/* mga_dma.c -- DMA support for mga g200/g400 -*- linux-c -*- * Created: Mon Dec 13 01:50:01 1999 by jhartmann@precisioninsight.com */ /* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. * Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file mga_dma.c * DMA support for MGA G200 / G400. * * \author Rickard E. (Rik) Faith * \author Jeff Hartmann * \author Keith Whitwell * \author Gareth Hughes */ #include "drmP.h" #include "drm.h" #include "drm_sarea.h" #include "mga_drm.h" #include "mga_drv.h" #define MGA_FREELIST_DEBUG 0 #define MINIMAL_CLEANUP 0 #define FULL_CLEANUP 1 static int mga_do_cleanup_dma(struct drm_device *dev, int full_cleanup); /* ================================================================ * Engine control */ int mga_do_wait_for_idle(drm_mga_private_t * dev_priv) { u32 status = 0; int i; DRM_DEBUG("\n"); for (i = 0; i < dev_priv->usec_timeout; i++) { status = MGA_READ(MGA_STATUS) & MGA_ENGINE_IDLE_MASK; if (status == MGA_ENDPRDMASTS) { MGA_WRITE8(MGA_CRTC_INDEX, 0); return 0; } DRM_UDELAY(1); } #if MGA_DMA_DEBUG DRM_ERROR("failed!\n"); DRM_INFO(" status=0x%08x\n", status); #endif return EBUSY; } static int mga_do_dma_reset(drm_mga_private_t * dev_priv) { drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv; drm_mga_primary_buffer_t *primary = &dev_priv->prim; DRM_DEBUG("\n"); /* The primary DMA stream should look like new right about now. */ primary->tail = 0; primary->space = primary->size; primary->last_flush = 0; sarea_priv->last_wrap = 0; /* FIXME: Reset counters, buffer ages etc... */ /* FIXME: What else do we need to reinitialize? WARP stuff? */ return 0; } /* ================================================================ * Primary DMA stream */ void mga_do_dma_flush(drm_mga_private_t * dev_priv) { drm_mga_primary_buffer_t *primary = &dev_priv->prim; u32 head, tail; u32 status = 0; int i; DMA_LOCALS; DRM_DEBUG("\n"); /* We need to wait so that we can do an safe flush */ for (i = 0; i < dev_priv->usec_timeout; i++) { status = MGA_READ(MGA_STATUS) & MGA_ENGINE_IDLE_MASK; if (status == MGA_ENDPRDMASTS) break; DRM_UDELAY(1); } if (primary->tail == primary->last_flush) { DRM_DEBUG(" bailing out...\n"); return; } tail = primary->tail + dev_priv->primary->offset; /* We need to pad the stream between flushes, as the card * actually (partially?) reads the first of these commands. * See page 4-16 in the G400 manual, middle of the page or so. */ BEGIN_DMA(1); DMA_BLOCK(MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000); ADVANCE_DMA(); primary->last_flush = primary->tail; head = MGA_READ(MGA_PRIMADDRESS); if (head <= tail) { primary->space = primary->size - primary->tail; } else { primary->space = head - tail; } DRM_DEBUG(" head = 0x%06lx\n", head - dev_priv->primary->offset); DRM_DEBUG(" tail = 0x%06lx\n", tail - dev_priv->primary->offset); DRM_DEBUG(" space = 0x%06x\n", primary->space); mga_flush_write_combine(); MGA_WRITE(MGA_PRIMEND, tail | dev_priv->dma_access); DRM_DEBUG("done.\n"); } void mga_do_dma_wrap_start(drm_mga_private_t * dev_priv) { drm_mga_primary_buffer_t *primary = &dev_priv->prim; u32 head, tail; DMA_LOCALS; DRM_DEBUG("\n"); BEGIN_DMA_WRAP(); DMA_BLOCK(MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000); ADVANCE_DMA(); tail = primary->tail + dev_priv->primary->offset; primary->tail = 0; primary->last_flush = 0; primary->last_wrap++; head = MGA_READ(MGA_PRIMADDRESS); if (head == dev_priv->primary->offset) { primary->space = primary->size; } else { primary->space = head - dev_priv->primary->offset; } DRM_DEBUG(" head = 0x%06lx\n", head - dev_priv->primary->offset); DRM_DEBUG(" tail = 0x%06x\n", primary->tail); DRM_DEBUG(" wrap = %d\n", primary->last_wrap); DRM_DEBUG(" space = 0x%06x\n", primary->space); mga_flush_write_combine(); MGA_WRITE(MGA_PRIMEND, tail | dev_priv->dma_access); set_bit(0, &primary->wrapped); DRM_DEBUG("done.