/* $OpenBSD: cmpci.c,v 1.21 2008/10/25 22:30:43 jakemsr Exp $ */ /* $NetBSD: cmpci.c,v 1.25 2004/10/26 06:32:20 xtraeme Exp $ */ /* * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Takuya SHIOZAKI . * * This code is derived from software contributed to The NetBSD Foundation * by ITOH Yasufumi. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * C-Media CMI8x38, CMI8768 Audio Chip Support. * * TODO: * - Joystick support. * */ #if defined(AUDIO_DEBUG) || defined(DEBUG) #define DPRINTF(x) if (cmpcidebug) printf x int cmpcidebug = 0; #else #define DPRINTF(x) #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * Low-level HW interface */ uint8_t cmpci_mixerreg_read(struct cmpci_softc *, uint8_t); void cmpci_mixerreg_write(struct cmpci_softc *, uint8_t, uint8_t); void cmpci_reg_partial_write_1(struct cmpci_softc *, int, int, unsigned, unsigned); void cmpci_reg_partial_write_4(struct cmpci_softc *, int, int, uint32_t, uint32_t); void cmpci_reg_set_1(struct cmpci_softc *, int, uint8_t); void cmpci_reg_clear_1(struct cmpci_softc *, int, uint8_t); void cmpci_reg_set_4(struct cmpci_softc *, int, uint32_t); void cmpci_reg_clear_4(struct cmpci_softc *, int, uint32_t); void cmpci_reg_set_reg_misc(struct cmpci_softc *, uint32_t); void cmpci_reg_clear_reg_misc(struct cmpci_softc *, uint32_t); int cmpci_rate_to_index(int); int cmpci_index_to_rate(int); int cmpci_index_to_divider(int); int cmpci_adjust(int, int); void cmpci_set_mixer_gain(struct cmpci_softc *, int); void cmpci_set_out_ports(struct cmpci_softc *); int cmpci_set_in_ports(struct cmpci_softc *); /* * autoconf interface */ int cmpci_match(struct device *, void *, void *); void cmpci_attach(struct device *, struct device *, void *); struct cfdriver cmpci_cd = { NULL, "cmpci", DV_DULL }; struct cfattach cmpci_ca = { sizeof (struct cmpci_softc), cmpci_match, cmpci_attach }; /* interrupt */ int cmpci_intr(void *); /* * DMA stuff */ int cmpci_alloc_dmamem(struct cmpci_softc *, size_t, int, int, caddr_t *); int cmpci_free_dmamem(struct cmpci_softc *, caddr_t, int); struct cmpci_dmanode * cmpci_find_dmamem(struct cmpci_softc *, caddr_t); /* * Interface to machine independent layer */ int cmpci_open(void *, int); void cmpci_close(void *); int cmpci_query_encoding(void *, struct audio_encoding *); int cmpci_set_params(void *, int, int, struct audio_params *, struct audio_params *); void cmpci_get_default_params(void *, int, struct audio_params*); int cmpci_round_blocksize(void *, int); int cmpci_halt_output(void *); int cmpci_halt_input(void *); int cmpci_getdev(void *, struct audio_device *); int cmpci_set_port(void *, mixer_ctrl_t *); int cmpci_get_port(void *, mixer_ctrl_t *); int cmpci_query_devinfo(void *, mixer_devinfo_t *); void *cmpci_malloc(void *, int, size_t, int, int); void cmpci_free(void *, void *, int); size_t cmpci_round_buffersize(void *, int, size_t); paddr_t cmpci_mappage(void *, void *, off_t, int); int cmpci_get_props(void *); int cmpci_trigger_output(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); int cmpci_trigger_input(void *, void *, void *, int, void (*)(void *), void *, struct audio_params *); struct audio_hw_if cmpci_hw_if = { cmpci_open, /* open */ cmpci_close, /* close */ NULL, /* drain */ cmpci_query_encoding, /* query_encoding */ cmpci_set_params, /* set_params */ cmpci_round_blocksize, /* round_blocksize */ NULL, /* commit_settings */ NULL, /* init_output */ NULL, /* init_input */ NULL, /* start_output */ NULL, /* start_input */ cmpci_halt_output, /* halt_output */ cmpci_halt_input, /* halt_input */ NULL, /* speaker_ctl */ cmpci_getdev, /* getdev */ NULL, /* setfd */ cmpci_set_port, /* set_port */ cmpci_get_port, /* get_port */ cmpci_query_devinfo, /* query_devinfo */ cmpci_malloc, /* malloc */ cmpci_free, /* free */ cmpci_round_buffersize,/* round_buffersize */ cmpci_mappage, /* mappage */ cmpci_get_props, /* get_props */ cmpci_trigger_output, /* trigger_output */ cmpci_trigger_input, /* trigger_input */ cmpci_get_default_params }; /* * Low-level HW interface */ /* mixer register read/write */ uint8_t cmpci_mixerreg_read(struct cmpci_softc *sc, uint8_t no) { uint8_t ret; bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no); delay(10); ret = bus_space_read_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA); delay(10); return ret; } void cmpci_mixerreg_write(struct cmpci_softc *sc, uint8_t no, uint8_t val) { bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBADDR, no); delay(10); bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_SBDATA, val); delay(10); } /* register partial write */ void cmpci_reg_partial_write_1(struct cmpci_softc *sc, int no, int shift, unsigned mask, unsigned val) { bus_space_write_1(sc->sc_iot, sc->sc_ioh, no, (val<sc_iot, sc->sc_ioh, no) & ~(mask<sc_iot, sc->sc_ioh, no, (val<sc_iot, sc->sc_ioh, no) & ~(mask<sc_iot, sc->sc_ioh, no, (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) | mask)); delay(10); } void cmpci_reg_clear_1(struct cmpci_softc *sc, int no, uint8_t mask) { bus_space_write_1(sc->sc_iot, sc->sc_ioh, no, (bus_space_read_1(sc->sc_iot, sc->sc_ioh, no) & ~mask)); delay(10); } void cmpci_reg_set_4(struct cmpci_softc *sc, int no, uint32_t mask) { /* use cmpci_reg_set_reg_misc() for CMPCI_REG_MISC */ KDASSERT(no != CMPCI_REG_MISC); bus_space_write_4(sc->sc_iot, sc->sc_ioh, no, (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) | mask)); delay(10); } void cmpci_reg_clear_4(struct cmpci_softc *sc, int no, uint32_t mask) { /* use cmpci_reg_clear_reg_misc() for CMPCI_REG_MISC */ KDASSERT(no != CMPCI_REG_MISC); bus_space_write_4(sc->sc_iot, sc->sc_ioh, no, (bus_space_read_4(sc->sc_iot, sc->sc_ioh, no) & ~mask)); delay(10); } /* * The CMPCI_REG_MISC register needs special handling, since one of * its bits has different read/write values. */ void cmpci_reg_set_reg_misc(struct cmpci_softc *sc, uint32_t mask) { sc->sc_reg_misc |= mask; bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC, sc->sc_reg_misc); delay(10); } void