/* * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org * * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Author Rickard E. (Rik) Faith * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #ifdef __HAVE_ACPI #include #include #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "drm_crtc_internal.h" #include "drm_internal.h" #include "drm_legacy.h" MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); MODULE_DESCRIPTION("DRM shared core routines"); MODULE_LICENSE("GPL and additional rights"); static DEFINE_SPINLOCK(drm_minor_lock); static struct idr drm_minors_idr; /* * If the drm core fails to init for whatever reason, * we should prevent any drivers from registering with it. * It's best to check this at drm_dev_init(), as some drivers * prefer to embed struct drm_device into their own device * structure and call drm_dev_init() themselves. */ static bool drm_core_init_complete = false; static struct dentry *drm_debugfs_root; #ifdef notyet DEFINE_STATIC_SRCU(drm_unplug_srcu); #endif /* * Some functions are only called once on init regardless of how many times * drm attaches. In linux this is handled via module_init()/module_exit() */ int drm_refcnt; struct drm_softc { struct device sc_dev; struct drm_device *sc_drm; int sc_allocated; }; struct drm_attach_args { struct drm_device *drm; struct drm_driver *driver; char *busid; bus_dma_tag_t dmat; bus_space_tag_t bst; size_t busid_len; int is_agp; struct pci_attach_args *pa; int primary; }; void drm_linux_init(void); int drm_linux_acpi_notify(struct aml_node *, int, void *); int drm_dequeue_event(struct drm_device *, struct drm_file *, size_t, struct drm_pending_event **); int drmprint(void *, const char *); int drmsubmatch(struct device *, void *, void *); const struct pci_device_id * drm_find_description(int, int, const struct pci_device_id *); int drm_file_cmp(struct drm_file *, struct drm_file *); SPLAY_PROTOTYPE(drm_file_tree, drm_file, link, drm_file_cmp); #define DRMDEVCF_PRIMARY 0 #define drmdevcf_primary cf_loc[DRMDEVCF_PRIMARY] /* spec'd as primary? */ #define DRMDEVCF_PRIMARY_UNK -1 /* * DRM Minors * A DRM device can provide several char-dev interfaces on the DRM-Major. Each * of them is represented by a drm_minor object. Depending on the capabilities * of the device-driver, different interfaces are registered. * * Minors can be accessed via dev->$minor_name. This pointer is either * NULL or a valid drm_minor pointer and stays valid as long as the device is * valid. This means, DRM minors have the same life-time as the underlying * device. However, this doesn't mean that the minor is active. Minors are * registered and unregistered dynamically according to device-state. */ static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, unsigned int type) { switch (type) { case DRM_MINOR_PRIMARY: return &dev->primary; case DRM_MINOR_RENDER: return &dev->render; default: BUG(); } } static int drm_minor_alloc(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; int r; minor = kzalloc(sizeof(*minor), GFP_KERNEL); if (!minor) return -ENOMEM; minor->type = type; minor->dev = dev; idr_preload(GFP_KERNEL); spin_lock_irqsave(&drm_minor_lock, flags); r = idr_alloc(&drm_minors_idr, NULL, 64 * type, 64 * (type + 1), GFP_NOWAIT); spin_unlock_irqrestore(&drm_minor_lock, flags); idr_preload_end(); if (r < 0) goto err_free; minor->index = r; #ifdef __linux__ minor->kdev = drm_sysfs_minor_alloc(minor); if (IS_ERR(minor->kdev)) { r = PTR_ERR(minor->kdev); goto err_index; } #endif *drm_minor_get_slot(dev, type) = minor; return 0; #ifdef __linux__ err_index: spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); #endif err_free: kfree(minor); return r; } static void drm_minor_free(struct drm_device *dev, unsigned int type) { struct drm_minor **slot, *minor; unsigned long flags; slot = drm_minor_get_slot(dev, type); minor = *slot; if (!minor) return; #ifdef __linux__ put_device(minor->kdev); #endif spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); kfree(minor); *slot = NULL; } static int drm_minor_register(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; #ifdef __linux__ int ret; #endif DRM_DEBUG("\n"); minor = *drm_minor_get_slot(dev, type); if (!minor) return 0; #ifdef __linux__ ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); if (ret) { DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); goto err_debugfs; } ret = device_add(minor->kdev); if (ret) goto err_debugfs; #else drm_debugfs_root = NULL; #endif /* replace NULL with @minor so lookups will succeed from now on */ spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, minor, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); DRM_DEBUG("new minor registered %d\n", minor->index); return 0; #ifdef __linux__ err_debugfs: drm_debugfs_cleanup(minor); return ret; #endif } static void drm_minor_unregister(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; minor = *drm_minor_get_slot(dev, type); #ifdef __linux__ if (!minor || !device_is_registered(minor->kdev)) #else if (!minor) #endif return; /* replace @minor with NULL so lookups will fail from now on */ spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, NULL, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); #ifdef __linux__ device_del(minor->kdev); #endif dev_set_drvdata(minor->kdev, NULL); /* safety belt */ drm_debugfs_cleanup(minor); } /* * Looks up the given minor-ID and returns the respective DRM-minor object. The * refence-count of the underlying device is increased so you must release this * object with drm_minor_release(). * * As long as you hold this minor, it is guaranteed that the object and the * minor->dev pointer will stay valid! However, the device may get unplugged and * unregistered while you hold the minor. */ struct drm_minor *drm_minor_acquire(unsigned int minor_id) { struct drm_minor *minor; unsigned long flags; spin_lock_irqsave(&drm_minor_lock, flags); minor = idr_find(&drm_minors_idr, minor_id); if (minor) drm_dev_get(minor->dev); spin_unlock_irqrestore(&drm_minor_lock, flags); if (!minor) { return ERR_PTR(-ENODEV); } else if (drm_dev_is_unplugged(minor->dev)) { drm_dev_put(minor->dev); return ERR_PTR(-ENODEV); } return minor; } void drm_minor_release(struct drm_minor *minor) { drm_dev_put(minor->dev); } /** * DOC: driver instance overview * * A device instance for a drm driver is represented by &struct drm_device. This * is initialized with drm_dev_init(), usually from bus-specific ->probe() * callbacks implemented by the driver. The driver then needs to initialize all * the various subsystems for the drm device like memory management, vblank * handling, modesetting support and intial output configuration plus obviously * initialize all the corresponding hardware bits. Finally when everything is up * and running and ready for userspace the device instance can be published * using drm_dev_register(). * * There is also deprecated support for initalizing device instances using * bus-specific helpers and the &drm_driver.load callback. But due to * backwards-compatibility needs the device instance have to be published too * early, which requires unpretty global locking to make safe and is therefore * only support for existing drivers not yet converted to the new scheme. * * When cleaning up a device instance everything needs to be done in reverse: * First unpublish the device instance with drm_dev_unregister(). Then clean up * any other resources allocated at device initialization and drop the driver's * reference to &drm_device using drm_dev_put(). * * Note that the lifetime rules for &drm_device instance has still a lot of * historical baggage. Hence use the reference counting provided by * drm_dev_get() and drm_dev_put() only carefully. * * Display driver example * ~~~~~~~~~~~~~~~~~~~~~~ * * The following example shows a typical structure of a DRM display driver. * The example focus on the probe() function and the other functions that is * almost always present and serves as a demonstration of devm_drm_dev_init() * usage with its accompanying drm_driver->release callback. * * .. code-block:: c * * struct driver_device { * struct drm_device drm; * void *userspace_facing; * struct clk *pclk; * }; * * static void driver_drm_release(struct drm_device *drm) * { * struct driver_device *priv = container_of(...); * * drm_mode_config_cleanup(drm); * drm_dev_fini(drm); * kfree(priv->userspace_facing); * kfree(priv); * } * * static struct drm_driver driver_drm_driver = { * [...] * .release = driver_drm_release, * }; * * static int driver_probe(struct platform_device *pdev) * { * struct driver_device *priv; * struct drm_device *drm; * int ret; * * // devm_kzalloc() can't be used here because the drm_device ' * // lifetime can exceed the device lifetime if driver unbind * // happens when userspace still has open file descriptors. * priv = kzalloc(sizeof(*priv), GFP_KERNEL); * if (!priv) * return -ENOMEM; * * drm = &priv->drm; * * ret = devm_drm_dev_init(&pdev->dev, drm, &driver_drm_driver); * if (ret) { * kfree(drm); * return ret; * } * * drm_mode_config_init(drm); * * priv->userspace_facing = kzalloc(..., GFP_KERNEL); * if (!priv->userspace_facing) * return -ENOMEM; * * priv->pclk = devm_clk_get(dev, "PCLK"); * if (IS_ERR(priv->pclk)) * return PTR_ERR(priv->pclk); * * // Further setup, display pipeline etc * * platform_set_drvdata(pdev, drm); * * drm_mode_config_reset(drm); * * ret = drm_dev_register(drm); * if (ret) * return ret; * * drm_fbdev_generic_setup(drm, 32); * * return 0; * } * * // This function is called before the devm_ resources are released * static int driver_remove(struct platform_device *pdev) * { * struct drm_device *drm = platform_get_drvdata(pdev); * * drm_dev_unregister(drm); * drm_atomic_helper_shutdown(drm) * * return 0; * } * * // This function is called on kernel restart and shutdown * static void driver_shutdown(struct platform_device *pdev) * { * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); * } * * static int __maybe_unused driver_pm_suspend(struct device *dev) * { * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); * } * * static int __maybe_unused driver_pm_resume(struct device *dev) * { * drm_mode_config_helper_resume(dev_get_drvdata(dev)); * * return 0; * } * * static const struct dev_pm_ops driver_pm_ops = { * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) * }; * * static struct platform_driver driver_driver = { * .driver = { * [...] * .pm = &driver_pm_ops, * }, * .probe = driver_probe, * .remove = driver_remove, * .shutdown = driver_shutdown, * }; * module_platform_driver(driver_driver); * * Drivers that want to support device unplugging (USB, DT overlay unload) should * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect * regions that is accessing device resources to prevent use after they're * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before * drm_atomic_helper_shutdown() is called. This means that if the disable code * paths are protected, they will not run on regular driver module unload, * possibily leaving the hardware enabled. */ /** * drm_put_dev - Unregister and release a DRM device * @dev: DRM device * * Called at module unload time or when a PCI device is unplugged. * * Cleans up all DRM device, calling drm_lastclose(). * * Note: Use of this function is deprecated. It will eventually go away * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly * instead to make sure that the device isn't userspace accessible any more * while teardown is in progress, ensuring that userspace can't access an * inconsistent state. */ void drm_put_dev(struct drm_device *dev) { DRM_DEBUG("\n"); if (!dev) { DRM_ERROR("cleanup called no dev\n"); return; } drm_dev_unregister(dev); drm_dev_put(dev); } EXPORT_SYMBOL(drm_put_dev); /** * drm_dev_enter - Enter device critical section * @dev: DRM device * @idx: Pointer to index that will be passed to the matching drm_dev_exit() * * This function marks and protects the beginning of a section that should not * be entered after the device has been unplugged. The section end is marked * with drm_dev_exit(). Calls to this function can be nested. * * Returns: * True if it is OK to enter the section, false otherwise. */ bool