\n"); } void mga_do_dma_wrap_end(drm_mga_private_t * dev_priv) { drm_mga_primary_buffer_t *primary = &dev_priv->prim; drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv; u32 head = dev_priv->primary->offset; DRM_DEBUG("\n"); sarea_priv->last_wrap++; DRM_DEBUG(" wrap = %d\n", sarea_priv->last_wrap); mga_flush_write_combine(); MGA_WRITE(MGA_PRIMADDRESS, head | MGA_DMA_GENERAL); clear_bit(0, &primary->wrapped); DRM_DEBUG("done.\n"); } /* ================================================================ * Freelist management */ #define MGA_BUFFER_USED ~0 #define MGA_BUFFER_FREE 0 #if MGA_FREELIST_DEBUG static void mga_freelist_print(struct drm_device * dev) { drm_mga_private_t *dev_priv = dev->dev_private; drm_mga_freelist_t *entry; DRM_INFO("\n"); DRM_INFO("current dispatch: last=0x%x done=0x%x\n", dev_priv->sarea_priv->last_dispatch, (unsigned int)(MGA_READ(MGA_PRIMADDRESS) - dev_priv->primary->offset)); DRM_INFO("current freelist:\n"); for (entry = dev_priv->head->next; entry; entry = entry->next) { DRM_INFO(" %p idx=%2d age=0x%x 0x%06lx\n", entry, entry->buf->idx, entry->age.head, entry->age.head - dev_priv->primary->offset); } DRM_INFO("\n"); } #endif static int mga_freelist_init(struct drm_device * dev, drm_mga_private_t * dev_priv) { struct drm_device_dma *dma = dev->dma; struct drm_buf *buf; drm_mga_buf_priv_t *buf_priv; drm_mga_freelist_t *entry; int i; DRM_DEBUG("count=%d\n", dma->buf_count); dev_priv->head = drm_calloc(1, sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER); if (dev_priv->head == NULL) return ENOMEM; SET_AGE(&dev_priv->head->age, MGA_BUFFER_USED, 0); for (i = 0; i < dma->buf_count; i++) { buf = dma->buflist[i]; buf_priv = (drm_mga_buf_priv_t *)buf; entry = drm_calloc(1, sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER); if (entry == NULL) return ENOMEM; entry->next = dev_priv->head->next; entry->prev = dev_priv->head; SET_AGE(&entry->age, MGA_BUFFER_FREE, 0); if (dev_priv->head->next != NULL) dev_priv->head->next->prev = entry; if (entry->next == NULL) dev_priv->tail = entry; buf_priv->list_entry = entry; buf_priv->discard = 0; buf_priv->dispatched = 0; dev_priv->head->next = entry; } return 0; } static void mga_freelist_cleanup(struct drm_device * dev) { drm_mga_private_t *dev_priv = dev->dev_private; drm_mga_freelist_t *entry; drm_mga_freelist_t *next; DRM_DEBUG("\n"); entry = dev_priv->head; while (entry) { next = entry->next; drm_free(entry, sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER); entry = next; } dev_priv->head = dev_priv->tail = NULL; } #if 0 /* FIXME: Still needed? */ static void mga_freelist_reset(struct drm_device * dev) { drm_device_dma_t *dma = dev->dma; struct drm_buf *buf; drm_mga_buf_priv_t *buf_priv; int i; for (i = 0; i < dma->buf_count; i++) { buf = dma->buflist[i]; buf_priv = buf->dev_private; SET_AGE(&buf_priv->list_entry->age, MGA_BUFFER_FREE, 0); } } #endif static struct drm_buf *mga_freelist_get(struct drm_device * dev) { drm_mga_private_t *dev_priv = dev->dev_private; drm_mga_freelist_t *next; drm_mga_freelist_t *prev; drm_mga_freelist_t *tail = dev_priv->tail; u32 head, wrap; DRM_DEBUG("\n"); head = MGA_READ(MGA_PRIMADDRESS); wrap = dev_priv->sarea_priv->last_wrap; DRM_DEBUG(" tail=0x%06lx %d\n", tail->age.head ? tail->age.head - dev_priv->primary->offset : 0, tail->age.wrap); DRM_DEBUG(" head=0x%06lx %d\n", head - dev_priv->primary->offset, wrap); if (TEST_AGE(&tail->age, head, wrap)) { prev = dev_priv->tail->prev; next = dev_priv->tail; prev->next = NULL; next->prev = next->next = NULL; dev_priv->tail = prev; SET_AGE(&next->age, MGA_BUFFER_USED, 0); return next->buf; } DRM_DEBUG("returning NULL!