/** * \file drm_irq.c * IRQ support * * \author Rickard E. (Rik) Faith * \author Gareth Hughes */ /* * Created: Fri Mar 19 14:30:16 1999 by faith@valinux.com * * Copyright 1999, 2000 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include "drmP.h" #include "drm.h" /* Access macro for slots in vblank timestamp ringbuffer. */ #define vblanktimestamp(dev, crtc, count) ( \ (dev)->_vblank_time[(crtc) * DRM_VBLANKTIME_RBSIZE + \ ((count) % DRM_VBLANKTIME_RBSIZE)]) /* Retry timestamp calculation up to 3 times to satisfy * drm_timestamp_precision before giving up. */ #define DRM_TIMESTAMP_MAXRETRIES 3 /* Threshold in nanoseconds for detection of redundant * vblank irq in drm_handle_vblank(). 1 msec should be ok. */ #define DRM_REDUNDANT_VBLIRQ_THRESH_NS 1000000 void clear_vblank_timestamps(struct drm_device *, int); void vblank_disable_and_save(struct drm_device *, int); u32 drm_get_last_vbltimestamp(struct drm_device *, int, struct timeval *, unsigned); void vblank_disable_fn(void *); int64_t timeval_to_ns(const struct timeval *); struct timeval ns_to_timeval(const int64_t); void drm_irq_vgaarb_nokms(void *, bool); struct timeval get_drm_timestamp(void); u32 drm_vblank_count_and_time(struct drm_device *, int, struct timeval *); void send_vblank_event(struct drm_device *, struct drm_pending_vblank_event *, unsigned long, struct timeval *); void drm_update_vblank_count(struct drm_device *, int); int drm_queue_vblank_event(struct drm_device *, int, union drm_wait_vblank *, struct drm_file *); void drm_handle_vblank_events(struct drm_device *, int); #ifdef DRM_VBLANK_DEBUG #define DPRINTF(x...) do { printf(x); } while(/* CONSTCOND */ 0) #else #define DPRINTF(x...) do { } while(/* CONSTCOND */ 0) #endif unsigned int drm_timestamp_precision = 20; /* Default to 20 usecs. */ unsigned int drm_vblank_offdelay = 5000; /* Default to 5000 msecs. */ /* * Default to use monotonic timestamps for wait-for-vblank and page-flip * complete events. */ unsigned int drm_timestamp_monotonic = 1; /** * Get interrupt from bus id. * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg user argument, pointing to a drm_irq_busid structure. * \return zero on success or a negative number on failure. * * Finds the PCI device with the specified bus id and gets its IRQ number. * This IOCTL is deprecated, and will now return EINVAL for any busid not equal * to that of the device that this DRM instance attached to. */ int drm_irq_by_busid(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_irq_busid *irq = data; /* * This is only ever called by root as part of a stupid interface. * just hand over the irq without checking the busid. If all clients * can be forced to use interface 1.2 then this can die. */ irq->irq = dev->irq; DRM_DEBUG("%d:%d:%d => IRQ %d\n", irq->busnum, irq->devnum, irq->funcnum, irq->irq); return 0; } /* * Clear vblank timestamp buffer for a crtc. */ void clear_vblank_timestamps(struct drm_device *dev, int crtc) { memset(&dev->_vblank_time[crtc * DRM_VBLANKTIME_RBSIZE], 0, DRM_VBLANKTIME_RBSIZE * sizeof(struct timeval)); } #define NSEC_PER_USEC 1000L #define NSEC_PER_SEC 1000000000L int64_t timeval_to_ns(const struct timeval *tv) { return ((int64_t)tv->tv_sec * NSEC_PER_SEC) + tv->tv_usec * NSEC_PER_USEC; } struct timeval ns_to_timeval(const int64_t nsec) { struct timeval tv; uint32_t rem; if (nsec == 0) { tv.tv_sec = 0; tv.tv_usec = 0; return (tv); } tv.tv_sec = nsec / NSEC_PER_SEC; rem = nsec % NSEC_PER_SEC; if (rem < 0) { tv.tv_sec--; rem += NSEC_PER_SEC; } tv.tv_usec = rem / 1000; return (tv); } static inline int64_t abs64(int64_t x) { return (x < 0 ? -x : x); } /* * Disable vblank irq's on crtc, make sure that last vblank count * of hardware and corresponding consistent software vblank counter * are preserved, even if there are any spurious vblank irq's after * disable. */ void vblank_disable_and_save(struct drm_device *dev, int crtc) { u32 vblcount; s64 diff_ns; int vblrc; struct timeval tvblank; int count = DRM_TIMESTAMP_MAXRETRIES; /* Prevent vblank irq processing while disabling vblank irqs, * so no updates of timestamps or count can happen after we've * disabled. Needed to prevent races in case of delayed irq's. */ mtx_enter(&dev->vblank_time_lock); dev->driver->disable_vblank(dev, crtc); dev->vblank_enabled[crtc] = 0; /* No further vblank irq's will be processed after * this point. Get current hardware vblank count and * vblank timestamp, repeat until they are consistent. * * FIXME: There is still a race condition here and in * drm_update_vblank_count() which can cause off-by-one * reinitialization of software vblank counter. If gpu * vblank counter doesn't increment exactly at the leading * edge of a vblank interval, then we can lose 1 count if * we happen to execute between start of vblank and the * delayed gpu