// SPDX-License-Identifier: GPL-2.0 OR MIT /* * Copyright 2014-2022 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include "kfd_mqd_manager.h" #include "amdgpu_amdkfd.h" #include "kfd_device_queue_manager.h" /* Mapping queue priority to pipe priority, indexed by queue priority */ int pipe_priority_map[] = { KFD_PIPE_PRIORITY_CS_LOW, KFD_PIPE_PRIORITY_CS_LOW, KFD_PIPE_PRIORITY_CS_LOW, KFD_PIPE_PRIORITY_CS_LOW, KFD_PIPE_PRIORITY_CS_LOW, KFD_PIPE_PRIORITY_CS_LOW, KFD_PIPE_PRIORITY_CS_LOW, KFD_PIPE_PRIORITY_CS_MEDIUM, KFD_PIPE_PRIORITY_CS_MEDIUM, KFD_PIPE_PRIORITY_CS_MEDIUM, KFD_PIPE_PRIORITY_CS_MEDIUM, KFD_PIPE_PRIORITY_CS_HIGH, KFD_PIPE_PRIORITY_CS_HIGH, KFD_PIPE_PRIORITY_CS_HIGH, KFD_PIPE_PRIORITY_CS_HIGH, KFD_PIPE_PRIORITY_CS_HIGH }; struct kfd_mem_obj *allocate_hiq_mqd(struct kfd_node *dev, struct queue_properties *q) { struct kfd_mem_obj *mqd_mem_obj; mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); if (!mqd_mem_obj) return NULL; mqd_mem_obj->gtt_mem = dev->dqm->hiq_sdma_mqd.gtt_mem; mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr; mqd_mem_obj->cpu_ptr = dev->dqm->hiq_sdma_mqd.cpu_ptr; return mqd_mem_obj; } struct kfd_mem_obj *allocate_sdma_mqd(struct kfd_node *dev, struct queue_properties *q) { struct kfd_mem_obj *mqd_mem_obj; uint64_t offset; mqd_mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); if (!mqd_mem_obj) return NULL; offset = (q->sdma_engine_id * dev->kfd->device_info.num_sdma_queues_per_engine + q->sdma_queue_id) * dev->dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size; offset += dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size * NUM_XCC(dev->xcc_mask); mqd_mem_obj->gtt_mem = (void *)((uint64_t)dev->dqm->hiq_sdma_mqd.gtt_mem + offset); mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset; mqd_mem_obj->cpu_ptr = (uint32_t *)((uint64_t) dev->dqm->hiq_sdma_mqd.cpu_ptr + offset); return mqd_mem_obj; } void free_mqd_hiq_sdma(struct mqd_manager *mm, void *mqd, struct kfd_mem_obj *mqd_mem_obj) { WARN_ON(!mqd_mem_obj->gtt_mem); kfree(mqd_mem_obj); } void mqd_symmetrically_map_cu_mask(struct mqd_manager *mm, const uint32_t *cu_mask, uint32_t cu_mask_count, uint32_t *se_mask, uint32_t inst) { struct kfd_cu_info cu_info; uint32_t cu_per_sh[KFD_MAX_NUM_SE][KFD_MAX_NUM_SH_PER_SE] = {0}; bool wgp_mode_req = KFD_GC_VERSION(mm->dev) >= IP_VERSION(10, 0, 0); uint32_t en_mask = wgp_mode_req ? 0x3 : 0x1; int i, se, sh, cu, cu_bitmap_sh_mul, cu_inc = wgp_mode_req ? 2 : 1; uint32_t cu_active_per_node; int inc = cu_inc * NUM_XCC(mm->dev->xcc_mask); int xcc_inst = inst + ffs(mm->dev->xcc_mask) - 1; amdgpu_amdkfd_get_cu_info(mm->dev->adev, &cu_info); cu_active_per_node = cu_info.cu_active_number / mm->dev->kfd->num_nodes; if (cu_mask_count > cu_active_per_node) cu_mask_count = cu_active_per_node; /* Exceeding these bounds corrupts the stack and indicates a coding error. * Returning with no CU's enabled will hang the queue, which should be * attention grabbing. */ if (cu_info.num_shader_engines > KFD_MAX_NUM_SE) { pr_err("Exceeded KFD_MAX_NUM_SE, chip reports %d\n", cu_info.num_shader_engines); return; } if (cu_info.num_shader_arrays_per_engine > KFD_MAX_NUM_SH_PER_SE) { pr_err("Exceeded KFD_MAX_NUM_SH, chip reports %d\n", cu_info.num_shader_arrays_per_engine * cu_info.num_shader_engines); return; } cu_bitmap_sh_mul = (KFD_GC_VERSION(mm->dev) >= IP_VERSION(11, 0, 0) && KFD_GC_VERSION(mm->dev) < IP_VERSION(12, 0, 0)) ? 