\n"); return NULL; } int mga_freelist_put(struct drm_device * dev, struct drm_buf * buf) { drm_mga_private_t *dev_priv = dev->dev_private; drm_mga_buf_priv_t *buf_priv = (drm_mga_buf_priv_t *)buf; drm_mga_freelist_t *head, *entry, *prev; DRM_DEBUG("age=0x%06lx wrap=%d\n", buf_priv->list_entry->age.head - dev_priv->primary->offset, buf_priv->list_entry->age.wrap); entry = buf_priv->list_entry; head = dev_priv->head; if (buf_priv->list_entry->age.head == MGA_BUFFER_USED) { SET_AGE(&entry->age, MGA_BUFFER_FREE, 0); prev = dev_priv->tail; prev->next = entry; entry->prev = prev; entry->next = NULL; } else { prev = head->next; head->next = entry; prev->prev = entry; entry->prev = head; entry->next = prev; } return 0; } /* ================================================================ * DMA initialization, cleanup */ /** * Bootstrap the driver for AGP DMA. * * \todo * Investigate whether there is any benifit to storing the WARP microcode in * AGP memory. If not, the microcode may as well always be put in PCI * memory. * * \todo * This routine needs to set dma_bs->agp_mode to the mode actually configured * in the hardware. Looking just at the Linux AGP driver code, I don't see * an easy way to determine this. * * \sa mga_do_dma_bootstrap, mga_do_pci_dma_bootstrap */ static int mga_do_agp_dma_bootstrap(struct drm_device *dev, drm_mga_dma_bootstrap_t * dma_bs) { drm_mga_private_t *const dev_priv = (drm_mga_private_t *)dev->dev_private; unsigned int warp_size = mga_warp_microcode_size(dev_priv); int err; unsigned offset; const unsigned secondary_size = dma_bs->secondary_bin_count * dma_bs->secondary_bin_size; const unsigned agp_size = (dma_bs->agp_size << 20); struct drm_buf_desc req; struct drm_agp_mode mode; struct drm_agp_info info; struct drm_agp_buffer agp_req; struct drm_agp_binding bind_req; /* Acquire AGP. */ err = drm_agp_acquire(dev); if (err) { DRM_ERROR("Unable to acquire AGP: %d\n", err); return err; } err = drm_agp_info(dev, &info); if (err) { DRM_ERROR("Unable to get AGP info: %d\n", err); return err; } mode.mode = (info.mode & ~0x07) | dma_bs->agp_mode; err = drm_agp_enable(dev, mode); if (err) { DRM_ERROR("Unable to enable AGP (mode = 0x%lx)\n", mode.mode); return err; } /* In addition to the usual AGP mode configuration, the G200 AGP cards * need to have the AGP mode "manually" set. */ if (dev_priv->chipset == MGA_CARD_TYPE_G200) { if (mode.mode & 0x02) { MGA_WRITE(MGA_AGP_PLL, MGA_AGP2XPLL_ENABLE); } else { MGA_WRITE(MGA_AGP_PLL, MGA_AGP2XPLL_DISABLE); } } /* Allocate and bind AGP memory. */ agp_req.size = agp_size; agp_req.type = 0; err = drm_agp_alloc(dev, &agp_req); if (err) { dev_priv->agp_size = 0; DRM_ERROR("Unable to allocate %uMB AGP memory\n", dma_bs->agp_size); return err; } dev_priv->agp_size = agp_size; dev_priv->agp_handle = agp_req.handle; bind_req.handle = agp_req.handle; bind_req.offset = 0; err = drm_agp_bind( dev, &bind_req ); if (err) { DRM_ERROR("Unable to bind AGP memory: %d\n", err); return err; } /* Make drm_addbufs happy by not trying to create a mapping for less * than a