counter increment. */ do { dev->last_vblank[crtc] = dev->driver->get_vblank_counter(dev, crtc); vblrc = drm_get_last_vbltimestamp(dev, crtc, &tvblank, 0); } while (dev->last_vblank[crtc] != dev->driver->get_vblank_counter(dev, crtc) && (--count) && vblrc); if (!count) vblrc = 0; /* Compute time difference to stored timestamp of last vblank * as updated by last invocation of drm_handle_vblank() in vblank irq. */ vblcount = atomic_read(&dev->_vblank_count[crtc]); diff_ns = timeval_to_ns(&tvblank) - timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount)); /* If there is at least 1 msec difference between the last stored * timestamp and tvblank, then we are currently executing our * disable inside a new vblank interval, the tvblank timestamp * corresponds to this new vblank interval and the irq handler * for this vblank didn't run yet and won't run due to our disable. * Therefore we need to do the job of drm_handle_vblank() and * increment the vblank counter by one to account for this vblank. * * Skip this step if there isn't any high precision timestamp * available. In that case we can't account for this and just * hope for the best. */ if ((vblrc > 0) && (abs64(diff_ns) > 1000000)) { atomic_inc(&dev->_vblank_count[crtc]); // smp_mb__after_atomic_inc(); DRM_WRITEMEMORYBARRIER(); } /* Invalidate all timestamps while vblank irq's are off. */ clear_vblank_timestamps(dev, crtc); mtx_leave(&dev->vblank_time_lock); } void vblank_disable_fn(void *arg) { struct drm_device *dev = (struct drm_device *)arg; int i; if (!dev->vblank_disable_allowed) return; for (i = 0; i < dev->num_crtcs; i++) { mtx_enter(&dev->vbl_lock); if (atomic_read(&dev->vblank_refcount[i]) == 0 && dev->vblank_enabled[i]) { DPRINTF("disabling vblank on crtc %d\n", i); vblank_disable_and_save(dev, i); } mtx_leave(&dev->vbl_lock); } } void drm_vblank_cleanup(struct drm_device *dev) { /* Bail if the driver didn't call drm_vblank_init() */ if (dev->num_crtcs == 0) return; timeout_del(&dev->vblank_disable_timer); vblank_disable_fn(dev); free(dev->vbl_queue, M_DRM); free(dev->_vblank_count, M_DRM); free(dev->vblank_refcount, M_DRM); free(dev->vblank_enabled, M_DRM); free(dev->last_vblank, M_DRM); free(dev->last_vblank_wait, M_DRM); free(dev->vblank_inmodeset, M_DRM); free(dev->_vblank_time, M_DRM); dev->num_crtcs = 0; } int drm_vblank_init(struct drm_device *dev, int num_crtcs) { int i, ret = -ENOMEM; timeout_set(&dev->vblank_disable_timer, vblank_disable_fn, dev); mtx_init(&dev->vbl_lock, IPL_TTY); mtx_init(&dev->vblank_time_lock, IPL_NONE); TAILQ_INIT(&dev->vbl_events); dev->num_crtcs = num_crtcs; dev->vbl_queue = malloc(sizeof(int) * num_crtcs, M_DRM, M_WAITOK); if (!dev->vbl_queue) goto err; dev->_vblank_count = malloc(sizeof(atomic_t) * num_crtcs, M_DRM, M_WAITOK); if (!dev->_vblank_count) goto err; dev->vblank_refcount = malloc(sizeof(atomic_t) * num_crtcs, M_DRM, M_WAITOK); if (!dev->vblank_refcount) goto err; dev->vblank_enabled = malloc(num_crtcs * sizeof(int), M_DRM, M_ZERO | M_WAITOK); if (!dev->vblank_enabled) goto err; dev->last_vblank = malloc(num_crtcs * sizeof(u32), M_DRM, M_ZERO | M_WAITOK); if (!dev->last_vblank) goto err; dev->last_vblank_wait = malloc(num_crtcs * sizeof(u32), M_DRM, M_ZERO | M_WAITOK); if (!dev->last_vblank_wait) goto err; dev->vblank_inmodeset = malloc(num_crtcs * sizeof(int), M_DRM, M_ZERO | M_WAITOK); if (!dev->vblank_inmodeset) goto err; dev->_vblank_time = malloc(num_crtcs * DRM_VBLANKTIME_RBSIZE * sizeof(struct timeval), M_DRM, M_ZERO | M_WAITOK); if (!dev->_vblank_time) goto err; DRM_DEBUG("Supports vblank timestamp caching Rev 1 (10.10.2010).\n"); /* Driver specific high-precision vblank timestamping supported? */ if (dev->driver->get_vblank_timestamp) DRM_DEBUG("Driver supports precise vblank timestamp query.\n"); else DRM_DEBUG("No driver support for vblank timestamp query.\n"); /* Zero per-crtc vblank stuff */ for (i = 0; i < num_crtcs; i++) { atomic_set(&dev->_vblank_count[i], 0); atomic_set(&dev->vblank_refcount[i], 0); } dev->vblank_disable_allowed = 0; return 0; err: drm_vblank_cleanup(dev); return ret; } void drm_irq_vgaarb_nokms(void *cookie, bool state) { struct drm_device *dev = cookie; #ifdef notyet if (dev->driver->vgaarb_irq) { dev->driver->vgaarb_irq(dev, state); return; } #endif if (!dev->irq_enabled) return; if (state) { if (dev->driver->irq_uninstall) dev->driver->irq_uninstall(dev); } else { if (dev->driver->irq_preinstall) dev->driver->irq_preinstall(dev); if (dev->driver->irq_postinstall) dev->driver->irq_postinstall(dev); } } /** * Install IRQ handler. * * \param dev DRM device. * * Initializes the IRQ related data. Installs the handler, calling the driver * \c irq_preinstall() and \c irq_postinstall() functions * before and after the installation. */ int drm_irq_install(struct