/* $OpenBSD: arc.c,v 1.61 2007/03/27 11:25:17 jmc Exp $ */ /* * Copyright (c) 2006 David Gwynne * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bio.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBIO > 0 #include #include #endif #ifdef ARC_DEBUG #define ARC_D_INIT (1<<0) #define ARC_D_RW (1<<1) #define ARC_D_DB (1<<2) int arcdebug = 0; #define DPRINTF(p...) do { if (arcdebug) printf(p); } while (0) #define DNPRINTF(n, p...) do { if ((n) & arcdebug) printf(p); } while (0) #else #define DPRINTF(p...) /* p */ #define DNPRINTF(n, p...) /* n, p */ #endif static const struct pci_matchid arc_devices[] = { { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1110 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1120 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1130 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1160 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1170 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1210 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1220 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1230 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1260 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1270 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1280 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1380 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1381 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1680 }, { PCI_VENDOR_ARECA, PCI_PRODUCT_ARECA_ARC1681 } }; #define ARC_PCI_BAR PCI_MAPREG_START #define ARC_REG_INB_MSG0 0x0010 #define ARC_REG_INB_MSG0_NOP (0x00000000) #define ARC_REG_INB_MSG0_GET_CONFIG (0x00000001) #define ARC_REG_INB_MSG0_SET_CONFIG (0x00000002) #define ARC_REG_INB_MSG0_ABORT_CMD (0x00000003) #define ARC_REG_INB_MSG0_STOP_BGRB (0x00000004) #define ARC_REG_INB_MSG0_FLUSH_CACHE (0x00000005) #define ARC_REG_INB_MSG0_START_BGRB (0x00000006) #define ARC_REG_INB_MSG0_CHK331PENDING (0x00000007) #define ARC_REG_INB_MSG0_SYNC_TIMER (0x00000008) #define ARC_REG_INB_MSG1 0x0014 #define ARC_REG_OUTB_ADDR0 0x0018 #define ARC_REG_OUTB_ADDR1 0x001c #define ARC_REG_OUTB_ADDR1_FIRMWARE_OK (1<<31) #define ARC_REG_INB_DOORBELL 0x0020 #define ARC_REG_INB_DOORBELL_WRITE_OK (1<<0) #define ARC_REG_INB_DOORBELL_READ_OK (1<<1) #define ARC_REG_OUTB_DOORBELL 0x002c #define ARC_REG_OUTB_DOORBELL_WRITE_OK (1<<0) #define ARC_REG_OUTB_DOORBELL_READ_OK (1<<1) #define ARC_REG_INTRSTAT 0x0030 #define ARC_REG_INTRSTAT_MSG0 (1<<0) #define ARC_REG_INTRSTAT_MSG1 (1<<1) #define ARC_REG_INTRSTAT_DOORBELL (1<<2) #define ARC_REG_INTRSTAT_POSTQUEUE (1<<3) #define ARC_REG_INTRSTAT_PCI (1<<4) #define ARC_REG_INTRMASK 0x0034 #define ARC_REG_INTRMASK_MSG0 (1<<0) #define ARC_REG_INTRMASK_MSG1 (1<<1) #define ARC_REG_INTRMASK_DOORBELL (1<<2) #define ARC_REG_INTRMASK_POSTQUEUE (1<<3) #define ARC_REG_INTRMASK_PCI (1<<4) #define ARC_REG_POST_QUEUE 0x0040 #define ARC_REG_POST_QUEUE_ADDR_SHIFT 5 #define ARC_REG_POST_QUEUE_IAMBIOS (1<<30) #define ARC_REG_POST_QUEUE_BIGFRAME (1<<31) #define ARC_REG_REPLY_QUEUE 0x0044 #define ARC_REG_REPLY_QUEUE_ADDR_SHIFT 5 #define ARC_REG_REPLY_QUEUE_ERR (1<<28) #define ARC_REG_REPLY_QUEUE_IAMBIOS (1<<30) #define ARC_REG_MSGBUF 0x0a00 #define ARC_REG_MSGBUF_LEN 1024 #define ARC_REG_IOC_WBUF_LEN 0x0e00 #define ARC_REG_IOC_WBUF 0x0e04 #define ARC_REG_IOC_RBUF_LEN 0x0f00 #define ARC_REG_IOC_RBUF 0x0f04 #define ARC_REG_IOC_RWBUF_MAXLEN 124 /* for both RBUF and WBUF */ struct arc_msg_firmware_info { u_int32_t signature; #define ARC_FWINFO_SIGNATURE_GET_CONFIG (0x87974060) u_int32_t request_len; u_int32_t queue_len; u_int32_t sdram_size; u_int32_t sata_ports; u_int8_t vendor[40]; u_int8_t model[8]; u_int8_t fw_version[16]; u_int8_t device_map[16]; } __packed; struct arc_msg_scsicmd { u_int8_t bus; u_int8_t target; u_int8_t lun; u_int8_t function; u_int8_t cdb_len; u_int8_t sgl_len; u_int8_t flags; #define ARC_MSG_SCSICMD_FLAG_SGL_BSIZE_512 (1<<0) #define ARC_MSG_SCSICMD_FLAG_FROM_BIOS (1<<1) #define ARC_MSG_SCSICMD_FLAG_WRITE (1<<2) #define ARC_MSG_SCSICMD_FLAG_SIMPLEQ (0x00) #define ARC_MSG_SCSICMD_FLAG_HEADQ (0x08) #define ARC_MSG_SCSICMD_FLAG_ORDERQ (0x10) u_int8_t reserved; u_int32_t context; u_int32_t data_len; #define ARC_MSG_CDBLEN 16 u_int8_t cdb[ARC_MSG_CDBLEN]; u_int8_t status; #define ARC_MSG_STATUS_SELTIMEOUT 0xf0 #define ARC_MSG_STATUS_ABORTED 0xf1 #define ARC_MSG_STATUS_INIT_FAIL 0xf2 #define ARC_MSG_SENSELEN 15 u_int8_t sense_data[ARC_MSG_SENSELEN]; /* followed by an sgl */ } __packed; struct arc_sge { u_int32_t sg_hdr; #define ARC_SGE_64BIT (1<<24) u_int32_t sg_lo_addr; u_int32_t sg_hi_addr; } __packed; #define ARC_MAX_TARGET 16 #define ARC_MAX_LUN 8 #define ARC_MAX_IOCMDLEN 512 #define ARC_BLOCKSIZE 512 /* the firmware deals with up to 256 or 512 byte command frames. */ /* sizeof(struct arc_msg_scsicmd) + (sizeof(struct arc_sge) * 38) == 508 */ #define ARC_SGL_MAXLEN 38 /* sizeof(struct arc_msg_scsicmd) + (sizeof(struct arc_sge) * 17) == 252 */ #define ARC_SGL_256LEN 17 struct arc_io_cmd { struct arc_msg_scsicmd cmd; struct arc_sge sgl[ARC_SGL_MAXLEN]; } __packed; /* definitions of the firmware commands sent via the doorbells */ struct arc_fw_hdr { u_int8_t byte1; u_int8_t byte2; u_int8_t byte3; } __packed; /* the fw header