/* * Copyright 2011 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include #include #include #include #include #include #include "atom.h" #include "clearstate_si.h" #include "evergreen.h" #include "r600.h" #include "radeon.h" #include "radeon_asic.h" #include "radeon_audio.h" #include "radeon_ucode.h" #include "si_blit_shaders.h" #include "si.h" #include "sid.h" MODULE_FIRMWARE("radeon/TAHITI_pfp.bin"); MODULE_FIRMWARE("radeon/TAHITI_me.bin"); MODULE_FIRMWARE("radeon/TAHITI_ce.bin"); MODULE_FIRMWARE("radeon/TAHITI_mc.bin"); MODULE_FIRMWARE("radeon/TAHITI_mc2.bin"); MODULE_FIRMWARE("radeon/TAHITI_rlc.bin"); MODULE_FIRMWARE("radeon/TAHITI_smc.bin"); MODULE_FIRMWARE("radeon/tahiti_pfp.bin"); MODULE_FIRMWARE("radeon/tahiti_me.bin"); MODULE_FIRMWARE("radeon/tahiti_ce.bin"); MODULE_FIRMWARE("radeon/tahiti_mc.bin"); MODULE_FIRMWARE("radeon/tahiti_rlc.bin"); MODULE_FIRMWARE("radeon/tahiti_smc.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_pfp.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_me.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_ce.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_mc.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_mc2.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_rlc.bin"); MODULE_FIRMWARE("radeon/PITCAIRN_smc.bin"); MODULE_FIRMWARE("radeon/pitcairn_pfp.bin"); MODULE_FIRMWARE("radeon/pitcairn_me.bin"); MODULE_FIRMWARE("radeon/pitcairn_ce.bin"); MODULE_FIRMWARE("radeon/pitcairn_mc.bin"); MODULE_FIRMWARE("radeon/pitcairn_rlc.bin"); MODULE_FIRMWARE("radeon/pitcairn_smc.bin"); MODULE_FIRMWARE("radeon/pitcairn_k_smc.bin"); MODULE_FIRMWARE("radeon/VERDE_pfp.bin"); MODULE_FIRMWARE("radeon/VERDE_me.bin"); MODULE_FIRMWARE("radeon/VERDE_ce.bin"); MODULE_FIRMWARE("radeon/VERDE_mc.bin"); MODULE_FIRMWARE("radeon/VERDE_mc2.bin"); MODULE_FIRMWARE("radeon/VERDE_rlc.bin"); MODULE_FIRMWARE("radeon/VERDE_smc.bin"); MODULE_FIRMWARE("radeon/verde_pfp.bin"); MODULE_FIRMWARE("radeon/verde_me.bin"); MODULE_FIRMWARE("radeon/verde_ce.bin"); MODULE_FIRMWARE("radeon/verde_mc.bin"); MODULE_FIRMWARE("radeon/verde_rlc.bin"); MODULE_FIRMWARE("radeon/verde_smc.bin"); MODULE_FIRMWARE("radeon/verde_k_smc.bin"); MODULE_FIRMWARE("radeon/OLAND_pfp.bin"); MODULE_FIRMWARE("radeon/OLAND_me.bin"); MODULE_FIRMWARE("radeon/OLAND_ce.bin"); MODULE_FIRMWARE("radeon/OLAND_mc.bin"); MODULE_FIRMWARE("radeon/OLAND_mc2.bin"); MODULE_FIRMWARE("radeon/OLAND_rlc.bin"); MODULE_FIRMWARE("radeon/OLAND_smc.bin"); MODULE_FIRMWARE("radeon/oland_pfp.bin"); MODULE_FIRMWARE("radeon/oland_me.bin"); MODULE_FIRMWARE("radeon/oland_ce.bin"); MODULE_FIRMWARE("radeon/oland_mc.bin"); MODULE_FIRMWARE("radeon/oland_rlc.bin"); MODULE_FIRMWARE("radeon/oland_smc.bin"); MODULE_FIRMWARE("radeon/oland_k_smc.bin"); MODULE_FIRMWARE("radeon/HAINAN_pfp.bin"); MODULE_FIRMWARE("radeon/HAINAN_me.bin"); MODULE_FIRMWARE("radeon/HAINAN_ce.bin"); MODULE_FIRMWARE("radeon/HAINAN_mc.bin"); MODULE_FIRMWARE("radeon/HAINAN_mc2.bin"); MODULE_FIRMWARE("radeon/HAINAN_rlc.bin"); MODULE_FIRMWARE("radeon/HAINAN_smc.bin"); MODULE_FIRMWARE("radeon/hainan_pfp.bin"); MODULE_FIRMWARE("radeon/hainan_me.bin"); MODULE_FIRMWARE("radeon/hainan_ce.bin"); MODULE_FIRMWARE("radeon/hainan_mc.bin"); MODULE_FIRMWARE("radeon/hainan_rlc.bin"); MODULE_FIRMWARE("radeon/hainan_smc.bin"); MODULE_FIRMWARE("radeon/hainan_k_smc.bin"); MODULE_FIRMWARE("radeon/banks_k_2_smc.bin"); MODULE_FIRMWARE("radeon/si58_mc.bin"); static u32 si_get_cu_active_bitmap(struct radeon_device *rdev, u32 se, u32 sh); static void si_pcie_gen3_enable(struct radeon_device *rdev); static void si_program_aspm(struct radeon_device *rdev); extern void sumo_rlc_fini(struct radeon_device *rdev); extern int sumo_rlc_init(struct radeon_device *rdev); static void si_enable_gui_idle_interrupt(struct radeon_device *rdev, bool enable); static void si_init_pg(struct radeon_device *rdev); static void si_init_cg(struct radeon_device *rdev); static void si_fini_pg(struct radeon_device *rdev); static void si_fini_cg(struct radeon_device *rdev); static void si_rlc_stop(struct radeon_device *rdev); static const u32 crtc_offsets[] = { EVERGREEN_CRTC0_REGISTER_OFFSET, EVERGREEN_CRTC1_REGISTER_OFFSET, EVERGREEN_CRTC2_REGISTER_OFFSET, EVERGREEN_CRTC3_REGISTER_OFFSET, EVERGREEN_CRTC4_REGISTER_OFFSET, EVERGREEN_CRTC5_REGISTER_OFFSET }; static const u32 si_disp_int_status[] = { DISP_INTERRUPT_STATUS, DISP_INTERRUPT_STATUS_CONTINUE, DISP_INTERRUPT_STATUS_CONTINUE2, DISP_INTERRUPT_STATUS_CONTINUE3, DISP_INTERRUPT_STATUS_CONTINUE4, DISP_INTERRUPT_STATUS_CONTINUE5 }; #define DC_HPDx_CONTROL(x) (DC_HPD1_CONTROL + (x * 0xc)) #define DC_HPDx_INT_CONTROL(x) (DC_HPD1_INT_CONTROL + (x * 0xc)) #define DC_HPDx_INT_STATUS_REG(x) (DC_HPD1_INT_STATUS + (x * 0xc)) static const u32 verde_rlc_save_restore_register_list[] = { (0x8000 << 16) | (0x98f4 >> 2), 0x00000000, (0x8040 << 16) | (0x98f4 >> 2), 0x00000000, (0x8000 << 16) | (0xe80 >> 2), 0x00000000, (0x8040 << 16) | (0xe80 >> 2), 0x00000000, (0x8000 << 16) | (0x89bc >> 2), 0x00000000, (0x8040 << 16) | (0x89bc >> 2), 0x00000000, (0x8000 << 16) | (0x8c1c >> 2), 0x00000000, (0x8040 << 16) | (0x8c1c >> 2), 0x00000000, (0x9c00 << 16) | (0x98f0 >> 2), 0x00000000, (0x9c00 << 16) | (0xe7c >> 2), 0x00000000, (0x8000 << 16) | (0x9148 >> 2), 0x00000000, (0x8040 << 16) | (0x9148 >> 2), 0x00000000, (0x9c00 << 16) | (0x9150 >> 2), 0x00000000, (0x9c00 << 16) | (0x897c >> 2), 0x00000000, (0x9c00 << 16) | (0x8d8c >> 2), 0x00000000, (0x9c00 << 16) | (0xac54 >> 2), 0X00000000, 0x3, (0x9c00 << 16) | (0x98f8 >> 2), 0x00000000, (0x9c00 << 16) | (0x9910 >> 2), 0x00000000, (0x9c00 << 16) | (0x9914 >> 2), 0x00000000, (0x9c00 << 16) | (0x9918 >> 2), 0x00000000, (0x9c00 << 16) | (0x991c >> 2), 0x00000000, (0x9c00 << 16) | (0x9920 >> 2), 0x00000000, (0x9c00 << 16) | (0x9924 >> 2), 0x00000000, (0x9c00 << 16) | (0x9928 >> 2), 0x00000000, (0x9c00 << 16) | (0x992c >> 2), 0x00000000, (0x9c00 << 16) | (0x9930 >> 2), 0x00000000, (0x9c00 << 16) | (0x9934 >> 2), 0x00000000, (0x9c00 << 16) | (0x9938 >> 2), 0x00000000, (0x9c00 << 16) | (0x993c >> 2), 0x00000000, (0x9c00 << 16) | (0x9940 >> 2), 0x00000000, (0x9c00 << 16) | (0x9944 >> 2), 0x00000000, (0x9c00 << 16) | (0x9948 >> 2), 0x00000000, (0x9c00 << 16) | (0x994c >> 2), 0x00000000, (0x9c00 << 16) | (0x9950 >> 2), 0x00000000, (0x9c00 << 16) | (0x9954 >> 2), 0x00000000, (0x9c00 << 16) | (0x9958 >> 2), 0x00000000, (0x9c00 << 16) | (0x995c >> 2), 0x00000000, (0x9c00 << 16) | (0x9960 >> 2), 0x00000000, (0x9c00 << 16) | (0x9964 >> 2), 0x00000000, (0x9c00 << 16) | (0x9968 >> 2), 0x00000000, (0x9c00 << 16) | (0x996c >> 2), 0x00000000, (0x9c00 << 16) | (0x9970 >> 2), 0x00000000, (0x9c00 << 16) | (0x9974 >> 2), 0x00000000, (0x9c00 << 16) | (0x9978 >> 2), 0x00000000, (0x9c00 << 16) | (0x997c >> 2), 0x00000000, (0x9c00 << 16) | (0x9980 >> 2), 0x00000000, (0x9c00 << 16) | (0x9984 >> 2), 0x00000000, (0x9c00 << 16) | (0x9988 >> 2), 0x00000000, (0x9c00 << 16) | (0x998c >> 2), 0x00000000, (0x9c00 << 16) | (0x8c00 >> 2), 0x00000000, (0x9c00 << 16) | (0x8c14 >> 2), 0x00000000, (0x9c00 << 16) | (0x8c04 >> 2), 0x00000000, (0x9c00 << 16) | (0x8c08 >> 2), 0x00000000, (0x8000 << 16) | (0x9b7c >> 2), 0x00000000, (0x8040 << 16) | (0x9b7c >> 2), 0x00000000, (0x8000 << 16) | (0xe84 >> 2), 0x00000000, (0x8040 << 16) | (0xe84 >> 2), 0x00000000, (0x8000 << 16) | (0x89c0 >> 2), 0x00000000, (0x8040 << 16) | (0x89c0 >> 2), 0x00000000, (0x8000 << 16) | (0x914c >> 2), 0x00000000, (0x8040 << 16) | (0x914c >> 2), 0x00000000, (0x8000 << 16) | (0x8c20 >> 2), 0x00000000, (0x8040 << 16) | (0x8c20 >> 2), 0x00000000, (0x8000 << 16) | (0x9354 >> 2), 0x00000000, (0x8040 << 