drm_device *dev) { int ret; if (dev->irq == 0 || dev->dev_private == NULL) return (EINVAL); DRM_DEBUG("irq=%d\n", dev->irq); DRM_LOCK(); if (dev->irq_enabled) { DRM_UNLOCK(); return (EBUSY); } dev->irq_enabled = 1; DRM_UNLOCK(); if (dev->driver->irq_install) { if ((ret = dev->driver->irq_install(dev)) != 0) goto err; } else { if (dev->driver->irq_preinstall) dev->driver->irq_preinstall(dev); if (dev->driver->irq_postinstall) dev->driver->irq_postinstall(dev); } return (0); err: DRM_LOCK(); dev->irq_enabled = 0; DRM_UNLOCK(); return (ret); } /** * Uninstall the IRQ handler. * * \param dev DRM device. * * Calls the driver's \c irq_uninstall() function, and stops the irq. */ int drm_irq_uninstall(struct drm_device *dev) { int i; DRM_LOCK(); if (!dev->irq_enabled) { DRM_UNLOCK(); return (EINVAL); } dev->irq_enabled = 0; DRM_UNLOCK(); /* * Ick. we're about to turn of vblanks, so make sure anyone waiting * on them gets woken up. Also make sure we update state correctly * so that we can continue refcounting correctly. */ if (dev->num_crtcs) { mtx_enter(&dev->vbl_lock); for (i = 0; i < dev->num_crtcs; i++) { wakeup(&dev->vbl_queue[i]); dev->vblank_enabled[i] = 0; dev->last_vblank[i] = dev->driver->get_vblank_counter(dev, i); } mtx_leave(&dev->vbl_lock); } DRM_DEBUG("irq=%d\n", dev->irq); dev->driver->irq_uninstall(dev); return (0); } /** * IRQ control ioctl. * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param arg user argument, pointing to a drm_control structure. * \return zero on success or a negative number on failure. * * Calls irq_install() or irq_uninstall() according to \p arg. */ int drm_control(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_control *ctl = data; /* Handle drivers who used to require IRQ setup no longer does. */ if (!(dev->driver->flags & DRIVER_IRQ)) return (0); switch (ctl->func) { case DRM_INST_HANDLER: if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; if (dev->if_version < DRM_IF_VERSION(1, 2) && ctl->irq != dev->irq) return (EINVAL); return (drm_irq_install(dev)); case DRM_UNINST_HANDLER: if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; return (drm_irq_uninstall(dev)); default: return (EINVAL); } } /** * drm_calc_timestamping_constants - Calculate and * store various constants which are later needed by * vblank and swap-completion timestamping, e.g, by * drm_calc_vbltimestamp_from_scanoutpos(). * They are derived from crtc's true scanout timing, * so they take things like panel scaling or other * adjustments into account. * * @crtc drm_crtc whose timestamp constants should be updated. * */ void drm_calc_timestamping_constants(struct drm_crtc *crtc) { s64 linedur_ns = 0, pixeldur_ns = 0, framedur_ns = 0; u64 dotclock; /* Dot clock in Hz: */ dotclock = (u64) crtc->hwmode.clock * 1000; /* Fields of interlaced scanout modes are only halve a frame duration. * Double the dotclock to get halve the frame-/line-/pixelduration. */ if (crtc->hwmode.flags & DRM_MODE_FLAG_INTERLACE) dotclock *= 2; /* Valid dotclock? */ if (dotclock > 0) { /* Convert scanline length in pixels and video dot clock to * line duration, frame duration and pixel duration in * nanoseconds: */ pixeldur_ns = (s64) 1000000000 / dotclock; linedur_ns = (s64) ((u64) crtc->hwmode.crtc_htotal * 1000000000) / dotclock; framedur_ns = (s64) crtc->hwmode.crtc_vtotal * linedur_ns; } else DRM_ERROR("crtc %d: Can't calculate constants, dotclock = 0!\n", crtc->base.id); crtc->pixeldur_ns = pixeldur_ns; crtc->linedur_ns = linedur_ns; crtc->framedur_ns = framedur_ns; DPRINTF("crtc %d: hwmode: htotal %d, vtotal %d, vdisplay %d\n", crtc->base.id, crtc->hwmode.crtc_htotal, crtc->hwmode.crtc_vtotal, crtc->hwmode.crtc_vdisplay); DPRINTF("crtc %d: clock %d kHz framedur %d linedur %d, pixeldur %d\n", crtc->base.id, (int) dotclock/1000, (int) framedur_ns, (int) linedur_ns, (int) pixeldur_ns); } /** * drm_calc_vbltimestamp_from_scanoutpos - helper routine for kms * drivers. Implements calculation of exact vblank timestamps from * given drm_display_mode timings and current video scanout position * of a crtc. This can be called from within get_vblank_timestamp() * implementation of a kms driver to implement the actual timestamping. * * Should return timestamps conforming to the OML_sync_control OpenML * extension specification. The timestamp corresponds to the end of * the vblank interval, aka start of scanout of topmost-leftmost display * pixel in the following video frame. * * Requires support for optional dev->driver->get_scanout_position() * in kms driver, plus a bit of setup code to provide a drm_display_mode * that corresponds to the true scanout timing. * * The current implementation only handles standard video modes. It * returns as no operation if a doublescan or interlaced video mode is * active. Higher level code is