must always equal this */ struct arc_fw_hdr arc_fw_hdr = { 0x5e, 0x01, 0x61 }; struct arc_fw_bufhdr { struct arc_fw_hdr hdr; u_int16_t len; } __packed; #define ARC_FW_RAIDINFO 0x20 /* opcode + raid# */ #define ARC_FW_VOLINFO 0x21 /* opcode + vol# */ #define ARC_FW_DISKINFO 0x22 /* opcode + physdisk# */ #define ARC_FW_SYSINFO 0x23 /* opcode. reply is fw_sysinfo */ #define ARC_FW_MUTE_ALARM 0x30 /* opcode only */ #define ARC_FW_SET_ALARM 0x31 /* opcode + 1 byte for setting */ #define ARC_FW_SET_ALARM_DISABLE 0x00 #define ARC_FW_SET_ALARM_ENABLE 0x01 #define ARC_FW_NOP 0x38 /* opcode only */ #define ARC_FW_CMD_OK 0x41 struct arc_fw_comminfo { u_int8_t baud_rate; u_int8_t data_bits; u_int8_t stop_bits; u_int8_t parity; u_int8_t flow_control; } __packed; struct arc_fw_scsiattr { u_int8_t channel;// channel for SCSI target (0/1) u_int8_t target; u_int8_t lun; u_int8_t tagged; u_int8_t cache; u_int8_t speed; } __packed; struct arc_fw_raidinfo { u_int8_t set_name[16]; u_int32_t capacity; u_int32_t capacity2; u_int32_t fail_mask; u_int8_t device_array[32]; u_int8_t member_devices; u_int8_t new_member_devices; u_int8_t raid_state; u_int8_t volumes; u_int8_t volume_list[16]; u_int8_t reserved1[3]; u_int8_t free_segments; u_int32_t raw_stripes[8]; u_int8_t reserved2[12]; } __packed; struct arc_fw_volinfo { u_int8_t set_name[16]; u_int32_t capacity; u_int32_t capacity2; u_int32_t fail_mask; u_int32_t stripe_size; /* in blocks */ u_int32_t new_fail_mask; u_int32_t new_stripe_size; u_int32_t volume_status; #define ARC_FW_VOL_STATUS_NORMAL 0x00 #define ARC_FW_VOL_STATUS_INITTING (1<<0) #define ARC_FW_VOL_STATUS_FAILED (1<<1) #define ARC_FW_VOL_STATUS_MIGRATING (1<<2) #define ARC_FW_VOL_STATUS_REBUILDING (1<<3) #define ARC_FW_VOL_STATUS_NEED_INIT (1<<4) #define ARC_FW_VOL_STATUS_NEED_MIGRATE (1<<5) #define ARC_FW_VOL_STATUS_INIT_FLAG (1<<6) #define ARC_FW_VOL_STATUS_NEED_REGEN (1<<7) #define ARC_FW_VOL_STATUS_CHECKING (1<<8) #define ARC_FW_VOL_STATUS_NEED_CHECK (1<<9) u_int32_t progress; struct arc_fw_scsiattr scsi_attr; u_int8_t member_disks; u_int8_t raid_level; #define ARC_FW_VOL_RAIDLEVEL_0 0x00 #define ARC_FW_VOL_RAIDLEVEL_1 0x01 #define ARC_FW_VOL_RAIDLEVEL_3 0x02 #define ARC_FW_VOL_RAIDLEVEL_5 0x03 #define ARC_FW_VOL_RAIDLEVEL_6 0x04 #define ARC_FW_VOL_RAIDLEVEL_PASSTHRU 0x05 u_int8_t new_member_disks; u_int8_t new_raid_level; u_int8_t raid_set_number; u_int8_t reserved[5]; } __packed; struct arc_fw_diskinfo { u_int8_t model[40]; u_int8_t serial[20]; u_int8_t firmware_rev[8]; u_int32_t capacity; u_int32_t capacity2; u_int8_t device_state; u_int8_t pio_mode; u_int8_t current_udma_mode; u_int8_t udma_mode; u_int8_t drive_select; u_int8_t raid_number; // 0xff unowned struct arc_fw_scsiattr scsi_attr; u_int8_t reserved[40]; } __packed; struct arc_fw_sysinfo { u_int8_t vendor_name[40]; u_int8_t serial_number[16]; u_int8_t firmware_version[16]; u_int8_t boot_version[16]; u_int8_t mb_version[16]; u_int8_t model_name[8]; u_int8_t local_ip[4]; u_int8_t current_ip[4]; u_int32_t time_tick; u_int32_t cpu_speed; u_int32_t icache; u_int32_t dcache; u_int32_t scache; u_int32_t memory_size; u_int32_t memory_speed; u_int32_t events; u_int8_t gsiMacAddress[6]; u_int8_t gsiDhcp; u_int8_t alarm; u_int8_t channel_usage; u_int8_t max_ata_mode; u_int8_t sdram_ecc; u_int8_t rebuild_priority; struct arc_fw_comminfo comm_a; struct arc_fw_comminfo comm_b; u_int8_t ide_channels; u_int8_t scsi_host_channels; u_int8_t ide_host_channels; u_int8_t max_volume_set; u_int8_t max_raid_set; u_int8_t ether_port; u_int8_t raid6_engine; u_int8_t reserved[75]; } __packed; int arc_match(struct device *, void *, void *); void arc_attach(struct device *, struct device *, void *); int arc_detach(struct device *, int); void arc_shutdown(void *); int arc_intr(void *); struct arc_ccb; TAILQ_HEAD(arc_ccb_list, arc_ccb); struct arc_softc { struct device sc_dev; struct scsi_link sc_link; pci_chipset_tag_t sc_pc; pcitag_t sc_tag; bus_space_tag_t sc_iot; bus_space_handle_t sc_ioh; bus_size_t sc_ios; bus_dma_tag_t sc_dmat; void *sc_ih; void *sc_shutdownhook; int sc_req_count; struct arc_dmamem *sc_requests; struct arc_ccb *sc_ccbs; struct arc_ccb_list sc_ccb_free; struct scsibus_softc *sc_scsibus; struct rwlock sc_lock; volatile int sc_talking; struct ksensor *sc_sensors; struct ksensordev sc_sensordev; int sc_nsensors; }; #define DEVNAME(_s) ((_s)->sc_dev.dv_xname) struct cfattach arc_ca = { sizeof(struct arc_softc), arc_match, arc_attach, arc_detach }; struct cfdriver arc_cd = { NULL, "arc", DV_DULL }; /* interface for scsi midlayer to talk to */ int arc_scsi_cmd(struct scsi_xfer *); void arc_minphys(struct buf *); struct scsi_adapter arc_switch = { arc_scsi_cmd, arc_minphys, NULL, NULL, NULL }; struct scsi_device arc_dev = { NULL, NULL, NULL, NULL }; /* code to deal with getting bits in and out of the bus space */ u_int32_t arc_read(struct arc_softc *, bus_size_t); void arc_read_region(struct arc_softc *, bus_size_t, void *, size_t); void arc_write(struct arc_softc *, bus_size_t, u_int32_t); void arc_write_region(struct arc_softc *, bus_size_t, void *, size_t); int arc_wait_eq(struct arc_softc *, bus_size_t, u_int32_t, u_int32_t); int arc_wait_ne(struct arc_softc *, bus_size_t, u_int32_t, u_int32_t); int