/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "i915_drv.h" #include "i915_vma.h" #include "intel_ringbuffer.h" #include "intel_frontbuffer.h" #include #if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM) #include static void vma_print_allocator(struct i915_vma *vma, const char *reason) { unsigned long entries[12]; struct stack_trace trace = { .entries = entries, .max_entries = ARRAY_SIZE(entries), }; char buf[512]; if (!vma->node.stack) { DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: unknown owner\n", vma->node.start, vma->node.size, reason); return; } depot_fetch_stack(vma->node.stack, &trace); snprint_stack_trace(buf, sizeof(buf), &trace, 0); DRM_DEBUG_DRIVER("vma.node [%08llx + %08llx] %s: inserted at %s\n", vma->node.start, vma->node.size, reason, buf); } #else static void vma_print_allocator(struct i915_vma *vma, const char *reason) { } #endif struct i915_vma_active { struct i915_gem_active base; struct i915_vma *vma; struct rb_node node; u64 timeline; }; static void __i915_vma_retire(struct i915_vma *vma, struct i915_request *rq) { struct drm_i915_gem_object *obj = vma->obj; GEM_BUG_ON(!i915_vma_is_active(vma)); if (--vma->active_count) return; GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); list_move_tail(&vma->vm_link, &vma->vm->inactive_list); GEM_BUG_ON(!i915_gem_object_is_active(obj)); if (--obj->active_count) return; /* Prune the shared fence arrays iff completely idle (inc. external) */ if (reservation_object_trylock(obj->resv)) { if (reservation_object_test_signaled_rcu(obj->resv, true)) reservation_object_add_excl_fence(obj->resv, NULL); reservation_object_unlock(obj->resv); } /* Bump our place on the bound list to keep it roughly in LRU order * so that we don't steal from recently used but inactive objects * (unless we are forced to ofc!) */ spin_lock(&rq->i915->mm.obj_lock); if (obj->bind_count) list_move_tail(&obj->mm.link, &rq->i915->mm.bound_list); spin_unlock(&rq->i915->mm.obj_lock); obj->mm.dirty = true; /* be paranoid */ if (i915_gem_object_has_active_reference(obj)) { i915_gem_object_clear_active_reference(obj); i915_gem_object_put(obj); } } static void i915_vma_retire(struct i915_gem_active *base, struct i915_request *rq) { struct i915_vma_active *active = container_of(base, typeof(*active), base); __i915_vma_retire(active->vma, rq); } static void i915_vma_last_retire(struct i915_gem_active *base, struct i915_request *rq) { __i915_vma_retire(container_of(base, struct i915_vma, last_active), rq); } static struct i915_vma * vma_create(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *view) { struct i915_vma *vma; struct rb_node *rb, **p; /* The aliasing_ppgtt should never be used directly! */ GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); #ifdef __linux__ vma = kmem_cache_zalloc(vm->i915->vmas, GFP_KERNEL); #else vma = pool_get(&vm->i915->vmas, PR_WAITOK | PR_ZERO); #endif if (vma == NULL) return ERR_PTR(-ENOMEM); vma->active = RB_ROOT; init_request_active(&vma->last_active, i915_vma_last_retire); init_request_active(&vma->last_fence, NULL); vma->vm = vm; vma->ops = &vm->vma_ops; vma->obj = obj; vma->resv = obj->resv; vma->size = obj->base.size; vma->display_alignment = I915_GTT_MIN_ALIGNMENT; if (view && view->type != I915_GGTT_VIEW_NORMAL) { vma->ggtt_view = *view; if (view->type == I915_GGTT_VIEW_PARTIAL) { GEM_BUG_ON(range_overflows_t(u64, view->partial.offset, view->partial.size, obj->base.size >> PAGE_SHIFT)); vma->size = view->partial.size; vma->size <<= PAGE_SHIFT; GEM_BUG_ON(vma->size > obj->base.size); } else if (view->type == I915_GGTT_VIEW_ROTATED) { vma->size = intel_rotation_info_size(&view->rotated); vma->size <<= PAGE_SHIFT; } } if (unlikely(vma->size > vm->total)) goto err_vma; GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE)); if (i915_is_ggtt(vm)) { if (unlikely(overflows_type(vma->size, u32))) goto err_vma; vma->fence_size = i915_gem_fence_size(vm->i915, vma->size, i915_gem_object_get_tiling(obj), i915_gem_object_get_stride(obj)); if (unlikely(vma->fence_size < vma->size || /* overflow */ vma->fence_size > vm->total)) goto err_vma; GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT)); vma->fence_alignment = i915_gem_fence_alignment(vm->i915, vma->size, i915_gem_object_get_tiling(obj), i915_gem_object_get_stride(obj)); GEM_BUG_ON(!is_power_of_2(vma->fence_alignment)); /* * We put the GGTT vma at the start of the vma-list, followed * by the ppGGTT vma. This allows us to break early when * iterating over only the GGTT vma for an object, see * for_each_ggtt_vma() */ vma->flags |= I915_VMA_GGTT; list_add(&vma->obj_link, &obj->vma_list); } else { list_add_tail(&vma->obj_link, &obj->vma_list); } rb = NULL; p = &obj->vma_tree.rb_node; while (*p) { struct i915_vma *pos; rb = *p; pos = rb_entry(rb, struct i915_vma, obj_node); if (i915_vma_compare(pos, vm, view) < 0) p = &rb->rb_right; else p = &rb->rb_left; } rb_link_node(&vma->obj_node, rb, p); rb_insert_color(&vma->obj_node, &obj->vma_tree); list_add(&vma->vm_link, &vm->unbound_list); return vma; err_vma: #ifdef __linux__ kmem_cache_free(vm->i915->vmas, vma); #else pool_put(&vm->i915->vmas, vma); #endif return ERR_PTR(-E2BIG); } static struct i915_vma * vma_lookup(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *view) { struct rb_node *rb; rb = obj->vma_tree.rb_node; while (rb) { struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node); long cmp; cmp = i915_vma_compare(vma, vm, view); if (cmp == 0) return vma; if (cmp < 0) rb = rb->rb_right; else rb = rb->rb_left; } return NULL; } /** * i915_vma_instance - return the singleton instance of the VMA * @obj: parent &struct drm_i915_gem_object to be mapped * @vm: address space in which the mapping is located * @view: additional mapping requirements * * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with * the same @view characteristics. If a match is not found, one is created. * Once created, the VMA is kept until either the object is freed, or the * address space is closed. * * Must be called with struct_mutex held. * * Returns the vma, or an error pointer. */ struct i915_vma * i915_vma_instance(struct drm_i915_gem_object *obj, struct i915_address_space *vm, const struct i915_ggtt_view *view) { struct i915_vma *vma; lockdep_assert_held(&obj->base.dev->struct_mutex); GEM_BUG_ON(view && !i915_is_ggtt(vm)); GEM_BUG_ON(vm->closed); vma = vma_lookup(obj, vm, view); if (!vma) vma = vma_create(obj, vm, view); GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view)); GEM_BUG_ON(!IS_ERR(vma) && vma_lookup(obj, vm, view) != vma); return vma; } /** * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space. * @vma: VMA to map * @cache_level: mapping cache level * @flags: flags like global or local mapping * * DMA addresses are taken from the scatter-gather table of this object (or of * this VMA in case of non-default GGTT views) and PTE entries set up. * Note that DMA addresses are also the only part of the SG table we care about. */ int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { u32 bind_flags; u32 vma_flags; int ret; GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(vma->size > vma->node.size); if (GEM_WARN_ON(range_overflows(vma->node.start, vma->node.size, vma->vm->total))) return -ENODEV; if (GEM_WARN_ON(!flags)) return -EINVAL; bind_flags = 0; if (flags & PIN_GLOBAL) bind_flags |= I915_VMA_GLOBAL_BIND; if (flags & PIN_USER) bind_flags |= I915_VMA_LOCAL_BIND; vma_flags = vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND); if (flags & PIN_UPDATE) bind_flags |= vma_flags; else bind_flags &= ~vma_flags; if (bind_flags == 0) return 0; GEM_BUG_ON(!vma->pages); trace_i915_vma_bind(vma, bind_flags); ret = vma->ops->bind_vma(vma, cache_level, bind_flags); if (ret) return ret; vma->flags |= bind_flags; return 0; } void __iomem *i915_vma_pin_iomap(struct i915_vma *vma) { void __iomem *ptr; int err; /* Access through the GTT requires the device to be awake. */ assert_rpm_wakelock_held(vma->vm->i915); lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); if (WARN_ON(!i915_vma_is_map_and_fenceable(vma))) { err = -ENODEV; goto err; } GEM_BUG_ON(!i915_vma_is_ggtt(vma)); GEM_BUG_ON((vma->flags & I915_VMA_GLOBAL_BIND) == 0); ptr = vma->iomap; if (ptr == NULL) { #ifdef __linux__ ptr = io_mapping_map_wc(&i915_vm_to_ggtt(vma->vm)->iomap, vma->node.start, vma->node.size); #else struct drm_i915_private *dev_priv = vma->vm->i915; err = agp_map_subregion(dev_priv->agph, vma->node.start, vma->node.size, &vma->bsh); if (err) { err = -err; goto err; } ptr = bus_space_vaddr(dev_priv->bst, vma->bsh); #endif if (ptr == NULL) { err = -ENOMEM; goto err; } vma->iomap = ptr; } __i915_vma_pin(vma); err = i915_vma_pin_fence(vma); if (err) goto err_unpin; i915_vma_set_ggtt_write(vma); return ptr; err_unpin: __i915_vma_unpin(vma); err: return IO_ERR_PTR(err); } void i915_vma_flush_writes(struct i915_vma *vma) { if (!i915_vma_has_ggtt_write(vma)) return; i915_gem_flush_ggtt_writes(vma->vm->i915); i915_vma_unset_ggtt_write(vma); } void i915_vma_unpin_iomap(struct i915_vma *vma) { lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); GEM_BUG_ON(vma->iomap == NULL); i915_vma_flush_writes(vma); i915_vma_unpin_fence(vma); i915_vma_unpin(vma); } void i915_vma_unpin_and_release(struct i915_vma **p_vma) { struct i915_vma *vma; struct drm_i915_gem_object *obj; vma = fetch_and_zero(p_vma); if (!vma) return; obj = vma->obj; GEM_BUG_ON(!obj); i915_vma_unpin(vma); i915_vma_close(vma); __i915_gem_object_release_unless_active(obj); } bool i915_vma_misplaced(const struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { if (!drm_mm_node_allocated(&vma->node)) return false; if (vma->node.size < size) return true; GEM_BUG_ON(alignment && !is_power_of_2(alignment)); if (alignment && !IS_ALIGNED(vma->node.start, alignment)) return true; if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma)) return true; if (flags & PIN_OFFSET_BIAS && vma->node.start < (flags & PIN_OFFSET_MASK)) return true; if (flags & PIN_OFFSET_FIXED && vma->node.start != (flags & PIN_OFFSET_MASK)) return true; return false; } void __i915_vma_set_map_and_fenceable(struct i915_vma *vma) { bool mappable, fenceable; GEM_BUG_ON(!i915_vma_is_ggtt(vma)); GEM_BUG_ON(!vma->fence_size); /* * Explicitly disable for rotated VMA since the display does not * need the fence and the VMA is not accessible to other users. */ if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED) return; fenceable = (vma->node.size >= vma->fence_size && IS_ALIGNED(vma->node.start, vma->fence_alignment)); mappable = vma->node.start + vma->fence_size <= i915_vm_to_ggtt(vma->vm)->mappable_end; if (mappable && fenceable) vma->flags |= I915_VMA_CAN_FENCE; else vma->flags &= ~I915_VMA_CAN_FENCE; } static bool color_differs(struct drm_mm_node *node, unsigned long color) { return node->allocated && node->color != color; } bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long cache_level) { struct drm_mm_node *node = &vma->node; struct drm_mm_node *other; /* * On some machines we have to be careful when putting differing types * of snoopable memory together to avoid the prefetcher crossing memory * domains and dying. During vm initialisation, we decide whether or not * these constraints apply and set the drm_mm.color_adjust * appropriately. */ if (vma->vm->mm.color_adjust == NULL) return true; /* Only valid to be called on an already inserted vma */ GEM_BUG_ON(!drm_mm_node_allocated(node)); GEM_BUG_ON(list_empty(&node->node_list)); other = list_prev_entry(node, node_list); if (color_differs(other, cache_level) && !drm_mm_hole_follows(other)) return false; other = list_next_entry(node, node_list); if (color_differs(other, cache_level) && !drm_mm_hole_follows(node)) return false; return true; } static void assert_bind_count(const struct drm_i915_gem_object *obj) { /* * Combine the assertion that the object is bound and that we have * pinned its pages. But we should never have bound the object * more than we have pinned its pages. (For complete accuracy, we * assume