expected to handle this. * * @dev: DRM device. * @crtc: Which crtc's vblank timestamp to retrieve. * @max_error: Desired maximum allowable error in timestamps (nanosecs). * On return contains true maximum error of timestamp. * @vblank_time: Pointer to struct timeval which should receive the timestamp. * @flags: Flags to pass to driver: * 0 = Default. * DRM_CALLED_FROM_VBLIRQ = If function is called from vbl irq handler. * @refcrtc: drm_crtc* of crtc which defines scanout timing. * * Returns negative value on error, failure or if not supported in current * video mode: * * -EINVAL - Invalid crtc. * -EAGAIN - Temporary unavailable, e.g., called before initial modeset. * -ENOTSUPP - Function not supported in current display mode. * -EIO - Failed, e.g., due to failed scanout position query. * * Returns or'ed positive status flags on success: * * DRM_VBLANKTIME_SCANOUTPOS_METHOD - Signal this method used for timestamping. * DRM_VBLANKTIME_INVBL - Timestamp taken while scanout was in vblank interval. * */ int drm_calc_vbltimestamp_from_scanoutpos(struct drm_device *dev, int crtc, int *max_error, struct timeval *vblank_time, unsigned flags, struct drm_crtc *refcrtc) { struct timeval stime, etime; #ifdef notyet struct timeval mono_time_offset; #endif struct drm_display_mode *mode; int vbl_status, vtotal, vdisplay; int vpos, hpos, i; s64 framedur_ns, linedur_ns, pixeldur_ns, delta_ns, duration_ns; bool invbl; if (crtc < 0 || crtc >= dev->num_crtcs) { DRM_ERROR("Invalid crtc %d\n", crtc); return -EINVAL; } /* Scanout position query not supported? Should not happen. */ if (!dev->driver->get_scanout_position) { DRM_ERROR("Called from driver w/o get_scanout_position()!?\n"); return -EIO; } mode = &refcrtc->hwmode; vtotal = mode->crtc_vtotal; vdisplay = mode->crtc_vdisplay; /* Durations of frames, lines, pixels in nanoseconds. */ framedur_ns = refcrtc->framedur_ns; linedur_ns = refcrtc->linedur_ns; pixeldur_ns = refcrtc->pixeldur_ns; /* If mode timing undefined, just return as no-op: * Happens during initial modesetting of a crtc. */ if (vtotal <= 0 || vdisplay <= 0 || framedur_ns == 0) { DRM_DEBUG("crtc %d: Noop due to uninitialized mode.\n", crtc); return -EAGAIN; } /* Get current scanout position with system timestamp. * Repeat query up to DRM_TIMESTAMP_MAXRETRIES times * if single query takes longer than max_error nanoseconds. * * This guarantees a tight bound on maximum error if * code gets preempted or delayed for some reason. */ for (i = 0; i < DRM_TIMESTAMP_MAXRETRIES; i++) { /* Disable preemption to make it very likely to * succeed in the first iteration even on PREEMPT_RT kernel. */ #ifdef notyet preempt_disable(); #endif /* Get system timestamp before query. */ getmicrouptime(&stime); /* Get vertical and horizontal scanout pos. vpos, hpos. */ vbl_status = dev->driver->get_scanout_position(dev, crtc, &vpos, &hpos); /* Get system timestamp after query. */ getmicrouptime(&etime); #ifdef notyet if (!drm_timestamp_monotonic) mono_time_offset = ktime_get_monotonic_offset(); preempt_enable(); #endif /* Return as no-op if scanout query unsupported or failed. */ if (!(vbl_status & DRM_SCANOUTPOS_VALID)) { DRM_DEBUG("crtc %d : scanoutpos query failed [%d].\n", crtc, vbl_status); return -EIO; } duration_ns = timeval_to_ns(&etime) - timeval_to_ns(&stime); /* Accept result with < max_error nsecs timing uncertainty. */ if (duration_ns <= (s64) *max_error) break; } /* Noisy system timing? */ if (i == DRM_TIMESTAMP_MAXRETRIES) { DRM_DEBUG("crtc %d: Noisy timestamp %d us > %d us [%d reps].\n", crtc, (int) duration_ns/1000, *max_error/1000, i); } /* Return upper bound of timestamp precision error. */ *max_error = (int) duration_ns; /* Check if in vblank area: * vpos is >=0 in video scanout area, but negative * within vblank area, counting down the number of lines until * start of scanout. */ invbl = vbl_status & DRM_SCANOUTPOS_INVBL; /* Convert scanout position into elapsed time at raw_time query * since start of scanout at first display scanline. delta_ns * can be negative if start of scanout hasn't happened yet. */ delta_ns = (s64) vpos * linedur_ns + (s64) hpos * pixeldur_ns; /* Is vpos outside nominal vblank area, but less than * 1/100 of a frame height away from start of vblank? * If so, assume this isn't a massively delayed vblank * interrupt, but a vblank interrupt that fired a few * microseconds before true start of vblank. Compensate * by adding a full frame duration to the final timestamp. * Happens, e.g., on ATI R500, R600. * * We only do this if DRM_CALLED_FROM_VBLIRQ. */ if ((flags & DRM_CALLED_FROM_VBLIRQ) && !invbl && ((vdisplay - vpos) < vtotal / 100)) { delta_ns = delta_ns - framedur_ns; /* Signal this correction as "applied". */ vbl_status |= 0x8; } #ifdef notyet if (!drm_timestamp_monotonic) etime = ktime_sub(etime, mono_time_offset); #endif /* Subtract time delta from raw timestamp to get final * vblank_time timestamp for end of vblank. */ *vblank_time = ns_to_timeval(timeval_to_ns(&etime) - delta_ns); DPRINTF("crtc %d : v %d p(%d,%d)@ %ld.