/* $OpenBSD: cz.c,v 1.25 2021/01/01 10:21:26 jan Exp $ */ /* $NetBSD: cz.c,v 1.15 2001/01/20 19:10:36 thorpej Exp $ */ /*- * Copyright (c) 2000 Zembu Labs, Inc. * All rights reserved. * * Authors: Jason R. Thorpe * Bill Studenmund * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Zembu Labs, Inc. * 4. Neither the name of Zembu Labs nor the names of its employees may * be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY ZEMBU LABS, INC. ``AS IS'' AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR- * RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DIS- * CLAIMED. IN NO EVENT SHALL ZEMBU LABS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Cyclades-Z series multi-port serial adapter driver for NetBSD. * * Some notes: * * - The Cyclades-Z has fully automatic hardware (and software!) * flow control. We only utilize RTS/CTS flow control here, * and it is implemented in a very simplistic manner. This * may be an area of future work. * * - The PLX can map the either the board's RAM or host RAM * into the MIPS's memory window. This would enable us to * use less expensive (for us) memory reads/writes to host * RAM, rather than time-consuming reads/writes to PCI * memory space. However, the PLX can only map a 0-128M * window, so we would have to ensure that the DMA address * of the host RAM fits there. This is kind of a pain, * so we just don't bother right now. * * - In a perfect world, we would use the autoconfiguration * mechanism to attach the TTYs that we find. However, * that leads to somewhat icky looking autoconfiguration * messages (one for every TTY, up to 64 per board!). So * we don't do it that way, but assign minors as if there * were the max of 64 ports per board. * * - We don't bother with PPS support here. There are so many * ports, each with a large amount of buffer space, that the * normal mode of operation is to poll the boards regularly * (generally, every 20ms or so). This makes this driver * unsuitable for PPS, as the latency will be generally too * high. */ /* * This driver inspired by the FreeBSD driver written by Brian J. McGovern * for FreeBSD 3.2. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CZ_DRIVER_VERSION 0x20000411 #define CZ_POLL_MS 20 /* These are the interrupts we always use. */ #define CZ_INTERRUPTS \ (C_IN_MDSR | C_IN_MRI | C_IN_MRTS | C_IN_MCTS | C_IN_TXBEMPTY | \ C_IN_TXFEMPTY | C_IN_TXLOWWM | C_IN_RXHIWM | C_IN_RXNNDT | \ C_IN_MDCD | C_IN_PR_ERROR | C_IN_FR_ERROR | C_IN_OVR_ERROR | \ C_IN_RXOFL | C_IN_IOCTLW | C_IN_RXBRK) /* * cztty_softc: * * Per-channel (TTY) state. */ struct cztty_softc { struct cz_softc *sc_parent; struct tty *sc_tty; struct timeout sc_diag_to; int sc_channel; /* Also used to flag unattached chan */ #define CZTTY_CHANNEL_DEAD -1 bus_space_tag_t sc_chan_st; /* channel space tag */ bus_space_handle_t sc_chan_sh; /* channel space handle */ bus_space_handle_t sc_buf_sh; /* buffer space handle */ u_int sc_overflows, sc_parity_errors, sc_framing_errors, sc_errors; int sc_swflags; u_int32_t sc_rs_control_dtr, sc_chanctl_hw_flow, sc_chanctl_comm_baud, sc_chanctl_rs_control, sc_chanctl_comm_data_l, sc_chanctl_comm_parity; }; /* * cz_softc: * * Per-board state. */ struct cz_softc { struct device cz_dev; /* generic device info */ struct plx9060_config cz_plx; /* PLX 9060 config info */ bus_space_tag_t cz_win_st; /* window space tag */ bus_space_handle_t cz_win_sh; /* window space handle */ struct timeout cz_timeout; /* timeout for polling-mode */ void *cz_ih; /* interrupt handle */ u_int32_t cz_mailbox0; /* our MAILBOX0 value */ int cz_nchannels; /* number of channels */ int cz_nopenchan; /* number of open channels */ struct cztty_softc *cz_ports; /* our array of ports */ bus_addr_t cz_fwctl; /* offset of firmware control */ }; int cz_match(struct device *, void *, void *); void cz_attach(struct device *, struct device *, void *); int cz_wait_pci_doorbell(struct cz_softc *, char *); struct cfattach cz_ca = { sizeof(struct cz_softc), cz_match, cz_attach }; void cz_reset_board(struct cz_softc *); int cz_load_firmware(struct cz_softc *); int cz_intr(void *); void cz_poll(void *); int cztty_transmit(struct cztty_softc *, struct tty *); int cztty_receive(struct cztty_softc *, struct tty *); struct cztty_softc * cztty_getttysoftc(dev_t dev); int cztty_findmajor(void); int cztty_major; int cztty_attached_ttys; cdev_decl(cztty); void czttystart(struct tty *tp); int