page. */ if (warp_size < PAGE_SIZE) warp_size = PAGE_SIZE; offset = 0; err = drm_addmap(dev, offset, warp_size, _DRM_AGP, _DRM_READ_ONLY, &dev_priv->warp); if (err) { DRM_ERROR("Unable to map WARP microcode: %d\n", err); return err; } offset += warp_size; err = drm_addmap(dev, offset, dma_bs->primary_size, _DRM_AGP, _DRM_READ_ONLY, & dev_priv->primary); if (err) { DRM_ERROR("Unable to map primary DMA region: %d\n", err); return err; } offset += dma_bs->primary_size; err = drm_addmap(dev, offset, secondary_size, _DRM_AGP, 0, & dev->agp_buffer_map); if (err) { DRM_ERROR("Unable to map secondary DMA region: %d\n", err); return err; } (void)memset( &req, 0, sizeof(req) ); req.count = dma_bs->secondary_bin_count; req.size = dma_bs->secondary_bin_size; req.flags = _DRM_AGP_BUFFER; req.agp_start = offset; err = drm_addbufs_agp(dev, &req); if (err) { DRM_ERROR("Unable to add secondary DMA buffers: %d\n", err); return err; } offset += secondary_size; err = drm_addmap(dev, offset, agp_size - offset, _DRM_AGP, 0, & dev_priv->agp_textures); if (err) { DRM_ERROR("Unable to map AGP texture region: %d\n", err); return err; } drm_core_ioremap(dev_priv->warp, dev); drm_core_ioremap(dev_priv->primary, dev); drm_core_ioremap(dev->agp_buffer_map, dev); if (!dev_priv->warp->handle || !dev_priv->primary->handle || !dev->agp_buffer_map->handle) { DRM_ERROR("failed to ioremap agp regions! (%p, %p, %p)\n", dev_priv->warp->handle, dev_priv->primary->handle, dev->agp_buffer_map->handle); return ENOMEM; } dev_priv->dma_access = MGA_PAGPXFER; dev_priv->wagp_enable = MGA_WAGP_ENABLE; DRM_INFO("Initialized card for AGP DMA.\n"); return 0; } /** * Bootstrap the driver for PCI DMA. * * \todo * The algorithm for decreasing the size of the primary DMA buffer could be * better. The size should be rounded up to the nearest page size, then * decrease the request size by a single page each pass through the loop. * * \todo * Determine whether the maximum address passed to drm_pci_alloc is correct. * The same goes for drm_addbufs_pci. * * \sa mga_do_dma_bootstrap, mga_do_agp_dma_bootstrap */ static int mga_do_pci_dma_bootstrap(struct drm_device * dev, drm_mga_dma_bootstrap_t * dma_bs) { drm_mga_private_t *const dev_priv = (drm_mga_private_t *) dev->dev_private; unsigned int warp_size = mga_warp_microcode_size(dev_priv); unsigned int primary_size; unsigned int bin_count; int err; struct drm_buf_desc req; if (dev->dma == NULL) { DRM_ERROR("dev->dma is NULL\n"); return EFAULT; } /* Make drm_addbufs happy by not trying to create a mapping for less * than a page. */ if (warp_size < PAGE_SIZE) warp_size = PAGE_SIZE; /* The proper alignment is 0x100 for this mapping */ err = drm_addmap(dev, 0, warp_size, _DRM_CONSISTENT, _DRM_READ_ONLY, &dev_priv->warp); if (err != 0) { DRM_ERROR("Unable to create mapping for WARP microcode: %d\n", err); return err; } /* Other than the bottom two bits being used to encode other * information, there don't appear to be any restrictions on the * alignment of the primary or secondary DMA buffers. */ for (primary_size = dma_bs->primary_size; primary_size != 0; primary_size >>= 1 ) { /* The proper alignment for this mapping is 0x04 */ err = drm_addmap(dev, 0, primary_size, _DRM_CONSISTENT, _DRM_READ_ONLY, &dev_priv->primary); if (!err) break; } if (err != 0) { DRM_ERROR("Unable to allocate primary DMA region: %d\n", err); return ENOMEM; } if (dev_priv->primary->size != dma_bs->primary_size) { DRM_INFO("Primary DMA buffer size reduced from %u to %u.