that no else is pinning the pages, but as a rough assertion * that we will not run into problems later, this will do!) */ GEM_BUG_ON(atomic_read(&obj->mm.pages_pin_count) < obj->bind_count); } /** * i915_vma_insert - finds a slot for the vma in its address space * @vma: the vma * @size: requested size in bytes (can be larger than the VMA) * @alignment: required alignment * @flags: mask of PIN_* flags to use * * First we try to allocate some free space that meets the requirements for * the VMA. Failiing that, if the flags permit, it will evict an old VMA, * preferrably the oldest idle entry to make room for the new VMA. * * Returns: * 0 on success, negative error code otherwise. */ static int i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { struct drm_i915_private *dev_priv = vma->vm->i915; unsigned int cache_level; u64 start, end; int ret; GEM_BUG_ON(i915_vma_is_closed(vma)); GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); GEM_BUG_ON(drm_mm_node_allocated(&vma->node)); size = max(size, vma->size); alignment = max(alignment, vma->display_alignment); if (flags & PIN_MAPPABLE) { size = max_t(typeof(size), size, vma->fence_size); alignment = max_t(typeof(alignment), alignment, vma->fence_alignment); } GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); GEM_BUG_ON(!is_power_of_2(alignment)); start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0; GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); end = vma->vm->total; if (flags & PIN_MAPPABLE) end = min_t(u64, end, dev_priv->ggtt.mappable_end); if (flags & PIN_ZONE_4G) end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); /* If binding the object/GGTT view requires more space than the entire * aperture has, reject it early before evicting everything in a vain * attempt to find space. */ if (size > end) { DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n", size, flags & PIN_MAPPABLE ? "mappable" : "total", end); return -ENOSPC; } if (vma->obj) { ret = i915_gem_object_pin_pages(vma->obj); if (ret) return ret; cache_level = vma->obj->cache_level; } else { cache_level = 0; } GEM_BUG_ON(vma->pages); ret = vma->ops->set_pages(vma); if (ret) goto err_unpin; if (flags & PIN_OFFSET_FIXED) { u64 offset = flags & PIN_OFFSET_MASK; if (!IS_ALIGNED(offset, alignment) || range_overflows(offset, size, end)) { ret = -EINVAL; goto err_clear; } ret = i915_gem_gtt_reserve(vma->vm, &vma->node, size, offset, cache_level, flags); if (ret) goto err_clear; } else { /* * We only support huge gtt pages through the 48b PPGTT, * however we also don't want to force any alignment for * objects which need to be tightly packed into the low 32bits. * * Note that we assume that GGTT are limited to 4GiB for the * forseeable future. See also i915_ggtt_offset(). */ if (upper_32_bits(end - 1) && vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { /* * We can't mix 64K and 4K PTEs in the same page-table * (2M block), and so to avoid the ugliness and * complexity of coloring we opt for just aligning 64K * objects to 2M. */ u64 page_alignment = rounddown_pow_of_two(vma->page_sizes.sg | I915_GTT_PAGE_SIZE_2M); /* * Check we don't expand for the limited Global GTT * (mappable aperture is even more precious!). This * also checks that we exclude the aliasing-ppgtt. */ GEM_BUG_ON(i915_vma_is_ggtt(vma)); alignment = max(alignment, page_alignment); if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K) size = round_up(size, I915_GTT_PAGE_SIZE_2M); } ret = i915_gem_gtt_insert(vma->vm, &vma->node, size, alignment, cache_level, start, end, flags); if (ret) goto err_clear; GEM_BUG_ON(vma->node.start < start); GEM_BUG_ON(vma->node.start + vma->node.size > end); } GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, cache_level)); list_move_tail(&vma->vm_link, &vma->vm->inactive_list); if (vma->obj) { struct drm_i915_gem_object *obj = vma->obj; spin_lock(&dev_priv->mm.obj_lock); list_move_tail(&obj->mm.link, &dev_priv->mm.bound_list); obj->bind_count++; spin_unlock(&dev_priv->mm.obj_lock); assert_bind_count(obj); } return 