arc_msg0(struct arc_softc *, u_int32_t); #define arc_push(_s, _r) arc_write((_s), ARC_REG_POST_QUEUE, (_r)) #define arc_pop(_s) arc_read((_s), ARC_REG_REPLY_QUEUE) /* wrap up the bus_dma api */ struct arc_dmamem { bus_dmamap_t adm_map; bus_dma_segment_t adm_seg; size_t adm_size; caddr_t adm_kva; }; #define ARC_DMA_MAP(_adm) ((_adm)->adm_map) #define ARC_DMA_DVA(_adm) ((_adm)->adm_map->dm_segs[0].ds_addr) #define ARC_DMA_KVA(_adm) ((void *)(_adm)->adm_kva) struct arc_dmamem *arc_dmamem_alloc(struct arc_softc *, size_t); void arc_dmamem_free(struct arc_softc *, struct arc_dmamem *); /* stuff to manage a scsi command */ struct arc_ccb { struct arc_softc *ccb_sc; int ccb_id; struct scsi_xfer *ccb_xs; bus_dmamap_t ccb_dmamap; bus_addr_t ccb_offset; struct arc_io_cmd *ccb_cmd; u_int32_t ccb_cmd_post; TAILQ_ENTRY(arc_ccb) ccb_link; }; int arc_alloc_ccbs(struct arc_softc *); struct arc_ccb *arc_get_ccb(struct arc_softc *); void arc_put_ccb(struct arc_softc *, struct arc_ccb *); int arc_load_xs(struct arc_ccb *); int arc_complete(struct arc_softc *, struct arc_ccb *, int); void arc_scsi_cmd_done(struct arc_softc *, struct arc_ccb *, u_int32_t); /* real stuff for dealing with the hardware */ int arc_map_pci_resources(struct arc_softc *, struct pci_attach_args *); int arc_query_firmware(struct arc_softc *); #if NBIO > 0 /* stuff to do messaging via the doorbells */ void arc_lock(struct arc_softc *); void arc_unlock(struct arc_softc *); void arc_wait(struct arc_softc *); u_int8_t arc_msg_cksum(void *, u_int16_t); int arc_msgbuf(struct arc_softc *, void *, size_t, void *, size_t); /* bioctl */ int arc_bioctl(struct device *, u_long, caddr_t); int arc_bio_inq(struct arc_softc *, struct bioc_inq *); int arc_bio_vol(struct arc_softc *, struct bioc_vol *); int arc_bio_disk(struct arc_softc *, struct bioc_disk *); int arc_bio_alarm(struct arc_softc *, struct bioc_alarm *); int arc_bio_alarm_state(struct arc_softc *, struct bioc_alarm *); int arc_bio_getvol(struct arc_softc *, int, struct arc_fw_volinfo *); /* sensors */ void arc_create_sensors(void *, void *); void arc_refresh_sensors(void *); #endif int arc_match(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, arc_devices, sizeof(arc_devices) / sizeof(arc_devices[0]))); } void arc_attach(struct device *parent, struct device *self, void *aux) { struct arc_softc *sc = (struct arc_softc *)self; struct pci_attach_args *pa = aux; struct scsibus_attach_args saa; struct device *child; sc->sc_talking = 0; rw_init(&sc->sc_lock, "arcmsg"); if (arc_map_pci_resources(sc, pa) != 0) { /* error message printed by arc_map_pci_resources */ return; } if (arc_query_firmware(sc) != 0) { /* error message printed by arc_query_firmware */ return; } if (arc_alloc_ccbs(sc) != 0) { /* error message printed by arc_alloc_ccbs */ return; } sc->sc_shutdownhook = shutdownhook_establish(arc_shutdown, sc); if (sc->sc_shutdownhook == NULL) panic("unable to establish arc powerhook"); sc->sc_link.device = &arc_dev; sc->sc_link.adapter = &arc_switch; sc->sc_link.adapter_softc = sc; sc->sc_link.adapter_target = ARC_MAX_TARGET; sc->sc_link.adapter_buswidth = ARC_MAX_TARGET; sc->sc_link.openings = sc->sc_req_count / ARC_MAX_TARGET; bzero(&saa, sizeof(saa)); saa.saa_sc_link = &sc->sc_link; child = config_found(self, &saa, scsiprint); sc->sc_scsibus = (struct scsibus_softc *)child; /* enable interrupts */ arc_write(sc, ARC_REG_INTRMASK, ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRSTAT_DOORBELL)); #if NBIO > 0 if (bio_register(self, arc_bioctl) != 0) panic("%s: bioctl registration failed\n", DEVNAME(sc)); /* * you need to talk to the firmware to get volume info. our firmware * interface relies on being able to sleep, so we need to use a thread * to do the work. */ if (scsi_task(arc_create_sensors, sc, NULL, 1) != 0) printf("%s: unable to schedule arc_create_sensors as a " "scsi task", DEVNAME(sc)); #endif return; } int arc_detach(struct device *self, int flags) { struct arc_softc *sc = (struct arc_softc *)self; shutdownhook_disestablish(sc->sc_shutdownhook); if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0) printf("%s: timeout waiting to stop bg rebuild\n"); if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0) printf("%s: timeout waiting to flush cache\n"); return (0); } void arc_shutdown(void *xsc) { struct arc_softc *sc = xsc; if (arc_msg0(sc, ARC_REG_INB_MSG0_STOP_BGRB) != 0) printf("%s: timeout waiting to stop bg rebuild\n"); if (arc_msg0(sc, ARC_REG_INB_MSG0_FLUSH_CACHE) != 0) printf("%s: timeout waiting to flush cache\n"); } int arc_intr(void *arg) { struct arc_softc *sc = arg; struct arc_ccb *ccb = NULL; char *kva = ARC_DMA_KVA(sc->sc_requests); struct arc_io_cmd *cmd; u_int32_t reg, intrstat; intrstat = arc_read(sc, ARC_REG_INTRSTAT); if (intrstat == 0x0) return (0); intrstat &= ARC_REG_INTRSTAT_POSTQUEUE | ARC_REG_INTRSTAT_DOORBELL; arc_write(sc, ARC_REG_INTRSTAT, intrstat); if (intrstat & ARC_REG_INTRSTAT_DOORBELL) { if (sc->sc_talking) { /* if an ioctl is talking, wake it up */ arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE); wakeup(sc); } else { /* otherwise drop it */ reg = arc_read(sc, ARC_REG_OUTB_DOORBELL); arc_write(sc, ARC_REG_OUTB_DOORBELL, reg); if (reg & ARC_REG_OUTB_DOORBELL_WRITE_OK) arc_write(sc, ARC_REG_INB_DOORBELL, ARC_REG_INB_DOORBELL_READ_OK); } } while ((reg = arc_pop(sc)) != 0xffffffff) { cmd = (struct arc_io_cmd *)(kva + ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) - (u_int32_t)ARC_DMA_DVA(sc->sc_requests))); ccb = &sc->sc_ccbs[letoh32(cmd->cmd.context)]; bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests), ccb->ccb_offset, ARC_MAX_IOCMDLEN, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); arc_scsi_cmd_done(sc, ccb, reg); } return (1); } int arc_scsi_cmd(struct scsi_xfer *xs) { struct scsi_link *link = xs->sc_link; struct arc_softc *sc = link->adapter_softc; struct arc_ccb *ccb; struct arc_msg_scsicmd *cmd; u_int32_t reg; int rv = SUCCESSFULLY_QUEUED; int s; if (xs->cmdlen > ARC_MSG_CDBLEN) { bzero(&xs->sense, sizeof(xs->sense)); xs->sense.error_code = SSD_ERRCODE_VALID | 0x70; xs->sense.flags = SKEY_ILLEGAL_REQUEST; xs->sense.add_sense_code = 0x20; xs->error = XS_SENSE; s = splbio(); scsi_done(xs); splx(s); return (COMPLETE); } s = splbio(); ccb = arc_get_ccb(sc); splx(s); if (ccb == NULL) { xs->error = XS_DRIVER_STUFFUP; s = splbio(); scsi_done(xs); splx(s); return (COMPLETE); } ccb->ccb_xs = xs; if (arc_load_xs(ccb) != 0) { xs->error = XS_DRIVER_STUFFUP; s = splbio(); arc_put_ccb(sc, ccb); scsi_done(xs); splx(s); return (COMPLETE); } cmd = &ccb->ccb_cmd->cmd; reg = ccb->ccb_cmd_post; /* bus is always 0 */ cmd->target = link->target; cmd->lun = link->lun; cmd->function = 1; /* XXX magic number */ cmd->cdb_len = xs->cmdlen; cmd->sgl_len = ccb->ccb_dmamap->dm_nsegs; if (xs->flags & SCSI_DATA_OUT) cmd->flags = ARC_MSG_SCSICMD_FLAG_WRITE; if (ccb->ccb_dmamap->dm_nsegs > ARC_SGL_256LEN) { cmd->flags |= ARC_MSG_SCSICMD_FLAG_SGL_BSIZE_512; reg |= ARC_REG_POST_QUEUE_BIGFRAME; } cmd->context = htole32(ccb->ccb_id); cmd->data_len = htole32(xs->datalen); bcopy(xs->cmd, cmd->cdb, xs->cmdlen); /* we've built the command, let's put it on the hw */ bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests), ccb->ccb_offset, ARC_MAX_IOCMDLEN, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); s = splbio(); arc_push(sc, reg); if (xs->flags & SCSI_POLL) { rv = COMPLETE; if (arc_complete(sc, ccb, xs->timeout) != 0) { xs->error = XS_DRIVER_STUFFUP; scsi_done(xs); } } splx(s); return (rv); } int arc_load_xs(struct arc_ccb *ccb) { struct arc_softc *sc = ccb->ccb_sc; struct scsi_xfer *xs = ccb->ccb_xs; bus_dmamap_t dmap = ccb->ccb_dmamap; struct arc_sge *sgl = ccb->ccb_cmd->sgl, *sge; u_int64_t addr; int i, error; if (xs->datalen == 0) return (0); error = bus_dmamap_load(sc->sc_dmat, dmap, xs->data, xs->datalen, NULL, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); if (error != 0) { printf("%s: error %d loading dmamap\n", DEVNAME(sc), error); return (1); } for (i = 0; i < dmap->dm_nsegs; i++) { sge = &sgl[i]; sge->sg_hdr = htole32(ARC_SGE_64BIT | dmap->dm_segs[i].ds_len); addr = dmap->dm_segs[i].ds_addr; sge->sg_hi_addr = htole32((u_int32_t)(addr >> 32)); sge->sg_lo_addr = htole32((u_int32_t)addr); } bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); return (0); } void arc_scsi_cmd_done(struct arc_softc *sc, struct arc_ccb *ccb, u_int32_t reg) { struct scsi_xfer *xs = ccb->ccb_xs; struct arc_msg_scsicmd *cmd; if (xs->datalen != 0) { bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap, 0, ccb->ccb_dmamap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap); } /* timeout_del */ xs->flags |= ITSDONE; if (reg & ARC_REG_REPLY_QUEUE_ERR) { cmd = &ccb->ccb_cmd->cmd; switch (cmd->status) { case ARC_MSG_STATUS_SELTIMEOUT: case ARC_MSG_STATUS_ABORTED: case ARC_MSG_STATUS_INIT_FAIL: xs->status = SCSI_OK; xs->error = XS_SELTIMEOUT; break; case SCSI_CHECK: bzero(&xs->sense, sizeof(xs->sense)); bcopy(cmd->sense_data, &xs->sense, min(ARC_MSG_SENSELEN, sizeof(xs->sense))); xs->sense.error_code = SSD_ERRCODE_VALID | 0x70; xs->status = SCSI_CHECK; xs->error = XS_SENSE; xs->resid = 0; break; default: /* unknown device status */ xs->error = XS_BUSY; /* try again later? */ xs->status = SCSI_BUSY; break; } } else { xs->status = SCSI_OK; xs->error = XS_NOERROR; xs->resid = 0; } arc_put_ccb(sc, ccb); scsi_done(xs); } int arc_complete(struct arc_softc *sc, struct arc_ccb *nccb, int timeout) { struct arc_ccb *ccb = NULL; char *kva = ARC_DMA_KVA(sc->sc_requests); struct arc_io_cmd *cmd; u_int32_t reg; do { reg = arc_pop(sc); if (reg == 0xffffffff) { if (timeout-- == 0) return (1); delay(1000); continue; } cmd = (struct arc_io_cmd *)(kva + ((reg << ARC_REG_REPLY_QUEUE_ADDR_SHIFT) - ARC_DMA_DVA(sc->sc_requests))); ccb = &sc->sc_ccbs[letoh32(cmd->cmd.context)]; bus_dmamap_sync(sc->sc_dmat, ARC_DMA_MAP(sc->sc_requests), ccb->ccb_offset, ARC_MAX_IOCMDLEN, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); arc_scsi_cmd_done(sc, ccb, reg); } while (nccb != ccb); return (0); } void arc_minphys(struct buf *bp) { if (bp->b_bcount > MAXPHYS) bp->b_bcount = MAXPHYS; minphys(bp); } int arc_map_pci_resources(struct arc_softc *sc, struct pci_attach_args *pa) { pcireg_t memtype; pci_intr_handle_t ih; const char *intrstr; sc->sc_pc = pa->pa_pc; sc->sc_tag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, ARC_PCI_BAR); if (pci_mapreg_map(pa, ARC_PCI_BAR, memtype, 0, &sc->sc_iot, &sc->sc_ioh, NULL, &sc->sc_ios, 