%ld -> %ld.%ld [e %d us, %d rep]\n", crtc, (int)vbl_status, hpos, vpos, (long)etime.tv_sec, (long)etime.tv_usec, (long)vblank_time->tv_sec, (long)vblank_time->tv_usec, (int)duration_ns/1000, i); vbl_status = DRM_VBLANKTIME_SCANOUTPOS_METHOD; if (invbl) vbl_status |= DRM_VBLANKTIME_INVBL; return vbl_status; } struct timeval get_drm_timestamp(void) { struct timeval now; getmicrouptime(&now); #ifdef notyet if (!drm_timestamp_monotonic) now = ktime_sub(now, ktime_get_monotonic_offset()); #endif return (now); } /** * drm_get_last_vbltimestamp - retrieve raw timestamp for the most recent * vblank interval. * * @dev: DRM device * @crtc: which crtc's vblank timestamp to retrieve * @tvblank: Pointer to target struct timeval which should receive the timestamp * @flags: Flags to pass to driver: * 0 = Default. * DRM_CALLED_FROM_VBLIRQ = If function is called from vbl irq handler. * * Fetches the system timestamp corresponding to the time of the most recent * vblank interval on specified crtc. May call into kms-driver to * compute the timestamp with a high-precision GPU specific method. * * Returns zero if timestamp originates from uncorrected do_gettimeofday() * call, i.e., it isn't very precisely locked to the true vblank. * * Returns non-zero if timestamp is considered to be very precise. */ u32 drm_get_last_vbltimestamp(struct drm_device *dev, int crtc, struct timeval *tvblank, unsigned flags) { int ret; /* Define requested maximum error on timestamps (nanoseconds). */ int max_error = (int) drm_timestamp_precision * 1000; /* Query driver if possible and precision timestamping enabled. */ if (dev->driver->get_vblank_timestamp && (max_error > 0)) { ret = dev->driver->get_vblank_timestamp(dev, crtc, &max_error, tvblank, flags); if (ret > 0) return (u32) ret; } /* GPU high precision timestamp query unsupported or failed. * Return current monotonic/gettimeofday timestamp as best estimate. */ *tvblank = get_drm_timestamp(); return 0; } /** * drm_vblank_count - retrieve "cooked" vblank counter value * @dev: DRM device * @crtc: which counter to retrieve * * Fetches the "cooked" vblank count value that represents the number of * vblank events since the system was booted, including lost events due to * modesetting activity. */ u32 drm_vblank_count(struct drm_device *dev, int crtc) { return atomic_read(&dev->_vblank_count[crtc]); } /** * drm_vblank_count_and_time - retrieve "cooked" vblank counter value * and the system timestamp corresponding to that vblank counter value. * * @dev: DRM device * @crtc: which counter to retrieve * @vblanktime: Pointer to struct timeval to receive the vblank timestamp. * * Fetches the "cooked" vblank count value that represents the number of * vblank events since the system was booted, including lost events due to * modesetting activity. Returns corresponding system timestamp of the time * of the vblank interval that corresponds to the current value vblank counter * value. */ u32 drm_vblank_count_and_time(struct drm_device *dev, int crtc, struct timeval *vblanktime) { u32 cur_vblank; /* Read timestamp from slot of _vblank_time ringbuffer * that corresponds to current vblank count. Retry if * count has incremented during readout. This works like * a seqlock. */ do { cur_vblank = atomic_read(&dev->_vblank_count[crtc]); *vblanktime = vblanktimestamp(dev, crtc, cur_vblank); DRM_READMEMORYBARRIER(); } while (cur_vblank != atomic_read(&dev->_vblank_count[crtc])); return cur_vblank; } void send_vblank_event(struct drm_device *dev, struct drm_pending_vblank_event *e, unsigned long seq, struct timeval *now) { struct drm_file *file_priv = e->base.file_priv; // WARN_ON_SMP(!spin_is_locked(&dev->event_lock)); e->event.sequence = seq; e->event.tv_sec = now->tv_sec; e->event.tv_usec = now->tv_usec; TAILQ_INSERT_TAIL(&file_priv->evlist, &e->base, link); wakeup(&file_priv->evlist); selwakeup(&file_priv->rsel); #if 0 trace_drm_vblank_event_delivered(e->base.pid, e->pipe, e->event.sequence); #endif } /** * drm_send_vblank_event - helper to send vblank event after pageflip * @dev: DRM device * @crtc: CRTC in question * @e: the event to send * * Updates sequence # and timestamp on event, and sends it to userspace. * Caller must hold event lock. */ void drm_send_vblank_event(struct drm_device *dev, int crtc, struct drm_pending_vblank_event *e) { struct timeval now; unsigned int seq; if (crtc >= 0) { seq = drm_vblank_count_and_time(dev, crtc, &now); } else { seq = 0; now = get_drm_timestamp(); } send_vblank_event(dev, e, seq, &now); } /** * drm_update_vblank_count - update the master