\n", dma_bs->primary_size, (unsigned)dev_priv->primary->size); dma_bs->primary_size = dev_priv->primary->size; } for (bin_count = dma_bs->secondary_bin_count; bin_count > 0; bin_count-- ) { (void)memset(&req, 0, sizeof(req)); req.count = bin_count; req.size = dma_bs->secondary_bin_size; err = drm_addbufs_pci(dev, &req); if (!err) { break; } } if (bin_count == 0) { DRM_ERROR("Unable to add secondary DMA buffers: %d\n", err); return err; } if (bin_count != dma_bs->secondary_bin_count) { DRM_INFO("Secondary PCI DMA buffer bin count reduced from %u " "to %u.\n", dma_bs->secondary_bin_count, bin_count); dma_bs->secondary_bin_count = bin_count; } dev_priv->dma_access = 0; dev_priv->wagp_enable = 0; dma_bs->agp_mode = 0; DRM_INFO("Initialized card for PCI DMA.\n"); return 0; } static int mga_do_dma_bootstrap(struct drm_device *dev, drm_mga_dma_bootstrap_t *dma_bs) { const int is_agp = (dma_bs->agp_mode != 0) && dev->agp != NULL; int err; drm_mga_private_t *const dev_priv = (drm_mga_private_t *) dev->dev_private; dev_priv->used_new_dma_init = 1; /* The first steps are the same for both PCI and AGP based DMA. Map * a status page. The mmio registers were mapped on attach. */ err = drm_addmap(dev, 0, SAREA_MAX, _DRM_SHM, _DRM_READ_ONLY | _DRM_LOCKED | _DRM_KERNEL, & dev_priv->status); if (err) { DRM_ERROR("Unable to map status region: %d\n", err); return err; } /* The DMA initialization procedure is slightly different for PCI and * AGP cards. AGP cards just allocate a large block of AGP memory and * carve off portions of it for internal uses. The remaining memory * is returned to user-mode to be used for AGP textures. */ if (is_agp) { err = mga_do_agp_dma_bootstrap(dev, dma_bs); } /* If we attempted to initialize the card for AGP DMA but failed, * clean-up any mess that may have been created. */ if (err) { mga_do_cleanup_dma(dev, MINIMAL_CLEANUP); } /* Not only do we want to try and initialized PCI cards for PCI DMA, * but we also try to initialized AGP cards that could not be * initialized for AGP DMA. This covers the case where we have an AGP * card in a system with an unsupported AGP chipset. In that case the * card will be detected as AGP, but we won't be able to allocate any * AGP memory, etc. */ if (!is_agp || err) { err = mga_do_pci_dma_bootstrap(dev, dma_bs); } return err; } int mga_dma_bootstrap(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_mga_dma_bootstrap_t *bootstrap = data; int err; static const int modes[] = { 0, 1, 2, 2, 4, 4, 4, 4 }; const drm_mga_private_t *const dev_priv = (drm_mga_private_t *) dev->dev_private; err = mga_do_dma_bootstrap(dev, bootstrap); if (err) { mga_do_cleanup_dma(dev, FULL_CLEANUP); return err; } if (dev_priv->agp_textures != NULL) { bootstrap->texture_handle = dev_priv->agp_textures->offset; bootstrap->texture_size = dev_priv->agp_textures->size; } else { bootstrap->texture_handle = 0; bootstrap->texture_size = 0; } bootstrap->agp_mode = modes[bootstrap->agp_mode & 0x07]; return 0; } static int mga_do_init_dma(struct drm_device * dev, drm_mga_init_t * init) { drm_mga_private_t *dev_priv; int ret; DRM_DEBUG("\n"); dev_priv = dev->dev_private; if (init->sgram) { dev_priv->clear_cmd = MGA_DWGCTL_CLEAR | MGA_ATYPE_BLK; } else { dev_priv->clear_cmd = MGA_DWGCTL_CLEAR | MGA_ATYPE_RSTR; } dev_priv->maccess = init->maccess; dev_priv->fb_cpp = init->fb_cpp; dev_priv->front_offset = init->front_offset; dev_priv->front_pitch = init->front_pitch; dev_priv->back_offset = init->back_offset; dev_priv->back_pitch = init->back_pitch; dev_priv->depth_cpp = init->depth_cpp; dev_priv->depth_offset = init->depth_offset; dev_priv->depth_pitch = init->depth_pitch; /* FIXME: Need to support AGP textures... */ dev_priv->texture_offset = init->texture_offset[0]; dev_priv->texture_size = init->texture_size[0]; dev_priv->sarea = drm_getsarea(dev); if (!dev_priv->sarea) { DRM_ERROR("failed to find sarea!