drm_dev_enter(struct drm_device *dev, int *idx) { #ifdef notyet *idx = srcu_read_lock(&drm_unplug_srcu); if (dev->unplugged) { srcu_read_unlock(&drm_unplug_srcu, *idx); return false; } #endif return true; } EXPORT_SYMBOL(drm_dev_enter); /** * drm_dev_exit - Exit device critical section * @idx: index returned from drm_dev_enter() * * This function marks the end of a section that should not be entered after * the device has been unplugged. */ void drm_dev_exit(int idx) { #ifdef notyet srcu_read_unlock(&drm_unplug_srcu, idx); #endif } EXPORT_SYMBOL(drm_dev_exit); /** * drm_dev_unplug - unplug a DRM device * @dev: DRM device * * This unplugs a hotpluggable DRM device, which makes it inaccessible to * userspace operations. Entry-points can use drm_dev_enter() and * drm_dev_exit() to protect device resources in a race free manner. This * essentially unregisters the device like drm_dev_unregister(), but can be * called while there are still open users of @dev. */ void drm_dev_unplug(struct drm_device *dev) { STUB(); #ifdef notyet /* * After synchronizing any critical read section is guaranteed to see * the new value of ->unplugged, and any critical section which might * still have seen the old value of ->unplugged is guaranteed to have * finished. */ dev->unplugged = true; synchronize_srcu(&drm_unplug_srcu); drm_dev_unregister(dev); #endif } EXPORT_SYMBOL(drm_dev_unplug); #ifdef __linux__ /* * DRM internal mount * We want to be able to allocate our own "struct address_space" to control * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow * stand-alone address_space objects, so we need an underlying inode. As there * is no way to allocate an independent inode easily, we need a fake internal * VFS mount-point. * * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() * frees it again. You are allowed to use iget() and iput() to get references to * the inode. But each drm_fs_inode_new() call must be paired with exactly one * drm_fs_inode_free() call (which does not have to be the last iput()). * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it * between multiple inode-users. You could, technically, call * iget() + drm_fs_inode_free() directly after alloc and sometime later do an * iput(), but this way you'd end up with a new vfsmount for each inode. */ static int drm_fs_cnt; static struct vfsmount *drm_fs_mnt; static int drm_fs_init_fs_context(struct fs_context *fc) { return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; } static struct file_system_type drm_fs_type = { .name = "drm", .owner = THIS_MODULE, .init_fs_context = drm_fs_init_fs_context, .kill_sb = kill_anon_super, }; static struct inode *drm_fs_inode_new(void) { struct inode *inode; int r; r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); if (r < 0) { DRM_ERROR("Cannot mount pseudo fs: %d\n", r); return ERR_PTR(r); } inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); if (IS_ERR(inode)) simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); return inode; } static void drm_fs_inode_free(struct inode *inode) { if (inode) { iput(inode); simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); } } #endif /* __linux__ */ /** * DOC: component helper usage recommendations * * DRM drivers that drive hardware where a logical device consists of a pile of * independent hardware blocks are recommended to use the :ref:`component helper * library`. For consistency and better options for code reuse the * following guidelines apply: * * - The entire device initialization procedure should be run from the * &component_master_ops.master_bind callback, starting with drm_dev_init(), * then binding all components with component_bind_all() and finishing with * drm_dev_register(). * * - The opaque pointer passed to all components through component_bind_all() * should point at &struct drm_device of the device instance, not some driver * specific private structure. * * - The component helper fills the niche where further standardization of * interfaces is not practical. When there already is, or will be, a * standardized interface like &drm_bridge or &drm_panel, providing its own * functions to find such components at driver load time, like * drm_of_find_panel_or_bridge(), then the component helper should not be * used. */ /** * drm_dev_init - Initialise new DRM device * @dev: DRM device * @driver: DRM driver * @parent: Parent device object * * Initialize a new DRM device. No device registration is done. * Call drm_dev_register() to advertice the device to user space and register it * with other core subsystems. This should be done last in the device * initialization sequence to make sure userspace can't access an inconsistent * state. * * The initial ref-count of the object is 1. Use drm_dev_get() and * drm_dev_put() to take and drop further ref-counts. * * It is recommended that drivers embed &struct drm_device into their own device * structure. * * Drivers that do not want to allocate their own device struct * embedding &struct drm_device can call drm_dev_alloc() instead. For drivers * that do embed &struct drm_device it must be placed first in the overall * structure, and the overall structure must be allocated using kmalloc(): The * drm core's release function unconditionally calls kfree() on the @dev pointer * when the final reference is released. To override this behaviour, and so * allow embedding of the drm_device inside the driver's device struct at an * arbitrary offset, you must supply a &drm_driver.release callback and control * the finalization explicitly. * * RETURNS: * 0 on success, or error code on failure. */ int drm_dev_init(struct drm_device *dev, struct drm_driver *driver, struct device *parent) { int ret; if (!drm_core_init_complete) { DRM_ERROR("DRM core is not initialized\n"); return -ENODEV; } if (WARN_ON(!parent)) return -EINVAL; kref_init(&dev->ref); #ifdef __linux__ dev->dev = get_device(parent); #endif dev->driver = driver; /* no per-device feature limits by default */ dev->driver_features = ~0u; drm_legacy_init_members(dev); #ifdef notyet INIT_LIST_HEAD(&dev->filelist); #else