2 : 1; /* Count active CUs per SH. * * Some CUs in an SH may be disabled. HW expects disabled CUs to be * represented in the high bits of each SH's enable mask (the upper and lower * 16 bits of se_mask) and will take care of the actual distribution of * disabled CUs within each SH automatically. * Each half of se_mask must be filled only on bits 0-cu_per_sh[se][sh]-1. * * See note on Arcturus cu_bitmap layout in gfx_v9_0_get_cu_info. * See note on GFX11 cu_bitmap layout in gfx_v11_0_get_cu_info. */ for (se = 0; se < cu_info.num_shader_engines; se++) for (sh = 0; sh < cu_info.num_shader_arrays_per_engine; sh++) cu_per_sh[se][sh] = hweight32( cu_info.cu_bitmap[xcc_inst][se % 4][sh + (se / 4) * cu_bitmap_sh_mul]); /* Symmetrically map cu_mask to all SEs & SHs: * se_mask programs up to 2 SH in the upper and lower 16 bits. * * Examples * Assuming 1 SH/SE, 4 SEs: * cu_mask[0] bit0 -> se_mask[0] bit0 * cu_mask[0] bit1 -> se_mask[1] bit0 * ... * cu_mask[0] bit4 -> se_mask[0] bit1 * ... * * Assuming 2 SH/SE, 4 SEs * cu_mask[0] bit0 -> se_mask[0] bit0 (SE0,SH0,CU0) * cu_mask[0] bit1 -> se_mask[1] bit0 (SE1,SH0,CU0) * ... * cu_mask[0] bit4 -> se_mask[0] bit16 (SE0,SH1,CU0) * cu_mask[0] bit5 -> se_mask[1] bit16 (SE1,SH1,CU0) * ... * cu_mask[0] bit8 -> se_mask[0] bit1 (SE0,SH0,CU1) * ... * * For GFX 9.4.3, the following code only looks at a * subset of the cu_mask corresponding to the inst parameter. * If we have n XCCs under one GPU node * cu_mask[0] bit0 -> XCC0 se_mask[0] bit0 (XCC0,SE0,SH0,CU0) * cu_mask[0] bit1 -> XCC1 se_mask[0] bit0 (XCC1,SE0,SH0,CU0) * .. * cu_mask[0] bitn -> XCCn se_mask[0] bit0 (XCCn,SE0,SH0,CU0) * cu_mask[0] bit n+1 -> XCC0 se_mask[1] bit0 (XCC0,SE1,SH0,CU0) * * For example, if there are 6 XCCs under 1 KFD node, this code * running for each inst, will look at the bits as: * inst, inst + 6, inst + 12... * * First ensure all CUs are disabled, then enable user specified CUs. */ for (i = 0; i < cu_info.num_shader_engines; i++) se_mask[i] = 0; i = inst; for (cu = 0; cu < 16; cu += cu_inc) { for (sh = 0; sh < cu_info.num_shader_arrays_per_engine; sh++) { for (se = 0; se < cu_info.num_shader_engines; se++) { if (cu_per_sh[se][sh] > cu) { if (cu_mask[i / 32] & (en_mask << (i % 32))) se_mask[se] |= en_mask << (cu + sh * 16); i += inc; if (i >= cu_mask_count) return; } } } } } int kfd_hiq_load_mqd_kiq(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, uint32_t queue_id, struct queue_properties *p, struct mm_struct *mms) { return mm->dev->kfd2kgd->hiq_mqd_load(mm->dev->adev, mqd, pipe_id, queue_id, p->doorbell_off, 0); } int kfd_destroy_mqd_cp(struct mqd_manager *mm, void *mqd, enum kfd_preempt_type type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_destroy(mm->dev->adev, mqd, type, timeout, pipe_id, queue_id, 0); } void kfd_free_mqd_cp(struct mqd_manager *mm, void *mqd, struct kfd_mem_obj *mqd_mem_obj) { if (mqd_mem_obj->gtt_mem) { amdgpu_amdkfd_free_gtt_mem(mm->dev->adev, &mqd_mem_obj->gtt_mem); kfree(mqd_mem_obj); } else { kfd_gtt_sa_free(mm->dev, mqd_mem_obj); } } bool kfd_is_occupied_cp(struct mqd_manager *mm, void *mqd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->adev, queue_address, pipe_id, queue_id, 0); } int kfd_load_mqd_sdma(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, uint32_t queue_id, struct queue_properties *p, struct mm_struct *mms) { return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->adev, mqd, (uint32_t __user *)p->write_ptr, mms); } /* * preempt type here is ignored because there is only one way * to preempt sdma queue */ int kfd_destroy_mqd_sdma(struct mqd_manager *mm, void *mqd, enum kfd_preempt_type type, unsigned int timeout, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->adev, mqd, timeout); } bool kfd_is_occupied_sdma(struct mqd_manager *mm, void *mqd, uint64_t queue_address, uint32_t pipe_id, uint32_t queue_id) { return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->adev, mqd); } uint64_t kfd_hiq_mqd_stride(struct kfd_node *dev) { return dev->dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size; } void kfd_get_hiq_xcc_mqd(struct kfd_node *dev, struct kfd_mem_obj *mqd_mem_obj, uint32_t virtual_xcc_id) { uint64_t offset; offset = kfd_hiq_mqd_stride(dev) * virtual_xcc_id; mqd_mem_obj->gtt_mem = (virtual_xcc_id == 0) ? dev->dqm->hiq_sdma_mqd.gtt_mem : NULL; mqd_mem_obj->gpu_addr = dev->dqm->hiq_sdma_mqd.gpu_addr + offset; mqd_mem_obj->cpu_ptr = (uint32_t *)((uintptr_t) dev->dqm->hiq_sdma_mqd.cpu_ptr + offset); } uint64_t kfd_mqd_stride(struct mqd_manager *mm, struct queue_properties *q) { return mm->mqd_size; }