cmpci_reg_clear_reg_misc(struct cmpci_softc *sc, uint32_t mask) { sc->sc_reg_misc &= ~mask; bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC, sc->sc_reg_misc); delay(10); } /* rate */ static const struct { int rate; int divider; } cmpci_rate_table[CMPCI_REG_NUMRATE] = { #define _RATE(n) { n, CMPCI_REG_RATE_ ## n } _RATE(5512), _RATE(8000), _RATE(11025), _RATE(16000), _RATE(22050), _RATE(32000), _RATE(44100), _RATE(48000) #undef _RATE }; int cmpci_rate_to_index(int rate) { int i; for (i = 0; i < CMPCI_REG_NUMRATE - 1; i++) if (rate <= (cmpci_rate_table[i].rate + cmpci_rate_table[i+1].rate) / 2) return i; return i; /* 48000 */ } int cmpci_index_to_rate(int index) { return cmpci_rate_table[index].rate; } int cmpci_index_to_divider(int index) { return cmpci_rate_table[index].divider; } const struct pci_matchid cmpci_devices[] = { { PCI_VENDOR_CMI, PCI_PRODUCT_CMI_CMI8338A }, { PCI_VENDOR_CMI, PCI_PRODUCT_CMI_CMI8338B }, { PCI_VENDOR_CMI, PCI_PRODUCT_CMI_CMI8738 }, { PCI_VENDOR_CMI, PCI_PRODUCT_CMI_CMI8738B } }; /* * interface to configure the device. */ int cmpci_match(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, cmpci_devices, sizeof(cmpci_devices)/sizeof(cmpci_devices[0]))); } void cmpci_attach(struct device *parent, struct device *self, void *aux) { struct cmpci_softc *sc = (struct cmpci_softc *)self; struct pci_attach_args *pa = (struct pci_attach_args *)aux; struct audio_attach_args aa; pci_intr_handle_t ih; char const *intrstr; int i, v, d; sc->sc_id = pa->pa_id; sc->sc_class = pa->pa_class; switch (PCI_PRODUCT(sc->sc_id)) { case PCI_PRODUCT_CMI_CMI8338A: /*FALLTHROUGH*/ case PCI_PRODUCT_CMI_CMI8338B: sc->sc_capable = CMPCI_CAP_CMI8338; break; case PCI_PRODUCT_CMI_CMI8738: /*FALLTHROUGH*/ case PCI_PRODUCT_CMI_CMI8738B: sc->sc_capable = CMPCI_CAP_CMI8738; break; } /* map I/O space */ if (pci_mapreg_map(pa, CMPCI_PCI_IOBASEREG, PCI_MAPREG_TYPE_IO, 0, &sc->sc_iot, &sc->sc_ioh, NULL, NULL, 0)) { printf(": failed to map I/O space\n"); return; } /* interrupt */ if (pci_intr_map(pa, &ih)) { printf(": failed to map interrupt\n"); return; } intrstr = pci_intr_string(pa->pa_pc, ih); sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_AUDIO, cmpci_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": failed to establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s\n", intrstr); sc->sc_dmat = pa->pa_dmat; audio_attach_mi(&cmpci_hw_if, sc, &sc->sc_dev); /* attach OPL device */ aa.type = AUDIODEV_TYPE_OPL; aa.hwif = NULL; aa.hdl = NULL; (void)config_found(&sc->sc_dev, &aa, audioprint); /* attach MPU-401 device */ aa.type = AUDIODEV_TYPE_MPU; aa.hwif = NULL; aa.hdl = NULL; if (bus_space_subregion(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MPU_BASE, CMPCI_REG_MPU_SIZE, &sc->sc_mpu_ioh) == 0) sc->sc_mpudev = config_found(&sc->sc_dev, &aa, audioprint); /* get initial value (this is 0 and may be omitted but just in case) */ sc->sc_reg_misc = bus_space_read_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MISC) & ~CMPCI_REG_SPDIF48K; /* extra capabilitites check */ d = bus_space_read_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_INTR_CTRL) & CMPCI_REG_CHIP_MASK2; if (d) { if (d & CMPCI_REG_CHIP_8768) { sc->sc_version = 68; sc->sc_capable |= CMPCI_CAP_4CH | CMPCI_CAP_6CH | CMPCI_CAP_8CH; } else if (d & CMPCI_REG_CHIP_055) { sc->sc_version = 55; sc->sc_capable |= CMPCI_CAP_4CH | CMPCI_CAP_6CH; } else if (d & CMPCI_REG_CHIP_039) { sc->sc_version = 39; sc->sc_capable |= CMPCI_CAP_4CH | ((d & CMPCI_REG_CHIP_039_6CH) ? CMPCI_CAP_6CH : 0); } else { /* unknown version */ sc->sc_version = 0; } } else { d = bus_space_read_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_CHANNEL_FORMAT) & CMPCI_REG_CHIP_MASK1; if (d) sc->sc_version = 37; else sc->sc_version = 33; } cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_RESET, 0); cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, 0); cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, 0); cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, CMPCI_SB16_SW_CD|CMPCI_SB16_SW_MIC|CMPCI_SB16_SW_LINE); for (i = 0; i < CMPCI_NDEVS; i++) { switch(i) { /* * CMI8738 defaults are * master: 0xe0 (0x00 - 0xf8) * FM, DAC: 0xc0 (0x00 - 0xf8) * PC speaker: 0x80 (0x00 - 0xc0) * others: 0 */ /* volume */ case CMPCI_MASTER_VOL: v = 128; /* 224 */ break; case CMPCI_FM_VOL: case CMPCI_DAC_VOL: v = 192; break; case CMPCI_PCSPEAKER: v = 128; break; /* booleans, set to true */ case CMPCI_CD_MUTE: case CMPCI_MIC_MUTE: case CMPCI_LINE_IN_MUTE: case CMPCI_AUX_IN_MUTE: v = 1; break; /* volume with inital value 0 */ case CMPCI_CD_VOL: case CMPCI_LINE_IN_VOL: case CMPCI_AUX_IN_VOL: case CMPCI_MIC_VOL: case CMPCI_MIC_RECVOL: /* FALLTHROUGH */ /* others are cleared */ case CMPCI_MIC_PREAMP: case CMPCI_RECORD_SOURCE: case CMPCI_PLAYBACK_MODE: case CMPCI_SPDIF_IN_SELECT: case CMPCI_SPDIF_IN_PHASE: case CMPCI_SPDIF_LOOP: case CMPCI_SPDIF_OUT_PLAYBACK: case CMPCI_SPDIF_OUT_VOLTAGE: case CMPCI_MONITOR_DAC: case CMPCI_REAR: case CMPCI_INDIVIDUAL: case CMPCI_REVERSE: case CMPCI_SURROUND: default: v = 0; break; } sc->sc_gain[i][CMPCI_LEFT] = sc->sc_gain[i][CMPCI_RIGHT] = v; cmpci_set_mixer_gain(sc, i); } sc->sc_play_channel = 0; } int cmpci_intr(void *handle) { struct cmpci_softc *sc = handle; uint32_t intrstat; intrstat = bus_space_read_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_INTR_STATUS); if (!