16) | (0x9354 >> 2), 0x00000000, (0x9c00 << 16) | (0x9060 >> 2), 0x00000000, (0x9c00 << 16) | (0x9364 >> 2), 0x00000000, (0x9c00 << 16) | (0x9100 >> 2), 0x00000000, (0x9c00 << 16) | (0x913c >> 2), 0x00000000, (0x8000 << 16) | (0x90e0 >> 2), 0x00000000, (0x8000 << 16) | (0x90e4 >> 2), 0x00000000, (0x8000 << 16) | (0x90e8 >> 2), 0x00000000, (0x8040 << 16) | (0x90e0 >> 2), 0x00000000, (0x8040 << 16) | (0x90e4 >> 2), 0x00000000, (0x8040 << 16) | (0x90e8 >> 2), 0x00000000, (0x9c00 << 16) | (0x8bcc >> 2), 0x00000000, (0x9c00 << 16) | (0x8b24 >> 2), 0x00000000, (0x9c00 << 16) | (0x88c4 >> 2), 0x00000000, (0x9c00 << 16) | (0x8e50 >> 2), 0x00000000, (0x9c00 << 16) | (0x8c0c >> 2), 0x00000000, (0x9c00 << 16) | (0x8e58 >> 2), 0x00000000, (0x9c00 << 16) | (0x8e5c >> 2), 0x00000000, (0x9c00 << 16) | (0x9508 >> 2), 0x00000000, (0x9c00 << 16) | (0x950c >> 2), 0x00000000, (0x9c00 << 16) | (0x9494 >> 2), 0x00000000, (0x9c00 << 16) | (0xac0c >> 2), 0x00000000, (0x9c00 << 16) | (0xac10 >> 2), 0x00000000, (0x9c00 << 16) | (0xac14 >> 2), 0x00000000, (0x9c00 << 16) | (0xae00 >> 2), 0x00000000, (0x9c00 << 16) | (0xac08 >> 2), 0x00000000, (0x9c00 << 16) | (0x88d4 >> 2), 0x00000000, (0x9c00 << 16) | (0x88c8 >> 2), 0x00000000, (0x9c00 << 16) | (0x88cc >> 2), 0x00000000, (0x9c00 << 16) | (0x89b0 >> 2), 0x00000000, (0x9c00 << 16) | (0x8b10 >> 2), 0x00000000, (0x9c00 << 16) | (0x8a14 >> 2), 0x00000000, (0x9c00 << 16) | (0x9830 >> 2), 0x00000000, (0x9c00 << 16) | (0x9834 >> 2), 0x00000000, (0x9c00 << 16) | (0x9838 >> 2), 0x00000000, (0x9c00 << 16) | (0x9a10 >> 2), 0x00000000, (0x8000 << 16) | (0x9870 >> 2), 0x00000000, (0x8000 << 16) | (0x9874 >> 2), 0x00000000, (0x8001 << 16) | (0x9870 >> 2), 0x00000000, (0x8001 << 16) | (0x9874 >> 2), 0x00000000, (0x8040 << 16) | (0x9870 >> 2), 0x00000000, (0x8040 << 16) | (0x9874 >> 2), 0x00000000, (0x8041 << 16) | (0x9870 >> 2), 0x00000000, (0x8041 << 16) | (0x9874 >> 2), 0x00000000, 0x00000000 }; static const u32 tahiti_golden_rlc_registers[] = { 0xc424, 0xffffffff, 0x00601005, 0xc47c, 0xffffffff, 0x10104040, 0xc488, 0xffffffff, 0x0100000a, 0xc314, 0xffffffff, 0x00000800, 0xc30c, 0xffffffff, 0x800000f4, 0xf4a8, 0xffffffff, 0x00000000 }; static const u32 tahiti_golden_registers[] = { 0x9a10, 0x00010000, 0x00018208, 0x9830, 0xffffffff, 0x00000000, 0x9834, 0xf00fffff, 0x00000400, 0x9838, 0x0002021c, 0x00020200, 0xc78, 0x00000080, 0x00000000, 0xd030, 0x000300c0, 0x00800040, 0xd830, 0x000300c0, 0x00800040, 0x5bb0, 0x000000f0, 0x00000070, 0x5bc0, 0x00200000, 0x50100000, 0x7030, 0x31000311, 0x00000011, 0x277c, 0x00000003, 0x000007ff, 0x240c, 0x000007ff, 0x00000000, 0x8a14, 0xf000001f, 0x00000007, 0x8b24, 0xffffffff, 0x00ffffff, 0x8b10, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x4e000000, 0x28350, 0x3f3f3fff, 0x2a00126a, 0x30, 0x000000ff, 0x0040, 0x34, 0x00000040, 0x00004040, 0x9100, 0x07ffffff, 0x03000000, 0x8e88, 0x01ff1f3f, 0x00000000, 0x8e84, 0x01ff1f3f, 0x00000000, 0x9060, 0x0000007f, 0x00000020, 0x9508, 0x00010000, 0x00010000, 0xac14, 0x00000200, 0x000002fb, 0xac10, 0xffffffff, 0x0000543b, 0xac0c, 0xffffffff, 0xa9210876, 0x88d0, 0xffffffff, 0x000fff40, 0x88d4, 0x0000001f, 0x00000010, 0x1410, 0x20000000, 0x20fffed8, 0x15c0, 0x000c0fc0, 0x000c0400 }; static const u32 tahiti_golden_registers2[] = { 0xc64, 0x00000001, 0x00000001 }; static const u32 pitcairn_golden_rlc_registers[] = { 0xc424, 0xffffffff, 0x00601004, 0xc47c, 0xffffffff, 0x10102020, 0xc488, 0xffffffff, 0x01000020, 0xc314, 0xffffffff, 0x00000800, 0xc30c, 0xffffffff, 0x800000a4 }; static const u32 pitcairn_golden_registers[] = { 0x9a10, 0x00010000, 0x00018208, 0x9830, 0xffffffff, 0x00000000, 0x9834, 0xf00fffff, 0x00000400, 0x9838, 0x0002021c, 0x00020200, 0xc78, 0x00000080, 0x00000000, 0xd030, 0x000300c0, 0x00800040, 0xd830, 0x000300c0, 0x00800040, 0x5bb0, 0x000000f0, 0x00000070, 0x5bc0, 0x00200000, 0x50100000, 0x7030, 0x31000311, 0x00000011, 0x2ae4, 0x00073ffe, 0x000022a2, 0x240c, 0x000007ff, 0x00000000, 0x8a14, 0xf000001f, 0x00000007, 0x8b24, 0xffffffff, 0x00ffffff, 0x8b10, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x4e000000, 0x28350, 0x3f3f3fff, 0x2a00126a, 0x30, 0x000000ff, 0x0040, 0x34, 0x00000040, 0x00004040, 0x9100, 0x07ffffff, 0x03000000, 0x9060, 0x0000007f, 0x00000020, 0x9508, 0x00010000, 0x00010000, 0xac14, 0x000003ff, 0x000000f7, 0xac10, 0xffffffff, 0x00000000, 0xac0c, 0xffffffff, 0x32761054, 0x88d4, 0x0000001f, 0x00000010, 0x15c0, 0x000c0fc0, 0x000c0400 }; static const u32 verde_golden_rlc_registers[] = { 0xc424, 0xffffffff, 0x033f1005, 0xc47c, 0xffffffff, 0x10808020, 0xc488, 0xffffffff, 0x00800008, 0xc314, 0xffffffff, 0x00001000, 0xc30c, 0xffffffff, 0x80010014 }; static const u32 verde_golden_registers[] = { 0x9a10, 0x00010000, 0x00018208, 0x9830, 0xffffffff, 0x00000000, 0x9834, 0xf00fffff, 0x00000400, 0x9838, 0x0002021c, 0x00020200, 0xc78, 0x00000080, 0x00000000, 0xd030, 0x000300c0, 0x00800040, 0xd030, 0x000300c0, 0x00800040, 0xd830, 0x000300c0, 0x00800040, 0xd830, 0x000300c0, 0x00800040, 0x5bb0, 0x000000f0, 0x00000070, 0x5bc0, 0x00200000, 0x50100000, 0x7030, 0x31000311, 0x00000011, 0x2ae4, 0x00073ffe, 0x000022a2, 0x2ae4, 0x00073ffe, 0x000022a2, 0x2ae4, 0x00073ffe, 0x000022a2, 0x240c, 0x000007ff, 0x00000000, 0x240c, 0x000007ff, 0x00000000, 0x240c, 0x000007ff, 0x00000000, 0x8a14, 0xf000001f, 0x00000007, 0x8a14, 0xf000001f, 0x00000007, 0x8a14, 0xf000001f, 0x00000007, 0x8b24, 0xffffffff, 0x00ffffff, 0x8b10, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x4e000000, 0x28350, 0x3f3f3fff, 0x0000124a, 0x28350, 0x3f3f3fff, 0x0000124a, 0x28350, 0x3f3f3fff, 0x0000124a, 0x30, 0x000000ff, 0x0040, 0x34, 0x00000040, 0x00004040, 0x9100, 0x07ffffff, 0x03000000, 0x9100, 0x07ffffff, 0x03000000, 0x8e88, 0x01ff1f3f, 0x00000000, 0x8e88, 0x01ff1f3f, 0x00000000, 0x8e88, 0x01ff1f3f, 0x00000000, 0x8e84, 0x01ff1f3f, 0x00000000, 0x8e84, 0x01ff1f3f, 0x00000000, 0x8e84, 0x01ff1f3f, 0x00000000, 0x9060, 0x0000007f, 0x00000020, 0x9508, 0x00010000, 0x00010000, 0xac14, 0x000003ff, 0x00000003, 0xac14, 0x000003ff, 0x00000003, 0xac14, 0x000003ff, 0x00000003, 0xac10, 0xffffffff, 0x00000000, 0xac10, 0xffffffff, 0x00000000, 0xac10, 0xffffffff, 0x00000000, 0xac0c, 0xffffffff, 0x00001032, 0xac0c, 0xffffffff, 0x00001032, 0xac0c, 0xffffffff, 0x00001032, 0x88d4, 0x0000001f, 0x00000010, 0x88d4, 0x0000001f, 0x00000010, 0x88d4, 0x0000001f, 0x00000010, 0x15c0, 0x000c0fc0, 0x000c0400 }; static const u32 oland_golden_rlc_registers[] = { 0xc424, 0xffffffff, 0x00601005, 0xc47c, 0xffffffff, 0x10104040, 0xc488, 0xffffffff, 0x0100000a, 0xc314, 0xffffffff, 0x00000800, 0xc30c, 0xffffffff, 0x800000f4 }; static const u32 oland_golden_registers[] = { 0x9a10, 0x00010000, 0x00018208, 0x9830, 0xffffffff, 0x00000000, 0x9834, 0xf00fffff, 0x00000400, 0x9838, 0x0002021c, 0x00020200, 0xc78, 0x00000080, 0x00000000, 0xd030, 0x000300c0, 0x00800040, 0xd830, 0x000300c0, 0x00800040, 0x5bb0, 0x000000f0, 0x00000070, 0x5bc0, 0x00200000, 0x50100000, 0x7030, 0x31000311, 0x00000011, 0x2ae4, 0x00073ffe, 0x000022a2, 0x240c, 0x000007ff, 0x00000000, 0x8a14, 0xf000001f, 0x00000007, 0x8b24, 0xffffffff, 0x00ffffff, 0x8b10, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x4e000000, 0x28350, 0x3f3f3fff, 0x00000082, 0x30, 0x000000ff, 0x0040, 0x34, 0x00000040, 0x00004040, 0x9100, 0x07ffffff, 0x03000000, 0x9060, 0x0000007f, 0x00000020, 0x9508, 0x00010000, 0x00010000, 0xac14, 0x000003ff, 0x000000f3, 0xac10, 0xffffffff, 0x00000000, 0xac0c, 0xffffffff, 0x00003210, 0x88d4, 0x0000001f, 0x00000010, 0x15c0, 0x000c0fc0, 0x000c0400 }; static const u32 hainan_golden_registers[] = { 0x9a10, 0x00010000, 0x00018208, 0x9830, 0xffffffff, 0x00000000, 0x9834, 0xf00fffff, 