0; err_clear: vma->ops->clear_pages(vma); err_unpin: if (vma->obj) i915_gem_object_unpin_pages(vma->obj); return ret; } static void i915_vma_remove(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND)); vma->ops->clear_pages(vma); drm_mm_remove_node(&vma->node); list_move_tail(&vma->vm_link, &vma->vm->unbound_list); /* * Since the unbound list is global, only move to that list if * no more VMAs exist. */ if (vma->obj) { struct drm_i915_gem_object *obj = vma->obj; spin_lock(&i915->mm.obj_lock); if (--obj->bind_count == 0) list_move_tail(&obj->mm.link, &i915->mm.unbound_list); spin_unlock(&i915->mm.obj_lock); /* * And finally now the object is completely decoupled from this * vma, we can drop its hold on the backing storage and allow * it to be reaped by the shrinker. */ i915_gem_object_unpin_pages(obj); assert_bind_count(obj); } } int __i915_vma_do_pin(struct i915_vma *vma, u64 size, u64 alignment, u64 flags) { const unsigned int bound = vma->flags; int ret; lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0); GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma)); if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) { ret = -EBUSY; goto err_unpin; } if ((bound & I915_VMA_BIND_MASK) == 0) { ret = i915_vma_insert(vma, size, alignment, flags); if (ret) goto err_unpin; } GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); ret = i915_vma_bind(vma, vma->obj ? vma->obj->cache_level : 0, flags); if (ret) goto err_remove; GEM_BUG_ON((vma->flags & I915_VMA_BIND_MASK) == 0); if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND) __i915_vma_set_map_and_fenceable(vma); GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags)); return 0; err_remove: if ((bound & I915_VMA_BIND_MASK) == 0) { i915_vma_remove(vma); GEM_BUG_ON(vma->pages); GEM_BUG_ON(vma->flags & I915_VMA_BIND_MASK); } err_unpin: __i915_vma_unpin(vma); return ret; } void i915_vma_close(struct i915_vma *vma) { lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); GEM_BUG_ON(i915_vma_is_closed(vma)); vma->flags |= I915_VMA_CLOSED; /* * We defer actually closing, unbinding and destroying the VMA until * the next idle point, or if the object is freed in the meantime. By * postponing the unbind, we allow for it to be resurrected by the * client, avoiding the work required to rebind the VMA. This is * advantageous for DRI, where the client/server pass objects * between themselves, temporarily opening a local VMA to the * object, and then closing it again. The same object is then reused * on the next frame (or two, depending on the depth of the swap queue) * causing us to rebind the VMA once more. This ends up being a lot * of wasted work for the steady state. */ list_add_tail(&vma->closed_link, &vma->vm->i915->gt.closed_vma); } void i915_vma_reopen(struct i915_vma *vma) { lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); if (vma->flags & I915_VMA_CLOSED) { vma->flags &= ~I915_VMA_CLOSED; list_del(&vma->closed_link); } } static void __i915_vma_destroy(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; struct i915_vma_active *iter, *n; GEM_BUG_ON(vma->node.allocated); GEM_BUG_ON(vma->fence); GEM_BUG_ON(i915_gem_active_isset(&vma->last_fence)); list_del(&vma->obj_link); list_del(&vma->vm_link); if (vma->obj) rb_erase(&vma->obj_node, &vma->obj->vma_tree); rbtree_postorder_for_each_entry_safe(iter, n, &vma->active, node) { GEM_BUG_ON(i915_gem_active_isset(&iter->base)); kfree(iter); } #ifdef __linux__ kmem_cache_free(i915->vmas, vma); #else pool_put(&i915->vmas, vma); #endif } void i915_vma_destroy(struct i915_vma *vma) { lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); GEM_BUG_ON(i915_vma_is_active(vma)); GEM_BUG_ON(i915_vma_is_pinned(vma)); if (i915_vma_is_closed(vma)) list_del(&vma->closed_link); WARN_ON(i915_vma_unbind(vma)); __i915_vma_destroy(vma); } void i915_vma_parked(struct drm_i915_private *i915) { struct i915_vma *vma, *next; list_for_each_entry_safe(vma, next, &i915->gt.closed_vma, closed_link) { GEM_BUG_ON(!i915_vma_is_closed(vma)); i915_vma_destroy(vma); } GEM_BUG_ON(!list_empty(&i915->gt.closed_vma)); } static void __i915_vma_iounmap(struct i915_vma *vma) { GEM_BUG_ON(i915_vma_is_pinned(vma)); if (vma->iomap == NULL) return; #ifdef __linux__ io_mapping_unmap(vma->iomap); #else struct drm_i915_private *dev_priv = vma->vm->i915; agp_unmap_subregion(dev_priv->agph, vma->bsh, vma->node.size); #endif vma->iomap = NULL; } void i915_vma_revoke_mmap(struct i915_vma *vma) { struct drm_vma_offset_node *node = &vma->obj->base.vma_node; u64 vma_offset; lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); if (!i915_vma_has_userfault(vma)) return; GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma)); GEM_BUG_ON(!vma->obj->userfault_count); vma_offset = vma->ggtt_view.partial.offset << PAGE_SHIFT; #ifdef __linux__ unmap_mapping_range(vma->vm->i915->drm.anon_inode->i_mapping, drm_vma_node_offset_addr(node) + vma_offset, vma->size, 1); #else struct drm_i915_private *dev_priv = vma->obj->base.dev->dev_private; struct vm_page *pg; for (pg = &dev_priv->pgs[atop(vma->node.start)]; pg != &dev_priv->pgs[atop(vma->node.start + vma->size)]; pg++) pmap_page_protect(pg, PROT_NONE); #endif i915_vma_unset_userfault(vma); if (!--vma->obj->userfault_count) list_del(&vma->obj->userfault_link); } static void export_fence(struct i915_vma *vma, struct i915_request *rq, unsigned int flags) { struct reservation_object *resv = vma->resv; /* * Ignore errors from failing to allocate the new fence, we can't * handle an error right now. Worst case should be missed * synchronisation leading to rendering corruption. */ reservation_object_lock(resv, NULL); if (flags & EXEC_OBJECT_WRITE) reservation_object_add_excl_fence(resv, &rq->fence); else if (reservation_object_reserve_shared(resv) == 0) reservation_object_add_shared_fence(resv, &rq->fence); reservation_object_unlock(resv); } static struct i915_gem_active *active_instance(struct i915_vma *vma, u64 idx) { struct i915_vma_active *active; struct rb_node **p, *parent; struct i915_request *old; /* * We track the most recently used timeline to skip a rbtree search * for the common case, under typical loads we never need the rbtree * at all. We can reuse the last_active slot if it is empty, that is * after the previous activity has been retired, or if the active * matches the current timeline. * * Note that we allow the timeline to be active simultaneously in * the rbtree and the last_active cache. We do this to avoid having * to search and replace the rbtree element for a new timeline, with * the cost being that we must be aware that the vma may be retired * twice for the same timeline (as the older rbtree element will be * retired before the new request added to last_active). */ old = i915_gem_active_raw(&vma->last_active, &vma->vm->i915->drm.struct_mutex); if (!old || old->fence.context == idx) goto out; /* Move the currently active fence into the rbtree */ idx = old->fence.context; parent = NULL; p = &vma->active.rb_node; while (*p) { parent = *p; active = rb_entry(parent, struct i915_vma_active, node); if (active->timeline == idx) goto replace; if (active->timeline < idx) p = &parent->rb_right; else p = &parent->rb_left; } active = kmalloc(sizeof(*active), GFP_KERNEL); /* kmalloc may retire the vma->last_active request (thanks shrinker)! */ if (unlikely(!i915_gem_active_raw(&vma->last_active, &vma->vm->i915->drm.struct_mutex))) { kfree(active); goto out; } if (unlikely(!active)) return ERR_PTR(-ENOMEM); init_request_active(&active->base, i915_vma_retire); active->vma = vma; active->timeline = idx; rb_link_node(&active->node, parent, p); rb_insert_color(&active->node, &vma->active); replace: /* * Overwrite the previous active slot in the rbtree with last_active, * leaving last_active zeroed. If the previous slot is still active, * we must be careful as we now only expect to receive one retire * callback not two, and so much undo the active counting for the * overwritten slot. */ if (i915_gem_active_isset(&active->base)) { /* Retire ourselves from the old rq->active_list */ __list_del_entry(&active->base.link); vma->active_count--; GEM_BUG_ON(!vma->active_count); } GEM_BUG_ON(list_empty(&vma->last_active.link)); list_replace_init(&vma->last_active.link, &active->base.link); active->base.request = fetch_and_zero(&vma->last_active.request); out: return &vma->last_active; } int i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq, unsigned int flags) { struct drm_i915_gem_object *obj = vma->obj; struct i915_gem_active *active; lockdep_assert_held(&rq->i915->drm.struct_mutex); GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); active = active_instance(vma, rq->fence.context); if (IS_ERR(active)) return PTR_ERR(active); /* * Add a reference if we're newly entering the active list. * The order in which we add operations to the retirement queue is * vital here: mark_active adds to the start of the callback list, * such that subsequent callbacks are called first. Therefore we * add the active reference first and queue for it to be dropped * *last*. */ if (!i915_gem_active_isset(active) && !vma->active_count++) { list_move_tail(&vma->vm_link, &vma->vm->active_list); obj->active_count++; } i915_gem_active_set(active, rq); GEM_BUG_ON(!i915_vma_is_active(vma)); GEM_BUG_ON(!obj->active_count); obj->write_domain = 0; if (flags & EXEC_OBJECT_WRITE) { obj->write_domain = I915_GEM_DOMAIN_RENDER; if (intel_fb_obj_invalidate(obj, ORIGIN_CS)) i915_gem_active_set(&obj->frontbuffer_write, rq); obj->read_domains = 0; } obj->read_domains |= I915_GEM_GPU_DOMAINS; if (flags & EXEC_OBJECT_NEEDS_FENCE) i915_gem_active_set(&vma->last_fence, rq); export_fence(vma, rq, flags); return 0; } int i915_vma_unbind(struct i915_vma *vma) { int ret; lockdep_assert_held(&vma->vm->i915->drm.struct_mutex); /* * First wait upon any activity as retiring the request may * have side-effects such as unpinning or even unbinding this vma. */ might_sleep(); if (i915_vma_is_active(vma)) { struct i915_vma_active *active, *n; /* * When a closed VMA is retired, it is unbound - eek. * In order to prevent it from being recursively closed, * take a pin on the vma so that the second unbind is * aborted. * * Even more scary is that the retire callback may free * the object (last active vma). To prevent the explosion * we defer the actual object free to a worker that can * only proceed once it acquires the struct_mutex (which * we currently hold, therefore it cannot free this object * before we are finished). */ __i915_vma_pin(vma); ret = i915_gem_active_retire(&vma->last_active, &vma->vm->i915->drm.struct_mutex); if (ret) goto unpin; rbtree_postorder_for_each_entry_safe(active, n, &vma->active, node) { ret = i915_gem_active_retire(&active->base, &vma->vm->i915->drm.struct_mutex); if (ret) goto unpin; } ret = i915_gem_active_retire(&vma->last_fence, &vma->vm->i915->drm.struct_mutex); unpin: __i915_vma_unpin(vma); if (ret) return ret; } GEM_BUG_ON(i915_vma_is_active(vma)); if (i915_vma_is_pinned(vma)) { vma_print_allocator(vma, "is pinned"); return -EBUSY; } if (!drm_mm_node_allocated(&vma->node)) return 0; if (i915_vma_is_map_and_fenceable(vma)) { /* * Check that we have flushed all writes through the GGTT * before the unbind, other due to non-strict nature of those * indirect writes they may end up referencing the GGTT PTE * after the unbind. */ i915_vma_flush_writes(vma); GEM_BUG_ON(i915_vma_has_ggtt_write(vma)); /* release the fence reg _after_ flushing */ ret = i915_vma_put_fence(vma); if (ret) return ret; /* Force a pagefault for domain tracking on next user access */ i915_vma_revoke_mmap(vma); __i915_vma_iounmap(vma); vma->flags &= ~I915_VMA_CAN_FENCE; } GEM_BUG_ON(vma->fence); GEM_BUG_ON(i915_vma_has_userfault(vma)); if (likely(!vma->vm->closed)) { trace_i915_vma_unbind(vma); vma->ops->unbind_vma(vma); } vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND); i915_vma_remove(vma); return 0; } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/i915_vma.c" #endif