(intrstat & CMPCI_REG_ANY_INTR)) return 0; delay(10); /* disable and reset intr */ if (intrstat & CMPCI_REG_CH0_INTR) cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); if (intrstat & CMPCI_REG_CH1_INTR) cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); if (intrstat & CMPCI_REG_CH0_INTR) { if (sc->sc_ch0.intr != NULL) (*sc->sc_ch0.intr)(sc->sc_ch0.intr_arg); } if (intrstat & CMPCI_REG_CH1_INTR) { if (sc->sc_ch1.intr != NULL) (*sc->sc_ch1.intr)(sc->sc_ch1.intr_arg); } /* enable intr */ if (intrstat & CMPCI_REG_CH0_INTR) cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH0_INTR_ENABLE); if (intrstat & CMPCI_REG_CH1_INTR) cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); #if 0 if (intrstat & CMPCI_REG_UART_INTR && sc->sc_mpudev != NULL) mpu_intr(sc->sc_mpudev); #endif return 1; } /* open/close */ int cmpci_open(void *handle, int flags) { return 0; } void cmpci_close(void *handle) { } int cmpci_query_encoding(void *handle, struct audio_encoding *fp) { switch (fp->index) { case 0: strlcpy(fp->name, AudioEulinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; break; case 1: strlcpy(fp->name, AudioEmulaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 2: strlcpy(fp->name, AudioEalaw, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 3: strlcpy(fp->name, AudioEslinear, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = 0; break; case 4: strlcpy(fp->name, AudioEslinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; break; case 5: strlcpy(fp->name, AudioEulinear_le, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 6: strlcpy(fp->name, AudioEslinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; case 7: strlcpy(fp->name, AudioEulinear_be, sizeof fp->name); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; break; default: return EINVAL; } return 0; } void cmpci_get_default_params(void *addr, int mode, struct audio_params *params) { params->sample_rate = 48000; params->encoding = AUDIO_ENCODING_SLINEAR_LE; params->precision = 16; params->channels = 2; params->sw_code = NULL; params->factor = 1; } int cmpci_set_params(void *handle, int setmode, int usemode, struct audio_params *play, struct audio_params *rec) { int i; struct cmpci_softc *sc = handle; for (i = 0; i < 2; i++) { int md_format; int md_divide; int md_index; int mode; struct audio_params *p; switch (i) { case 0: mode = AUMODE_PLAY; p = play; break; case 1: mode = AUMODE_RECORD; p = rec; break; default: return EINVAL; } if (!(setmode & mode)) continue; if (setmode & AUMODE_RECORD) { if (p->channels > 2) p->channels = 2; sc->sc_play_channel = 0; cmpci_reg_clear_reg_misc(sc, CMPCI_REG_ENDBDAC); cmpci_reg_clear_reg_misc(sc, CMPCI_REG_XCHGDAC); } else { sc->sc_play_channel = 1; cmpci_reg_set_reg_misc(sc, CMPCI_REG_ENDBDAC); cmpci_reg_set_reg_misc(sc, CMPCI_REG_XCHGDAC); } cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_NXCHG); if (sc->sc_capable & CMPCI_CAP_4CH) cmpci_reg_clear_4(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CHB3D); if (sc->sc_capable & CMPCI_CAP_6CH) { cmpci_reg_clear_4(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CHB3D5C); cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_CHB3D6C); cmpci_reg_clear_reg_misc(sc, CMPCI_REG_ENCENTER); } if (sc->sc_capable & CMPCI_CAP_8CH) cmpci_reg_clear_4(sc, CMPCI_REG_8768_MISC, CMPCI_REG_CHB3D8C); /* format */ if (p->precision > 16) p->precision = 16; p->sw_code = NULL; switch (p->channels) { case 1: md_format = CMPCI_REG_FORMAT_MONO; break; case 2: md_format = CMPCI_REG_FORMAT_STEREO; break; case 4: if (mode & AUMODE_PLAY) { if (sc->sc_capable & CMPCI_CAP_4CH) { cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D); cmpci_reg_set_4(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CHB3D); cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_NXCHG); } else p->channels = 2; } md_format = CMPCI_REG_FORMAT_STEREO; break; case 6: if (mode & AUMODE_PLAY) { if (sc->sc_capable & CMPCI_CAP_6CH) { cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D); cmpci_reg_set_4(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CHB3D5C); cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_CHB3D6C); cmpci_reg_set_reg_misc(sc, CMPCI_REG_ENCENTER); cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_NXCHG); } else p->channels = 2; } md_format = CMPCI_REG_FORMAT_STEREO; break; case 8: if (mode & AUMODE_PLAY) { if (sc->sc_capable & CMPCI_CAP_8CH) { cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D); cmpci_reg_set_4(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CHB3D5C); cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_CHB3D6C); cmpci_reg_set_reg_misc(sc, CMPCI_REG_ENCENTER); cmpci_reg_set_4(sc, CMPCI_REG_8768_MISC, CMPCI_REG_CHB3D8C); cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_NXCHG); } else p->channels = 2; } md_format = CMPCI_REG_FORMAT_STEREO; break; default: return (EINVAL); } switch (p->encoding) { case AUDIO_ENCODING_ULAW: if (mode & AUMODE_PLAY) { p->factor = 2; p->sw_code = mulaw_to_slinear16_le; md_format |= CMPCI_REG_FORMAT_16BIT; } else { p->sw_code = ulinear8_to_mulaw; md_format |= CMPCI_REG_FORMAT_8BIT; } break; case AUDIO_ENCODING_ALAW: if (mode & AUMODE_PLAY) { p->factor = 2; p->sw_code = alaw_to_slinear16_le; md_format |= CMPCI_REG_FORMAT_16BIT; } else { p->sw_code = ulinear8_to_alaw; md_format |= CMPCI_REG_FORMAT_8BIT; } break; case AUDIO_ENCODING_SLINEAR_LE: switch (p->precision) { case 8: p->sw_code = change_sign8; md_format |= CMPCI_REG_FORMAT_8BIT; break; case 16: md_format |= CMPCI_REG_FORMAT_16BIT; break; default: return (EINVAL); } break; case AUDIO_ENCODING_SLINEAR_BE: switch (p->precision) { case 8: md_format |= CMPCI_REG_FORMAT_8BIT; p->sw_code = change_sign8; break; case 16: md_format |= CMPCI_REG_FORMAT_16BIT; p->sw_code = swap_bytes; break; default: return (EINVAL); } break; case AUDIO_ENCODING_ULINEAR_LE: switch (p->precision) { case 8: md_format |= CMPCI_REG_FORMAT_8BIT; break; case 16: md_format |= CMPCI_REG_FORMAT_16BIT; p->sw_code = change_sign16_le; break; default: return (EINVAL); } break; case AUDIO_ENCODING_ULINEAR_BE: switch (p->precision) { case 8: md_format |= CMPCI_REG_FORMAT_8BIT; break; case 16: md_format |= CMPCI_REG_FORMAT_16BIT; if (mode & AUMODE_PLAY) p->sw_code = swap_bytes_change_sign16_le; else p->sw_code = change_sign16_swap_bytes_le; break; default: return (EINVAL); } break; default: return (EINVAL); } if (mode & AUMODE_PLAY) { if (sc->sc_play_channel == 