\n"); return EINVAL; } if (!dev_priv->used_new_dma_init) { dev_priv->dma_access = MGA_PAGPXFER; dev_priv->wagp_enable = MGA_WAGP_ENABLE; dev_priv->status = drm_core_findmap(dev, init->status_offset); if (!dev_priv->status) { DRM_ERROR("failed to find status page!\n"); return EINVAL; } dev_priv->warp = drm_core_findmap(dev, init->warp_offset); if (!dev_priv->warp) { DRM_ERROR("failed to find warp microcode region!\n"); return EINVAL; } dev_priv->primary = drm_core_findmap(dev, init->primary_offset); if (!dev_priv->primary) { DRM_ERROR("failed to find primary dma region!\n"); return EINVAL; } dev->agp_buffer_map = drm_core_findmap(dev, init->buffers_offset); if (!dev->agp_buffer_map) { DRM_ERROR("failed to find dma buffer region!\n"); return EINVAL; } drm_core_ioremap(dev_priv->warp, dev); drm_core_ioremap(dev_priv->primary, dev); drm_core_ioremap(dev->agp_buffer_map, dev); } dev_priv->sarea_priv = (drm_mga_sarea_t *) ((u8 *) dev_priv->sarea->handle + init->sarea_priv_offset); if (!dev_priv->warp->handle || !dev_priv->primary->handle || ((dev_priv->dma_access != 0) && ((dev->agp_buffer_map == NULL) || (dev->agp_buffer_map->handle == NULL)))) { DRM_ERROR("failed to ioremap agp regions!\n"); return ENOMEM; } ret = mga_warp_install_microcode(dev_priv); if (ret != 0) { DRM_ERROR("failed to install WARP ucode: %d!\n", ret); return ret; } ret = mga_warp_init(dev_priv); if (ret != 0) { DRM_ERROR("failed to init WARP engine: %d!\n", ret); return ret; } dev_priv->prim.status = (u32 *) dev_priv->status->handle; mga_do_wait_for_idle(dev_priv); /* Init the primary DMA registers. */ MGA_WRITE(MGA_PRIMADDRESS, dev_priv->primary->offset | MGA_DMA_GENERAL); dev_priv->prim.start = (u8 *) dev_priv->primary->handle; dev_priv->prim.end = ((u8 *) dev_priv->primary->handle + dev_priv->primary->size); dev_priv->prim.size = dev_priv->primary->size; dev_priv->prim.tail = 0; dev_priv->prim.space = dev_priv->prim.size; dev_priv->prim.wrapped = 0; dev_priv->prim.last_flush = 0; dev_priv->prim.last_wrap = 0; dev_priv->prim.high_mark = 256 * DMA_BLOCK_SIZE; dev_priv->prim.status[0] = dev_priv->primary->offset; dev_priv->prim.status[1] = 0; dev_priv->sarea_priv->last_wrap = 0; dev_priv->sarea_priv->last_frame.head = 0; dev_priv->sarea_priv->last_frame.wrap = 0; if (mga_freelist_init(dev, dev_priv) < 0) { DRM_ERROR("could not initialize freelist\n"); return ENOMEM; } return 0; } static int mga_do_cleanup_dma(struct drm_device *dev, int full_cleanup) { drm_mga_private_t *dev_priv = dev->dev_private; int err = 0; DRM_DEBUG("\n"); if ((dev_priv->warp != NULL) && (dev_priv->warp->type != _DRM_CONSISTENT)) drm_core_ioremapfree(dev_priv->warp); if ((dev_priv->primary != NULL) && (dev_priv->primary->type != _DRM_CONSISTENT)) drm_core_ioremapfree(dev_priv->primary); if (dev->agp_buffer_map != NULL) drm_core_ioremapfree(dev->agp_buffer_map); if (dev_priv->used_new_dma_init) { if (dev_priv->agp_handle != 0) { struct drm_agp_binding unbind_req; struct drm_agp_buffer free_req; unbind_req.handle = dev_priv->agp_handle; drm_agp_unbind(dev, &unbind_req); free_req.handle = dev_priv->agp_handle; drm_agp_free(dev, &free_req); dev_priv->agp_textures = NULL; dev_priv->agp_size = 