0x00000400, 0x9838, 0x0002021c, 0x00020200, 0xd0c0, 0xff000fff, 0x00000100, 0xd030, 0x000300c0, 0x00800040, 0xd8c0, 0xff000fff, 0x00000100, 0xd830, 0x000300c0, 0x00800040, 0x2ae4, 0x00073ffe, 0x000022a2, 0x240c, 0x000007ff, 0x00000000, 0x8a14, 0xf000001f, 0x00000007, 0x8b24, 0xffffffff, 0x00ffffff, 0x8b10, 0x0000ff0f, 0x00000000, 0x28a4c, 0x07ffffff, 0x4e000000, 0x28350, 0x3f3f3fff, 0x00000000, 0x30, 0x000000ff, 0x0040, 0x34, 0x00000040, 0x00004040, 0x9100, 0x03e00000, 0x03600000, 0x9060, 0x0000007f, 0x00000020, 0x9508, 0x00010000, 0x00010000, 0xac14, 0x000003ff, 0x000000f1, 0xac10, 0xffffffff, 0x00000000, 0xac0c, 0xffffffff, 0x00003210, 0x88d4, 0x0000001f, 0x00000010, 0x15c0, 0x000c0fc0, 0x000c0400 }; static const u32 hainan_golden_registers2[] = { 0x98f8, 0xffffffff, 0x02010001 }; static const u32 tahiti_mgcg_cgcg_init[] = { 0xc400, 0xffffffff, 0xfffffffc, 0x802c, 0xffffffff, 0xe0000000, 0x9a60, 0xffffffff, 0x00000100, 0x92a4, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x9774, 0xffffffff, 0x00000100, 0x8984, 0xffffffff, 0x06000100, 0x8a18, 0xffffffff, 0x00000100, 0x92a0, 0xffffffff, 0x00000100, 0xc380, 0xffffffff, 0x00000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x8d88, 0xffffffff, 0x00000100, 0x8d8c, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0xad80, 0xffffffff, 0x00000100, 0xac54, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x9868, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0xaf04, 0xffffffff, 0x00000100, 0xae04, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x802c, 0xffffffff, 0xe0000000, 0x9160, 0xffffffff, 0x00010000, 0x9164, 0xffffffff, 0x00030002, 0x9168, 0xffffffff, 0x00040007, 0x916c, 0xffffffff, 0x00060005, 0x9170, 0xffffffff, 0x00090008, 0x9174, 0xffffffff, 0x00020001, 0x9178, 0xffffffff, 0x00040003, 0x917c, 0xffffffff, 0x00000007, 0x9180, 0xffffffff, 0x00060005, 0x9184, 0xffffffff, 0x00090008, 0x9188, 0xffffffff, 0x00030002, 0x918c, 0xffffffff, 0x00050004, 0x9190, 0xffffffff, 0x00000008, 0x9194, 0xffffffff, 0x00070006, 0x9198, 0xffffffff, 0x000a0009, 0x919c, 0xffffffff, 0x00040003, 0x91a0, 0xffffffff, 0x00060005, 0x91a4, 0xffffffff, 0x00000009, 0x91a8, 0xffffffff, 0x00080007, 0x91ac, 0xffffffff, 0x000b000a, 0x91b0, 0xffffffff, 0x00050004, 0x91b4, 0xffffffff, 0x00070006, 0x91b8, 0xffffffff, 0x0008000b, 0x91bc, 0xffffffff, 0x000a0009, 0x91c0, 0xffffffff, 0x000d000c, 0x91c4, 0xffffffff, 0x00060005, 0x91c8, 0xffffffff, 0x00080007, 0x91cc, 0xffffffff, 0x0000000b, 0x91d0, 0xffffffff, 0x000a0009, 0x91d4, 0xffffffff, 0x000d000c, 0x91d8, 0xffffffff, 0x00070006, 0x91dc, 0xffffffff, 0x00090008, 0x91e0, 0xffffffff, 0x0000000c, 0x91e4, 0xffffffff, 0x000b000a, 0x91e8, 0xffffffff, 0x000e000d, 0x91ec, 0xffffffff, 0x00080007, 0x91f0, 0xffffffff, 0x000a0009, 0x91f4, 0xffffffff, 0x0000000d, 0x91f8, 0xffffffff, 0x000c000b, 0x91fc, 0xffffffff, 0x000f000e, 0x9200, 0xffffffff, 0x00090008, 0x9204, 0xffffffff, 0x000b000a, 0x9208, 0xffffffff, 0x000c000f, 0x920c, 0xffffffff, 0x000e000d, 0x9210, 0xffffffff, 0x00110010, 0x9214, 0xffffffff, 0x000a0009, 0x9218, 0xffffffff, 0x000c000b, 0x921c, 0xffffffff, 0x0000000f, 0x9220, 0xffffffff, 0x000e000d, 0x9224, 0xffffffff, 0x00110010, 0x9228, 0xffffffff, 0x000b000a, 0x922c, 0xffffffff, 0x000d000c, 0x9230, 0xffffffff, 0x00000010, 0x9234, 0xffffffff, 0x000f000e, 0x9238, 0xffffffff, 0x00120011, 0x923c, 0xffffffff, 0x000c000b, 0x9240, 0xffffffff, 0x000e000d, 0x9244, 0xffffffff, 0x00000011, 0x9248, 0xffffffff, 0x0010000f, 0x924c, 0xffffffff, 0x00130012, 0x9250, 0xffffffff, 0x000d000c, 0x9254, 0xffffffff, 0x000f000e, 0x9258, 0xffffffff, 0x00100013, 0x925c, 0xffffffff, 0x00120011, 0x9260, 0xffffffff, 0x00150014, 0x9264, 0xffffffff, 0x000e000d, 0x9268, 0xffffffff, 0x0010000f, 0x926c, 0xffffffff, 0x00000013, 0x9270, 0xffffffff, 0x00120011, 0x9274, 0xffffffff, 0x00150014, 0x9278, 0xffffffff, 0x000f000e, 0x927c, 0xffffffff, 0x00110010, 0x9280, 0xffffffff, 0x00000014, 0x9284, 0xffffffff, 0x00130012, 0x9288, 0xffffffff, 0x00160015, 0x928c, 0xffffffff, 0x0010000f, 0x9290, 0xffffffff, 0x00120011, 0x9294, 0xffffffff, 0x00000015, 0x9298, 0xffffffff, 0x00140013, 0x929c, 0xffffffff, 0x00170016, 0x9150, 0xffffffff, 0x96940200, 0x8708, 0xffffffff, 0x00900100, 0xc478, 0xffffffff, 0x00000080, 0xc404, 0xffffffff, 0x0020003f, 0x30, 0xffffffff, 0x0000001c, 0x34, 0x000f0000, 0x000f0000, 0x160c, 0xffffffff, 0x00000100, 0x1024, 0xffffffff, 0x00000100, 0x102c, 0x00000101, 0x00000000, 0x20a8, 0xffffffff, 0x00000104, 0x264c, 0x000c0000, 0x000c0000, 0x2648, 0x000c0000, 0x000c0000, 0x55e4, 0xff000fff, 0x00000100, 0x55e8, 0x00000001, 0x00000001, 0x2f50, 0x00000001, 0x00000001, 0x30cc, 0xc0000fff, 0x00000104, 0xc1e4, 0x00000001, 0x00000001, 0xd0c0, 0xfffffff0, 0x00000100, 0xd8c0, 0xfffffff0, 0x00000100 }; static const u32 pitcairn_mgcg_cgcg_init[] = { 0xc400, 0xffffffff, 0xfffffffc, 0x802c, 0xffffffff, 0xe0000000, 0x9a60, 0xffffffff, 0x00000100, 0x92a4, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x9774, 0xffffffff, 0x00000100, 0x8984, 0xffffffff, 0x06000100, 0x8a18, 0xffffffff, 0x00000100, 0x92a0, 0xffffffff, 0x00000100, 0xc380, 0xffffffff, 0x00000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x8d88, 0xffffffff, 0x00000100, 0x8d8c, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0xad80, 0xffffffff, 0x00000100, 0xac54, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x9868, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0xaf04, 0xffffffff, 0x00000100, 0xae04, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x802c, 0xffffffff, 0xe0000000, 0x9160, 0xffffffff, 0x00010000, 0x9164, 0xffffffff, 0x00030002, 0x9168, 0xffffffff, 0x00040007, 0x916c, 0xffffffff, 0x00060005, 0x9170, 0xffffffff, 0x00090008, 0x9174, 0xffffffff, 0x00020001, 0x9178, 0xffffffff, 0x00040003, 0x917c, 0xffffffff, 0x00000007, 0x9180, 0xffffffff, 0x00060005, 0x9184, 0xffffffff, 0x00090008, 0x9188, 0xffffffff, 0x00030002, 0x918c, 0xffffffff, 0x00050004, 0x9190, 0xffffffff, 0x00000008, 0x9194, 0xffffffff, 0x00070006, 0x9198, 0xffffffff, 0x000a0009, 0x919c, 0xffffffff, 0x00040003, 0x91a0, 0xffffffff, 0x00060005, 0x91a4, 0xffffffff, 0x00000009, 0x91a8, 0xffffffff, 0x00080007, 0x91ac, 0xffffffff, 0x000b000a, 0x91b0, 0xffffffff, 0x00050004, 0x91b4, 0xffffffff, 0x00070006, 0x91b8, 0xffffffff, 0x0008000b, 0x91bc, 0xffffffff, 0x000a0009, 0x91c0, 0xffffffff, 0x000d000c, 0x9200, 0xffffffff, 0x00090008, 0x9204, 0xffffffff, 0x000b000a, 0x9208, 0xffffffff, 0x000c000f, 0x920c, 0xffffffff, 0x000e000d, 0x9210, 0xffffffff, 0x00110010, 0x9214, 0xffffffff, 0x000a0009, 0x9218, 0xffffffff, 0x000c000b, 0x921c, 0xffffffff, 0x0000000f, 0x9220, 0xffffffff, 0x000e000d, 0x9224, 0xffffffff, 0x00110010, 0x9228, 0xffffffff, 0x000b000a, 0x922c, 0xffffffff, 0x000d000c, 0x9230, 0xffffffff, 0x00000010, 0x9234, 0xffffffff, 0x000f000e, 0x9238, 0xffffffff, 0x00120011, 0x923c, 0xffffffff, 0x000c000b, 0x9240, 0xffffffff, 0x000e000d, 0x9244, 0xffffffff, 0x00000011, 0x9248, 0xffffffff, 0x0010000f, 0x924c, 0xffffffff, 0x00130012, 0x9250, 0xffffffff, 0x000d000c, 0x9254, 0xffffffff, 0x000f000e, 0x9258, 0xffffffff, 0x00100013, 0x925c, 0xffffffff, 0x00120011, 0x9260, 0xffffffff, 0x00150014, 0x9150, 0xffffffff, 0x96940200, 0x8708, 0xffffffff, 0x00900100, 0xc478, 0xffffffff, 0x00000080, 0xc404, 0xffffffff, 0x0020003f, 0x30, 0xffffffff, 0x0000001c, 0x34, 0x000f0000, 0x000f0000, 0x160c, 0xffffffff, 0x00000100, 0x1024, 0xffffffff, 0x00000100, 0x102c, 0x00000101, 0x00000000, 0x20a8, 0xffffffff, 0x00000104, 0x55e4, 0xff000fff, 0x00000100, 0x55e8, 0x00000001, 0x00000001, 0x2f50, 0x00000001, 0x00000001, 0x30cc, 0xc0000fff, 0x00000104, 0xc1e4, 0x00000001, 0x00000001, 0xd0c0, 0xfffffff0, 0x00000100, 