SPLAY_INIT(&dev->files); #endif INIT_LIST_HEAD(&dev->filelist_internal); INIT_LIST_HEAD(&dev->clientlist); INIT_LIST_HEAD(&dev->vblank_event_list); mtx_init(&dev->event_lock, IPL_TTY); mtx_init(&dev->event_lock, IPL_TTY); rw_init(&dev->struct_mutex, "drmdevlk"); rw_init(&dev->filelist_mutex, "drmflist"); rw_init(&dev->clientlist_mutex, "drmclist"); rw_init(&dev->master_mutex, "drmmast"); #ifdef __linux__ dev->anon_inode = drm_fs_inode_new(); if (IS_ERR(dev->anon_inode)) { ret = PTR_ERR(dev->anon_inode); DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); goto err_free; } #endif if (drm_core_check_feature(dev, DRIVER_RENDER)) { ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); if (ret) goto err_minors; } ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); if (ret) goto err_minors; ret = drm_legacy_create_map_hash(dev); if (ret) goto err_minors; drm_legacy_ctxbitmap_init(dev); if (drm_core_check_feature(dev, DRIVER_GEM)) { ret = drm_gem_init(dev); if (ret) { DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); goto err_ctxbitmap; } } ret = drm_dev_set_unique(dev, dev_name(parent)); if (ret) goto err_setunique; return 0; err_setunique: if (drm_core_check_feature(dev, DRIVER_GEM)) drm_gem_destroy(dev); err_ctxbitmap: drm_legacy_ctxbitmap_cleanup(dev); drm_legacy_remove_map_hash(dev); err_minors: drm_minor_free(dev, DRM_MINOR_PRIMARY); drm_minor_free(dev, DRM_MINOR_RENDER); #ifdef __linux__ drm_fs_inode_free(dev->anon_inode); err_free: put_device(dev->dev); #endif mutex_destroy(&dev->master_mutex); mutex_destroy(&dev->clientlist_mutex); mutex_destroy(&dev->filelist_mutex); mutex_destroy(&dev->struct_mutex); drm_legacy_destroy_members(dev); return ret; } EXPORT_SYMBOL(drm_dev_init); #ifdef notyet static void devm_drm_dev_init_release(void *data) { drm_dev_put(data); } #endif /** * devm_drm_dev_init - Resource managed drm_dev_init() * @parent: Parent device object * @dev: DRM device * @driver: DRM driver * * Managed drm_dev_init(). The DRM device initialized with this function is * automatically put on driver detach using drm_dev_put(). You must supply a * &drm_driver.release callback to control the finalization explicitly. * * RETURNS: * 0 on success, or error code on failure. */ int devm_drm_dev_init(struct device *parent, struct drm_device *dev, struct drm_driver *driver) { STUB(); return -ENOSYS; #ifdef notyet int ret; if (WARN_ON(!driver->release)) return -EINVAL; ret = drm_dev_init(dev, driver, parent); if (ret) return ret; ret = devm_add_action(parent, devm_drm_dev_init_release, dev); if (ret) devm_drm_dev_init_release(dev); return ret; #endif } EXPORT_SYMBOL(devm_drm_dev_init); /** * drm_dev_fini - Finalize a dead DRM device * @dev: DRM device * * Finalize a dead DRM device. This is the converse to drm_dev_init() and * frees up all data allocated by it. All driver private data should be * finalized first. Note that this function does not free the @dev, that is * left to the caller. * * The ref-count of @dev must be zero, and drm_dev_fini() should only be called * from a &drm_driver.release callback. */ void drm_dev_fini(struct drm_device *dev) { drm_vblank_cleanup(dev); if (drm_core_check_feature(dev, DRIVER_GEM)) drm_gem_destroy(dev); drm_legacy_ctxbitmap_cleanup(dev); drm_legacy_remove_map_hash(dev); #ifdef __linux__ drm_fs_inode_free(dev->anon_inode); #endif drm_minor_free(dev, DRM_MINOR_PRIMARY); drm_minor_free(dev, DRM_MINOR_RENDER); #ifdef __linux__ put_device(dev->dev); #endif mutex_destroy(&dev->master_mutex); mutex_destroy(&dev->clientlist_mutex); mutex_destroy(&dev->filelist_mutex); mutex_destroy(&dev->struct_mutex); drm_legacy_destroy_members(dev); kfree(dev->unique); } EXPORT_SYMBOL(drm_dev_fini); /** * drm_dev_alloc - Allocate new DRM device * @driver: DRM driver to allocate device for * @parent: Parent device object * * Allocate and initialize a new DRM device. No device registration is done. * Call drm_dev_register() to advertice the device to user space and register it * with other core subsystems. This should be done last in the device * initialization sequence to make sure userspace can't access an inconsistent * state. * * The initial ref-count of the object is 1. Use drm_dev_get() and * drm_dev_put() to take and drop further ref-counts. * * Note that for purely virtual devices @parent can be NULL. * * Drivers that wish to subclass or embed &struct drm_device into their * own struct should look at using drm_dev_init() instead. * * RETURNS: * Pointer to new DRM device, or ERR_PTR on failure. */ struct drm_device *drm_dev_alloc(struct drm_driver *driver, struct device *parent) { struct drm_device *dev; int ret; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return ERR_PTR(-ENOMEM); ret = drm_dev_init(dev, driver, parent); if (ret) { kfree(dev); return ERR_PTR(ret); } return dev; } EXPORT_SYMBOL(drm_dev_alloc); static void drm_dev_release(struct kref *ref) { struct drm_device *dev = container_of(ref, struct drm_device, ref); if (dev->driver->release) { dev->driver->release(dev); } else { drm_dev_fini(dev); kfree(dev); } } /** * drm_dev_get - Take reference of a DRM device * @dev: device to take reference of or NULL * * This increases the ref-count of @dev by one. You *must* already own a * reference when calling this. Use drm_dev_put() to drop this reference * again. * * This function never fails. However, this function does not provide *any* * guarantee whether the device is alive or running. It only provides a * reference to the object and the memory associated with it. */ void drm_dev_get(struct drm_device *dev) { if (dev) kref_get(&dev->ref); } EXPORT_SYMBOL(drm_dev_get); /** * drm_dev_put - Drop reference of a DRM device * @dev: device to drop reference of or NULL * * This decreases the ref-count of @dev by one. The device is destroyed if the * ref-count drops to zero. */ void drm_dev_put(struct drm_device *dev) { if (dev) kref_put(&dev->ref, drm_dev_release); } EXPORT_SYMBOL(drm_dev_put); static int create_compat_control_link(struct drm_device *dev) { struct drm_minor *minor; char *name; int ret; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return 0; minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); if (!minor) return 0; /* * Some existing userspace out there uses the existing of the controlD* * sysfs files to figure out whether it's a modeset driver. It only does * readdir, hence a symlink is sufficient (and the least confusing * option). Otherwise controlD* is entirely unused. * * Old controlD chardev have been allocated in the range * 64-127. */ name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); if (!name) return -ENOMEM; ret = sysfs_create_link(minor->kdev->kobj.parent, &minor->kdev->kobj, name); kfree(name); return ret; } static void remove_compat_control_link(struct drm_device *dev) { struct drm_minor *minor; char *name; if (!drm_core_check_feature(dev, DRIVER_MODESET)) return; minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); if (!minor) return; name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); if (!name) return; sysfs_remove_link(minor->kdev->kobj.parent, name); kfree(name); } /** * drm_dev_register - Register DRM device * @dev: Device to register * @flags: Flags passed to the driver's .load() function * * Register the DRM device @dev with the system, advertise device to user-space * and start normal device operation. @dev must be initialized via drm_dev_init() * previously. * * Never call this twice on any device! * * NOTE: To ensure backward compatibility with existing drivers method this * function calls the &drm_driver.load method after registering the device * nodes, creating race conditions. Usage of the &drm_driver.load methods is * therefore deprecated, drivers must perform all initialization before calling * drm_dev_register(). * * RETURNS: * 0 on success, negative error code on failure. */ int drm_dev_register(struct drm_device *dev, unsigned long flags) { struct drm_driver *driver = dev->driver; int ret; if (drm_dev_needs_global_mutex(dev)) mutex_lock(&drm_global_mutex); ret = drm_minor_register(dev, DRM_MINOR_RENDER); if (ret) goto err_minors; ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); if (ret) goto err_minors; ret = create_compat_control_link(dev); if (ret) goto err_minors; dev->registered = true; if (dev->driver->load) { ret = dev->driver->load(dev, flags); if (ret) goto err_minors; } if (drm_core_check_feature(dev, DRIVER_MODESET)) drm_modeset_register_all(dev); ret = 0; DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", driver->name, driver->major, driver->minor, driver->patchlevel, driver->date, dev->dev ? dev_name(dev->dev) : "virtual device", dev->primary->index); goto out_unlock; err_minors: remove_compat_control_link(dev); drm_minor_unregister(dev, DRM_MINOR_PRIMARY); drm_minor_unregister(dev, DRM_MINOR_RENDER); out_unlock: if (drm_dev_needs_global_mutex(dev)) mutex_unlock(&drm_global_mutex); return ret; } EXPORT_SYMBOL(drm_dev_register); /** * drm_dev_unregister - Unregister DRM device * @dev: Device to unregister * * Unregister the DRM device from the system. This does the reverse of * drm_dev_register() but does not deallocate the device. The caller must call * drm_dev_put() to drop their final reference. * * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), * which can be called while there are still open users of @dev. * * This should be called first in the device teardown code to make sure * userspace can't access the device instance any more. */ void drm_dev_unregister(struct drm_device *dev) { if (drm_core_check_feature(dev, DRIVER_LEGACY)) drm_lastclose(dev); dev->registered = false; drm_client_dev_unregister(dev); if (drm_core_check_feature(dev, DRIVER_MODESET)) drm_modeset_unregister_all(dev); if (dev->driver->unload) dev->driver->unload(dev); #if IS_ENABLED(CONFIG_AGP) if (dev->agp) drm_agp_takedown(dev); #endif drm_legacy_rmmaps(dev); remove_compat_control_link(dev); drm_minor_unregister(dev, DRM_MINOR_PRIMARY); drm_minor_unregister(dev, DRM_MINOR_RENDER); } EXPORT_SYMBOL(drm_dev_unregister); /** * drm_dev_set_unique - Set the unique name of a DRM device * @dev: device of which to set the unique name * @name: unique name * * Sets the unique name of a DRM device using the specified string. This is * already done by drm_dev_init(), drivers should only override the default * unique name for backwards compatibility reasons. * * Return: 0 on success or a negative error code on failure. */ int drm_dev_set_unique(struct drm_device *dev, const char *name) { kfree(dev->unique); dev->unique = kstrdup(name, GFP_KERNEL); return dev->unique ? 0 : -ENOMEM; } EXPORT_SYMBOL(drm_dev_set_unique); /* * DRM Core * The DRM core module initializes all global DRM objects and makes them * available to drivers. Once setup, drivers can probe their respective * devices. * Currently, core management includes: * - The "DRM-Global" key/value database * - Global ID management for connectors * - DRM major number allocation * - DRM minor management * - DRM sysfs class * - DRM debugfs root * * Furthermore, the DRM core provides dynamic char-dev lookups. For each * interface registered on a DRM device, you can request minor numbers from DRM * core. DRM core takes care of major-number management and char-dev * registration. A stub ->open() callback forwards any open() requests to the * registered minor. */ #ifdef __linux__ static int drm_stub_open(struct inode *inode, struct file *filp) { const struct file_operations *new_fops; struct drm_minor *minor; int err; DRM_DEBUG("\n"); minor = drm_minor_acquire(iminor(inode)); if (IS_ERR(minor)) return PTR_ERR(minor); new_fops = fops_get(minor->dev->driver->fops); if (!new_fops) { err = -ENODEV; goto out; } replace_fops(filp, new_fops); if (filp->f_op->open) err = filp->f_op->open(inode, filp); else err = 0; out: drm_minor_release(minor); return err; } static const struct file_operations drm_stub_fops = { .owner = THIS_MODULE, .open = drm_stub_open, .llseek = noop_llseek, }; #endif /* __linux__ */ static void drm_core_exit(void) { #ifdef __linux__ unregister_chrdev(DRM_MAJOR, "drm"); debugfs_remove(drm_debugfs_root); drm_sysfs_destroy(); #endif idr_destroy(&drm_minors_idr); drm_connector_ida_destroy(); } static