG); if (status1 & DPE) { printf("%s: Data Parity Error Detected during address " "or write data phase\n", ahc_name(ahc)); } if (status1 & SSE) { printf("%s: Signal System Error Detected\n", ahc_name(ahc)); } if (status1 & RMA) { printf("%s: Received a Master Abort\n", ahc_name(ahc)); } if (status1 & RTA) { printf("%s: Received a Target Abort\n", ahc_name(ahc)); } if (status1 & STA) { printf("%s: Signaled a Target Abort\n", ahc_name(ahc)); } if (status1 & DPR) { printf("%s: Data Parity Error has been reported via PERR#\n", ahc_name(ahc)); } if ((status1 & (DPE|SSE|RMA|RTA|STA|DPR)) == 0) { printf("%s: Latched PCIERR interrupt with " "no status bits set\n", ahc_name(ahc)); } pci_conf_write(pd->pc, pd->tag, PCI_COMMAND_STATUS_REG, status1); if (status1 & (DPR|RMA|RTA)) { ahc_outb(ahc, CLRINT, CLRPARERR); } return 1; }