1) { cmpci_reg_partial_write_4(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH1_FORMAT_SHIFT, CMPCI_REG_CH1_FORMAT_MASK, md_format); } else { cmpci_reg_partial_write_4(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH0_FORMAT_SHIFT, CMPCI_REG_CH0_FORMAT_MASK, md_format); } } else { cmpci_reg_partial_write_4(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_CH1_FORMAT_SHIFT, CMPCI_REG_CH1_FORMAT_MASK, md_format); } /* sample rate */ md_index = cmpci_rate_to_index(p->sample_rate); md_divide = cmpci_index_to_divider(md_index); p->sample_rate = cmpci_index_to_rate(md_index); DPRINTF(("%s: sample:%d, divider=%d\n", sc->sc_dev.dv_xname, (int)p->sample_rate, md_divide)); if (mode & AUMODE_PLAY) { if (sc->sc_play_channel == 1) { cmpci_reg_partial_write_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT, CMPCI_REG_ADC_FS_MASK, md_divide); sc->sc_ch1.md_divide = md_divide; } else { cmpci_reg_partial_write_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_DAC_FS_SHIFT, CMPCI_REG_DAC_FS_MASK, md_divide); sc->sc_ch0.md_divide = md_divide; } } else { cmpci_reg_partial_write_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_ADC_FS_SHIFT, CMPCI_REG_ADC_FS_MASK, md_divide); sc->sc_ch1.md_divide = md_divide; } cmpci_set_out_ports(sc); cmpci_set_in_ports(sc); } return 0; } /* ARGSUSED */ int cmpci_round_blocksize(void *handle, int block) { return ((block + 3) & -4); } int cmpci_halt_output(void *handle) { struct cmpci_softc *sc = handle; uint32_t reg_intr, reg_enable, reg_reset; int s; s = splaudio(); if (sc->sc_play_channel == 1) { sc->sc_ch1.intr = NULL; reg_intr = CMPCI_REG_CH1_INTR_ENABLE; reg_enable = CMPCI_REG_CH1_ENABLE; reg_reset = CMPCI_REG_CH1_RESET; } else { sc->sc_ch0.intr = NULL; reg_intr = CMPCI_REG_CH0_INTR_ENABLE; reg_enable = CMPCI_REG_CH0_ENABLE; reg_reset = CMPCI_REG_CH0_RESET; } cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, reg_intr); cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, reg_enable); /* wait for reset DMA */ cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, reg_reset); delay(10); cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, reg_reset); splx(s); return 0; } int cmpci_halt_input(void *handle) { struct cmpci_softc *sc = handle; int s; s = splaudio(); sc->sc_ch1.intr = NULL; cmpci_reg_clear_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE); /* wait for reset DMA */ cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET); delay(10); cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_RESET); splx(s); return 0; } /* get audio device information */ int cmpci_getdev(void *handle, struct audio_device *ad) { struct cmpci_softc *sc = handle; strncpy(ad->name, "CMI PCI Audio", sizeof(ad->name)); snprintf(ad->version, sizeof(ad->version), "0x%02x (%d)", PCI_REVISION(sc->sc_class), sc->sc_version); switch (PCI_PRODUCT(sc->sc_id)) { case PCI_PRODUCT_CMI_CMI8338A: strncpy(ad->config, "CMI8338A", sizeof(ad->config)); break; case PCI_PRODUCT_CMI_CMI8338B: strncpy(ad->config, "CMI8338B", sizeof(ad->config)); break; case PCI_PRODUCT_CMI_CMI8738: strncpy(ad->config, "CMI8738", sizeof(ad->config)); break; case PCI_PRODUCT_CMI_CMI8738B: strncpy(ad->config, "CMI8738B", sizeof(ad->config)); break; default: strncpy(ad->config, "unknown", sizeof(ad->config)); } return 0; } /* mixer device information */ int cmpci_query_devinfo(void *handle, mixer_devinfo_t *dip) { static const char *const mixer_port_names[] = { AudioNdac, AudioNfmsynth, AudioNcd, AudioNline, AudioNaux, AudioNmicrophone }; static const char *const mixer_classes[] = { AudioCinputs, AudioCoutputs, AudioCrecord, CmpciCplayback, CmpciCspdif }; struct cmpci_softc *sc = handle; int i; dip->prev = dip->next = AUDIO_MIXER_LAST; switch (dip->index) { case CMPCI_INPUT_CLASS: case CMPCI_OUTPUT_CLASS: case CMPCI_RECORD_CLASS: case CMPCI_PLAYBACK_CLASS: case CMPCI_SPDIF_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = dip->index; strlcpy(dip->label.name, mixer_classes[dip->index - CMPCI_INPUT_CLASS], sizeof dip->label.name); return 0; case CMPCI_AUX_IN_VOL: dip->un.v.delta = 1 << (8 - CMPCI_REG_AUX_VALBITS); goto vol1; case CMPCI_DAC_VOL: case CMPCI_FM_VOL: case CMPCI_CD_VOL: case CMPCI_LINE_IN_VOL: case CMPCI_MIC_VOL: dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS); vol1: dip->mixer_class = CMPCI_INPUT_CLASS; dip->next = dip->index + 6; /* CMPCI_xxx_MUTE */ strlcpy(dip->label.name, mixer_port_names[dip->index], sizeof dip->label.name); dip->un.v.num_channels = (dip->index == CMPCI_MIC_VOL ? 1 : 2); vol: dip->type = AUDIO_MIXER_VALUE; strlcpy(dip->un.v.units.name, AudioNvolume, sizeof dip->un.v.units.name); return 0; case CMPCI_MIC_MUTE: dip->next = CMPCI_MIC_PREAMP; /* FALLTHROUGH */ case CMPCI_DAC_MUTE: case CMPCI_FM_MUTE: case CMPCI_CD_MUTE: case CMPCI_LINE_IN_MUTE: case CMPCI_AUX_IN_MUTE: dip->prev = dip->index - 6; /* CMPCI_xxx_VOL */ dip->mixer_class = CMPCI_INPUT_CLASS; strlcpy(dip->label.name, AudioNmute, sizeof dip->label.name); goto on_off; on_off: dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNoff, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = 0; strlcpy(dip->un.e.member[1].label.name, AudioNon, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = 1; return 0; case CMPCI_MIC_PREAMP: dip->mixer_class = CMPCI_INPUT_CLASS; dip->prev = CMPCI_MIC_MUTE; strlcpy(dip->label.name, AudioNpreamp, sizeof dip->label.name); goto on_off; case CMPCI_PCSPEAKER: dip->mixer_class = CMPCI_INPUT_CLASS; strlcpy(dip->label.name, AudioNspeaker, sizeof dip->label.name); dip->un.v.num_channels = 1; dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_SPEAKER_VALBITS); goto vol; case CMPCI_RECORD_SOURCE: dip->mixer_class = CMPCI_RECORD_CLASS; strlcpy(dip->label.name, AudioNsource, sizeof dip->label.name); dip->type = AUDIO_MIXER_SET; dip->un.s.num_mem = 7; strlcpy(dip->un.s.member[0].label.name, AudioNmicrophone, sizeof dip->un.s.member[0].label.name); dip->un.s.member[0].mask = CMPCI_RECORD_SOURCE_MIC; strlcpy(dip->un.s.member[1].label.name, AudioNcd, sizeof