vblank counter * @dev: DRM device * @crtc: counter to update * * Call back into the driver to update the appropriate vblank counter * (specified by @crtc). Deal with wraparound, if it occurred, and * update the last read value so we can deal with wraparound on the next * call if necessary. * * Only necessary when going from off->on, to account for frames we * didn't get an interrupt for. * * Note: caller must hold dev->vbl_lock since this reads & writes * device vblank fields. */ void drm_update_vblank_count(struct drm_device *dev, int crtc) { u32 cur_vblank, diff, tslot, rc; struct timeval t_vblank; /* * Interrupts were disabled prior to this call, so deal with counter * wrap if needed. * NOTE! It's possible we lost a full dev->max_vblank_count events * here if the register is small or we had vblank interrupts off for * a long time. * * We repeat the hardware vblank counter & timestamp query until * we get consistent results. This to prevent races between gpu * updating its hardware counter while we are retrieving the * corresponding vblank timestamp. */ do { cur_vblank = dev->driver->get_vblank_counter(dev, crtc); rc = drm_get_last_vbltimestamp(dev, crtc, &t_vblank, 0); } while (cur_vblank != dev->driver->get_vblank_counter(dev, crtc)); /* Deal with counter wrap */ diff = cur_vblank - dev->last_vblank[crtc]; if (cur_vblank < dev->last_vblank[crtc]) { diff += dev->max_vblank_count; DRM_DEBUG("last_vblank[%d]=0x%x, cur_vblank=0x%x => diff=0x%x\n", crtc, dev->last_vblank[crtc], cur_vblank, diff); } DPRINTF("enabling vblank interrupts on crtc %d, missed %d\n", crtc, diff); /* Reinitialize corresponding vblank timestamp if high-precision query * available. Skip this step if query unsupported or failed. Will * reinitialize delayed at next vblank interrupt in that case. */ if (rc) { tslot = atomic_read(&dev->_vblank_count[crtc]) + diff; vblanktimestamp(dev, crtc, tslot) = t_vblank; } // smp_mb__before_atomic_inc(); atomic_add(diff, &dev->_vblank_count[crtc]); // smp_mb__after_atomic_inc(); } /** * drm_vblank_get - get a reference count on vblank events * @dev: DRM device * @crtc: which CRTC to own * * Acquire a reference count on vblank events to avoid having them disabled * while in use. * * RETURNS * Zero on success, nonzero on failure. */ int drm_vblank_get(struct drm_device *dev, int crtc) { int ret = 0; mtx_enter(&dev->vbl_lock); /* Going from 0->1 means we have to enable interrupts again */ if (atomic_add_return(1, &dev->vblank_refcount[crtc]) == 1) { mtx_enter(&dev->vblank_time_lock); if (!dev->vblank_enabled[crtc]) { /* Enable vblank irqs under vblank_time_lock protection. * All vblank count & timestamp updates are held off * until we are done reinitializing master counter and * timestamps. Filtercode in drm_handle_vblank() will * prevent double-accounting of same vblank interval. */ ret = dev->driver->enable_vblank(dev, crtc); DPRINTF("enabling vblank on crtc %d, ret: %d\n", crtc, ret); if (ret) atomic_dec(&dev->vblank_refcount[crtc]); else { dev->vblank_enabled[crtc] = 1; drm_update_vblank_count(dev, crtc); } } mtx_leave(&dev->vblank_time_lock); } else { if (!dev->vblank_enabled[crtc]) { atomic_dec(&dev->vblank_refcount[crtc]); ret = -EINVAL; } } mtx_leave(&dev->vbl_lock); return ret; } /** * drm_vblank_put - give up ownership of vblank events * @dev: DRM device * @crtc: which counter to give up * * Release ownership of a given vblank counter, turning off interrupts * if possible. Disable interrupts after drm_vblank_offdelay milliseconds. */ void drm_vblank_put(struct drm_device *dev, int crtc) { BUG_ON(atomic_read(&dev->vblank_refcount[crtc]) == 0); /* Last user schedules interrupt disable */ if ((--dev->vblank_refcount[crtc] == 0) && (drm_vblank_offdelay > 0)) timeout_add_msec(&dev->vblank_disable_timer, drm_vblank_offdelay); } /** * drm_vblank_off - disable vblank events on a CRTC * @dev: DRM device * @crtc: CRTC in question * * Caller must hold event lock. */ void drm_vblank_off(struct drm_device *dev, int crtc) { struct drmevlist *list; struct drm_pending_event *ev, *tmp; struct drm_pending_vblank_event *vev; struct timeval now; unsigned int seq; mtx_enter(&dev->vbl_lock); vblank_disable_and_save(dev, crtc); wakeup(&dev->vbl_queue[crtc]); list = &dev->vbl_events; /* Send any queued vblank events, lest the natives grow disquiet */ seq = drm_vblank_count_and_time(dev, crtc, &now); mtx_enter(&dev->event_lock); for (ev = TAILQ_FIRST(list); ev != TAILQ_END(list); ev = tmp) { tmp = TAILQ_NEXT(ev, link); vev = (struct drm_pending_vblank_event *)ev; if (vev->pipe != crtc) continue; DRM_DEBUG("Sending premature vblank event on disable: \ wanted %d, current %d\n", vev->event.sequence, seq); TAILQ_REMOVE(list, ev, link); drm_vblank_put(dev, vev->pipe); send_vblank_event(dev, vev, seq, &now); } mtx_leave(&dev->event_lock); mtx_leave(&dev->vbl_lock); } /** * drm_vblank_pre_modeset - account for vblanks across mode sets * @dev: DRM device * @crtc: CRTC in question * * Account for vblank events across mode setting events, which will likely * reset the hardware frame counter. */ void drm_vblank_pre_modeset(struct drm_device *dev, int crtc) { /* vblank is not initialized (IRQ not installed ?) */ if (!dev->num_crtcs) return; /* * To avoid all the problems that might happen if interrupts * were enabled/disabled around or between these calls, we just * have the kernel take a reference on the CRTC (just once though * to avoid corrupting the count if multiple, mismatch calls occur), * so that interrupts remain enabled in the interim. */ if (!dev->vblank_inmodeset[crtc]) { dev->vblank_inmodeset[crtc] = 0x1; if (drm_vblank_get(dev, crtc) == 0) dev->vblank_inmodeset[crtc] |= 0x2; } } void drm_vblank_post_modeset(struct drm_device *dev, int crtc) { if (dev->vblank_inmodeset[crtc]) { mtx_enter(&dev->vbl_lock); dev->vblank_disable_allowed = 1; mtx_leave(&dev->vbl_lock); if (dev->vblank_inmodeset[crtc] & 0x2) drm_vblank_put(dev, crtc); dev->vblank_inmodeset[crtc] = 0; } } /** * drm_modeset_ctl - handle vblank event counter changes across mode switch * @DRM_IOCTL_ARGS: standard ioctl arguments * * Applications should call the %_DRM_PRE_MODESET and %_DRM_POST_MODESET * ioctls around modesetting so that any lost vblank events are accounted for. * * Generally the counter will reset across mode sets. If interrupts are * enabled around this call, we don't have to do anything since the counter * will have already been incremented. */ int drm_modeset_ctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_modeset_ctl *modeset = data; unsigned int crtc; /* If drm_vblank_init() hasn't been called yet, just no-op */ if (!dev->num_crtcs) return 0; /* KMS drivers handle this internally */ if (drm_core_check_feature(dev, DRIVER_MODESET)) return 0; crtc = modeset->crtc; if (crtc >= dev->num_crtcs) return -EINVAL; switch (modeset->cmd) { case _DRM_PRE_MODESET: drm_vblank_pre_modeset(dev, crtc); break; case _DRM_POST_MODESET: drm_vblank_post_modeset(dev, crtc); break; default: return -EINVAL; } return 0; } int drm_queue_vblank_event(struct drm_device *dev, int pipe, union drm_wait_vblank *vblwait, struct drm_file *file_priv) { struct drm_pending_vblank_event *e; struct timeval now; unsigned int seq; int ret; e = malloc(sizeof *e, M_DRM, M_ZERO | M_WAITOK); if (e == NULL) { ret = -ENOMEM; goto err_put; } e->pipe = pipe; e->base.pid = DRM_CURRENTPID; e->event.base.type = DRM_EVENT_VBLANK; e->event.base.length = sizeof e->event; e->event.user_data = vblwait->request.signal; e->base.event = &e->event.base; e->base.file_priv = file_priv; e->base.destroy = (void (*) (struct drm_pending_event *)) drm_free; mtx_enter(&dev->event_lock); if (file_priv->event_space < sizeof e->event) { ret = -EBUSY; goto err_unlock; } file_priv->event_space -= sizeof e->event; seq = drm_vblank_count_and_time(dev, pipe, &now); if ((vblwait->request.type & _DRM_VBLANK_NEXTONMISS) && (seq - vblwait->request.sequence) <= (1 << 23)) { vblwait->request.sequence = seq + 1; vblwait->reply.sequence = vblwait->request.sequence; } DPRINTF("event on vblank count %d, current %d, crtc %d\n", vblwait->request.sequence, seq, pipe); #if 0 trace_drm_vblank_event_queued(current->pid, pipe, vblwait->request.sequence); #endif e->event.sequence = vblwait->request.sequence; if ((seq - vblwait->request.sequence) <= (1 << 23)) { drm_vblank_put(dev, pipe); send_vblank_event(dev, e, seq, &now); vblwait->reply.sequence = seq; } else { /* drm_handle_vblank_events will call drm_vblank_put */ TAILQ_INSERT_TAIL(&dev->vbl_events, &e->base, link); vblwait->reply.sequence = vblwait->request.sequence; } mtx_leave(&dev->event_lock); return 0; err_unlock: mtx_leave(&dev->event_lock); free(e, M_DRM); err_put: drm_vblank_put(dev, pipe); return ret; } /** * Wait for VBLANK. * * \param inode device inode. * \param file_priv DRM file private. * \param cmd command. * \param data user argument, pointing to a drm_wait_vblank structure. * \return zero on success or a negative number on failure. * * This function enables the vblank interrupt on the pipe requested, then * sleeps waiting for the requested sequence number to occur, and drops * the vblank interrupt refcount afterwards. (vblank irq disable follows that * after a timeout with no further vblank waits scheduled). */ int drm_wait_vblank(struct drm_device *dev, void *data, struct drm_file *file_priv) { union drm_wait_vblank *vblwait = data; int ret; unsigned int flags, seq, crtc, high_crtc; if (!dev->irq_enabled) return -EINVAL; if (vblwait->request.type & _DRM_VBLANK_SIGNAL) return -EINVAL; if (vblwait->request.type & ~(_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | _DRM_VBLANK_HIGH_CRTC_MASK)) { DRM_ERROR("Unsupported type value 0x%x, supported mask 0x%x\n", vblwait->request.type, (_DRM_VBLANK_TYPES_MASK | _DRM_VBLANK_FLAGS_MASK | _DRM_VBLANK_HIGH_CRTC_MASK)); return -EINVAL; } flags = vblwait->request.type & _DRM_VBLANK_FLAGS_MASK; high_crtc = (vblwait->request.type & _DRM_VBLANK_HIGH_CRTC_MASK); if (high_crtc) crtc = high_crtc >> _DRM_VBLANK_HIGH_CRTC_SHIFT; else crtc = flags & _DRM_VBLANK_SECONDARY ? 