czttyparam(struct tty *tp, struct termios *t); void cztty_shutdown(struct cztty_softc *sc); void cztty_modem(struct cztty_softc *sc, int onoff); void cztty_break(struct cztty_softc *sc, int onoff); void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits); int cztty_to_tiocm(struct cztty_softc *sc); void cztty_diag(void *arg); struct cfdriver cz_cd = { 0, "cz", DV_TTY }; /* * Macros to read and write the PLX. */ #define CZ_PLX_READ(cz, reg) \ bus_space_read_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, (reg)) #define CZ_PLX_WRITE(cz, reg, val) \ bus_space_write_4((cz)->cz_plx.plx_st, (cz)->cz_plx.plx_sh, \ (reg), (val)) /* * Macros to read and write the FPGA. We must already be in the FPGA * window for this. */ #define CZ_FPGA_READ(cz, reg) \ bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg)) #define CZ_FPGA_WRITE(cz, reg, val) \ bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, (reg), (val)) /* * Macros to read and write the firmware control structures in board RAM. */ #define CZ_FWCTL_READ(cz, off) \ bus_space_read_4((cz)->cz_win_st, (cz)->cz_win_sh, \ (cz)->cz_fwctl + (off)) #define CZ_FWCTL_WRITE(cz, off, val) \ bus_space_write_4((cz)->cz_win_st, (cz)->cz_win_sh, \ (cz)->cz_fwctl + (off), (val)) /* * Convenience macros for cztty routines. PLX window MUST be to RAM. */ #define CZTTY_CHAN_READ(sc, off) \ bus_space_read_4((sc)->sc_chan_st, (sc)->sc_chan_sh, (off)) #define CZTTY_CHAN_WRITE(sc, off, val) \ bus_space_write_4((sc)->sc_chan_st, (sc)->sc_chan_sh, \ (off), (val)) #define CZTTY_BUF_READ(sc, off) \ bus_space_read_4((sc)->sc_chan_st, (sc)->sc_buf_sh, (off)) #define CZTTY_BUF_WRITE(sc, off, val) \ bus_space_write_4((sc)->sc_chan_st, (sc)->sc_buf_sh, \ (off), (val)) /* * Convenience macros. */ #define CZ_WIN_RAM(cz) \ do { \ CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_RAM); \ delay(100); \ } while (0) #define CZ_WIN_FPGA(cz) \ do { \ CZ_PLX_WRITE((cz), PLX_LAS0BA, LOCAL_ADDR0_FPGA); \ delay(100); \ } while (0) /***************************************************************************** * Cyclades-Z controller code starts here... *****************************************************************************/ /* * cz_match: * * Determine if the given PCI device is a Cyclades-Z board. */ int cz_match(parent, match, aux) struct device *parent; void *match, *aux; { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_CYCLADES && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_CYCLADES_CYCLOMZ_2) return (1); return (0); } /* * cz_attach: * * A Cyclades-Z board was found; attach it. */ void cz_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct cz_softc *cz = (void *) self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; struct cztty_softc *sc; struct tty *tp; int i; cz->cz_plx.plx_pc = pa->pa_pc; cz->cz_plx.plx_tag = pa->pa_tag; if (pci_mapreg_map(pa, PLX_PCI_RUNTIME_MEMADDR, PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, &cz->cz_plx.plx_st, &cz->cz_plx.plx_sh, NULL, NULL, 0) != 0) { printf(": unable to map PLX registers\n"); return; } if (pci_mapreg_map(pa, PLX_PCI_LOCAL_ADDR0, PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, &cz->cz_win_st, &cz->cz_win_sh, NULL, NULL, 0) != 0) { printf(": unable to map device window\n"); return; } cz->cz_mailbox0 = CZ_PLX_READ(cz, PLX_MAILBOX0); cz->cz_nopenchan = 0; /* * Make sure that the board is completely stopped. */ CZ_WIN_FPGA(cz); CZ_FPGA_WRITE(cz, FPGA_CPU_STOP, 0); /* * Load the board's firmware. */ if (cz_load_firmware(cz) != 0) return; /* * Now that we're ready to roll, map and establish the interrupt * handler. */ if (pci_intr_map(pa, &ih) != 0) { /* * The common case is for Cyclades-Z boards to run * in polling mode, and thus not have an interrupt * mapped for them. Don't bother reporting that * the interrupt is not mappable, since this isn't * really an error. */ cz->cz_ih = NULL; goto polling_mode; } else { intrstr = pci_intr_string(pa->pa_pc, ih); cz->cz_ih = pci_intr_establish(pc, ih, IPL_TTY, cz_intr, cz, cz->cz_dev.dv_xname); } if (cz->cz_ih == NULL) { printf(": unable to establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); /* We will fall-back on polling mode. */ } else printf(": %s\n", intrstr); polling_mode: if (cz->cz_ih == NULL) { timeout_set(&cz->cz_timeout, cz_poll, cz); printf("%s: polling mode, %d ms interval\n", cz->cz_dev.dv_xname, CZ_POLL_MS); } if (cztty_major == 0) cztty_major = cztty_findmajor(); /* * Allocate sufficient pointers for the children and * attach them. Set all ports to a reasonable initial * configuration while we're at it: * * disabled * 8N1 * default baud rate * hardware flow control. */ CZ_WIN_RAM(cz); if (cz->cz_nchannels == 0) { /* No channels? No more work to do! */ return; } cz->cz_ports = mallocarray(cz->cz_nchannels, sizeof(struct cztty_softc), M_DEVBUF, M_WAITOK | M_ZERO); cztty_attached_ttys += cz->cz_nchannels; for (i = 0; i < cz->cz_nchannels; i++) { sc = &cz->cz_ports[i]; sc->sc_channel = i; sc->sc_chan_st = cz->cz_win_st; sc->sc_parent = cz; if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh, cz->cz_fwctl + ZFIRM_CHNCTL_OFF(i, 0), ZFIRM_CHNCTL_SIZE, &sc->sc_chan_sh)) { printf("%s: unable to subregion channel %d control\n", cz->cz_dev.dv_xname, i); sc->sc_channel = CZTTY_CHANNEL_DEAD; continue; } if (bus_space_subregion(cz->cz_win_st, cz->cz_win_sh, cz->cz_fwctl + ZFIRM_BUFCTL_OFF(i, 0), ZFIRM_BUFCTL_SIZE, &sc->sc_buf_sh)) { printf("%s: unable to subregion channel %d buffer\n", cz->cz_dev.dv_xname, i); sc->sc_channel = CZTTY_CHANNEL_DEAD; continue; } timeout_set(&sc->sc_diag_to, cztty_diag, sc); tp = ttymalloc(0); tp->t_dev = makedev(cztty_major, (cz->cz_dev.dv_unit * ZFIRM_MAX_CHANNELS) + i); tp->t_oproc = czttystart; tp->t_param = czttyparam; sc->sc_tty = tp; CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE); CZTTY_CHAN_WRITE(sc, CHNCTL_INTR_ENABLE, CZ_INTERRUPTS); CZTTY_CHAN_WRITE(sc, CHNCTL_SW_FLOW, 0); CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XON, 0x11); CZTTY_CHAN_WRITE(sc, CHNCTL_FLOW_XOFF, 0x13); CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, TTYDEF_SPEED); CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, C_PR_NONE); CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, C_DL_CS8 | C_DL_1STOP); CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_FLAGS, 0); CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, C_RS_CTS | C_RS_RTS); CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, 0); } } /* * cz_reset_board: * * Reset the board via the PLX. */ void cz_reset_board(struct cz_softc *cz) { u_int32_t reg; reg = CZ_PLX_READ(cz, PLX_CONTROL); CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_SWR); delay(1000); CZ_PLX_WRITE(cz, PLX_CONTROL, reg); delay(1000); /* Now reload the PLX from its EEPROM. */ reg = CZ_PLX_READ(cz, PLX_CONTROL); CZ_PLX_WRITE(cz, PLX_CONTROL, reg | CONTROL_RELOADCFG); delay(1000); CZ_PLX_WRITE(cz, PLX_CONTROL, reg); } /* * cz_load_firmware: * * Load the ZFIRM firmware into the board's RAM and start it * running. */ int cz_load_firmware(struct cz_softc *cz) { struct zfirm_header *zfh; struct zfirm_config *zfc; struct zfirm_block *zfb, *zblocks; const u_int8_t *cp; const char *board; u_int32_t fid; int i, j, nconfigs, nblocks, nbytes; zfh = (struct zfirm_header *) cycladesz_firmware; /* Find the config header. */ if (letoh32(zfh->zfh_configoff) & (sizeof(u_int32_t) - 1)) { printf("%s: bad ZFIRM config offset: 0x%x\n", cz->cz_dev.dv_xname, letoh32(zfh->zfh_configoff)); return (EIO); } zfc = (struct zfirm_config *)(cycladesz_firmware + letoh32(zfh->zfh_configoff)); nconfigs = letoh32(zfh->zfh_nconfig); /* Locate the correct configuration for our board. */ for (i = 0; i < nconfigs; i++, zfc++) { if (letoh32(zfc->zfc_mailbox) == cz->cz_mailbox0 && letoh32(zfc->zfc_function) == ZFC_FUNCTION_NORMAL) break; } if (i == nconfigs) { printf("%s: unable to locate config header\n", cz->cz_dev.dv_xname); return (EIO); } nblocks = letoh32(zfc->zfc_nblocks); zblocks = (struct zfirm_block *)(cycladesz_firmware + letoh32(zfh->zfh_blockoff)); /* * 8Zo ver. 1 doesn't have an FPGA. Load it on all others if * necessary. */ if (cz->cz_mailbox0 != MAILBOX0_8Zo_V1 #if 0 && ((CZ_PLX_READ(cz, PLX_CONTROL) & CONTROL_FPGA_LOADED) == 0) #endif ) { #ifdef CZ_DEBUG printf("%s: Loading FPGA...", cz->cz_dev.dv_xname); #endif CZ_WIN_FPGA(cz); for (i = 0; i < nblocks; i++) { /* zfb = zblocks + letoh32(zfc->zfc_blocklist[i]) ?? */ zfb = &zblocks[letoh32(zfc->zfc_blocklist[i])]; if (letoh32(zfb->zfb_type) == ZFB_TYPE_FPGA) { nbytes = letoh32(zfb->zfb_size); cp = &cycladesz_firmware[ letoh32(zfb->zfb_fileoff)]; for (j = 0; j < nbytes; j++, cp++) { bus_space_write_1(cz->cz_win_st, cz->cz_win_sh, 0, *cp); /* FPGA needs 30-100us to settle. */ delay(10); } } } #ifdef CZ_DEBUG printf("done\n"); #endif } /* Now load the firmware. */ CZ_WIN_RAM(cz); for (i = 0; i < nblocks; i++) { /* zfb = zblocks + letoh32(zfc->zfc_blocklist[i]) ?? */ zfb = &zblocks[letoh32(zfc->zfc_blocklist[i])]; if (letoh32(zfb->zfb_type) == ZFB_TYPE_FIRMWARE) { const u_int32_t *lp; u_int32_t ro = letoh32(zfb->zfb_ramoff); nbytes = letoh32(zfb->zfb_size); lp = (const u_int32_t *) &cycladesz_firmware[letoh32(zfb->zfb_fileoff)]; for (j = 0; j < nbytes; j += 4, lp++) { bus_space_write_4(cz->cz_win_st, cz->cz_win_sh, ro + j, letoh32(*lp)); delay(10); } } } /* Now restart the MIPS. */ CZ_WIN_FPGA(cz); CZ_FPGA_WRITE(cz, FPGA_CPU_START, 0); /* Wait for the MIPS to start, then report the results. */ CZ_WIN_RAM(cz); #ifdef CZ_DEBUG printf("%s: waiting for MIPS to start", cz->cz_dev.dv_xname); #endif for (i = 0; i < 100; i++) { fid = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh, ZFIRM_SIG_OFF); if (fid == ZFIRM_SIG) { /* MIPS has booted. */ break; } else if (fid == ZFIRM_HLT) { /* * The MIPS has halted, usually due to a power * shortage on the expansion module. */ printf("%s: MIPS halted; possible power supply " "problem\n", cz->cz_dev.dv_xname); return (EIO); } else { #ifdef CZ_DEBUG if ((i % 8) == 0) printf("."); #endif delay(250000); } } #ifdef CZ_DEBUG printf("\n"); #endif if (i == 100) { CZ_WIN_FPGA(cz); printf("%s: MIPS failed to start; wanted 0x%08x got 0x%08x\n", cz->cz_dev.dv_xname, ZFIRM_SIG, fid); printf("%s: FPGA ID 0x%08x, FPGA version 0x%08x\n", cz->cz_dev.dv_xname, CZ_FPGA_READ(cz, FPGA_ID), CZ_FPGA_READ(cz, FPGA_VERSION)); return (EIO); } /* * Locate the firmware control structures. */ cz->cz_fwctl = bus_space_read_4(cz->cz_win_st, cz->cz_win_sh, ZFIRM_CTRLADDR_OFF); #ifdef CZ_DEBUG printf("%s: FWCTL structure at offset 0x%08lx\n", cz->cz_dev.dv_xname, cz->cz_fwctl); #endif CZ_FWCTL_WRITE(cz, BRDCTL_C_OS, C_OS_BSD); CZ_FWCTL_WRITE(cz, BRDCTL_DRVERSION, CZ_DRIVER_VERSION); cz->cz_nchannels = CZ_FWCTL_READ(cz, BRDCTL_NCHANNEL); switch (cz->cz_mailbox0) { case MAILBOX0_8Zo_V1: board = "Cyclades-8Zo ver. 1"; break; case MAILBOX0_8Zo_V2: board = "Cyclades-8Zo ver. 2"; break; case MAILBOX0_Ze_V1: board = "Cyclades-Ze"; break; default: board = "unknown Cyclades Z-series"; break; } fid = CZ_FWCTL_READ(cz, BRDCTL_FWVERSION); printf("%s: %s, ", cz->cz_dev.dv_xname, board); if (cz->cz_nchannels == 0) printf("no channels attached, "); else printf("%d channels (ttyCZ%04d..ttyCZ%04d), ", cz->cz_nchannels, cztty_attached_ttys, cztty_attached_ttys + (cz->cz_nchannels - 1)); printf("firmware %x.%x.%x\n", (fid >> 8) & 0xf, (fid >> 4) & 0xf, fid & 0xf); return (0); } /* * cz_poll: * * This card doesn't do interrupts, so scan it for activity every CZ_POLL_MS * ms. */ void cz_poll(void *arg) { int s = spltty(); struct cz_softc *cz = arg; cz_intr(cz); timeout_add_msec(&cz->cz_timeout, CZ_POLL_MS); splx(s); } /* * cz_intr: * * Interrupt service routine. * * We either are receiving an interrupt directly from the board, or we are * in polling mode and it's time to poll. */ int cz_intr(void *arg) { int rval = 0; u_int command, channel, param; struct cz_softc *cz = arg; struct cztty_softc *sc; struct tty *tp; while ((command = (CZ_PLX_READ(cz, PLX_LOCAL_PCI_DOORBELL) & 0xff))) { rval = 1; channel = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_CHANNEL); param = CZ_FWCTL_READ(cz, BRDCTL_FWCMD_PARAM); /* now clear this interrupt, posslibly enabling another */ CZ_PLX_WRITE(cz, PLX_LOCAL_PCI_DOORBELL, command); if (cz->cz_ports == NULL) { #ifdef CZ_DEBUG printf("%s: interrupt on channel %d, but no channels\n", cz->cz_dev.dv_xname, channel); #endif continue; } sc = &cz->cz_ports[channel]; if (sc->sc_channel == CZTTY_CHANNEL_DEAD) break; tp = sc->sc_tty; switch (command) { case C_CM_TXFEMPTY: /* transmit cases */ case C_CM_TXBEMPTY: case C_CM_TXLOWWM: case C_CM_INTBACK: if (!ISSET(tp->t_state, TS_ISOPEN)) { #ifdef CZ_DEBUG printf("%s: tx intr on closed channel %d\n", cz->cz_dev.dv_xname, channel); #endif break; } if (cztty_transmit(sc, tp)) { /* * Do wakeup stuff here. */ ttwakeup(tp); wakeup(tp); } break; case C_CM_RXNNDT: /* receive cases */ case C_CM_RXHIWM: case C_CM_INTBACK2: /* from restart ?? */ #if 0 case C_CM_ICHAR: #endif if (!ISSET(tp->t_state, TS_ISOPEN)) { CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, CZTTY_BUF_READ(sc, BUFCTL_RX_PUT)); break; } if (cztty_receive(sc, tp)) { /* * Do wakeup stuff here. */ ttwakeup(tp); wakeup(tp); } break; case C_CM_MDCD: if (!ISSET(tp->t_state, TS_ISOPEN)) break; (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(C_RS_DCD, CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS))); break; case C_CM_MDSR: case C_CM_MRI: case C_CM_MCTS: case C_CM_MRTS: break; case C_CM_IOCTLW: break; case C_CM_PR_ERROR: sc->sc_parity_errors++; goto error_common; case C_CM_FR_ERROR: sc->sc_framing_errors++; goto error_common; case C_CM_OVR_ERROR: sc->sc_overflows++; error_common: if (sc->sc_errors++ == 0) timeout_add_sec(&sc->sc_diag_to, 60); break; case C_CM_RXBRK: if (!ISSET(tp->t_state, TS_ISOPEN)) break; /* * A break is a \000 character with TTY_FE error * flags set. So TTY_FE by itself works. */ (*linesw[tp->t_line].l_rint)(TTY_FE, tp); ttwakeup(tp); wakeup(tp); break; default: #ifdef CZ_DEBUG printf("%s: channel %d: Unknown interrupt 0x%x\n", cz->cz_dev.dv_xname, sc->sc_channel, command); #endif break; } } return (rval); } /* * cz_wait_pci_doorbell: * * Wait for the pci doorbell to be clear - wait for pending * activity to drain. */ int cz_wait_pci_doorbell(struct cz_softc *cz, char *wstring) { int error; while (CZ_PLX_READ(cz, PLX_PCI_LOCAL_DOORBELL)) { error = tsleep_nsec(cz, TTIPRI | PCATCH, wstring, MSEC_TO_NSEC(10)); if ((error != 0) && (error != EWOULDBLOCK)) return (error); } return (0); } /***************************************************************************** * Cyclades-Z TTY code starts here... *****************************************************************************/ #define CZTTYDIALOUT_MASK 0x80 #define CZTTY_CZ(sc) ((sc)->sc_parent) #define CZTTY_SOFTC(dev) cztty_getttysoftc(dev) struct cztty_softc * cztty_getttysoftc(dev_t dev) { int i, j, k, u = minor(dev) & ~CZTTYDIALOUT_MASK; struct cz_softc *cz; for (i = 0, j = 0; i < cz_cd.cd_ndevs; i++) { k = j; cz = (struct cz_softc *)device_lookup(&cz_cd, i); if (cz == NULL) continue; if (cz->cz_ports == NULL) continue; j += cz->cz_nchannels; if (j > u) break; } if (i >= cz_cd.cd_ndevs) return (NULL); else return (&cz->cz_ports[u - k]); } int cztty_findmajor(void) { int maj; for (maj = 0; maj < nchrdev; maj++) { if (cdevsw[maj].d_open == czttyopen) break; } return (maj == nchrdev) ? 0 : maj; } /* * czttytty: * * Return a pointer to our tty. */ struct tty * czttytty(dev_t dev) { struct cztty_softc *sc = CZTTY_SOFTC(dev); #ifdef DIAGNOSTIC if (sc == NULL) panic("czttytty"); #endif return (sc->sc_tty); } /* * cztty_shutdown: * * Shut down a port. */ void cztty_shutdown(struct cztty_softc *sc) { struct cz_softc *cz = CZTTY_CZ(sc); struct tty *tp = sc->sc_tty; int s; s = spltty(); /* Clear any break condition set with TIOCSBRK. */ cztty_break(sc, 0); /* * Hang up if necessary. Wait a bit, so the other side has time to * notice even if we immediately open the port again. */ if (ISSET(tp->t_cflag, HUPCL)) { cztty_modem(sc, 0); tsleep_nsec(tp, TTIPRI, ttclos, SEC_TO_NSEC(1)); } /* Disable the channel. */ cz_wait_pci_doorbell(cz, "czdis"); CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_DISABLE); CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel); CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTL); if ((--cz->cz_nopenchan == 0) && (cz->cz_ih == NULL)) { #ifdef CZ_DEBUG printf("%s: Disabling polling\n", cz->cz_dev.dv_xname); #endif timeout_del(&cz->cz_timeout); } splx(s); } /* * czttyopen: * * Open a Cyclades-Z serial port. */ int czttyopen(dev_t dev, int flags, int mode, struct proc *p) { struct cztty_softc *sc = CZTTY_SOFTC(dev); struct cz_softc *cz; struct tty *tp; int s, error; if (sc == NULL) return (ENXIO); if (sc->sc_channel == CZTTY_CHANNEL_DEAD) return (ENXIO); cz = CZTTY_CZ(sc); tp = sc->sc_tty; if (ISSET(tp->t_state, TS_ISOPEN) && ISSET(tp->t_state, TS_XCLUDE) && suser(p) != 0) return (EBUSY); s = spltty(); /* * Do the following iff this is a first open. */ if (!ISSET(tp->t_state, TS_ISOPEN)) { struct termios t; tp->t_dev = dev; /* If we're turning things on, enable interrupts */ if ((cz->cz_nopenchan++ == 0) && (cz->cz_ih == NULL)) { #ifdef CZ_DEBUG printf("%s: Enabling polling.