dip->un.s.member[1].label.name); dip->un.s.member[1].mask = CMPCI_RECORD_SOURCE_CD; strlcpy(dip->un.s.member[2].label.name, AudioNline, sizeof dip->un.s.member[2].label.name); dip->un.s.member[2].mask = CMPCI_RECORD_SOURCE_LINE_IN; strlcpy(dip->un.s.member[3].label.name, AudioNaux, sizeof dip->un.s.member[3].label.name); dip->un.s.member[3].mask = CMPCI_RECORD_SOURCE_AUX_IN; strlcpy(dip->un.s.member[4].label.name, AudioNwave, sizeof dip->un.s.member[4].label.name); dip->un.s.member[4].mask = CMPCI_RECORD_SOURCE_WAVE; strlcpy(dip->un.s.member[5].label.name, AudioNfmsynth, sizeof dip->un.s.member[5].label.name); dip->un.s.member[5].mask = CMPCI_RECORD_SOURCE_FM; strlcpy(dip->un.s.member[6].label.name, CmpciNspdif, sizeof dip->un.s.member[6].label.name); dip->un.s.member[6].mask = CMPCI_RECORD_SOURCE_SPDIF; return 0; case CMPCI_MIC_RECVOL: dip->mixer_class = CMPCI_RECORD_CLASS; strlcpy(dip->label.name, AudioNmicrophone, sizeof dip->label.name); dip->un.v.num_channels = 1; dip->un.v.delta = 1 << (8 - CMPCI_REG_ADMIC_VALBITS); goto vol; case CMPCI_PLAYBACK_MODE: dip->mixer_class = CMPCI_PLAYBACK_CLASS; dip->type = AUDIO_MIXER_ENUM; strlcpy(dip->label.name, AudioNmode, sizeof dip->label.name); dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNdac, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CMPCI_PLAYBACK_MODE_WAVE; strlcpy(dip->un.e.member[1].label.name, CmpciNspdif, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CMPCI_PLAYBACK_MODE_SPDIF; return 0; case CMPCI_SPDIF_IN_SELECT: dip->mixer_class = CMPCI_SPDIF_CLASS; dip->type = AUDIO_MIXER_ENUM; dip->next = CMPCI_SPDIF_IN_PHASE; strlcpy(dip->label.name, AudioNinput, sizeof dip->label.name); i = 0; strlcpy(dip->un.e.member[i].label.name, CmpciNspdin1, sizeof dip->un.e.member[i].label.name); dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN1; if (CMPCI_ISCAP(sc, 2ND_SPDIN)) { strlcpy(dip->un.e.member[i].label.name, CmpciNspdin2, sizeof dip->un.e.member[i].label.name); dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDIN2; } strlcpy(dip->un.e.member[i].label.name, CmpciNspdout, sizeof dip->un.e.member[i].label.name); dip->un.e.member[i++].ord = CMPCI_SPDIF_IN_SPDOUT; dip->un.e.num_mem = i; return 0; case CMPCI_SPDIF_IN_PHASE: dip->mixer_class = CMPCI_SPDIF_CLASS; dip->prev = CMPCI_SPDIF_IN_SELECT; strlcpy(dip->label.name, CmpciNphase, sizeof dip->label.name); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, CmpciNpositive, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CMPCI_SPDIF_IN_PHASE_POSITIVE; strlcpy(dip->un.e.member[1].label.name, CmpciNnegative, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CMPCI_SPDIF_IN_PHASE_NEGATIVE; return 0; case CMPCI_SPDIF_LOOP: dip->mixer_class = CMPCI_SPDIF_CLASS; dip->next = CMPCI_SPDIF_OUT_PLAYBACK; strlcpy(dip->label.name, AudioNoutput, sizeof dip->label.name); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, CmpciNplayback, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CMPCI_SPDIF_LOOP_OFF; strlcpy(dip->un.e.member[1].label.name, CmpciNspdin, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CMPCI_SPDIF_LOOP_ON; return 0; case CMPCI_SPDIF_OUT_PLAYBACK: dip->mixer_class = CMPCI_SPDIF_CLASS; dip->prev = CMPCI_SPDIF_LOOP; dip->next = CMPCI_SPDIF_OUT_VOLTAGE; strlcpy(dip->label.name, CmpciNplayback, sizeof dip->label.name); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, AudioNwave, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_PLAYBACK_WAVE; strlcpy(dip->un.e.member[1].label.name, CmpciNlegacy, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_PLAYBACK_LEGACY; return 0; case CMPCI_SPDIF_OUT_VOLTAGE: dip->mixer_class = CMPCI_SPDIF_CLASS; dip->prev = CMPCI_SPDIF_OUT_PLAYBACK; strlcpy(dip->label.name, CmpciNvoltage, sizeof dip->label.name); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 2; strlcpy(dip->un.e.member[0].label.name, CmpciNhigh_v, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CMPCI_SPDIF_OUT_VOLTAGE_HIGH; strlcpy(dip->un.e.member[1].label.name, CmpciNlow_v, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CMPCI_SPDIF_OUT_VOLTAGE_LOW; return 0; case CMPCI_MONITOR_DAC: dip->mixer_class = CMPCI_SPDIF_CLASS; strlcpy(dip->label.name, AudioNmonitor, sizeof dip->label.name); dip->type = AUDIO_MIXER_ENUM; dip->un.e.num_mem = 3; strlcpy(dip->un.e.member[0].label.name, AudioNoff, sizeof dip->un.e.member[0].label.name); dip->un.e.member[0].ord = CMPCI_MONITOR_DAC_OFF; strlcpy(dip->un.e.member[1].label.name, CmpciNspdin, sizeof dip->un.e.member[1].label.name); dip->un.e.member[1].ord = CMPCI_MONITOR_DAC_SPDIN; strlcpy(dip->un.e.member[2].label.name, CmpciNspdout, sizeof dip->un.e.member[2].label.name); dip->un.e.member[2].ord = CMPCI_MONITOR_DAC_SPDOUT; return 0; case CMPCI_MASTER_VOL: dip->mixer_class = CMPCI_OUTPUT_CLASS; strlcpy(dip->label.name, AudioNmaster, sizeof dip->label.name); dip->un.v.num_channels = 2; dip->un.v.delta = 1 << (8 - CMPCI_SB16_MIXER_VALBITS); goto vol; case CMPCI_REAR: dip->mixer_class = CMPCI_OUTPUT_CLASS; dip->next = CMPCI_INDIVIDUAL; strlcpy(dip->label.name, CmpciNrear, sizeof dip->label.name); goto on_off; case CMPCI_INDIVIDUAL: dip->mixer_class = CMPCI_OUTPUT_CLASS; dip->prev = CMPCI_REAR; dip->next = CMPCI_REVERSE; strlcpy(dip->label.name, CmpciNindividual, sizeof dip->label.name); goto on_off; case CMPCI_REVERSE: dip->mixer_class = CMPCI_OUTPUT_CLASS; dip->prev = CMPCI_INDIVIDUAL; strlcpy(dip->label.name, CmpciNreverse, sizeof dip->label.name); goto on_off; case CMPCI_SURROUND: dip->mixer_class = CMPCI_OUTPUT_CLASS; strlcpy(dip->label.name, CmpciNsurround, sizeof dip->label.name); goto on_off; } return ENXIO; } int cmpci_alloc_dmamem(struct cmpci_softc *sc, size_t size, int type, int flags, caddr_t *r_addr) { int error = 0; struct cmpci_dmanode *n; int w; n = malloc(sizeof(struct cmpci_dmanode), type, flags); if (n == NULL) { error = ENOMEM; goto quit; } w = (flags & M_NOWAIT) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK; #define CMPCI_DMABUF_ALIGN 0x4 #define CMPCI_DMABUF_BOUNDARY 0x0 n->cd_tag = sc->sc_dmat; n->cd_size = size; error = bus_dmamem_alloc(n->cd_tag, n->cd_size, CMPCI_DMABUF_ALIGN, CMPCI_DMABUF_BOUNDARY, n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0]), &n->cd_nsegs, w); if (error) goto mfree; error = bus_dmamem_map(n->cd_tag, n->cd_segs, n->cd_nsegs, n->cd_size, &n->cd_addr, w | BUS_DMA_COHERENT); if (error) goto dmafree; error = bus_dmamap_create(n->cd_tag, n->cd_size, 1, n->cd_size, 0, w, &n->cd_map); if (error) goto unmap; error = bus_dmamap_load(n->cd_tag, n->cd_map, n->cd_addr, n->cd_size, NULL, w); if (error) goto destroy; n->cd_next = sc->sc_dmap; sc->sc_dmap = n; *r_addr = KVADDR(n); return 0; destroy: bus_dmamap_destroy(n->cd_tag, n->cd_map); unmap: bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size); dmafree: bus_dmamem_free(n->cd_tag, n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0])); mfree: free(n, type); quit: return error; } int cmpci_free_dmamem(struct cmpci_softc *sc, caddr_t addr, int type) { struct cmpci_dmanode **nnp; for (nnp = &sc->sc_dmap; *nnp; nnp = &(*nnp)->cd_next) { if ((*nnp)->cd_addr == addr) { struct cmpci_dmanode *n = *nnp; bus_dmamap_unload(n->cd_tag, n->cd_map); bus_dmamap_destroy(n->cd_tag, n->cd_map); bus_dmamem_unmap(n->cd_tag, n->cd_addr, n->cd_size); bus_dmamem_free(n->cd_tag, n->cd_segs, sizeof(n->cd_segs)/sizeof(n->cd_segs[0])); free(n, type); return 0; } } return -1; } struct cmpci_dmanode * cmpci_find_dmamem(struct cmpci_softc *sc, caddr_t addr) { struct cmpci_dmanode *p; for (p = sc->sc_dmap; p; p = p->cd_next) { if (KVADDR(p) == (void *)addr) break; } return p; } #if 0 void cmpci_print_dmamem(struct cmpci_dmanode *p); void cmpci_print_dmamem(struct cmpci_dmanode *p) { DPRINTF(("DMA at virt:%p, dmaseg:%p, mapseg:%p, size:%p\n", (void *)p->cd_addr, (void *)p->cd_segs[0].ds_addr, (void *)DMAADDR(p), (void *)p->cd_size)); } #endif /* DEBUG */ void * cmpci_malloc(void *handle, int direction, size_t size, int type, int flags) { caddr_t addr; if (cmpci_alloc_dmamem(handle, size, type, flags, &addr)) return NULL; return addr; } void cmpci_free(void *handle, void *addr, int type) { cmpci_free_dmamem(handle, addr, type); } #define MAXVAL 256 int cmpci_adjust(int val, int mask) { val += (MAXVAL - mask) >> 1; if (val >= MAXVAL) val = MAXVAL-1; return val & mask; } void cmpci_set_mixer_gain(struct cmpci_softc *sc, int port) { int src; int bits, mask; switch (port) { case CMPCI_MIC_VOL: cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_MIC, CMPCI_ADJUST_MIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR])); return; case CMPCI_MASTER_VOL: src = CMPCI_SB16_MIXER_MASTER_L; break; case CMPCI_LINE_IN_VOL: src = CMPCI_SB16_MIXER_LINE_L; break; case CMPCI_AUX_IN_VOL: bus_space_write_1(sc->sc_iot, sc->sc_ioh, CMPCI_REG_MIXER_AUX, CMPCI_ADJUST_AUX_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT], sc->sc_gain[port][CMPCI_RIGHT])); return; case CMPCI_MIC_RECVOL: cmpci_reg_partial_write_1(sc, CMPCI_REG_MIXER25, CMPCI_REG_ADMIC_SHIFT, CMPCI_REG_ADMIC_MASK, CMPCI_ADJUST_ADMIC_GAIN(sc, sc->sc_gain[port][CMPCI_LR])); return; case CMPCI_DAC_VOL: src = CMPCI_SB16_MIXER_VOICE_L; break; case CMPCI_FM_VOL: src = CMPCI_SB16_MIXER_FM_L; break; case CMPCI_CD_VOL: src = CMPCI_SB16_MIXER_CDDA_L; break; case CMPCI_PCSPEAKER: cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_SPEAKER, CMPCI_ADJUST_2_GAIN(sc, sc->sc_gain[port][CMPCI_LR])); return; case CMPCI_MIC_PREAMP: if (sc->sc_gain[port][CMPCI_LR]) cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25, CMPCI_REG_MICGAINZ); else cmpci_reg_set_1(sc, CMPCI_REG_MIXER25, CMPCI_REG_MICGAINZ); return; case CMPCI_DAC_MUTE: if (sc->sc_gain[port][CMPCI_LR]) cmpci_reg_set_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_WSMUTE); else cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_WSMUTE); return; case CMPCI_FM_MUTE: if (sc->sc_gain[port][CMPCI_LR]) cmpci_reg_set_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_FMMUTE); else cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_FMMUTE); return; case CMPCI_AUX_IN_MUTE: if (sc->sc_gain[port][CMPCI_LR]) cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25, CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM); else cmpci_reg_set_1(sc, CMPCI_REG_MIXER25, CMPCI_REG_VAUXRM|CMPCI_REG_VAUXLM); return; case CMPCI_CD_MUTE: mask = CMPCI_SB16_SW_CD; goto sbmute; case CMPCI_MIC_MUTE: mask = CMPCI_SB16_SW_MIC; goto sbmute; case CMPCI_LINE_IN_MUTE: mask = CMPCI_SB16_SW_LINE; sbmute: bits = cmpci_mixerreg_read(sc, CMPCI_SB16_MIXER_OUTMIX); if (sc->sc_gain[port][CMPCI_LR]) bits = bits & ~mask; else bits = bits | mask; cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_OUTMIX, bits); return; case CMPCI_SPDIF_IN_SELECT: case CMPCI_MONITOR_DAC: case CMPCI_PLAYBACK_MODE: case CMPCI_SPDIF_LOOP: case CMPCI_SPDIF_OUT_PLAYBACK: cmpci_set_out_ports(sc); return; case CMPCI_SPDIF_OUT_VOLTAGE: if (CMPCI_ISCAP(sc, SPDOUT_VOLTAGE)) { if (sc->sc_gain[CMPCI_SPDIF_OUT_VOLTAGE][CMPCI_LR] == CMPCI_SPDIF_OUT_VOLTAGE_HIGH) cmpci_reg_clear_reg_misc(sc, CMPCI_REG_5V); else cmpci_reg_set_reg_misc(sc, CMPCI_REG_5V); } return; case CMPCI_SURROUND: if (CMPCI_ISCAP(sc, SURROUND)) { if (sc->sc_gain[CMPCI_SURROUND][CMPCI_LR]) cmpci_reg_set_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_SURROUND); else cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_SURROUND); } return; case CMPCI_REAR: if (CMPCI_ISCAP(sc, REAR)) { if (sc->sc_gain[CMPCI_REAR][CMPCI_LR]) cmpci_reg_set_reg_misc(sc, CMPCI_REG_N4SPK3D); else cmpci_reg_clear_reg_misc(sc, CMPCI_REG_N4SPK3D); } return; case CMPCI_INDIVIDUAL: if (CMPCI_ISCAP(sc, INDIVIDUAL_REAR)) { if (sc->sc_gain[CMPCI_REAR][CMPCI_LR]) cmpci_reg_set_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_INDIVIDUAL); else cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_INDIVIDUAL); } return; case