int __init drm_core_init(void) { #ifdef __linux__ int ret; #endif drm_connector_ida_init(); idr_init(&drm_minors_idr); #ifdef __linux__ ret = drm_sysfs_init(); if (ret < 0) { DRM_ERROR("Cannot create DRM class: %d\n", ret); goto error; } drm_debugfs_root = debugfs_create_dir("dri", NULL); ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); if (ret < 0) goto error; #endif drm_core_init_complete = true; DRM_DEBUG("Initialized\n"); return 0; #ifdef __linux__ error: drm_core_exit(); return ret; #endif } #ifdef __linux__ module_init(drm_core_init); module_exit(drm_core_exit); #endif void drm_attach_platform(struct drm_driver *driver, bus_space_tag_t iot, bus_dma_tag_t dmat, struct device *dev, struct drm_device *drm) { struct drm_attach_args arg; memset(&arg, 0, sizeof(arg)); arg.driver = driver; arg.bst = iot; arg.dmat = dmat; arg.drm = drm; arg.busid = dev->dv_xname; arg.busid_len = strlen(dev->dv_xname) + 1; config_found_sm(dev, &arg, drmprint, drmsubmatch); } struct drm_device * drm_attach_pci(struct drm_driver *driver, struct pci_attach_args *pa, int is_agp, int primary, struct device *dev, struct drm_device *drm) { struct drm_attach_args arg; struct drm_softc *sc; arg.drm = drm; arg.driver = driver; arg.dmat = pa->pa_dmat; arg.bst = pa->pa_memt; arg.is_agp = is_agp; arg.primary = primary; arg.pa = pa; arg.busid_len = 20; arg.busid = malloc(arg.busid_len + 1, M_DRM, M_NOWAIT); if (arg.busid == NULL) { printf("%s: no memory for drm\n", dev->dv_xname); return (NULL); } snprintf(arg.busid, arg.busid_len, "pci:%04x:%02x:%02x.%1x", pa->pa_domain, pa->pa_bus, pa->pa_device, pa->pa_function); sc = (struct drm_softc *)config_found_sm(dev, &arg, drmprint, drmsubmatch); if (sc == NULL) return NULL; return sc->sc_drm; } int drmprint(void *aux, const char *pnp) { if (pnp != NULL) printf("drm at %s", pnp); return (UNCONF); } int drmsubmatch(struct device *parent, void *match, void *aux) { extern struct cfdriver drm_cd; struct cfdata *cf = match; /* only allow drm to attach */ if (cf->cf_driver == &drm_cd) return ((*cf->cf_attach->ca_match)(parent, match, aux)); return (0); } int drm_pciprobe(struct pci_attach_args *pa, const struct pci_device_id *idlist) { const struct pci_device_id *id_entry; id_entry = drm_find_description(PCI_VENDOR(pa->pa_id), PCI_PRODUCT(pa->pa_id), idlist); if (id_entry != NULL) return 1; return 0; } int drm_probe(struct device *parent, void *match, void *aux) { struct cfdata *cf = match; struct drm_attach_args *da = aux; if (cf->drmdevcf_primary != DRMDEVCF_PRIMARY_UNK) { /* * If primary-ness of device specified, either match * exactly (at high priority), or fail. */ if (cf->drmdevcf_primary != 0 && da->primary != 0) return (10); else return (0); } /* If primary-ness unspecified, it wins. */ return (1); } void drm_attach(struct device *parent, struct device *self, void *aux) { struct drm_softc *sc = (struct drm_softc *)self; struct drm_attach_args *da = aux; struct drm_device *dev = da->drm; int ret; if (drm_refcnt == 0) drm_core_init(); drm_refcnt++; drm_linux_init(); if (dev == NULL) { dev = malloc(sizeof(struct drm_device), M_DRM, M_WAITOK | M_ZERO); sc->sc_allocated = 1; } sc->sc_drm = dev; dev->dev = self; dev->dev_private = parent; dev->driver = da->driver; /* no per-device feature limits by default */ dev->driver_features = ~0u; dev->dmat = da->dmat; dev->bst = da->bst; dev->unique = da->busid; if (da->pa) { struct pci_attach_args *pa = da->pa; pcireg_t subsys; subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); dev->pdev = &dev->_pdev; dev->pdev->vendor = PCI_VENDOR(pa->pa_id); dev->pdev->device = PCI_PRODUCT(pa->pa_id); dev->pdev->subsystem_vendor = PCI_VENDOR(subsys); dev->pdev->subsystem_device = PCI_PRODUCT(subsys); dev->pdev->revision = PCI_REVISION(pa->pa_class); dev->pdev->devfn = PCI_DEVFN(pa->pa_device, pa->pa_function); dev->pdev->bus = &dev->pdev->_bus; dev->pdev->bus->pc = pa->pa_pc; dev->pdev->bus->number = pa->pa_bus; dev->pdev->bus->domain_nr = pa->pa_domain; dev->pdev->bus->bridgetag = pa->pa_bridgetag; if (pa->pa_bridgetag != NULL) { dev->pdev->bus->self = malloc(sizeof(struct pci_dev), M_DRM, M_WAITOK | M_ZERO); dev->pdev->bus->self->pc = pa->pa_pc; dev->pdev->bus->self->tag = *pa->pa_bridgetag; } dev->pdev->pc = pa->pa_pc; dev->pdev->tag = pa->pa_tag; dev->pdev->pci = (struct pci_softc *)parent->dv_parent; #ifdef CONFIG_ACPI dev->pdev->dev.node = acpi_find_pci(pa->pa_pc, pa->pa_tag); aml_register_notify(dev->pdev->dev.node, NULL, drm_linux_acpi_notify, NULL, ACPIDEV_NOPOLL); #endif } mtx_init(&dev->quiesce_mtx, IPL_NONE); mtx_init(&dev->event_lock, IPL_TTY); rw_init(&dev->struct_mutex, "drmdevlk"); rw_init(&dev->filelist_mutex, "drmflist"); rw_init(&dev->clientlist_mutex, "drmclist"); rw_init(&dev->master_mutex, "drmmast"); SPLAY_INIT(&dev->files); INIT_LIST_HEAD(&dev->filelist_internal); INIT_LIST_HEAD(&dev->clientlist); INIT_LIST_HEAD(&dev->vblank_event_list); if (drm_core_check_feature(dev, DRIVER_RENDER)) { ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); if (ret) goto error; } ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); if (ret) goto error; if (drm_core_check_feature(dev, DRIVER_USE_AGP)) { #if IS_ENABLED(CONFIG_AGP) if (da->is_agp) dev->agp = drm_agp_init(); #endif if (dev->agp != NULL) { if (drm_mtrr_add(dev->agp->info.ai_aperture_base, dev->agp->info.ai_aperture_size, DRM_MTRR_WC) == 0) dev->agp->mtrr = 1; } } if (dev->driver->gem_size > 0) { KASSERT(dev->driver->gem_size >= sizeof(struct drm_gem_object)); /* XXX unique name */ pool_init(&dev->objpl, dev->driver->gem_size, 0, IPL_NONE, 0, "drmobjpl", NULL); } if (drm_core_check_feature(dev, DRIVER_GEM)) { ret = drm_gem_init(dev); if (ret) { DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); goto error; } } printf("\n"); return; error: drm_lastclose(dev); dev->dev_private = NULL; } int drm_detach(struct device *self, int flags) { struct drm_softc *sc = (struct drm_softc *)self; struct drm_device *dev = sc->sc_drm; drm_refcnt--; if (drm_refcnt == 0) drm_core_exit(); drm_lastclose(dev); if (drm_core_check_feature(dev, DRIVER_GEM)) { drm_gem_destroy(dev); pool_destroy(&dev->objpl); } drm_vblank_cleanup(dev); if (dev->agp && dev->agp->mtrr) { int retcode; retcode = drm_mtrr_del(0, dev->agp->info.ai_aperture_base, dev->agp->info.ai_aperture_size, DRM_MTRR_WC); DRM_DEBUG("mtrr_del = %d", retcode); } free(dev->agp, M_DRM, 0); if (dev->pdev && dev->pdev->bus) free(dev->pdev->bus->self, M_DRM, sizeof(struct pci_dev)); if (sc->sc_allocated) free(dev, M_DRM, sizeof(struct drm_device)); return 0; } void drm_quiesce(struct drm_device *dev) { mtx_enter(&dev->quiesce_mtx); dev->quiesce = 1; while (dev->quiesce_count > 0) { msleep_nsec(&dev->quiesce_count, &dev->quiesce_mtx, PZERO, "drmqui", INFSLP); } mtx_leave(&dev->quiesce_mtx); } void drm_wakeup(struct drm_device *dev) { mtx_enter(&dev->quiesce_mtx); dev->quiesce = 0; wakeup(&dev->quiesce); mtx_leave(&dev->quiesce_mtx); } int drm_activate(struct device *self, int act) { struct drm_softc *sc = (struct drm_softc *)self; struct drm_device *dev = sc->sc_drm; switch (act) { case DVACT_QUIESCE: drm_quiesce(dev); break; case DVACT_WAKEUP: drm_wakeup(dev); break; } return (0); } struct cfattach drm_ca = { sizeof(struct drm_softc), drm_probe, drm_attach, drm_detach, drm_activate }; struct cfdriver drm_cd = { 0, "drm", DV_DULL }; const struct pci_device_id * drm_find_description(int vendor, int device, const struct pci_device_id *idlist) { int i = 0; for (i = 0; idlist[i].vendor != 0; i++) { if ((idlist[i].vendor == vendor) && (idlist[i].device == device) && (idlist[i].subvendor == PCI_ANY_ID) && (idlist[i].subdevice == PCI_ANY_ID)) return &idlist[i]; } return NULL; } int drm_file_cmp(struct drm_file *f1, struct drm_file *f2) { return (f1->fminor < f2->fminor ? -1 : f1->fminor > f2->fminor); } SPLAY_GENERATE(drm_file_tree, drm_file, link, drm_file_cmp); struct drm_file * drm_find_file_by_minor(struct drm_device *dev, int minor) { struct drm_file key; key.fminor = minor; return (SPLAY_FIND(drm_file_tree, &dev->files, &key)); } struct drm_device * drm_get_device_from_kdev(dev_t kdev) { int unit = minor(kdev) & ((1 << CLONE_SHIFT) - 1); /* control */ if (unit >= 64 && unit < 128) unit -= 64; /* render */ if (unit >= 128) unit -= 128; struct drm_softc *sc; if (unit < drm_cd.cd_ndevs) { sc = (struct drm_softc *)drm_cd.cd_devs[unit]; if (sc) return sc->sc_drm; } return NULL; } void filt_drmdetach(struct knote *kn) { struct drm_device *dev = kn->kn_hook; int s; s = spltty(); klist_remove(&dev->note, kn); splx(s); } int filt_drmkms(struct knote *kn, long hint) { if (kn->kn_sfflags & hint) kn->kn_fflags |= hint; return (kn->kn_fflags != 0); } void filt_drmreaddetach(struct knote *kn) { struct drm_file *file_priv = kn->kn_hook; int s; s = spltty(); klist_remove(&file_priv->rsel.si_note, kn); splx(s); } int filt_drmread(struct knote *kn, long hint) { struct drm_file *file_priv = kn->kn_hook; int val = 0; if ((hint & NOTE_SUBMIT) == 0) mtx_enter(&file_priv->minor->dev->event_lock); val = !list_empty(&file_priv->event_list); if ((hint & NOTE_SUBMIT) == 0) mtx_leave(&file_priv->minor->dev->event_lock); return (val); } const struct filterops drm_filtops = { .f_flags = FILTEROP_ISFD, .f_attach = NULL, .f_detach = filt_drmdetach, .f_event = filt_drmkms, }; const struct filterops drmread_filtops = { .f_flags = FILTEROP_ISFD, .f_attach = NULL, .f_detach = filt_drmreaddetach, .f_event = filt_drmread, }; int drmkqfilter(dev_t kdev, struct knote *kn) { struct drm_device *dev = NULL; struct drm_file *file_priv = NULL; int s; dev = drm_get_device_from_kdev(kdev); if (dev == NULL || dev->dev_private == NULL) return (ENXIO); switch (kn->kn_filter) { case EVFILT_READ: mutex_lock(&dev->struct_mutex); file_priv = drm_find_file_by_minor(dev, minor(kdev)); mutex_unlock(&dev->struct_mutex); if (file_priv == NULL) return (ENXIO); kn->kn_fop = &drmread_filtops; kn->kn_hook = file_priv; s = spltty(); klist_insert(&file_priv->rsel.si_note, kn); splx(s); break; case EVFILT_DEVICE: kn->kn_fop = &drm_filtops; kn->kn_hook = dev; s = spltty(); klist_insert(&dev->note, kn); splx(s); break; default: return (EINVAL); } return (0); } int drmopen(dev_t kdev, int flags, int fmt, struct proc *p) { struct drm_device *dev = NULL; struct drm_file *file_priv; struct drm_minor *dm; int ret = 0; int dminor, realminor, minor_type; int need_setup = 0; dev = drm_get_device_from_kdev(kdev); if (dev == NULL || dev->dev_private == NULL) return (ENXIO); DRM_DEBUG("open_count = %d\n", atomic_read(&dev->open_count)); if (flags & O_EXCL) return (EBUSY); /* No exclusive opens */ if (drm_dev_needs_global_mutex(dev)) mutex_lock(&drm_global_mutex); if (!atomic_fetch_inc(&dev->open_count)) need_setup = 1; dminor = minor(kdev); realminor = dminor & ((1 << CLONE_SHIFT) - 1); if (realminor < 64) minor_type = DRM_MINOR_PRIMARY; else if (realminor >= 64 && realminor < 128) minor_type = DRM_MINOR_CONTROL; else minor_type = DRM_MINOR_RENDER; dm = *drm_minor_get_slot(dev, minor_type); dm->index = minor(kdev); file_priv = drm_file_alloc(dm); if (IS_ERR(file_priv)) { ret = ENOMEM; goto err; } /* first opener automatically becomes master */ if (drm_is_primary_client(file_priv)) { ret = drm_master_open(file_priv); if (ret != 0) goto out_file_free; } file_priv->filp = (void *)file_priv; file_priv->fminor = minor(kdev); mutex_lock(&dev->filelist_mutex); SPLAY_INSERT(drm_file_tree, &dev->files, file_priv); mutex_unlock(&dev->filelist_mutex); if (need_setup) { ret = drm_legacy_setup(dev); if (ret) goto out_file_free; } if (drm_dev_needs_global_mutex(dev)) mutex_unlock(&drm_global_mutex); return 0; out_file_free: drm_file_free(file_priv); err: atomic_dec(&dev->open_count); if (drm_dev_needs_global_mutex(dev)) mutex_unlock(&drm_global_mutex); return (ret); } int drmclose(dev_t kdev, int flags, int fmt, struct proc *p) { struct drm_device *dev = drm_get_device_from_kdev(kdev); struct drm_file *file_priv; int retcode = 0; if (dev == NULL) return (ENXIO); if (drm_dev_needs_global_mutex(dev)) mutex_lock(&drm_global_mutex); DRM_DEBUG("open_count = %d\n", atomic_read(&dev->open_count)); mutex_lock(&dev->filelist_mutex); file_priv = drm_find_file_by_minor(dev, minor(kdev)); if (file_priv == NULL) { DRM_ERROR("can't find authenticator\n"); retcode = EINVAL; mutex_unlock(&dev->filelist_mutex); goto done; } SPLAY_REMOVE(drm_file_tree, &dev->files, file_priv); mutex_unlock(&dev->filelist_mutex); drm_file_free(file_priv); done: if (atomic_dec_and_test(&dev->open_count)) drm_lastclose(dev); if (drm_dev_needs_global_mutex(dev)) mutex_unlock(&drm_global_mutex); return (retcode); } int drmread(dev_t kdev, struct uio *uio, int ioflag) { struct drm_device *dev = drm_get_device_from_kdev(kdev); struct drm_file *file_priv; struct drm_pending_event *ev; int error = 0; if (dev == NULL) return (ENXIO); mutex_lock(&dev->filelist_mutex); file_priv = drm_find_file_by_minor(dev, minor(kdev)); mutex_unlock(&dev->filelist_mutex); if (file_priv == NULL) return (ENXIO); /* * The semantics are a little weird here. We will wait until we * have events to process, but as soon as we have events we will * only deliver as many as we have. * Note that events are atomic, if the read buffer will not fit in * a whole event, we won't read any of it out. */ mtx_enter(&dev->event_lock); while (error == 0 && list_empty(&file_priv->event_list)) { if (ioflag & IO_NDELAY) { mtx_leave(&dev->event_lock); return (EAGAIN); } error = msleep_nsec(&file_priv->event_wait, &dev->event_lock, PWAIT | PCATCH, "drmread", INFSLP); } if (error) { mtx_leave(&dev->event_lock); return (error); } while (drm_dequeue_event(dev, file_priv, uio->uio_resid, &ev)) { MUTEX_ASSERT_UNLOCKED(&dev->event_lock); /* XXX we always destroy the event on error. */ error = uiomove(ev->event, ev->event->length, uio); kfree(ev); if (error) break; mtx_enter(&dev->event_lock); } MUTEX_ASSERT_UNLOCKED(&dev->event_lock); return (error); } /* * Deqeue an event from the file priv in question. returning 1 if an * event was found. We take the resid from the read as a parameter because * we will only dequeue and event if the read buffer has space to fit the * entire thing. * * We are called locked, but we will *unlock* the queue on return so that * we may sleep to copyout the event. */ int drm_dequeue_event(struct drm_device *dev, struct drm_file *file_priv, size_t resid, struct drm_pending_event **out) { struct drm_pending_event *e = NULL; int gotone = 0; MUTEX_ASSERT_LOCKED(&dev->event_lock); *out = NULL; if (list_empty(&file_priv->event_list)) goto out; e = list_first_entry(&file_priv->event_list, struct drm_pending_event, link); if (e->event->length > resid) goto out; file_priv->event_space += e->event->length; list_del(&e->link); *out = e; gotone = 1; out: mtx_leave(&dev->event_lock); return (gotone); } int drmpoll(dev_t kdev, int events, struct proc *p) { struct drm_device *dev = drm_get_device_from_kdev(kdev); struct drm_file *file_priv; int revents = 0; if (dev == NULL) return (POLLERR); mutex_lock(&dev->filelist_mutex); file_priv = drm_find_file_by_minor(dev, minor(kdev)); mutex_unlock(&dev->filelist_mutex); if (file_priv == NULL) return (POLLERR); mtx_enter(&dev->event_lock); if (events & (POLLIN | POLLRDNORM)) { if (!list_empty(&file_priv->event_list)) revents |= events & (POLLIN | POLLRDNORM); else selrecord(p, &file_priv->rsel); } mtx_leave(&dev->event_lock); return (revents); } paddr_t drmmmap(dev_t kdev, off_t offset, int prot) { return -1; } struct drm_dmamem * drm_dmamem_alloc(bus_dma_tag_t dmat, bus_size_t size, bus_size_t alignment, int nsegments, bus_size_t maxsegsz, int mapflags, int loadflags) { struct drm_dmamem *mem; size_t strsize; /* * segs is the last member of the struct since we modify the size * to allow extra segments if more than one are allowed. */ strsize = sizeof(*mem) + (sizeof(bus_dma_segment_t) * (nsegments - 1)); mem = malloc(strsize, M_DRM, M_NOWAIT | M_ZERO); if (mem == NULL) return (NULL); mem->size = size; if (bus_dmamap_create(dmat, size, nsegments, maxsegsz, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mem->map) != 0) goto strfree; if (bus_dmamem_alloc(dmat, size, alignment, 0, mem->segs, nsegments, &mem->nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) goto destroy; if (bus_dmamem_map(dmat, mem->segs, mem->nsegs, size, &mem->kva, BUS_DMA_NOWAIT | mapflags) != 0) goto free; if (bus_dmamap_load(dmat, mem->map, mem->kva, size, NULL, BUS_DMA_NOWAIT | loadflags) != 0) goto unmap; return (mem); unmap: bus_dmamem_unmap(dmat, mem->kva, size); free: bus_dmamem_free(dmat, mem->segs, mem->nsegs); destroy: bus_dmamap_destroy(dmat, mem->map); strfree: free(mem, M_DRM, 0); return (NULL); } void drm_dmamem_free(bus_dma_tag_t dmat, struct drm_dmamem *mem) { if (mem == NULL) return; bus_dmamap_unload(dmat, mem->map); bus_dmamem_unmap(dmat, mem->kva, mem->size); bus_dmamem_free(dmat, mem->segs, mem->nsegs); bus_dmamap_destroy(dmat, mem->map); free(mem, M_DRM, 0); } struct drm_dma_handle * drm_pci_alloc(struct drm_device *dev, size_t size, size_t align) { struct drm_dma_handle *dmah; dmah = malloc(sizeof(*dmah), M_DRM, M_WAITOK); dmah->mem = drm_dmamem_alloc(dev->dmat, size, align, 1, size, BUS_DMA_NOCACHE, 0); if (dmah->mem == NULL) { free(dmah, M_DRM, sizeof(*dmah)); return NULL; } dmah->busaddr = dmah->mem->segs[0].ds_addr; dmah->size = dmah->mem->size; dmah->vaddr = dmah->mem->kva; return (dmah); } void drm_pci_free(struct drm_device *dev, struct drm_dma_handle *dmah) { if (dmah == NULL) return; drm_dmamem_free(dev->dmat, dmah->mem); free(dmah, M_DRM, sizeof(*dmah)); } /* * Compute order. Can be made faster. */ int drm_order(unsigned long size) { int order; unsigned long tmp; for (order = 0, tmp = size; tmp >>= 1; ++order) ; if (size & ~(1 << order)) ++order; return order; } int drm_getpciinfo(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_pciinfo *info = data; if (dev->pdev == NULL) return -ENOTTY; info->domain = dev->pdev->bus->domain_nr; info->bus = dev->pdev->bus->number; info->dev = PCI_SLOT(dev->pdev->devfn); info->func = PCI_FUNC(dev->pdev->devfn); info->vendor_id = dev->pdev->vendor; info->device_id = dev->pdev->device; info->subvendor_id = dev->pdev->subsystem_vendor; info->subdevice_id = dev->pdev->subsystem_device; info->revision_id = 0; return 0; }