1 : 0; if (crtc >= dev->num_crtcs) return -EINVAL; ret = drm_vblank_get(dev, crtc); if (ret) { DRM_DEBUG("failed to acquire vblank counter, %d\n", ret); return ret; } seq = drm_vblank_count(dev, crtc); switch (vblwait->request.type & _DRM_VBLANK_TYPES_MASK) { case _DRM_VBLANK_RELATIVE: vblwait->request.sequence += seq; vblwait->request.type &= ~_DRM_VBLANK_RELATIVE; case _DRM_VBLANK_ABSOLUTE: break; default: ret = -EINVAL; goto done; } if (flags & _DRM_VBLANK_EVENT) { /* must hold on to the vblank ref until the event fires * drm_vblank_put will be called asynchronously */ return drm_queue_vblank_event(dev, crtc, vblwait, file_priv); } if ((flags & _DRM_VBLANK_NEXTONMISS) && (seq - vblwait->request.sequence) <= (1<<23)) { vblwait->request.sequence = seq + 1; } DPRINTF("waiting on vblank count %d, crtc %d\n", vblwait->request.sequence, crtc); dev->last_vblank_wait[crtc] = vblwait->request.sequence; DRM_WAIT_ON(ret, &dev->vbl_queue[crtc], &dev->vbl_lock, 3 * hz, "drmvblq", (((drm_vblank_count(dev, crtc) - vblwait->request.sequence) <= (1 << 23)) || !dev->irq_enabled)); if (ret != -EINTR) { struct timeval now; vblwait->reply.sequence = drm_vblank_count_and_time(dev, crtc, &now); vblwait->reply.tval_sec = now.tv_sec; vblwait->reply.tval_usec = now.tv_usec; DPRINTF("returning %d to client\n", vblwait->reply.sequence); } else { DPRINTF("vblank wait interrupted by signal\n"); } done: drm_vblank_put(dev, crtc); return ret; } void drm_handle_vblank_events(struct drm_device *dev, int crtc) { struct drmevlist *list; struct drm_pending_event *ev, *tmp; struct drm_pending_vblank_event *vev; struct timeval now; unsigned int seq; list = &dev->vbl_events; seq = drm_vblank_count_and_time(dev, crtc, &now); mtx_enter(&dev->event_lock); for (ev = TAILQ_FIRST(list); ev != TAILQ_END(list); ev = tmp) { tmp = TAILQ_NEXT(ev, link); vev = (struct drm_pending_vblank_event *)ev; if (vev->pipe != crtc) continue; if ((seq - vev->event.sequence) > (1<<23)) continue; DPRINTF("vblank event on %d, current %d\n", vev->event.sequence, seq); TAILQ_REMOVE(list, ev, link); drm_vblank_put(dev, vev->pipe); send_vblank_event(dev, vev, seq, &now); } mtx_leave(&dev->event_lock); // trace_drm_vblank_event(crtc, seq); } /** * drm_handle_vblank - handle a vblank event * @dev: DRM device * @crtc: where this event occurred * * Drivers should call this routine in their vblank interrupt handlers to * update the vblank counter and send any signals that may be pending. */ bool drm_handle_vblank(struct drm_device *dev, int crtc) { u32 vblcount; s64 diff_ns; struct timeval tvblank; if (!dev->num_crtcs) return false; /* Need timestamp lock to prevent concurrent execution with * vblank enable/disable, as this would cause inconsistent * or corrupted timestamps and vblank counts. */ mtx_enter(&dev->vblank_time_lock); /* Vblank irq handling disabled. Nothing to do. */ if (!dev->vblank_enabled[crtc]) { mtx_leave(&dev->vblank_time_lock); return false; } /* Fetch corresponding timestamp for this vblank interval from * driver and store it in proper slot of timestamp ringbuffer. */ /* Get current timestamp and count. */ vblcount = atomic_read(&dev->_vblank_count[crtc]); drm_get_last_vbltimestamp(dev, crtc, &tvblank, DRM_CALLED_FROM_VBLIRQ); /* Compute time difference to timestamp of last vblank */ diff_ns = timeval_to_ns(&tvblank) - timeval_to_ns(&vblanktimestamp(dev, crtc, vblcount)); /* Update vblank timestamp and count if at least * DRM_REDUNDANT_VBLIRQ_THRESH_NS nanoseconds * difference between last stored timestamp and current * timestamp. A smaller difference means basically * identical timestamps. Happens if this vblank has * been already processed and this is a redundant call, * e.g., due to spurious vblank interrupts. We need to * ignore those for accounting. */ if (abs64(diff_ns) > DRM_REDUNDANT_VBLIRQ_THRESH_NS) { /* Store new timestamp in ringbuffer. */ vblanktimestamp(dev, crtc, vblcount + 1) = tvblank; /* Increment cooked vblank count. This also atomically commits * the timestamp computed above. */ // smp_mb__before_atomic_inc(); atomic_inc(&dev->_vblank_count[crtc]); // smp_mb__after_atomic_inc(); } else { DRM_DEBUG("crtc %d: Redundant vblirq ignored. diff_ns = %d\n", crtc, (int) diff_ns); } wakeup(&dev->vbl_queue[crtc]); drm_handle_vblank_events(dev, crtc); mtx_leave(&dev->vblank_time_lock); return true; }