0xd8c0, 0xfffffff0, 0x00000100 }; static const u32 verde_mgcg_cgcg_init[] = { 0xc400, 0xffffffff, 0xfffffffc, 0x802c, 0xffffffff, 0xe0000000, 0x9a60, 0xffffffff, 0x00000100, 0x92a4, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x9774, 0xffffffff, 0x00000100, 0x8984, 0xffffffff, 0x06000100, 0x8a18, 0xffffffff, 0x00000100, 0x92a0, 0xffffffff, 0x00000100, 0xc380, 0xffffffff, 0x00000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x8d88, 0xffffffff, 0x00000100, 0x8d8c, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0xad80, 0xffffffff, 0x00000100, 0xac54, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x9868, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0xaf04, 0xffffffff, 0x00000100, 0xae04, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x802c, 0xffffffff, 0xe0000000, 0x9160, 0xffffffff, 0x00010000, 0x9164, 0xffffffff, 0x00030002, 0x9168, 0xffffffff, 0x00040007, 0x916c, 0xffffffff, 0x00060005, 0x9170, 0xffffffff, 0x00090008, 0x9174, 0xffffffff, 0x00020001, 0x9178, 0xffffffff, 0x00040003, 0x917c, 0xffffffff, 0x00000007, 0x9180, 0xffffffff, 0x00060005, 0x9184, 0xffffffff, 0x00090008, 0x9188, 0xffffffff, 0x00030002, 0x918c, 0xffffffff, 0x00050004, 0x9190, 0xffffffff, 0x00000008, 0x9194, 0xffffffff, 0x00070006, 0x9198, 0xffffffff, 0x000a0009, 0x919c, 0xffffffff, 0x00040003, 0x91a0, 0xffffffff, 0x00060005, 0x91a4, 0xffffffff, 0x00000009, 0x91a8, 0xffffffff, 0x00080007, 0x91ac, 0xffffffff, 0x000b000a, 0x91b0, 0xffffffff, 0x00050004, 0x91b4, 0xffffffff, 0x00070006, 0x91b8, 0xffffffff, 0x0008000b, 0x91bc, 0xffffffff, 0x000a0009, 0x91c0, 0xffffffff, 0x000d000c, 0x9200, 0xffffffff, 0x00090008, 0x9204, 0xffffffff, 0x000b000a, 0x9208, 0xffffffff, 0x000c000f, 0x920c, 0xffffffff, 0x000e000d, 0x9210, 0xffffffff, 0x00110010, 0x9214, 0xffffffff, 0x000a0009, 0x9218, 0xffffffff, 0x000c000b, 0x921c, 0xffffffff, 0x0000000f, 0x9220, 0xffffffff, 0x000e000d, 0x9224, 0xffffffff, 0x00110010, 0x9228, 0xffffffff, 0x000b000a, 0x922c, 0xffffffff, 0x000d000c, 0x9230, 0xffffffff, 0x00000010, 0x9234, 0xffffffff, 0x000f000e, 0x9238, 0xffffffff, 0x00120011, 0x923c, 0xffffffff, 0x000c000b, 0x9240, 0xffffffff, 0x000e000d, 0x9244, 0xffffffff, 0x00000011, 0x9248, 0xffffffff, 0x0010000f, 0x924c, 0xffffffff, 0x00130012, 0x9250, 0xffffffff, 0x000d000c, 0x9254, 0xffffffff, 0x000f000e, 0x9258, 0xffffffff, 0x00100013, 0x925c, 0xffffffff, 0x00120011, 0x9260, 0xffffffff, 0x00150014, 0x9150, 0xffffffff, 0x96940200, 0x8708, 0xffffffff, 0x00900100, 0xc478, 0xffffffff, 0x00000080, 0xc404, 0xffffffff, 0x0020003f, 0x30, 0xffffffff, 0x0000001c, 0x34, 0x000f0000, 0x000f0000, 0x160c, 0xffffffff, 0x00000100, 0x1024, 0xffffffff, 0x00000100, 0x102c, 0x00000101, 0x00000000, 0x20a8, 0xffffffff, 0x00000104, 0x264c, 0x000c0000, 0x000c0000, 0x2648, 0x000c0000, 0x000c0000, 0x55e4, 0xff000fff, 0x00000100, 0x55e8, 0x00000001, 0x00000001, 0x2f50, 0x00000001, 0x00000001, 0x30cc, 0xc0000fff, 0x00000104, 0xc1e4, 0x00000001, 0x00000001, 0xd0c0, 0xfffffff0, 0x00000100, 0xd8c0, 0xfffffff0, 0x00000100 }; static const u32 oland_mgcg_cgcg_init[] = { 0xc400, 0xffffffff, 0xfffffffc, 0x802c, 0xffffffff, 0xe0000000, 0x9a60, 0xffffffff, 0x00000100, 0x92a4, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x9774, 0xffffffff, 0x00000100, 0x8984, 0xffffffff, 0x06000100, 0x8a18, 0xffffffff, 0x00000100, 0x92a0, 0xffffffff, 0x00000100, 0xc380, 0xffffffff, 0x00000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x8d88, 0xffffffff, 0x00000100, 0x8d8c, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0xad80, 0xffffffff, 0x00000100, 0xac54, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x9868, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0xaf04, 0xffffffff, 0x00000100, 0xae04, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x802c, 0xffffffff, 0xe0000000, 0x9160, 0xffffffff, 0x00010000, 0x9164, 0xffffffff, 0x00030002, 0x9168, 0xffffffff, 0x00040007, 0x916c, 0xffffffff, 0x00060005, 0x9170, 0xffffffff, 0x00090008, 0x9174, 0xffffffff, 0x00020001, 0x9178, 0xffffffff, 0x00040003, 0x917c, 0xffffffff, 0x00000007, 0x9180, 0xffffffff, 0x00060005, 0x9184, 0xffffffff, 0x00090008, 0x9188, 0xffffffff, 0x00030002, 0x918c, 0xffffffff, 0x00050004, 0x9190, 0xffffffff, 0x00000008, 0x9194, 0xffffffff, 0x00070006, 0x9198, 0xffffffff, 0x000a0009, 0x919c, 0xffffffff, 0x00040003, 0x91a0, 0xffffffff, 0x00060005, 0x91a4, 0xffffffff, 0x00000009, 0x91a8, 0xffffffff, 0x00080007, 0x91ac, 0xffffffff, 0x000b000a, 0x91b0, 0xffffffff, 0x00050004, 0x91b4, 0xffffffff, 0x00070006, 0x91b8, 0xffffffff, 0x0008000b, 0x91bc, 0xffffffff, 0x000a0009, 0x91c0, 0xffffffff, 0x000d000c, 0x91c4, 0xffffffff, 0x00060005, 0x91c8, 0xffffffff, 0x00080007, 0x91cc, 0xffffffff, 0x0000000b, 0x91d0, 0xffffffff, 0x000a0009, 0x91d4, 0xffffffff, 0x000d000c, 0x9150, 0xffffffff, 0x96940200, 0x8708, 0xffffffff, 0x00900100, 0xc478, 0xffffffff, 0x00000080, 0xc404, 0xffffffff, 0x0020003f, 0x30, 0xffffffff, 0x0000001c, 0x34, 0x000f0000, 0x000f0000, 0x160c, 0xffffffff, 0x00000100, 0x1024, 0xffffffff, 0x00000100, 0x102c, 0x00000101, 0x00000000, 0x20a8, 0xffffffff, 0x00000104, 0x264c, 0x000c0000, 0x000c0000, 0x2648, 0x000c0000, 0x000c0000, 0x55e4, 0xff000fff, 0x00000100, 0x55e8, 0x00000001, 0x00000001, 0x2f50, 0x00000001, 0x00000001, 0x30cc, 0xc0000fff, 0x00000104, 0xc1e4, 0x00000001, 0x00000001, 0xd0c0, 0xfffffff0, 0x00000100, 0xd8c0, 0xfffffff0, 0x00000100 }; static const u32 hainan_mgcg_cgcg_init[] = { 0xc400, 0xffffffff, 0xfffffffc, 0x802c, 0xffffffff, 0xe0000000, 0x9a60, 0xffffffff, 0x00000100, 0x92a4, 0xffffffff, 0x00000100, 0xc164, 0xffffffff, 0x00000100, 0x9774, 0xffffffff, 0x00000100, 0x8984, 0xffffffff, 0x06000100, 0x8a18, 0xffffffff, 0x00000100, 0x92a0, 0xffffffff, 0x00000100, 0xc380, 0xffffffff, 0x00000100, 0x8b28, 0xffffffff, 0x00000100, 0x9144, 0xffffffff, 0x00000100, 0x8d88, 0xffffffff, 0x00000100, 0x8d8c, 0xffffffff, 0x00000100, 0x9030, 0xffffffff, 0x00000100, 0x9034, 0xffffffff, 0x00000100, 0x9038, 0xffffffff, 0x00000100, 0x903c, 0xffffffff, 0x00000100, 0xad80, 0xffffffff, 0x00000100, 0xac54, 0xffffffff, 0x00000100, 0x897c, 0xffffffff, 0x06000100, 0x9868, 0xffffffff, 0x00000100, 0x9510, 0xffffffff, 0x00000100, 0xaf04, 0xffffffff, 0x00000100, 0xae04, 0xffffffff, 0x00000100, 0x949c, 0xffffffff, 0x00000100, 0x802c, 0xffffffff, 0xe0000000, 0x9160, 0xffffffff, 0x00010000, 0x9164, 0xffffffff, 0x00030002, 0x9168, 0xffffffff, 0x00040007, 0x916c, 0xffffffff, 0x00060005, 0x9170, 0xffffffff, 0x00090008, 0x9174, 0xffffffff, 0x00020001, 0x9178, 0xffffffff, 0x00040003, 0x917c, 0xffffffff, 0x00000007, 0x9180, 0xffffffff, 0x00060005, 0x9184, 0xffffffff, 0x00090008, 0x9188, 0xffffffff, 0x00030002, 0x918c, 0xffffffff, 0x00050004, 0x9190, 0xffffffff, 0x00000008, 0x9194, 0xffffffff, 0x00070006, 0x9198, 0xffffffff, 0x000a0009, 0x919c, 0xffffffff, 0x00040003, 0x91a0, 0xffffffff, 0x00060005, 0x91a4, 0xffffffff, 0x00000009, 0x91a8, 0xffffffff, 0x00080007, 0x91ac, 0xffffffff, 0x000b000a, 0x91b0, 0xffffffff, 0x00050004, 0x91b4, 0xffffffff, 0x00070006, 0x91b8, 0xffffffff, 0x0008000b, 0x91bc, 0xffffffff, 0x000a0009, 0x91c0, 0xffffffff, 0x000d000c, 0x91c4, 0xffffffff, 0x00060005, 0x91c8, 0xffffffff, 0x00080007, 0x91cc, 0xffffffff, 0x0000000b, 0x91d0, 0xffffffff, 0x000a0009, 0x91d4, 0xffffffff, 0x000d000c, 0x9150, 0xffffffff, 0x96940200, 0x8708, 0xffffffff, 0x00900100, 0xc478, 0xffffffff, 0x00000080, 0xc404, 0xffffffff, 0x0020003f, 0x30, 0xffffffff, 0x0000001c, 0x34, 0x000f0000, 0x000f0000, 0x160c, 0xffffffff, 0x00000100, 0x1024, 0xffffffff, 0x00000100, 0x20a8, 0xffffffff, 0x00000104, 0x264c, 0x000c0000, 0x000c0000, 0x2648, 0x000c0000, 0x000c0000, 0x2f50, 0x00000001, 0x00000001, 0x30cc, 