\n", cz->cz_dev.dv_xname); #endif timeout_add_msec(&cz->cz_timeout, CZ_POLL_MS); } /* * Enable the channel. Don't actually ring the * doorbell here; czttyparam() will do it for us. */ cz_wait_pci_doorbell(cz, "czopen"); CZTTY_CHAN_WRITE(sc, CHNCTL_OP_MODE, C_CH_ENABLE); /* * Initialize the termios status to the defaults. Add in the * sticky bits from TIOCSFLAGS. */ t.c_ispeed = 0; t.c_ospeed = TTYDEF_SPEED; t.c_cflag = TTYDEF_CFLAG; if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL)) SET(t.c_cflag, CLOCAL); if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS)) SET(t.c_cflag, CRTSCTS); /* * Reset the input and output rings. Do this before * we call czttyparam(), as that function enables * the channel. */ CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, CZTTY_BUF_READ(sc, BUFCTL_RX_PUT)); CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, CZTTY_BUF_READ(sc, BUFCTL_TX_GET)); /* Make sure czttyparam() will see changes. */ tp->t_ospeed = 0; (void) czttyparam(tp, &t); tp->t_iflag = TTYDEF_IFLAG; tp->t_oflag = TTYDEF_OFLAG; tp->t_lflag = TTYDEF_LFLAG; ttychars(tp); ttsetwater(tp); /* * Turn on DTR. We must always do this, even if carrier is not * present, because otherwise we'd have to use TIOCSDTR * immediately after setting CLOCAL, which applications do not * expect. We always assert DTR while the device is open * unless explicitly requested to deassert it. */ cztty_modem(sc, 1); } splx(s); error = (*linesw[tp->t_line].l_open)(dev, tp, p); if (error) goto bad; return (0); bad: if (!ISSET(tp->t_state, TS_ISOPEN)) { /* * We failed to open the device, and nobody else had it opened. * Clean up the state as appropriate. */ cztty_shutdown(sc); } return (error); } /* * czttyclose: * * Close a Cyclades-Z serial port. */ int czttyclose(dev_t dev, int flags, int mode, struct proc *p) { struct cztty_softc *sc = CZTTY_SOFTC(dev); struct tty *tp = sc->sc_tty; /* XXX This is for cons.c. */ if (!ISSET(tp->t_state, TS_ISOPEN)) return (0); (*linesw[tp->t_line].l_close)(tp, flags, p); ttyclose(tp); if (!ISSET(tp->t_state, TS_ISOPEN)) { /* * Although we got a last close, the device may still be in * use; e.g. if this was the dialout node, and there are still * processes waiting for carrier on the non-dialout node. */ cztty_shutdown(sc); } return (0); } /* * czttyread: * * Read from a Cyclades-Z serial port. */ int czttyread(dev_t dev, struct uio *uio, int flags) { struct cztty_softc *sc = CZTTY_SOFTC(dev); struct tty *tp = sc->sc_tty; return ((*linesw[tp->t_line].l_read)(tp, uio, flags)); } /* * czttywrite: * * Write to a Cyclades-Z serial port. */ int czttywrite(dev_t dev, struct uio *uio, int flags) { struct cztty_softc *sc = CZTTY_SOFTC(dev); struct tty *tp = sc->sc_tty; return ((*linesw[tp->t_line].l_write)(tp, uio, flags)); } /* * czttyioctl: * * Perform a control operation on a Cyclades-Z serial port. */ int czttyioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p) { struct cztty_softc *sc = CZTTY_SOFTC(dev); struct tty *tp = sc->sc_tty; int s, error; error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag, p); if (error >= 0) return (error); error = ttioctl(tp, cmd, data, flag, p); if (error >= 0) return (error); error = 0; s = spltty(); switch (cmd) { case TIOCSBRK: cztty_break(sc, 1); break; case TIOCCBRK: cztty_break(sc, 0); break; case TIOCGFLAGS: *(int *)data = sc->sc_swflags; break; case TIOCSFLAGS: error = suser(p); if (error) break; sc->sc_swflags = *(int *)data; break; case TIOCSDTR: cztty_modem(sc, 1); break; case TIOCCDTR: cztty_modem(sc, 0); break; case TIOCMSET: case TIOCMBIS: case TIOCMBIC: tiocm_to_cztty(sc, cmd, *(int *)data); break; case TIOCMGET: *(int *)data = cztty_to_tiocm(sc); break; default: error = ENOTTY; break; } splx(s); return (error); } /* * cztty_break: * * Set or clear BREAK on a port. */ void cztty_break(struct cztty_softc *sc, int onoff) { struct cz_softc *cz = CZTTY_CZ(sc); cz_wait_pci_doorbell(cz, "czbreak"); CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel); CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, onoff ? C_CM_SET_BREAK : C_CM_CLR_BREAK); } /* * cztty_modem: * * Set or clear DTR on a port. */ void cztty_modem(struct cztty_softc *sc, int onoff) { struct cz_softc *cz = CZTTY_CZ(sc); if (sc->sc_rs_control_dtr == 0) return; cz_wait_pci_doorbell(cz, "czmod"); if (onoff) sc->sc_chanctl_rs_control |= sc->sc_rs_control_dtr; else sc->sc_chanctl_rs_control &= ~sc->sc_rs_control_dtr; CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control); CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel); CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM); } /* * tiocm_to_cztty: * * Process TIOCM* ioctls. */ void tiocm_to_cztty(struct cztty_softc *sc, u_long how, int ttybits) { struct cz_softc *cz = CZTTY_CZ(sc); u_int32_t czttybits; czttybits = 0; if (ISSET(ttybits, TIOCM_DTR)) SET(czttybits, C_RS_DTR); if (ISSET(ttybits, TIOCM_RTS)) SET(czttybits, C_RS_RTS); cz_wait_pci_doorbell(cz, "cztiocm"); switch (how) { case TIOCMBIC: CLR(sc->sc_chanctl_rs_control, czttybits); break; case TIOCMBIS: SET(sc->sc_chanctl_rs_control, czttybits); break; case TIOCMSET: CLR(sc->sc_chanctl_rs_control, C_RS_DTR | C_RS_RTS); SET(sc->sc_chanctl_rs_control, czttybits); break; } CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control); CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel); CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM); } /* * cztty_to_tiocm: * * Process the TIOCMGET ioctl. */ int cztty_to_tiocm(struct cztty_softc *sc) { struct cz_softc *cz = CZTTY_CZ(sc); u_int32_t rs_status, op_mode; int ttybits = 0; cz_wait_pci_doorbell(cz, "cztty"); rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS); op_mode = CZTTY_CHAN_READ(sc, CHNCTL_OP_MODE); if (ISSET(rs_status, C_RS_RTS)) SET(ttybits, TIOCM_RTS); if (ISSET(rs_status, C_RS_CTS)) SET(ttybits, TIOCM_CTS); if (ISSET(rs_status, C_RS_DCD)) SET(ttybits, TIOCM_CAR); if (ISSET(rs_status, C_RS_DTR)) SET(ttybits, TIOCM_DTR); if (ISSET(rs_status, C_RS_RI)) SET(ttybits, TIOCM_RNG); if (ISSET(rs_status, C_RS_DSR)) SET(ttybits, TIOCM_DSR); if (ISSET(op_mode, C_CH_ENABLE)) SET(ttybits, TIOCM_LE); return (ttybits); } /* * czttyparam: * * Set Cyclades-Z serial port parameters from termios. * * XXX Should just copy the whole termios after making * XXX sure all the changes could be done. */ int czttyparam(struct tty *tp, struct termios *t) { struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev); struct cz_softc *cz = CZTTY_CZ(sc); u_int32_t rs_status; int ospeed, cflag; ospeed = t->c_ospeed; cflag = t->c_cflag; /* Check requested parameters. */ if (ospeed < 0) return (EINVAL); if (t->c_ispeed && t->c_ispeed != ospeed) return (EINVAL); if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR)) { SET(cflag, CLOCAL); CLR(cflag, HUPCL); } /* * If there were no changes, don't do anything. This avoids dropping * input and improves performance when all we did was frob things like * VMIN and VTIME. */ if (tp->t_ospeed == ospeed && tp->t_cflag == cflag) return (0); /* Data bits. */ sc->sc_chanctl_comm_data_l = 0; switch (t->c_cflag & CSIZE) { case CS5: sc->sc_chanctl_comm_data_l |= C_DL_CS5; break; case CS6: sc->sc_chanctl_comm_data_l |= C_DL_CS6; break; case CS7: sc->sc_chanctl_comm_data_l |= C_DL_CS7; break; case CS8: sc->sc_chanctl_comm_data_l |= C_DL_CS8; break; } /* Stop bits. */ if (t->c_cflag & CSTOPB) { if ((sc->sc_chanctl_comm_data_l & C_DL_CS) == C_DL_CS5) sc->sc_chanctl_comm_data_l |= C_DL_15STOP; else sc->sc_chanctl_comm_data_l |= C_DL_2STOP; } else sc->sc_chanctl_comm_data_l |= C_DL_1STOP; /* Parity. */ if (t->c_cflag & PARENB) { if (t->c_cflag & PARODD) sc->sc_chanctl_comm_parity = C_PR_ODD; else sc->sc_chanctl_comm_parity = C_PR_EVEN; } else sc->sc_chanctl_comm_parity = C_PR_NONE; /* * Initialize flow control pins depending on the current flow control * mode. */ if (ISSET(t->c_cflag, CRTSCTS)) { sc->sc_rs_control_dtr = C_RS_DTR; sc->sc_chanctl_hw_flow = C_RS_CTS | C_RS_RTS; } else if (ISSET(t->c_cflag, MDMBUF)) { sc->sc_rs_control_dtr = 0; sc->sc_chanctl_hw_flow = C_RS_DCD | C_RS_DTR; } else { /* * If no flow control, then always set RTS. This will make * the other side happy if it mistakenly thinks we're doing * RTS/CTS flow control. */ sc->sc_rs_control_dtr = C_RS_DTR | C_RS_RTS; sc->sc_chanctl_hw_flow = 0; if (ISSET(sc->sc_chanctl_rs_control, C_RS_DTR)) SET(sc->sc_chanctl_rs_control, C_RS_RTS); else CLR(sc->sc_chanctl_rs_control, C_RS_RTS); } /* Baud rate. */ sc->sc_chanctl_comm_baud = ospeed; /* Copy to tty. */ tp->t_ispeed = 0; tp->t_ospeed = t->c_ospeed; tp->t_cflag = t->c_cflag; /* * Now load the channel control structure. */ cz_wait_pci_doorbell(cz, "czparam"); CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_BAUD, sc->sc_chanctl_comm_baud); CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_DATA_L, sc->sc_chanctl_comm_data_l); CZTTY_CHAN_WRITE(sc, CHNCTL_COMM_PARITY, sc->sc_chanctl_comm_parity); CZTTY_CHAN_WRITE(sc, CHNCTL_HW_FLOW, sc->sc_chanctl_hw_flow); CZTTY_CHAN_WRITE(sc, CHNCTL_RS_CONTROL, sc->sc_chanctl_rs_control); CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel); CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLW); cz_wait_pci_doorbell(cz, "czparam"); CZ_FWCTL_WRITE(cz, BRDCTL_HCMD_CHANNEL, sc->sc_channel); CZ_PLX_WRITE(cz, PLX_PCI_LOCAL_DOORBELL, C_CM_IOCTLM); cz_wait_pci_doorbell(cz, "czparam"); /* * Update