0; dev_priv->agp_handle = 0; } if ((dev->agp != NULL) && dev->agp->acquired) { err = drm_agp_release(dev); } } dev_priv->warp = NULL; dev_priv->primary = NULL; dev_priv->sarea = NULL; dev_priv->sarea_priv = NULL; dev->agp_buffer_map = NULL; if (full_cleanup) { dev_priv->status = NULL; dev_priv->used_new_dma_init = 0; } memset(&dev_priv->prim, 0, sizeof(dev_priv->prim)); dev_priv->warp_pipe = 0; memset(dev_priv->warp_pipe_phys, 0, sizeof(dev_priv->warp_pipe_phys)); if (dev_priv->head != NULL) { mga_freelist_cleanup(dev); } return err; } int mga_dma_init(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_mga_init_t *init = data; int err; LOCK_TEST_WITH_RETURN(dev, file_priv); switch (init->func) { case MGA_INIT_DMA: err = mga_do_init_dma(dev, init); if (err) { (void)mga_do_cleanup_dma(dev, FULL_CLEANUP); } return err; case MGA_CLEANUP_DMA: return mga_do_cleanup_dma(dev, FULL_CLEANUP); } return EINVAL; } /* ================================================================ * Primary DMA stream management */ int mga_dma_flush(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private; struct drm_lock *lock = data; LOCK_TEST_WITH_RETURN(dev, file_priv); DRM_DEBUG("%s%s%s\n", (lock->flags & _DRM_LOCK_FLUSH) ? "flush, " : "", (lock->flags & _DRM_LOCK_FLUSH_ALL) ? "flush all, " : "", (lock->flags & _DRM_LOCK_QUIESCENT) ? "idle, " : ""); WRAP_WAIT_WITH_RETURN(dev_priv); if (lock->flags & (_DRM_LOCK_FLUSH | _DRM_LOCK_FLUSH_ALL)) { mga_do_dma_flush(dev_priv); } if (lock->flags & _DRM_LOCK_QUIESCENT) { #if MGA_DMA_DEBUG int ret = mga_do_wait_for_idle(dev_priv); if (ret < 0) DRM_INFO("EBUSY\n"); return ret; #else return mga_do_wait_for_idle(dev_priv); #endif } else { return 0; } } int mga_dma_reset(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private; LOCK_TEST_WITH_RETURN(dev, file_priv); return mga_do_dma_reset(dev_priv); } /* ================================================================ * DMA buffer management */ static int mga_dma_get_buffers(struct drm_device * dev, struct drm_file *file_priv, struct drm_dma * d) { struct drm_buf *buf; int i; for (i = d->granted_count; i < d->request_count; i++) { buf = mga_freelist_get(dev); if (!buf) return EAGAIN; buf->file_priv = file_priv; if (DRM_COPY_TO_USER(&d->request_indices[i], &buf->idx, sizeof(buf->idx))) return EFAULT; if (DRM_COPY_TO_USER(&d->request_sizes[i], &buf->total, sizeof(buf->total))) return EFAULT; d->granted_count++; } return 0; } int mga_dma_buffers(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_device_dma *dma = dev->dma; drm_mga_private_t *dev_priv = (drm_mga_private_t *) dev->dev_private; struct drm_dma *d = data; int ret = 0; LOCK_TEST_WITH_RETURN(dev, file_priv); /* Please don't send us buffers. */ if (d->send_count != 0) { DRM_ERROR("Process %d trying to send %d buffers via drmDMA\n", DRM_CURRENTPID, d->send_count); return EINVAL; } /* We'll send you buffers. */ if (d->request_count < 0 || d->request_count > dma->buf_count) { DRM_ERROR("Process %d trying to get %d buffers (of %d max)\n", DRM_CURRENTPID, d->request_count, dma->buf_count); return EINVAL; } WRAP_TEST_WITH_RETURN(dev_priv); d->granted_count = 0; if (d->request_count) { ret = mga_dma_get_buffers(dev, file_priv, d); } return ret; } /** * Called when the last opener of the device is closed. */ void mga_driver_lastclose(struct drm_device * dev) { mga_do_cleanup_dma(dev, FULL_CLEANUP); } int mga_driver_dma_quiescent(struct drm_device * dev) { drm_mga_private_t *dev_priv = dev->dev_private; return mga_do_wait_for_idle(dev_priv); }