0xc0000fff, 0x00000104, 0xc1e4, 0x00000001, 0x00000001, 0xd0c0, 0xfffffff0, 0x00000100, 0xd8c0, 0xfffffff0, 0x00000100 }; static u32 verde_pg_init[] = { 0x353c, 0xffffffff, 0x40000, 0x3538, 0xffffffff, 0x200010ff, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x7007, 0x3538, 0xffffffff, 0x300010ff, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x400000, 0x3538, 0xffffffff, 0x100010ff, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x120200, 0x3538, 0xffffffff, 0x500010ff, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x1e1e16, 0x3538, 0xffffffff, 0x600010ff, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x171f1e, 0x3538, 0xffffffff, 0x700010ff, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x353c, 0xffffffff, 0x0, 0x3538, 0xffffffff, 0x9ff, 0x3500, 0xffffffff, 0x0, 0x3504, 0xffffffff, 0x10000800, 0x3504, 0xffffffff, 0xf, 0x3504, 0xffffffff, 0xf, 0x3500, 0xffffffff, 0x4, 0x3504, 0xffffffff, 0x1000051e, 0x3504, 0xffffffff, 0xffff, 0x3504, 0xffffffff, 0xffff, 0x3500, 0xffffffff, 0x8, 0x3504, 0xffffffff, 0x80500, 0x3500, 0xffffffff, 0x12, 0x3504, 0xffffffff, 0x9050c, 0x3500, 0xffffffff, 0x1d, 0x3504, 0xffffffff, 0xb052c, 0x3500, 0xffffffff, 0x2a, 0x3504, 0xffffffff, 0x1053e, 0x3500, 0xffffffff, 0x2d, 0x3504, 0xffffffff, 0x10546, 0x3500, 0xffffffff, 0x30, 0x3504, 0xffffffff, 0xa054e, 0x3500, 0xffffffff, 0x3c, 0x3504, 0xffffffff, 0x1055f, 0x3500, 0xffffffff, 0x3f, 0x3504, 0xffffffff, 0x10567, 0x3500, 0xffffffff, 0x42, 0x3504, 0xffffffff, 0x1056f, 0x3500, 0xffffffff, 0x45, 0x3504, 0xffffffff, 0x10572, 0x3500, 0xffffffff, 0x48, 0x3504, 0xffffffff, 0x20575, 0x3500, 0xffffffff, 0x4c, 0x3504, 0xffffffff, 0x190801, 0x3500, 0xffffffff, 0x67, 0x3504, 0xffffffff, 0x1082a, 0x3500, 0xffffffff, 0x6a, 0x3504, 0xffffffff, 0x1b082d, 0x3500, 0xffffffff, 0x87, 0x3504, 0xffffffff, 0x310851, 0x3500, 0xffffffff, 0xba, 0x3504, 0xffffffff, 0x891, 0x3500, 0xffffffff, 0xbc, 0x3504, 0xffffffff, 0x893, 0x3500, 0xffffffff, 0xbe, 0x3504, 0xffffffff, 0x20895, 0x3500, 0xffffffff, 0xc2, 0x3504, 0xffffffff, 0x20899, 0x3500, 0xffffffff, 0xc6, 0x3504, 0xffffffff, 0x2089d, 0x3500, 0xffffffff, 0xca, 0x3504, 0xffffffff, 0x8a1, 0x3500, 0xffffffff, 0xcc, 0x3504, 0xffffffff, 0x8a3, 0x3500, 0xffffffff, 0xce, 0x3504, 0xffffffff, 0x308a5, 0x3500, 0xffffffff, 0xd3, 0x3504, 0xffffffff, 0x6d08cd, 0x3500, 0xffffffff, 0x142, 0x3504, 0xffffffff, 0x2000095a, 0x3504, 0xffffffff, 0x1, 0x3500, 0xffffffff, 0x144, 0x3504, 0xffffffff, 0x301f095b, 0x3500, 0xffffffff, 0x165, 0x3504, 0xffffffff, 0xc094d, 0x3500, 0xffffffff, 0x173, 0x3504, 0xffffffff, 0xf096d, 0x3500, 0xffffffff, 0x184, 0x3504, 0xffffffff, 0x15097f, 0x3500, 0xffffffff, 0x19b, 0x3504, 0xffffffff, 0xc0998, 0x3500, 0xffffffff, 0x1a9, 0x3504, 0xffffffff, 0x409a7, 0x3500, 0xffffffff, 0x1af, 0x3504, 0xffffffff, 0xcdc, 0x3500, 0xffffffff, 0x1b1, 0x3504, 0xffffffff, 0x800, 0x3508, 0xffffffff, 0x6c9b2000, 0x3510, 0xfc00, 0x2000, 0x3544, 0xffffffff, 0xfc0, 0x28d4, 0x00000100, 0x100 }; static void si_init_golden_registers(struct radeon_device *rdev) { switch (rdev->family) { case CHIP_TAHITI: radeon_program_register_sequence(rdev, tahiti_golden_registers, (const u32)ARRAY_SIZE(tahiti_golden_registers)); radeon_program_register_sequence(rdev, tahiti_golden_rlc_registers, (const u32)ARRAY_SIZE(tahiti_golden_rlc_registers)); radeon_program_register_sequence(rdev, tahiti_mgcg_cgcg_init, (const u32)ARRAY_SIZE(tahiti_mgcg_cgcg_init)); radeon_program_register_sequence(rdev, tahiti_golden_registers2, (const u32)ARRAY_SIZE(tahiti_golden_registers2)); break; case CHIP_PITCAIRN: radeon_program_register_sequence(rdev, pitcairn_golden_registers, (const u32)ARRAY_SIZE(pitcairn_golden_registers)); radeon_program_register_sequence(rdev, pitcairn_golden_rlc_registers, (const u32)ARRAY_SIZE(pitcairn_golden_rlc_registers)); radeon_program_register_sequence(rdev, pitcairn_mgcg_cgcg_init, (const u32)ARRAY_SIZE(pitcairn_mgcg_cgcg_init)); break; case CHIP_VERDE: radeon_program_register_sequence(rdev, verde_golden_registers, (const u32)ARRAY_SIZE(verde_golden_registers)); radeon_program_register_sequence(rdev, verde_golden_rlc_registers, (const u32)ARRAY_SIZE(verde_golden_rlc_registers)); radeon_program_register_sequence(rdev, verde_mgcg_cgcg_init, (const u32)ARRAY_SIZE(verde_mgcg_cgcg_init)); radeon_program_register_sequence(rdev, verde_pg_init, (const u32)ARRAY_SIZE(verde_pg_init)); break; case CHIP_OLAND: radeon_program_register_sequence(rdev, oland_golden_registers, (const u32)ARRAY_SIZE(oland_golden_registers)); radeon_program_register_sequence(rdev, oland_golden_rlc_registers, (const u32)ARRAY_SIZE(oland_golden_rlc_registers)); radeon_program_register_sequence(rdev, oland_mgcg_cgcg_init, (const u32)ARRAY_SIZE(oland_mgcg_cgcg_init)); break; case CHIP_HAINAN: radeon_program_register_sequence(rdev, hainan_golden_registers, (const u32)ARRAY_SIZE(hainan_golden_registers)); radeon_program_register_sequence(rdev, hainan_golden_registers2, (const u32)ARRAY_SIZE(hainan_golden_registers2)); radeon_program_register_sequence(rdev, hainan_mgcg_cgcg_init, (const u32)ARRAY_SIZE(hainan_mgcg_cgcg_init)); break; default: break; } } /** * si_get_allowed_info_register - fetch the register for the info ioctl * * @rdev: radeon_device pointer * @reg: register offset in bytes * @val: register value * * Returns 0 for success or -EINVAL for an invalid register * */ int si_get_allowed_info_register(struct radeon_device *rdev, u32 reg, u32 *val) { switch (reg) { case GRBM_STATUS: case GRBM_STATUS2: case GRBM_STATUS_SE0: case GRBM_STATUS_SE1: case SRBM_STATUS: case SRBM_STATUS2: case (DMA_STATUS_REG + DMA0_REGISTER_OFFSET): case (DMA_STATUS_REG + DMA1_REGISTER_OFFSET): case UVD_STATUS: *val = RREG32(reg); return 0; default: return -EINVAL; } } #define PCIE_BUS_CLK 10000 #define TCLK (PCIE_BUS_CLK / 10) /** * si_get_xclk - get the xclk * * @rdev: radeon_device pointer * * Returns the reference clock used by the gfx engine * (SI). */ u32 si_get_xclk(struct radeon_device *rdev) { u32 reference_clock = rdev->clock.spll.reference_freq; u32 tmp; tmp = RREG32(CG_CLKPIN_CNTL_2); if (tmp & MUX_TCLK_TO_XCLK) return TCLK; tmp = RREG32(CG_CLKPIN_CNTL); if (tmp & XTALIN_DIVIDE) return reference_clock / 4; return reference_clock; } /* get temperature in millidegrees */ int si_get_temp(struct radeon_device *rdev) { u32 temp; int actual_temp = 0; temp = (RREG32(CG_MULT_THERMAL_STATUS) & CTF_TEMP_MASK) >> CTF_TEMP_SHIFT; if (temp & 0x200) actual_temp = 255; else actual_temp = temp & 0x1ff; actual_temp = (actual_temp * 1000); return actual_temp; } #define TAHITI_IO_MC_REGS_SIZE 36 static const u32 tahiti_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a77400} }; static const u32 pitcairn_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a47400} }; static const u32 verde_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a37400} }; static const u32 oland_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a17730} }; static const u32 hainan_io_mc_regs[TAHITI_IO_MC_REGS_SIZE][2] = { {0x0000006f, 0x03044000}, {0x00000070, 0x0480c018}, {0x00000071, 0x00000040}, {0x00000072, 0x01000000}, {0x00000074, 0x000000ff}, {0x00000075, 0x00143400}, {0x00000076, 0x08ec0800}, {0x00000077, 0x040000cc}, {0x00000079, 0x00000000}, {0x0000007a, 0x21000409}, {0x0000007c, 0x00000000}, {0x0000007d, 0xe8000000}, {0x0000007e, 0x044408a8}, {0x0000007f, 0x00000003}, {0x00000080, 0x00000000}, {0x00000081, 0x01000000}, {0x00000082, 0x02000000}, {0x00000083, 0x00000000}, {0x00000084, 0xe3f3e4f4}, {0x00000085, 0x00052024}, {0x00000087, 0x00000000}, {0x00000088, 0x66036603}, {0x00000089, 0x01000000}, {0x0000008b, 0x1c0a0000}, {0x0000008c, 