the tty layer's idea of the carrier bit, in case we changed * CLOCAL. We don't hang up here; we only do that by explicit * request. */ rs_status = CZTTY_CHAN_READ(sc, CHNCTL_RS_STATUS); (void) (*linesw[tp->t_line].l_modem)(tp, ISSET(rs_status, C_RS_DCD)); return (0); } /* * czttystart: * * Start or restart transmission. */ void czttystart(struct tty *tp) { struct cztty_softc *sc = CZTTY_SOFTC(tp->t_dev); int s; s = spltty(); if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP)) goto out; ttwakeupwr(tp); if (tp->t_outq.c_cc == 0) goto out; cztty_transmit(sc, tp); out: splx(s); } /* * czttystop: * * Stop output, e.g., for ^S or output flush. */ int czttystop(struct tty *tp, int flag) { /* * XXX We don't do anything here, yet. Mostly, I don't know * XXX exactly how this should be implemented on this device. * XXX We've given a big chunk of data to the MIPS already, * XXX and I don't know how we request the MIPS to stop sending * XXX the data. So, punt for now. --thorpej */ return (0); } /* * cztty_diag: * * Issue a scheduled diagnostic message. */ void cztty_diag(void *arg) { struct cztty_softc *sc = arg; struct cz_softc *cz = CZTTY_CZ(sc); u_int overflows, parity_errors, framing_errors; int s; s = spltty(); overflows = sc->sc_overflows; sc->sc_overflows = 0; parity_errors = sc->sc_parity_errors; sc->sc_parity_errors = 0; framing_errors = sc->sc_framing_errors; sc->sc_framing_errors = 0; sc->sc_errors = 0; splx(s); log(LOG_WARNING, "%s: channel %d: %u overflow%s, %u parity, %u framing error%s\n", cz->cz_dev.dv_xname, sc->sc_channel, overflows, overflows == 1 ? "" : "s", parity_errors, framing_errors, framing_errors == 1 ? "" : "s"); } /* * tx and rx ring buffer size macros: * * The transmitter and receiver both use ring buffers. For each one, there * is a get (consumer) and a put (producer) offset. The get value is the * next byte to be read from the ring, and the put is the next one to be * put into the ring. get == put means the ring is empty. * * For each ring, the firmware controls one of (get, put) and this driver * controls the other. For transmission, this driver updates put to point * past the valid data, and the firmware moves get as bytes are sent. Likewise * for receive, the driver controls put, and this driver controls get. */ #define TX_MOVEABLE(g, p, s) (((g) > (p)) ? ((g) - (p) - 1) : ((s) - (p))) #define RX_MOVEABLE(g, p, s) (((g) > (p)) ? ((s) - (g)) : ((p) - (g))) /* * cztty_transmit() * * Look at the tty for this port and start sending. */ int cztty_transmit(struct cztty_softc *sc, struct tty *tp) { struct cz_softc *cz = CZTTY_CZ(sc); u_int move, get, put, size, address; #ifdef HOSTRAMCODE int error, done = 0; #else int done = 0; #endif size = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFSIZE); get = CZTTY_BUF_READ(sc, BUFCTL_TX_GET); put = CZTTY_BUF_READ(sc, BUFCTL_TX_PUT); address = CZTTY_BUF_READ(sc, BUFCTL_TX_BUFADDR); while ((tp->t_outq.c_cc > 0) && ((move = TX_MOVEABLE(get, put, size)))){ #ifdef HOSTRAMCODE if (0) { move = min(tp->t_outq.c_cc, move); error = q_to_b(&tp->t_outq, 0, move); if (error != move) { printf("%s: channel %d: error moving to " "transmit buf\n", cz->cz_dev.dv_xname, sc->sc_channel); move = error; } } else { #endif move = min(ndqb(&tp->t_outq, 0), move); bus_space_write_region_1(cz->cz_win_st, cz->cz_win_sh, address + put, tp->t_outq.c_cf, move); ndflush(&tp->t_outq, move); #ifdef HOSTRAMCODE } #endif put = ((put + move) % size); done = 1; } if (done) { CZTTY_BUF_WRITE(sc, BUFCTL_TX_PUT, put); } return (done); } int cztty_receive(struct cztty_softc *sc, struct tty *tp) { struct cz_softc *cz = CZTTY_CZ(sc); u_int get, put, size, address; int done = 0, ch; size = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFSIZE); get = CZTTY_BUF_READ(sc, BUFCTL_RX_GET); put = CZTTY_BUF_READ(sc, BUFCTL_RX_PUT); address = CZTTY_BUF_READ(sc, BUFCTL_RX_BUFADDR); while ((get != put) && ((tp->t_canq.c_cc + tp->t_rawq.c_cc) < tp->t_hiwat)) { #ifdef HOSTRAMCODE if (hostram) ch = ((char *)fifoaddr)[get]; } else { #endif ch = bus_space_read_1(cz->cz_win_st, cz->cz_win_sh, address + get); #ifdef HOSTRAMCODE } #endif (*linesw[tp->t_line].l_rint)(ch, tp); get = (get + 1) % size; done = 1; } if (done) { CZTTY_BUF_WRITE(sc, BUFCTL_RX_GET, get); } return (done); }