0) != 0) { printf(": unable to map system interface register\n"); return(1); } if (pci_intr_map(pa, &ih) != 0) { printf(": unable to map interrupt\n"); goto unmap; } intrstr = pci_intr_string(pa->pa_pc, ih); sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO, arc_intr, sc, DEVNAME(sc)); if (sc->sc_ih == NULL) { printf(": unable to map interrupt%s%s\n", intrstr == NULL ? "" : " at ", intrstr == NULL ? "" : intrstr); goto unmap; } printf(": %s\n", intrstr); return (0); unmap: bus_space_unmap(sc->sc_iot, sc->sc_ioh, sc->sc_ios); sc->sc_ios = 0; return (1); } int arc_query_firmware(struct arc_softc *sc) { struct arc_msg_firmware_info fwinfo; char string[81]; /* sizeof(vendor)*2+1 */ if (arc_wait_eq(sc, ARC_REG_OUTB_ADDR1, ARC_REG_OUTB_ADDR1_FIRMWARE_OK, ARC_REG_OUTB_ADDR1_FIRMWARE_OK) != 0) { printf("%s: timeout waiting for firmware ok\n"); return (1); } if (arc_msg0(sc, ARC_REG_INB_MSG0_GET_CONFIG) != 0) { printf("%s: timeout waiting for get config\n"); return (1); } arc_read_region(sc, ARC_REG_MSGBUF, &fwinfo, sizeof(fwinfo)); DNPRINTF(ARC_D_INIT, "%s: signature: 0x%08x\n", DEVNAME(sc), letoh32(fwinfo.signature)); if (letoh32(fwinfo.signature) != ARC_FWINFO_SIGNATURE_GET_CONFIG) { printf("%s: invalid firmware info from iop\n", DEVNAME(sc)); return (1); } DNPRINTF(ARC_D_INIT, "%s: request_len: %d\n", DEVNAME(sc), letoh32(fwinfo.request_len)); DNPRINTF(ARC_D_INIT, "%s: queue_len: %d\n", DEVNAME(sc), letoh32(fwinfo.queue_len)); DNPRINTF(ARC_D_INIT, "%s: sdram_size: %d\n", DEVNAME(sc), letoh32(fwinfo.sdram_size)); DNPRINTF(ARC_D_INIT, "%s: sata_ports: %d\n", DEVNAME(sc), letoh32(fwinfo.sata_ports), letoh32(fwinfo.sata_ports)); #ifdef ARC_DEBUG scsi_strvis(string, fwinfo.vendor, sizeof(fwinfo.vendor)); DNPRINTF(ARC_D_INIT, "%s: vendor: \"%s\"\n", DEVNAME(sc), string); scsi_strvis(string, fwinfo.model, sizeof(fwinfo.model)); DNPRINTF(ARC_D_INIT, "%s: model: \"%s\"\n", DEVNAME(sc), string); #endif /* ARC_DEBUG */ scsi_strvis(string, fwinfo.fw_version, sizeof(fwinfo.fw_version)); DNPRINTF(ARC_D_INIT, "%s: model: \"%s\"\n", DEVNAME(sc), string); if (letoh32(fwinfo.request_len) != ARC_MAX_IOCMDLEN) { printf("%s: unexpected request frame size (%d != %d)\n", DEVNAME(sc), letoh32(fwinfo.request_len), ARC_MAX_IOCMDLEN); return (1); } sc->sc_req_count = letoh32(fwinfo.queue_len); if (arc_msg0(sc, ARC_REG_INB_MSG0_START_BGRB) != 0) { printf("%s: timeout waiting to start bg rebuild\n"); return (1); } printf("%s: %d SATA Ports, %dMB SDRAM, FW Version: %s\n", DEVNAME(sc), letoh32(fwinfo.sata_ports), letoh32(fwinfo.sdram_size), string); return (0); } #if NBIO > 0 int arc_bioctl(struct device *self, u_long cmd, caddr_t addr) { struct arc_softc *sc = (struct arc_softc *)self; int error = 0; switch (cmd) { case BIOCINQ: error = arc_bio_inq(sc, (struct bioc_inq *)addr); break; case BIOCVOL: error = arc_bio_vol(sc, (struct bioc_vol *)addr); break; case BIOCDISK: error = arc_bio_disk(sc, (struct bioc_disk *)addr); break; case BIOCALARM: error = arc_bio_alarm(sc, (struct bioc_alarm *)addr); break; default: error = ENOTTY; break; } return (error); } int arc_bio_alarm(struct arc_softc *sc, struct bioc_alarm *ba) { u_int8_t request[2]; u_int8_t reply[1]; size_t len; int error = 0; switch (ba->ba_opcode) { case BIOC_SAENABLE: case BIOC_SADISABLE: request[0] = ARC_FW_SET_ALARM; request[1] = (ba->ba_opcode == BIOC_SAENABLE) ? ARC_FW_SET_ALARM_ENABLE : ARC_FW_SET_ALARM_DISABLE; len = sizeof(request); break; case BIOC_SASILENCE: request[0] = ARC_FW_MUTE_ALARM; len = 1; break; case BIOC_GASTATUS: /* system info is too big/ugly to deal with here */ return (arc_bio_alarm_state(sc, ba)); default: return (EOPNOTSUPP); } arc_lock(sc); error = arc_msgbuf(sc, request, len, reply, sizeof(reply)); arc_unlock(sc); if (error != 0) return (error); if (reply[0] != ARC_FW_CMD_OK) return (EIO); return (0); } int arc_bio_alarm_state(struct arc_softc *sc, struct bioc_alarm *ba) { u_int8_t request = ARC_FW_SYSINFO; struct arc_fw_sysinfo *sysinfo; int error = 0; sysinfo = malloc(sizeof(struct arc_fw_sysinfo), M_TEMP, M_WAITOK); request = ARC_FW_SYSINFO; arc_lock(sc); error = arc_msgbuf(sc, &request, sizeof(request), sysinfo, sizeof(struct arc_fw_sysinfo)); arc_unlock(sc); if (error != 0) goto out; ba->ba_status = sysinfo->alarm; out: free(sysinfo, M_TEMP); return (error); } int arc_bio_inq(struct arc_softc *sc, struct bioc_inq *bi) { u_int8_t request[2]; struct arc_fw_sysinfo *sysinfo; struct arc_fw_volinfo *volinfo; int maxvols, nvols = 0, i; int error = 0; sysinfo = malloc(sizeof(struct arc_fw_sysinfo), M_TEMP, M_WAITOK); volinfo = malloc(sizeof(struct arc_fw_volinfo), M_TEMP, M_WAITOK); arc_lock(sc); request[0] = ARC_FW_SYSINFO; error = arc_msgbuf(sc, request, 1, sysinfo, sizeof(struct arc_fw_sysinfo)); if (error != 0) goto out; maxvols = sysinfo->max_volume_set; request[0] = ARC_FW_VOLINFO; for (i = 0; i < maxvols; i++) { request[1] = i; error = arc_msgbuf(sc, request, sizeof(request), volinfo, sizeof(struct arc_fw_volinfo)); if (error != 0) goto out; /* * I can't find an easy way to see if the volume exists or not * except to say that if it has no capacity then it isn't there. * Ignore passthru volumes, bioc_vol doesn't understand them. */ if (volinfo->capacity != 0 && volinfo->raid_level != ARC_FW_VOL_RAIDLEVEL_PASSTHRU) nvols++; } strlcpy(bi->bi_dev, DEVNAME(sc), sizeof(bi->bi_dev)); bi->bi_novol = nvols; out: arc_unlock(sc); free(volinfo, M_TEMP); free(sysinfo, M_TEMP); return (error); } int arc_bio_getvol(struct arc_softc *sc, int vol, struct arc_fw_volinfo *volinfo) { u_int8_t request[2]; struct arc_fw_sysinfo *sysinfo; int error = 0; int maxvols, nvols = 0, i; sysinfo = malloc(sizeof(struct arc_fw_sysinfo), M_TEMP, M_WAITOK); request[0] = ARC_FW_SYSINFO; error = arc_msgbuf(sc, request, 1, sysinfo, sizeof(struct arc_fw_sysinfo)); if (error != 0) goto out; maxvols = sysinfo->max_volume_set; request[0] = ARC_FW_VOLINFO; for (i = 0; i < maxvols; i++) { request[1] = i; error = arc_msgbuf(sc, request, sizeof(request), volinfo, sizeof(struct arc_fw_volinfo)); if (error != 0) goto out; if (volinfo->capacity == 0 || volinfo->raid_level == ARC_FW_VOL_RAIDLEVEL_PASSTHRU) continue; if (nvols == vol) break; nvols++; } if (nvols != vol || volinfo->capacity == 0 || volinfo->raid_level == ARC_FW_VOL_RAIDLEVEL_PASSTHRU) { error = ENODEV; goto out; } out: free(sysinfo, M_TEMP); return (error); } int arc_bio_vol(struct arc_softc *sc, struct bioc_vol *bv) { struct arc_fw_volinfo *volinfo; struct scsi_link *sc_link; struct device *dev; u_int32_t status; int error = 0; volinfo = malloc(sizeof(struct arc_fw_volinfo), M_TEMP, M_WAITOK); arc_lock(sc); error = arc_bio_getvol(sc, bv->bv_volid, volinfo); arc_unlock(sc); if (error != 0) goto out; bv->bv_percent = -1; bv->bv_seconds = 0; status = letoh32(volinfo->volume_status); if (status == 0x0) { if (letoh32(volinfo->fail_mask) == 0x0) bv->bv_status = BIOC_SVONLINE; else bv->bv_status = BIOC_SVDEGRADED; } else if (status & ARC_FW_VOL_STATUS_NEED_REGEN) bv->bv_status = BIOC_SVDEGRADED; else if (status & ARC_FW_VOL_STATUS_FAILED) bv->bv_status = BIOC_SVOFFLINE; else if (status & ARC_FW_VOL_STATUS_INITTING) { bv->bv_status = BIOC_SVBUILDING; bv->bv_percent = letoh32(volinfo->progress) / 10; } else if (status & ARC_FW_VOL_STATUS_REBUILDING) { bv->bv_status = BIOC_SVREBUILD; bv->bv_percent = letoh32(volinfo->progress) / 10; } bv->bv_size = (u_int64_t)letoh32(volinfo->capacity) * ARC_BLOCKSIZE; switch (volinfo->raid_level) { case ARC_FW_VOL_RAIDLEVEL_0: bv->bv_level = 0; break; case ARC_FW_VOL_RAIDLEVEL_1: bv->bv_level = 1; break; case ARC_FW_VOL_RAIDLEVEL_3: bv->bv_level = 3; break; case ARC_FW_VOL_RAIDLEVEL_5: bv->bv_level = 5; break; case ARC_FW_VOL_RAIDLEVEL_6: bv->bv_level = 6; break; case ARC_FW_VOL_RAIDLEVEL_PASSTHRU: default: bv->bv_level = -1; break; } bv->bv_nodisk = volinfo->member_disks; sc_link = sc->sc_scsibus->sc_link[volinfo->scsi_attr.target] [volinfo->scsi_attr.lun]; if (sc_link != NULL) { dev = sc_link->device_softc; strlcpy(bv->bv_dev, dev->dv_xname, sizeof(bv->bv_dev)); } out: free(volinfo, M_TEMP); return (error); } int arc_bio_disk(struct arc_softc *sc, struct bioc_disk *bd) { u_int8_t request[2]; struct arc_fw_volinfo *volinfo; struct arc_fw_raidinfo *raidinfo; struct arc_fw_diskinfo *diskinfo; int error = 0; char model[81]; char serial[41]; char rev[17]; volinfo = malloc(sizeof(struct arc_fw_volinfo), M_TEMP, M_WAITOK); raidinfo = malloc(sizeof(struct arc_fw_raidinfo), M_TEMP, M_WAITOK); diskinfo = malloc(sizeof(struct arc_fw_diskinfo), M_TEMP, M_WAITOK); arc_lock(sc); error = arc_bio_getvol(sc, bd->bd_volid, volinfo); if (error != 0) goto out; request[0] = ARC_FW_RAIDINFO; request[1] = volinfo->raid_set_number; error = arc_msgbuf(sc, request, sizeof(request), raidinfo, sizeof(struct arc_fw_raidinfo)); if (error != 0) goto out; if (bd->bd_diskid > raidinfo->member_devices) { error = ENODEV; goto out; } if (raidinfo->device_array[bd->bd_diskid] == 0xff) { /* * the disk doesn't exist anymore. bio is too dumb to be * able to display that, so put it on another bus */ bd->bd_channel = 1; bd->bd_target = 0; bd->bd_lun = 0; bd->bd_status = BIOC_SDOFFLINE; strlcpy(bd->bd_vendor, "disk missing", sizeof(bd->bd_vendor)); goto out; } request[0] = ARC_FW_DISKINFO; request[1] = raidinfo->device_array[bd->bd_diskid]; error = arc_msgbuf(sc, request, sizeof(request), diskinfo, sizeof(struct arc_fw_diskinfo)); if (error != 0) goto out; #if 0 bd->bd_channel = diskinfo->scsi_attr.channel; bd->bd_target = diskinfo->scsi_attr.target; bd->bd_lun = diskinfo->scsi_attr.lun; #endif /* * the firwmare doesnt seem to fill scsi_attr in, so fake it with * the diskid. */ bd->bd_channel = 0; bd->bd_target = raidinfo->device_array[bd->bd_diskid]; bd->bd_lun = 0; bd->bd_status = BIOC_SDONLINE; bd->bd_size = (u_int64_t)letoh32(diskinfo->capacity) * ARC_BLOCKSIZE; scsi_strvis(model, diskinfo->model, sizeof(diskinfo->model)); scsi_strvis(serial, diskinfo->serial, sizeof(diskinfo->serial)); scsi_strvis(rev, diskinfo->firmware_rev, sizeof(diskinfo->firmware_rev)); snprintf(bd->bd_vendor, sizeof(bd->bd_vendor), "%s %s", model, rev); strlcpy(bd->bd_serial, serial, sizeof(bd->bd_serial)); out: arc_unlock(sc); free(diskinfo, M_TEMP); free(raidinfo, M_TEMP); free(volinfo, M_TEMP); return (error); } u_int8_t arc_msg_cksum(void *cmd, u_int16_t len) { u_int8_t *buf = cmd; u_int8_t cksum; int i; cksum = (u_int8_t)(len >> 8) + (u_int8_t)len; for (i = 0; i < len; i++) cksum += buf[i]; return (cksum); } int arc_msgbuf(struct arc_softc *sc, void *wptr, size_t wbuflen, void *rptr, size_t rbuflen) { u_int8_t rwbuf[ARC_REG_IOC_RWBUF_MAXLEN]; u_int8_t *wbuf, *rbuf; int wlen, wdone = 0, rlen, rdone = 0; struct arc_fw_bufhdr *bufhdr; u_int32_t reg, rwlen; int error = 0; #ifdef ARC_DEBUG int i; #endif DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wbuflen: %d rbuflen: %d\n", DEVNAME(sc), wbuflen, rbuflen); if (arc_read(sc, ARC_REG_OUTB_DOORBELL) != 0) return (EBUSY); wlen = sizeof(struct arc_fw_bufhdr) + wbuflen + 1; /* 1 for cksum */ wbuf = malloc(wlen, M_TEMP, M_WAITOK); rlen = sizeof(struct arc_fw_bufhdr) + rbuflen + 1; /* 1 for cksum */ rbuf = malloc(rlen, M_TEMP, M_WAITOK); DNPRINTF(ARC_D_DB, "%s: arc_msgbuf wlen: %d rlen: %d\n", DEVNAME(sc), wlen, rlen); bufhdr = (struct arc_fw_bufhdr *)wbuf; bufhdr->hdr = arc_fw_hdr; bufhdr->len = htole16(wbuflen); bcopy(wptr, wbuf + sizeof(struct arc_fw_bufhdr), wbuflen); wbuf[wlen - 1] = arc_msg_cksum(wptr, wbuflen); reg = ARC_REG_OUTB_DOORBELL_READ_OK; do { if ((reg & ARC_REG_OUTB_DOORBELL_READ_OK) && wdone < wlen) { bzero(rwbuf, sizeof(rwbuf)); rwlen = (wlen - wdone) % sizeof(rwbuf); bcopy(&wbuf[wdone], rwbuf, rwlen); #ifdef ARC_DEBUG if (arcdebug & ARC_D_DB) { printf("%s: write %d:", DEVNAME(sc), rwlen); for (i = 0; i < rwlen; i++) printf(" 0x%02x", rwbuf[i]); printf("\n"); } #endif /* copy the chunk to the hw */ arc_write(sc, ARC_REG_IOC_WBUF_LEN, rwlen); arc_write_region(sc, ARC_REG_IOC_WBUF, rwbuf, sizeof(rwbuf)); /* say we have a buffer for the hw */ arc_write(sc, ARC_REG_INB_DOORBELL, ARC_REG_INB_DOORBELL_WRITE_OK); wdone += rwlen; } while ((reg = arc_read(sc, ARC_REG_OUTB_DOORBELL)) == 0) arc_wait(sc); arc_write(sc, ARC_REG_OUTB_DOORBELL, reg); DNPRINTF(ARC_D_DB, "%s: reg: 0x%08x\n", DEVNAME(sc), reg); if ((reg & ARC_REG_OUTB_DOORBELL_WRITE_OK) && rdone < rlen) { rwlen = arc_read(sc, ARC_REG_IOC_RBUF_LEN); if (rwlen > sizeof(rwbuf)) { DNPRINTF(ARC_D_DB, "%s: rwlen too big\n", DEVNAME(sc)); error = EIO; goto out; } arc_read_region(sc, ARC_REG_IOC_RBUF, rwbuf, sizeof(rwbuf)); arc_write(sc, ARC_REG_INB_DOORBELL, ARC_REG_INB_DOORBELL_READ_OK); #ifdef ARC_DEBUG printf("%s: len: %d+%d=%d/%d\n", DEVNAME(sc), rwlen, rdone, rwlen + rdone, rlen); if (arcdebug & ARC_D_DB) { printf("%s: read:", DEVNAME(sc)); for (i = 0; i < rwlen; i++) printf(" 0x%02x", rwbuf[i]); printf("\n"); } #endif if ((rdone + rwlen) > rlen) { DNPRINTF(ARC_D_DB, "%s: rwbuf too big\n", DEVNAME(sc)); error = EIO; goto out; } bcopy(rwbuf, &rbuf[rdone], rwlen); rdone += rwlen; } } while (rdone != rlen); bufhdr = (struct arc_fw_bufhdr *)rbuf; if (memcmp(&bufhdr->hdr, &arc_fw_hdr, sizeof(bufhdr->hdr)) != 0 || bufhdr->len != htole16(rbuflen)) { DNPRINTF(ARC_D_DB, "%s: rbuf hdr is wrong\n", DEVNAME(sc)); error = EIO; goto out; } bcopy(rbuf + sizeof(struct arc_fw_bufhdr), rptr, rbuflen); if (rbuf[rlen - 1] != arc_msg_cksum(rptr, rbuflen)) { DNPRINTF(ARC_D_DB, "%s: invalid cksum\n", DEVNAME(sc)); error = EIO; goto out; } out: free(wbuf, M_TEMP); free(rbuf, M_TEMP); return (error); } void arc_lock(struct arc_softc *sc) { int s; rw_enter_write(&sc->sc_lock); s = splbio(); arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE); sc->sc_talking = 1; splx(s); } void arc_unlock(struct arc_softc *sc) { int s; s = splbio(); sc->sc_talking = 0; arc_write(sc, ARC_REG_INTRMASK, ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL)); splx(s); rw_exit_write(&sc->sc_lock); } void arc_wait(struct arc_softc *sc) { int s; s = splbio(); arc_write(sc, ARC_REG_INTRMASK, ~(ARC_REG_INTRMASK_POSTQUEUE|ARC_REG_INTRMASK_DOORBELL)); if (tsleep(sc, PWAIT, "arcdb", hz) == EWOULDBLOCK) arc_write(sc, ARC_REG_INTRMASK, ~ARC_REG_INTRMASK_POSTQUEUE); splx(s); } void arc_create_sensors(void *xsc, void *arg) { struct arc_softc *sc = xsc; struct bioc_inq bi; struct bioc_vol bv; int i; /* * XXX * this is bollocks. the firmware has garbage coming out of it * so we have to wait a bit for it to finish spewing. */ tsleep(sc, PWAIT, "arcspew", 2 * hz); bzero(&bi, sizeof(bi)); if (arc_bio_inq(sc, &bi) != 0) { printf("%s: unable to query firmware for sensor info\n", DEVNAME(sc)); return; } sc->sc_nsensors = bi.bi_novol; sc->sc_sensors = malloc(sizeof(struct ksensor) * sc->sc_nsensors, M_DEVBUF, M_WAITOK); bzero(sc->sc_sensors, sizeof(struct ksensor) * sc->sc_nsensors); strlcpy(sc->sc_sensordev.xname, DEVNAME(sc), sizeof(sc->sc_sensordev.xname)); for (i = 0; i < sc->sc_nsensors; i++) { bzero(&bv, sizeof(bv)); bv.bv_volid = i; if (arc_bio_vol(sc, &bv) != 0) goto bad; sc->sc_sensors[i].type = SENSOR_DRIVE; sc->sc_sensors[i].status = SENSOR_S_UNKNOWN; strlcpy(sc->sc_sensors[i].desc, bv.bv_dev, sizeof(sc->sc_sensors[i].desc)); sensor_attach(&sc->sc_sensordev, &sc->sc_sensors[i]); } if (sensor_task_register(sc, arc_refresh_sensors, 120) != 0) goto bad; sensordev_install(&sc->sc_sensordev); return; bad: free(sc->sc_sensors, M_DEVBUF); } void arc_refresh_sensors(void *arg) { struct arc_softc *sc = arg; struct bioc_vol bv; int i; for (i = 0; i < sc->sc_nsensors; i++) { bzero(&bv, sizeof(bv)); bv.bv_volid = i; if (arc_bio_vol(sc, &bv)) { sc->sc_sensors[i].flags = SENSOR_FINVALID; return; } switch(bv.bv_status) { case BIOC_SVOFFLINE: sc->sc_sensors[i].value = SENSOR_DRIVE_FAIL; sc->sc_sensors[i].status = SENSOR_S_CRIT; break; case BIOC_SVDEGRADED: sc->sc_sensors[i].value = SENSOR_DRIVE_PFAIL; sc->sc_sensors[i].status = SENSOR_S_WARN; break; case BIOC_SVSCRUB: case BIOC_SVONLINE: sc->sc_sensors[i].value = SENSOR_DRIVE_ONLINE; sc->sc_sensors[i].status = SENSOR_S_OK; break; case BIOC_SVINVALID: /* FALLTRHOUGH */ default: sc->sc_sensors[i].value = 0; /* unknown */ sc->sc_sensors[i].status = SENSOR_S_UNKNOWN; } } } #endif /* NBIO > 0 */ u_int32_t arc_read(struct arc_softc *sc, bus_size_t r) { u_int32_t v; bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_READ); v = bus_space_read_4(sc->sc_iot, sc->sc_ioh, r); DNPRINTF(ARC_D_RW, "%s: arc_read 0x%x 0x%08x\n", DEVNAME(sc), r, v); return (v); } void arc_read_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len) { bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len, BUS_SPACE_BARRIER_READ); bus_space_read_raw_region_4(sc->sc_iot, sc->sc_ioh, r, buf, len); } void arc_write(struct arc_softc *sc, bus_size_t r, u_int32_t v) { DNPRINTF(ARC_D_RW, "%s: arc_write 0x%x 0x%08x\n", DEVNAME(sc), r, v); bus_space_write_4(sc->sc_iot, sc->sc_ioh, r, v); bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, 4, BUS_SPACE_BARRIER_WRITE); } void arc_write_region(struct arc_softc *sc, bus_size_t r, void *buf, size_t len) { bus_space_write_raw_region_4(sc->sc_iot, sc->sc_ioh, r, buf, len); bus_space_barrier(sc->sc_iot, sc->sc_ioh, r, len, BUS_SPACE_BARRIER_WRITE); } int arc_wait_eq(struct arc_softc *sc, bus_size_t r, u_int32_t mask, u_int32_t target) { int i; DNPRINTF(ARC_D_RW, "%s: arc_wait_eq 0x%x 0x%08x 0x%08x\n", DEVNAME(sc), r, mask, target); for (i = 0; i < 10000; i++) { if ((arc_read(sc, r) & mask) == target) return (0); delay(1000); } return (1); } int arc_wait_ne(struct arc_softc *sc, bus_size_t r, u_int32_t mask, u_int32_t target) { int i; DNPRINTF(ARC_D_RW, "%s: arc_wait_ne 0x%x 0x%08x 0x%08x\n", DEVNAME(sc), r, mask, target); for (i = 0; i < 10000; i++) { if ((arc_read(sc, r) & mask) != target) return (0); delay(1000); } return (1); } int arc_msg0(struct arc_softc *sc, u_int32_t m) { /* post message */ arc_write(sc, ARC_REG_INB_MSG0, m); /* wait for the fw to do it */ if (arc_wait_eq(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0, ARC_REG_INTRSTAT_MSG0) != 0) return (1); /* ack it */ arc_write(sc, ARC_REG_INTRSTAT, ARC_REG_INTRSTAT_MSG0); return (0); } struct arc_dmamem * arc_dmamem_alloc(struct arc_softc *sc, size_t size) { struct arc_dmamem *adm; int nsegs; adm = malloc(sizeof(struct arc_dmamem), M_DEVBUF, M_NOWAIT); if (adm == NULL) return (NULL); bzero(adm, sizeof(struct arc_dmamem)); adm->adm_size = size; if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &adm->adm_map) != 0) goto admfree; if (bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &adm->adm_seg, 1, &nsegs, BUS_DMA_NOWAIT) != 0) goto destroy; if (bus_dmamem_map(sc->sc_dmat, &adm->adm_seg, nsegs, size, &adm->adm_kva, BUS_DMA_NOWAIT) != 0) goto free; if (bus_dmamap_load(sc->sc_dmat, adm->adm_map, adm->adm_kva, size, NULL, BUS_DMA_NOWAIT) != 0) goto unmap; bzero(adm->adm_kva, size); return (adm); unmap: bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, size); free: bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1); destroy: bus_dmamap_destroy(sc->sc_dmat, adm->adm_map); admfree: free(adm, M_DEVBUF); return (NULL); } void arc_dmamem_free(struct arc_softc *sc, struct arc_dmamem *adm) { bus_dmamap_unload(sc->sc_dmat, adm->adm_map); bus_dmamem_unmap(sc->sc_dmat, adm->adm_kva, adm->adm_size); bus_dmamem_free(sc->sc_dmat, &adm->adm_seg, 1); bus_dmamap_destroy(sc->sc_dmat, adm->adm_map); free(adm, M_DEVBUF); } int arc_alloc_ccbs(struct arc_softc *sc) { struct arc_ccb *ccb; u_int8_t *cmd; int i; TAILQ_INIT(&sc->sc_ccb_free); sc->sc_ccbs = malloc(sizeof(struct arc_ccb) * sc->sc_req_count, M_DEVBUF, M_WAITOK); bzero(sc->sc_ccbs, sizeof(struct arc_ccb) * sc->sc_req_count); sc->sc_requests = arc_dmamem_alloc(sc, ARC_MAX_IOCMDLEN * sc->sc_req_count); if (sc->sc_requests == NULL) { printf("%s: unable to allocate ccb dmamem\n", DEVNAME(sc)); goto free_ccbs; } cmd = ARC_DMA_KVA(sc->sc_requests); for (i = 0; i < sc->sc_req_count; i++) { ccb = &sc->sc_ccbs[i]; if (bus_dmamap_create(sc->sc_dmat, MAXPHYS, ARC_SGL_MAXLEN, MAXPHYS, 0, 0, &ccb->ccb_dmamap) != 0) { printf("%s: unable to create dmamap for ccb %d\n", DEVNAME(sc), i); goto free_maps; } ccb->ccb_sc = sc; ccb->ccb_id = i; ccb->ccb_offset = ARC_MAX_IOCMDLEN * i; ccb->ccb_cmd = (struct arc_io_cmd *)&cmd[ccb->ccb_offset]; ccb->ccb_cmd_post = (ARC_DMA_DVA(sc->sc_requests) + ccb->ccb_offset) >> ARC_REG_POST_QUEUE_ADDR_SHIFT; arc_put_ccb(sc, ccb); } return (0); free_maps: while ((ccb = arc_get_ccb(sc)) != NULL) bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap); arc_dmamem_free(sc, sc->sc_requests); free_ccbs: free(sc->sc_ccbs, M_DEVBUF); return (1); } struct arc_ccb * arc_get_ccb(struct arc_softc *sc) { struct arc_ccb *ccb; ccb = TAILQ_FIRST(&sc->sc_ccb_free); if (ccb != NULL) TAILQ_REMOVE(&sc->sc_ccb_free, ccb, ccb_link); return (ccb); } void arc_put_ccb(struct arc_softc *sc, struct arc_ccb *ccb) { ccb->ccb_xs = NULL; bzero(ccb->ccb_cmd, ARC_MAX_IOCMDLEN); TAILQ_INSERT_TAIL(&sc->sc_ccb_free, ccb, ccb_link); }