CMPCI_REVERSE: if (CMPCI_ISCAP(sc, REVERSE_FR)) { if (sc->sc_gain[CMPCI_REVERSE][CMPCI_LR]) cmpci_reg_set_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_REVERSE_FR); else cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_REVERSE_FR); } return; case CMPCI_SPDIF_IN_PHASE: if (CMPCI_ISCAP(sc, SPDIN_PHASE)) { if (sc->sc_gain[CMPCI_SPDIF_IN_PHASE][CMPCI_LR] == CMPCI_SPDIF_IN_PHASE_POSITIVE) cmpci_reg_clear_1(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_SPDIN_PHASE); else cmpci_reg_set_1(sc, CMPCI_REG_CHANNEL_FORMAT, CMPCI_REG_SPDIN_PHASE); } return; default: return; } cmpci_mixerreg_write(sc, src, CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_LEFT])); cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_L_TO_R(src), CMPCI_ADJUST_GAIN(sc, sc->sc_gain[port][CMPCI_RIGHT])); } void cmpci_set_out_ports(struct cmpci_softc *sc) { struct cmpci_channel *chan; u_int8_t v; int enspdout = 0; if (!CMPCI_ISCAP(sc, SPDLOOP)) return; /* SPDIF/out select */ if (sc->sc_gain[CMPCI_SPDIF_LOOP][CMPCI_LR] == CMPCI_SPDIF_LOOP_OFF) { /* playback */ cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP); } else { /* monitor SPDIF/in */ cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF_LOOP); } /* SPDIF in select */ v = sc->sc_gain[CMPCI_SPDIF_IN_SELECT][CMPCI_LR]; if (v & CMPCI_SPDIFIN_SPDIFIN2) cmpci_reg_set_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN); else cmpci_reg_clear_reg_misc(sc, CMPCI_REG_2ND_SPDIFIN); if (v & CMPCI_SPDIFIN_SPDIFOUT) cmpci_reg_set_reg_misc(sc, CMPCI_REG_SPDFLOOPI); else cmpci_reg_clear_reg_misc(sc, CMPCI_REG_SPDFLOOPI); if (sc->sc_play_channel == 1) chan = &sc->sc_ch1; else chan = &sc->sc_ch0; /* playback to ... */ if (CMPCI_ISCAP(sc, SPDOUT) && sc->sc_gain[CMPCI_PLAYBACK_MODE][CMPCI_LR] == CMPCI_PLAYBACK_MODE_SPDIF && (chan->md_divide == CMPCI_REG_RATE_44100 || (CMPCI_ISCAP(sc, SPDOUT_48K) && chan->md_divide==CMPCI_REG_RATE_48000))) { /* playback to SPDIF */ cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE); enspdout = 1; if (chan->md_divide==CMPCI_REG_RATE_48000) cmpci_reg_set_reg_misc(sc, CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K); else cmpci_reg_clear_reg_misc(sc, CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K); } else { /* playback to DAC */ cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF0_ENABLE); if (CMPCI_ISCAP(sc, SPDOUT_48K)) cmpci_reg_clear_reg_misc(sc, CMPCI_REG_SPDIFOUT_48K | CMPCI_REG_SPDIF48K); } /* legacy to SPDIF/out or not */ if (CMPCI_ISCAP(sc, SPDLEGACY)) { if (sc->sc_gain[CMPCI_SPDIF_OUT_PLAYBACK][CMPCI_LR] == CMPCI_SPDIF_OUT_PLAYBACK_WAVE) cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_LEGACY_SPDIF_ENABLE); else { cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_LEGACY_SPDIF_ENABLE); enspdout = 1; } } /* enable/disable SPDIF/out */ if (CMPCI_ISCAP(sc, XSPDOUT) && enspdout) cmpci_reg_set_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_XSPDIF_ENABLE); else cmpci_reg_clear_4(sc, CMPCI_REG_LEGACY_CTRL, CMPCI_REG_XSPDIF_ENABLE); /* SPDIF monitor (digital to analog output) */ if (CMPCI_ISCAP(sc, SPDIN_MONITOR)) { v = sc->sc_gain[CMPCI_MONITOR_DAC][CMPCI_LR]; if (!(v & CMPCI_MONDAC_ENABLE)) cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_SPDIN_MONITOR); if (v & CMPCI_MONDAC_SPDOUT) cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIFOUT_DAC); else cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIFOUT_DAC); if (v & CMPCI_MONDAC_ENABLE) cmpci_reg_set_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_SPDIN_MONITOR); } } int cmpci_set_in_ports(struct cmpci_softc *sc) { int mask; int bitsl, bitsr; mask = sc->sc_in_mask; /* * Note CMPCI_RECORD_SOURCE_CD, CMPCI_RECORD_SOURCE_LINE_IN and * CMPCI_RECORD_SOURCE_FM are defined to the corresponding bit * of the mixer register. */ bitsr = mask & (CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN | CMPCI_RECORD_SOURCE_FM); bitsl = CMPCI_SB16_MIXER_SRC_R_TO_L(bitsr); if (mask & CMPCI_RECORD_SOURCE_MIC) { bitsl |= CMPCI_SB16_MIXER_MIC_SRC; bitsr |= CMPCI_SB16_MIXER_MIC_SRC; } cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_L, bitsl); cmpci_mixerreg_write(sc, CMPCI_SB16_MIXER_ADCMIX_R, bitsr); if (mask & CMPCI_RECORD_SOURCE_AUX_IN) cmpci_reg_set_1(sc, CMPCI_REG_MIXER25, CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN); else cmpci_reg_clear_1(sc, CMPCI_REG_MIXER25, CMPCI_REG_RAUXREN | CMPCI_REG_RAUXLEN); if (mask & CMPCI_RECORD_SOURCE_WAVE) cmpci_reg_set_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR); else cmpci_reg_clear_1(sc, CMPCI_REG_MIXER24, CMPCI_REG_WAVEINL | CMPCI_REG_WAVEINR); if (CMPCI_ISCAP(sc, SPDIN) && (sc->sc_ch1.md_divide == CMPCI_REG_RATE_44100 || (CMPCI_ISCAP(sc, SPDOUT_48K) && sc->sc_ch1.md_divide == CMPCI_REG_RATE_48000/* XXX? */))) { if (mask & CMPCI_RECORD_SOURCE_SPDIF) { /* enable SPDIF/in */ cmpci_reg_set_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF1_ENABLE); } else { cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_1, CMPCI_REG_SPDIF1_ENABLE); } } return 0; } int cmpci_set_port(void *handle, mixer_ctrl_t *cp) { struct cmpci_softc *sc = handle; int lgain, rgain; switch (cp->dev) { case CMPCI_MIC_VOL: case CMPCI_PCSPEAKER: case CMPCI_MIC_RECVOL: if (cp->un.value.num_channels != 1) return EINVAL; /* FALLTHROUGH */ case CMPCI_DAC_VOL: case CMPCI_FM_VOL: case CMPCI_CD_VOL: case CMPCI_LINE_IN_VOL: case CMPCI_AUX_IN_VOL: case CMPCI_MASTER_VOL: if (cp->type != AUDIO_MIXER_VALUE) return EINVAL; switch (cp->un.value.num_channels) { case 1: lgain = rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; break; case 2: lgain = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; rgain = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; break; default: return EINVAL; } sc->sc_gain[cp->dev][CMPCI_LEFT] = lgain; sc->sc_gain[cp->dev][CMPCI_RIGHT] = rgain; cmpci_set_mixer_gain(sc, cp->dev); break; case CMPCI_RECORD_SOURCE: if (cp->type != AUDIO_MIXER_SET) return EINVAL; if (cp->un.mask & ~(CMPCI_RECORD_SOURCE_MIC | CMPCI_RECORD_SOURCE_CD | CMPCI_RECORD_SOURCE_LINE_IN | CMPCI_RECORD_SOURCE_AUX_IN | CMPCI_RECORD_SOURCE_WAVE | CMPCI_RECORD_SOURCE_FM | CMPCI_RECORD_SOURCE_SPDIF)) return EINVAL; if (cp->un.mask & CMPCI_RECORD_SOURCE_SPDIF) cp->un.mask = CMPCI_RECORD_SOURCE_SPDIF; sc->sc_in_mask = cp->un.mask; return cmpci_set_in_ports(sc); /* boolean */ case CMPCI_DAC_MUTE: case CMPCI_FM_MUTE: case CMPCI_CD_MUTE: case CMPCI_LINE_IN_MUTE: case CMPCI_AUX_IN_MUTE: case CMPCI_MIC_MUTE: case CMPCI_MIC_PREAMP: case CMPCI_PLAYBACK_MODE: case CMPCI_SPDIF_IN_PHASE: case CMPCI_SPDIF_LOOP: case CMPCI_SPDIF_OUT_PLAYBACK: case CMPCI_SPDIF_OUT_VOLTAGE: case CMPCI_REAR: case CMPCI_INDIVIDUAL: case CMPCI_REVERSE: case CMPCI_SURROUND: if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord != 0; cmpci_set_mixer_gain(sc, cp->dev); break; case CMPCI_SPDIF_IN_SELECT: switch (cp->un.ord) { case CMPCI_SPDIF_IN_SPDIN1: case CMPCI_SPDIF_IN_SPDIN2: case CMPCI_SPDIF_IN_SPDOUT: break; default: return EINVAL; } goto xenum; case CMPCI_MONITOR_DAC: switch (cp->un.ord) { case CMPCI_MONITOR_DAC_OFF: case CMPCI_MONITOR_DAC_SPDIN: case CMPCI_MONITOR_DAC_SPDOUT: break; default: return EINVAL; } xenum: if (cp->type != AUDIO_MIXER_ENUM) return EINVAL; sc->sc_gain[cp->dev][CMPCI_LR] = cp->un.ord; cmpci_set_mixer_gain(sc, cp->dev); break; default: return EINVAL; } return 0; } int cmpci_get_port(void *handle, mixer_ctrl_t *cp) { struct cmpci_softc *sc = handle; switch (cp->dev) { case CMPCI_MIC_VOL: case CMPCI_PCSPEAKER: case CMPCI_MIC_RECVOL: if (cp->un.value.num_channels != 1) return EINVAL; /*FALLTHROUGH*/ case CMPCI_DAC_VOL: case CMPCI_FM_VOL: case CMPCI_CD_VOL: case CMPCI_LINE_IN_VOL: case CMPCI_AUX_IN_VOL: case CMPCI_MASTER_VOL: switch (cp->un.value.num_channels) { case 1: cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_gain[cp->dev][CMPCI_LEFT]; break; case 2: cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = sc->sc_gain[cp->dev][CMPCI_LEFT]; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = sc->sc_gain[cp->dev][CMPCI_RIGHT]; break; default: return EINVAL; } break; case CMPCI_RECORD_SOURCE: cp->un.mask = sc->sc_in_mask; break; case CMPCI_DAC_MUTE: case CMPCI_FM_MUTE: case CMPCI_CD_MUTE: case CMPCI_LINE_IN_MUTE: case CMPCI_AUX_IN_MUTE: case CMPCI_MIC_MUTE: case CMPCI_MIC_PREAMP: case CMPCI_PLAYBACK_MODE: case CMPCI_SPDIF_IN_SELECT: case CMPCI_SPDIF_IN_PHASE: case CMPCI_SPDIF_LOOP: case CMPCI_SPDIF_OUT_PLAYBACK: case CMPCI_SPDIF_OUT_VOLTAGE: case CMPCI_MONITOR_DAC: case CMPCI_REAR: case CMPCI_INDIVIDUAL: case CMPCI_REVERSE: case CMPCI_SURROUND: cp->un.ord = sc->sc_gain[cp->dev][CMPCI_LR]; break; default: return EINVAL; } return 0; } /* ARGSUSED */ size_t cmpci_round_buffersize(void *handle, int direction, size_t bufsize) { if (bufsize > 0x10000) bufsize = 0x10000; return bufsize; } paddr_t cmpci_mappage(void *handle, void *addr, off_t offset, int prot) { struct cmpci_softc *sc = handle; struct cmpci_dmanode *p; if (offset < 0 || NULL == (p = cmpci_find_dmamem(sc, addr))) return -1; return bus_dmamem_mmap(p->cd_tag, p->cd_segs, sizeof(p->cd_segs)/sizeof(p->cd_segs[0]), offset, prot, BUS_DMA_WAITOK); } /* ARGSUSED */ int cmpci_get_props(void *handle) { return AUDIO_PROP_MMAP | AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX; } int cmpci_trigger_output(void *handle, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct cmpci_softc *sc = handle; struct cmpci_dmanode *p; struct cmpci_channel *chan; uint32_t reg_dma_base, reg_dma_bytes, reg_dma_samples, reg_dir, reg_intr_enable, reg_enable; uint32_t length; int bps; if (sc->sc_play_channel == 1) { chan = &sc->sc_ch1; reg_dma_base = CMPCI_REG_DMA1_BASE; reg_dma_bytes = CMPCI_REG_DMA1_BYTES; reg_dma_samples = CMPCI_REG_DMA1_SAMPLES; reg_dir = CMPCI_REG_CH1_DIR; reg_intr_enable = CMPCI_REG_CH1_INTR_ENABLE; reg_enable = CMPCI_REG_CH1_ENABLE; } else { chan = &sc->sc_ch0; reg_dma_base = CMPCI_REG_DMA0_BASE; reg_dma_bytes = CMPCI_REG_DMA0_BYTES; reg_dma_samples = CMPCI_REG_DMA0_SAMPLES; reg_dir = CMPCI_REG_CH0_DIR; reg_intr_enable = CMPCI_REG_CH0_INTR_ENABLE; reg_enable = CMPCI_REG_CH0_ENABLE; } chan->intr = intr; chan->intr_arg = arg; bps = (param->channels > 1 ? 2 : 1) * param->precision * param->factor / 8; if (!bps) return EINVAL; /* set DMA frame */ if (!(p = cmpci_find_dmamem(sc, start))) return EINVAL; bus_space_write_4(sc->sc_iot, sc->sc_ioh, reg_dma_base, DMAADDR(p)); delay(10); length = ((caddr_t)end - (caddr_t)start + 1) / bps - 1; bus_space_write_2(sc->sc_iot, sc->sc_ioh, reg_dma_bytes, length); delay(10); /* set interrupt count */ length = (blksize + bps - 1) / bps - 1; bus_space_write_2(sc->sc_iot, sc->sc_ioh, reg_dma_samples, length); delay(10); /* start DMA */ cmpci_reg_clear_4(sc, CMPCI_REG_FUNC_0, reg_dir); /* PLAY */ cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, reg_intr_enable); cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, reg_enable); return 0; } int cmpci_trigger_input(void *handle, void *start, void *end, int blksize, void (*intr)(void *), void *arg, struct audio_params *param) { struct cmpci_softc *sc = handle; struct cmpci_dmanode *p; int bps; sc->sc_ch1.intr = intr; sc->sc_ch1.intr_arg = arg; bps = param->channels*param->precision*param->factor/8; if (!bps) return EINVAL; /* set DMA frame */ if (!(p = cmpci_find_dmamem(sc, start))) return EINVAL; bus_space_write_4(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BASE, DMAADDR(p)); delay(10); bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_BYTES, ((caddr_t)end - (caddr_t)start + 1) / bps - 1); delay(10); /* set interrupt count */ bus_space_write_2(sc->sc_iot, sc->sc_ioh, CMPCI_REG_DMA1_SAMPLES, (blksize + bps - 1) / bps - 1); delay(10); /* start DMA */ cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_DIR); /* REC */ cmpci_reg_set_4(sc, CMPCI_REG_INTR_CTRL, CMPCI_REG_CH1_INTR_ENABLE); cmpci_reg_set_4(sc, CMPCI_REG_FUNC_0, CMPCI_REG_CH1_ENABLE); return 0; } /* end of file */