0xff010000}, {0x0000008e, 0xffffefff}, {0x0000008f, 0xfff3efff}, {0x00000090, 0xfff3efbf}, {0x00000094, 0x00101101}, {0x00000095, 0x00000fff}, {0x00000096, 0x00116fff}, {0x00000097, 0x60010000}, {0x00000098, 0x10010000}, {0x00000099, 0x00006000}, {0x0000009a, 0x00001000}, {0x0000009f, 0x00a07730} }; /* ucode loading */ int si_mc_load_microcode(struct radeon_device *rdev) { const __be32 *fw_data = NULL; const __le32 *new_fw_data = NULL; u32 running; u32 *io_mc_regs = NULL; const __le32 *new_io_mc_regs = NULL; int i, regs_size, ucode_size; if (!rdev->mc_fw) return -EINVAL; if (rdev->new_fw) { const struct mc_firmware_header_v1_0 *hdr = (const struct mc_firmware_header_v1_0 *)rdev->mc_fw->data; radeon_ucode_print_mc_hdr(&hdr->header); regs_size = le32_to_cpu(hdr->io_debug_size_bytes) / (4 * 2); new_io_mc_regs = (const __le32 *) (rdev->mc_fw->data + le32_to_cpu(hdr->io_debug_array_offset_bytes)); ucode_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; new_fw_data = (const __le32 *) (rdev->mc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); } else { ucode_size = rdev->mc_fw->size / 4; switch (rdev->family) { case CHIP_TAHITI: io_mc_regs = (u32 *)&tahiti_io_mc_regs; regs_size = TAHITI_IO_MC_REGS_SIZE; break; case CHIP_PITCAIRN: io_mc_regs = (u32 *)&pitcairn_io_mc_regs; regs_size = TAHITI_IO_MC_REGS_SIZE; break; case CHIP_VERDE: default: io_mc_regs = (u32 *)&verde_io_mc_regs; regs_size = TAHITI_IO_MC_REGS_SIZE; break; case CHIP_OLAND: io_mc_regs = (u32 *)&oland_io_mc_regs; regs_size = TAHITI_IO_MC_REGS_SIZE; break; case CHIP_HAINAN: io_mc_regs = (u32 *)&hainan_io_mc_regs; regs_size = TAHITI_IO_MC_REGS_SIZE; break; } fw_data = (const __be32 *)rdev->mc_fw->data; } running = RREG32(MC_SEQ_SUP_CNTL) & RUN_MASK; if (running == 0) { /* reset the engine and set to writable */ WREG32(MC_SEQ_SUP_CNTL, 0x00000008); WREG32(MC_SEQ_SUP_CNTL, 0x00000010); /* load mc io regs */ for (i = 0; i < regs_size; i++) { if (rdev->new_fw) { WREG32(MC_SEQ_IO_DEBUG_INDEX, le32_to_cpup(new_io_mc_regs++)); WREG32(MC_SEQ_IO_DEBUG_DATA, le32_to_cpup(new_io_mc_regs++)); } else { WREG32(MC_SEQ_IO_DEBUG_INDEX, io_mc_regs[(i << 1)]); WREG32(MC_SEQ_IO_DEBUG_DATA, io_mc_regs[(i << 1) + 1]); } } /* load the MC ucode */ for (i = 0; i < ucode_size; i++) { if (rdev->new_fw) WREG32(MC_SEQ_SUP_PGM, le32_to_cpup(new_fw_data++)); else WREG32(MC_SEQ_SUP_PGM, be32_to_cpup(fw_data++)); } /* put the engine back into the active state */ WREG32(MC_SEQ_SUP_CNTL, 0x00000008); WREG32(MC_SEQ_SUP_CNTL, 0x00000004); WREG32(MC_SEQ_SUP_CNTL, 0x00000001); /* wait for training to complete */ for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D0) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(MC_SEQ_TRAIN_WAKEUP_CNTL) & TRAIN_DONE_D1) break; udelay(1); } } return 0; } static int si_init_microcode(struct radeon_device *rdev) { const char *chip_name; const char *new_chip_name; size_t pfp_req_size, me_req_size, ce_req_size, rlc_req_size, mc_req_size; size_t smc_req_size, mc2_req_size; char fw_name[30]; int err; int new_fw = 0; bool new_smc = false; bool si58_fw = false; bool banks2_fw = false; DRM_DEBUG("\n"); switch (rdev->family) { case CHIP_TAHITI: chip_name = "TAHITI"; new_chip_name = "tahiti"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = SI_MC_UCODE_SIZE * 4; mc2_req_size = TAHITI_MC_UCODE_SIZE * 4; smc_req_size = roundup2(TAHITI_SMC_UCODE_SIZE, 4); break; case CHIP_PITCAIRN: chip_name = "PITCAIRN"; if ((rdev->pdev->revision == 0x81) && ((rdev->pdev->device == 0x6810) || (rdev->pdev->device == 0x6811))) new_smc = true; new_chip_name = "pitcairn"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = SI_MC_UCODE_SIZE * 4; mc2_req_size = PITCAIRN_MC_UCODE_SIZE * 4; smc_req_size = roundup2(PITCAIRN_SMC_UCODE_SIZE, 4); break; case CHIP_VERDE: chip_name = "VERDE"; if (((rdev->pdev->device == 0x6820) && ((rdev->pdev->revision == 0x81) || (rdev->pdev->revision == 0x83))) || ((rdev->pdev->device == 0x6821) && ((rdev->pdev->revision == 0x83) || (rdev->pdev->revision == 0x87))) || ((rdev->pdev->revision == 0x87) && ((rdev->pdev->device == 0x6823) || (rdev->pdev->device == 0x682b)))) new_smc = true; new_chip_name = "verde"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = SI_MC_UCODE_SIZE * 4; mc2_req_size = VERDE_MC_UCODE_SIZE * 4; smc_req_size = roundup2(VERDE_SMC_UCODE_SIZE, 4); break; case CHIP_OLAND: chip_name = "OLAND"; if (((rdev->pdev->revision == 0x81) && ((rdev->pdev->device == 0x6600) || (rdev->pdev->device == 0x6604) || (rdev->pdev->device == 0x6605) || (rdev->pdev->device == 0x6610))) || ((rdev->pdev->revision == 0x83) && (rdev->pdev->device == 0x6610))) new_smc = true; new_chip_name = "oland"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = mc2_req_size = OLAND_MC_UCODE_SIZE * 4; smc_req_size = roundup2(OLAND_SMC_UCODE_SIZE, 4); break; case CHIP_HAINAN: chip_name = "HAINAN"; if (((rdev->pdev->revision == 0x81) && (rdev->pdev->device == 0x6660)) || ((rdev->pdev->revision == 0x83) && ((rdev->pdev->device == 0x6660) || (rdev->pdev->device == 0x6663) || (rdev->pdev->device == 0x6665) || (rdev->pdev->device == 0x6667)))) new_smc = true; else if ((rdev->pdev->revision == 0xc3) && (rdev->pdev->device == 0x6665)) banks2_fw = true; new_chip_name = "hainan"; pfp_req_size = SI_PFP_UCODE_SIZE * 4; me_req_size = SI_PM4_UCODE_SIZE * 4; ce_req_size = SI_CE_UCODE_SIZE * 4; rlc_req_size = SI_RLC_UCODE_SIZE * 4; mc_req_size = mc2_req_size = OLAND_MC_UCODE_SIZE * 4; smc_req_size = roundup2(HAINAN_SMC_UCODE_SIZE, 4); break; default: BUG(); } /* this memory configuration requires special firmware */ if (((RREG32(MC_SEQ_MISC0) & 0xff000000) >> 24) == 0x58) si58_fw = true; DRM_INFO("Loading %s Microcode\n", new_chip_name); snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", new_chip_name); err = request_firmware(&rdev->pfp_fw, fw_name, rdev->dev); if (err) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_pfp.bin", chip_name); err = request_firmware(&rdev->pfp_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->pfp_fw->size != pfp_req_size) { pr_err("si_cp: Bogus length %zu in firmware \"%s\"\n", rdev->pfp_fw->size, fw_name); err = -EINVAL; goto out; } } else { err = radeon_ucode_validate(rdev->pfp_fw); if (err) { pr_err("si_cp: validation failed for firmware \"%s\"\n", fw_name); goto out; } else { new_fw++; } } snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", new_chip_name); err = request_firmware(&rdev->me_fw, fw_name, rdev->dev); if (err) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_me.bin", chip_name); err = request_firmware(&rdev->me_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->me_fw->size != me_req_size) { pr_err("si_cp: Bogus length %zu in firmware \"%s\"\n", rdev->me_fw->size, fw_name); err = -EINVAL; } } else { err = radeon_ucode_validate(rdev->me_fw); if (err) { pr_err("si_cp: validation failed for firmware \"%s\"\n", fw_name); goto out; } else { new_fw++; } } snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", new_chip_name); err = request_firmware(&rdev->ce_fw, fw_name, rdev->dev); if (err) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_ce.bin", chip_name); err = request_firmware(&rdev->ce_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->ce_fw->size != ce_req_size) { pr_err("si_cp: Bogus length %zu in firmware \"%s\"\n", rdev->ce_fw->size, fw_name); err = -EINVAL; } } else { err = radeon_ucode_validate(rdev->ce_fw); if (err) { pr_err("si_cp: validation failed for firmware \"%s\"\n", fw_name); goto out; } else { new_fw++; } } snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", new_chip_name); err = request_firmware(&rdev->rlc_fw, fw_name, rdev->dev); if (err) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_rlc.bin", chip_name); err = request_firmware(&rdev->rlc_fw, fw_name, rdev->dev); if (err) goto out; if (rdev->rlc_fw->size != rlc_req_size) { pr_err("si_rlc: Bogus length %zu in firmware \"%s\"\n", rdev->rlc_fw->size, fw_name); err = -EINVAL; } } else { err = radeon_ucode_validate(rdev->rlc_fw); if (err) { pr_err("si_cp: validation failed for firmware \"%s\"\n", fw_name); goto out; } else { new_fw++; } } if (si58_fw) snprintf(fw_name, sizeof(fw_name), "radeon/si58_mc.bin"); else snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", new_chip_name); err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev); if (err) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc2.bin", chip_name); err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev); if (err) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_mc.bin", chip_name); err = request_firmware(&rdev->mc_fw, fw_name, rdev->dev); if (err) goto out; } if ((rdev->mc_fw->size != mc_req_size) && (rdev->mc_fw->size != mc2_req_size)) { pr_err("si_mc: Bogus length %zu in firmware \"%s\"\n", rdev->mc_fw->size, fw_name); err = -EINVAL; } DRM_INFO("%s: %zu bytes\n", fw_name, rdev->mc_fw->size); } else { err = radeon_ucode_validate(rdev->mc_fw); if (err) { pr_err("si_cp: validation failed for firmware \"%s\"\n", fw_name); goto out; } else { new_fw++; } } if (banks2_fw) snprintf(fw_name, sizeof(fw_name), "radeon/banks_k_2_smc.bin"); else if (new_smc) snprintf(fw_name, sizeof(fw_name), "radeon/%s_k_smc.bin", new_chip_name); else snprintf(fw_name, sizeof(fw_name), "radeon/%s_smc.bin", new_chip_name); err = request_firmware(&rdev->smc_fw, fw_name, rdev->dev); if (err) { snprintf(fw_name, sizeof(fw_name), "radeon/%s_smc.bin", chip_name); err = request_firmware(&rdev->smc_fw, fw_name, rdev->dev); if (err) { pr_err("smc: error loading firmware \"%s\"\n", fw_name); release_firmware(rdev->smc_fw); rdev->smc_fw = NULL; err = 0; } else if (rdev->smc_fw->size != smc_req_size) { pr_err("si_smc: Bogus length %zu in firmware \"%s\"\n", rdev->smc_fw->size, fw_name); err = -EINVAL; } } else { err = radeon_ucode_validate(rdev->smc_fw); if (err) { pr_err("si_cp: validation failed for firmware \"%s\"\n", fw_name); goto out; } else { new_fw++; } } if (new_fw == 0) { rdev->new_fw = false; } else if (new_fw < 6) { pr_err("si_fw: mixing new and old firmware!\n"); err = -EINVAL; } else { rdev->new_fw = true; } out: if (err) { if (err != -EINVAL) pr_err("si_cp: Failed to load firmware \"%s\"\n", fw_name); release_firmware(rdev->pfp_fw); rdev->pfp_fw = NULL; release_firmware(rdev->me_fw); rdev->me_fw = NULL; release_firmware(rdev->ce_fw); rdev->ce_fw = NULL; release_firmware(rdev->rlc_fw); rdev->rlc_fw = NULL; release_firmware(rdev->mc_fw); rdev->mc_fw = NULL; release_firmware(rdev->smc_fw); rdev->smc_fw = NULL; } return err; } /* watermark setup */ static u32 dce6_line_buffer_adjust(struct radeon_device *rdev, struct radeon_crtc *radeon_crtc, struct drm_display_mode *mode, struct drm_display_mode *other_mode) { u32 tmp, buffer_alloc, i; u32 pipe_offset = radeon_crtc->crtc_id * 0x20; /* * Line Buffer Setup * There are 3 line buffers, each one shared by 2 display controllers. * DC_LB_MEMORY_SPLIT controls how that line buffer is shared between * the display controllers. The paritioning is done via one of four * preset allocations specified in bits 21:20: * 0 - half lb * 2 - whole lb, other crtc must be disabled */ /* this can get tricky if we have two large displays on a paired group * of crtcs. Ideally for multiple large displays we'd assign them to * non-linked crtcs for maximum line buffer allocation. */ if (radeon_crtc->base.enabled && mode) { if (other_mode) { tmp = 0; /* 1/2 */ buffer_alloc = 1; } else { tmp = 2; /* whole */ buffer_alloc = 2; } } else { tmp = 0; buffer_alloc = 0; } WREG32(DC_LB_MEMORY_SPLIT + radeon_crtc->crtc_offset, DC_LB_MEMORY_CONFIG(tmp)); WREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset, DMIF_BUFFERS_ALLOCATED(buffer_alloc)); for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(PIPE0_DMIF_BUFFER_CONTROL + pipe_offset) & DMIF_BUFFERS_ALLOCATED_COMPLETED) break; udelay(1); } if (radeon_crtc->base.enabled && mode) { switch (tmp) { case 0: default: return 4096 * 2; case 2: return 8192 * 2; } } /* controller not enabled, so no lb used */ return 0; } static u32 si_get_number_of_dram_channels(struct radeon_device *rdev) { u32 tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: return 1; case 1: return 2; case 2: return 4; case 3: return 8; case 4: return 3; case 5: return 6; case 6: return 10; case 7: return 12; case 8: return 16; } } struct dce6_wm_params { u32 dram_channels; /* number of dram channels */ u32 yclk; /* bandwidth per dram data pin in kHz */ u32 sclk; /* engine clock in kHz */ u32 disp_clk; /* display clock in kHz */ u32 src_width; /* viewport width */ u32 active_time; /* active display time in ns */ u32 blank_time; /* blank time in ns */ bool interlaced; /* mode is interlaced */ fixed20_12 vsc; /* vertical scale ratio */ u32 num_heads; /* number of active crtcs */ u32 bytes_per_pixel; /* bytes per pixel display + overlay */ u32 lb_size; /* line buffer allocated to pipe */ u32 vtaps; /* vertical scaler taps */ }; static u32 dce6_dram_bandwidth(struct dce6_wm_params *wm) { /* Calculate raw DRAM Bandwidth */ fixed20_12 dram_efficiency; /* 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); dram_efficiency.full = dfixed_const(7); dram_efficiency.full = dfixed_div(dram_efficiency, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, dram_efficiency); return dfixed_trunc(bandwidth); } static u32 dce6_dram_bandwidth_for_display(struct dce6_wm_params *wm) { /* Calculate DRAM Bandwidth and the part allocated to display. */ fixed20_12 disp_dram_allocation; /* 0.3 to 0.7 */ fixed20_12 yclk, dram_channels, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); yclk.full = dfixed_const(wm->yclk); yclk.full = dfixed_div(yclk, a); dram_channels.full = dfixed_const(wm->dram_channels * 4); a.full = dfixed_const(10); disp_dram_allocation.full = dfixed_const(3); /* XXX worse case value 0.3 */ disp_dram_allocation.full = dfixed_div(disp_dram_allocation, a); bandwidth.full = dfixed_mul(dram_channels, yclk); bandwidth.full = dfixed_mul(bandwidth, disp_dram_allocation); return dfixed_trunc(bandwidth); } static u32 dce6_data_return_bandwidth(struct dce6_wm_params *wm) { /* Calculate the display Data return Bandwidth */ fixed20_12 return_efficiency; /* 0.8 */ fixed20_12 sclk, bandwidth; fixed20_12 a; a.full = dfixed_const(1000); sclk.full = dfixed_const(wm->sclk); sclk.full = dfixed_div(sclk, a); a.full = dfixed_const(10); return_efficiency.full = dfixed_const(8); return_efficiency.full = dfixed_div(return_efficiency, a); a.full = dfixed_const(32); bandwidth.full = dfixed_mul(a, sclk); bandwidth.full = dfixed_mul(bandwidth, return_efficiency); return dfixed_trunc(bandwidth); } static u32 dce6_get_dmif_bytes_per_request(struct dce6_wm_params *wm) { return 32; } static u32 dce6_dmif_request_bandwidth(struct dce6_wm_params *wm) { /* Calculate the DMIF Request Bandwidth */ fixed20_12 disp_clk_request_efficiency; /* 0.8 */ fixed20_12 disp_clk, sclk, bandwidth; fixed20_12 a, b1, b2; u32 min_bandwidth; a.full = dfixed_const(1000); disp_clk.full = dfixed_const(wm->disp_clk); disp_clk.full = dfixed_div(disp_clk, a); a.full = dfixed_const(dce6_get_dmif_bytes_per_request(wm) / 2); b1.full = dfixed_mul(a, disp_clk); a.full = dfixed_const(1000); sclk.full = dfixed_const(wm->sclk); sclk.full = dfixed_div(sclk, a); a.full = dfixed_const(dce6_get_dmif_bytes_per_request(wm)); b2.full = dfixed_mul(a, sclk); a.full = dfixed_const(10); disp_clk_request_efficiency.full = dfixed_const(8); disp_clk_request_efficiency.full = dfixed_div(disp_clk_request_efficiency, a); min_bandwidth = min(dfixed_trunc(b1), dfixed_trunc(b2)); a.full = dfixed_const(min_bandwidth); bandwidth.full = dfixed_mul(a, disp_clk_request_efficiency); return dfixed_trunc(bandwidth); } static u32 dce6_available_bandwidth(struct dce6_wm_params *wm) { /* Calculate the Available bandwidth. Display can use this temporarily but not in average. */ u32 dram_bandwidth = dce6_dram_bandwidth(wm); u32 data_return_bandwidth = dce6_data_return_bandwidth(wm); u32 dmif_req_bandwidth = dce6_dmif_request_bandwidth(wm); return min(dram_bandwidth, min(data_return_bandwidth, dmif_req_bandwidth)); } static u32 dce6_average_bandwidth(struct dce6_wm_params *wm) { /* Calculate the display mode Average Bandwidth * DisplayMode should contain the source and destination dimensions, * timing, etc. */ fixed20_12 bpp; fixed20_12 line_time; fixed20_12 src_width; fixed20_12 bandwidth; fixed20_12 a; a.full = dfixed_const(1000); line_time.full = dfixed_const(wm->active_time + wm->blank_time); line_time.full = dfixed_div(line_time, a); bpp.full = dfixed_const(wm->bytes_per_pixel); src_width.full = dfixed_const(wm->src_width); bandwidth.full = dfixed_mul(src_width, bpp); bandwidth.full = dfixed_mul(bandwidth, wm->vsc); bandwidth.full = dfixed_div(bandwidth, line_time); return dfixed_trunc(bandwidth); } static u32 dce6_latency_watermark(struct dce6_wm_params *wm) { /* First calcualte the latency in ns */ u32 mc_latency = 2000; /* 2000 ns. */ u32 available_bandwidth = dce6_available_bandwidth(wm); u32 worst_chunk_return_time = (512 * 8 * 1000) / available_bandwidth; u32 cursor_line_pair_return_time = (128 * 4 * 1000) / available_bandwidth; u32 dc_latency = 40000000 / wm->disp_clk; /* dc pipe latency */ u32 other_heads_data_return_time = ((wm->num_heads + 1) * worst_chunk_return_time) + (wm->num_heads * cursor_line_pair_return_time); u32 latency = mc_latency + other_heads_data_return_time + dc_latency; u32 max_src_lines_per_dst_line, lb_fill_bw, line_fill_time; u32 tmp, dmif_size = 12288; fixed20_12 a, b, c; if (wm->num_heads == 0) return 0; a.full = dfixed_const(2); b.full = dfixed_const(1); if ((wm->vsc.full > a.full) || ((wm->vsc.full > b.full) && (wm->vtaps >= 3)) || (wm->vtaps >= 5) || ((wm->vsc.full >= a.full) && wm->interlaced)) max_src_lines_per_dst_line = 4; else max_src_lines_per_dst_line = 2; a.full = dfixed_const(available_bandwidth); b.full = dfixed_const(wm->num_heads); a.full = dfixed_div(a, b); tmp = div_u64((u64) dmif_size * (u64) wm->disp_clk, mc_latency + 512); tmp = min(dfixed_trunc(a), tmp); lb_fill_bw = min(tmp, wm->disp_clk * wm->bytes_per_pixel / 1000); a.full = dfixed_const(max_src_lines_per_dst_line * wm->src_width * wm->bytes_per_pixel); b.full = dfixed_const(1000); c.full = dfixed_const(lb_fill_bw); b.full = dfixed_div(c, b); a.full = dfixed_div(a, b); line_fill_time = dfixed_trunc(a); if (line_fill_time < wm->active_time) return latency; else return latency + (line_fill_time - wm->active_time); } static bool dce6_average_bandwidth_vs_dram_bandwidth_for_display(struct dce6_wm_params *wm) { if (dce6_average_bandwidth(wm) <= (dce6_dram_bandwidth_for_display(wm) / wm->num_heads)) return true; else return false; }; static bool dce6_average_bandwidth_vs_available_bandwidth(struct dce6_wm_params *wm) { if (dce6_average_bandwidth(wm) <= (dce6_available_bandwidth(wm) / wm->num_heads)) return true; else return false; }; static bool dce6_check_latency_hiding(struct dce6_wm_params *wm) { u32 lb_partitions = wm->lb_size / wm->src_width; u32 line_time = wm->active_time + wm->blank_time; u32 latency_tolerant_lines; u32 latency_hiding; fixed20_12 a; a.full = dfixed_const(1); if (wm->vsc.full > a.full) latency_tolerant_lines = 1; else { if (lb_partitions <= (wm->vtaps + 1)) latency_tolerant_lines = 1; else latency_tolerant_lines = 2; } latency_hiding = (latency_tolerant_lines * line_time + wm->blank_time); if (dce6_latency_watermark(wm) <= latency_hiding) return true; else return false; } static void dce6_program_watermarks(struct radeon_device *rdev, struct radeon_crtc *radeon_crtc, u32 lb_size, u32 num_heads) { struct drm_display_mode *mode = &radeon_crtc->base.mode; struct dce6_wm_params wm_low, wm_high; u32 dram_channels; u32 active_time; u32 line_time = 0; u32 latency_watermark_a = 0, latency_watermark_b = 0; u32 priority_a_mark = 0, priority_b_mark = 0; u32 priority_a_cnt = PRIORITY_OFF; u32 priority_b_cnt = PRIORITY_OFF; u32 tmp, arb_control3; fixed20_12 a, b, c; if (radeon_crtc->base.enabled && num_heads && mode) { active_time = (u32) div_u64((u64)mode->crtc_hdisplay * 1000000, (u32)mode->clock); line_time = (u32) div_u64((u64)mode->crtc_htotal * 1000000, (u32)mode->clock); line_time = min(line_time, (u32)65535); priority_a_cnt = 0; priority_b_cnt = 0; if (rdev->family == CHIP_ARUBA) dram_channels = evergreen_get_number_of_dram_channels(rdev); else dram_channels = si_get_number_of_dram_channels(rdev); /* watermark for high clocks */ if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) { wm_high.yclk = radeon_dpm_get_mclk(rdev, false) * 10; wm_high.sclk = radeon_dpm_get_sclk(rdev, false) * 10; } else { wm_high.yclk = rdev->pm.current_mclk * 10; wm_high.sclk = rdev->pm.current_sclk * 10; } wm_high.disp_clk = mode->clock; wm_high.src_width = mode->crtc_hdisplay; wm_high.active_time = active_time; wm_high.blank_time = line_time - wm_high.active_time; wm_high.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm_high.interlaced = true; wm_high.vsc = radeon_crtc->vsc; wm_high.vtaps = 1; if (radeon_crtc->rmx_type != RMX_OFF) wm_high.vtaps = 2; wm_high.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm_high.lb_size = lb_size; wm_high.dram_channels = dram_channels; wm_high.num_heads = num_heads; /* watermark for low clocks */ if ((rdev->pm.pm_method == PM_METHOD_DPM) && rdev->pm.dpm_enabled) { wm_low.yclk = radeon_dpm_get_mclk(rdev, true) * 10; wm_low.sclk = radeon_dpm_get_sclk(rdev, true) * 10; } else { wm_low.yclk = rdev->pm.current_mclk * 10; wm_low.sclk = rdev->pm.current_sclk * 10; } wm_low.disp_clk = mode->clock; wm_low.src_width = mode->crtc_hdisplay; wm_low.active_time = active_time; wm_low.blank_time = line_time - wm_low.active_time; wm_low.interlaced = false; if (mode->flags & DRM_MODE_FLAG_INTERLACE) wm_low.interlaced = true; wm_low.vsc = radeon_crtc->vsc; wm_low.vtaps = 1; if (radeon_crtc->rmx_type != RMX_OFF) wm_low.vtaps = 2; wm_low.bytes_per_pixel = 4; /* XXX: get this from fb config */ wm_low.lb_size = lb_size; wm_low.dram_channels = dram_channels; wm_low.num_heads = num_heads; /* set for high clocks */ latency_watermark_a = min(dce6_latency_watermark(&wm_high), (u32)65535); /* set for low clocks */ latency_watermark_b = min(dce6_latency_watermark(&wm_low), (u32)65535); /* possibly force display priority to high */ /* should really do this at mode validation time... */ if (!dce6_average_bandwidth_vs_dram_bandwidth_for_display(&wm_high) || !dce6_average_bandwidth_vs_available_bandwidth(&wm_high) || !dce6_check_latency_hiding(&wm_high) || (rdev->disp_priority == 2)) { DRM_DEBUG_KMS("force priority to high\n"); priority_a_cnt |= PRIORITY_ALWAYS_ON; priority_b_cnt |= PRIORITY_ALWAYS_ON; } if (!dce6_average_bandwidth_vs_dram_bandwidth_for_display(&wm_low) || !dce6_average_bandwidth_vs_available_bandwidth(&wm_low) || !dce6_check_latency_hiding(&wm_low) || (rdev->disp_priority == 2)) { DRM_DEBUG_KMS("force priority to high\n"); priority_a_cnt |= PRIORITY_ALWAYS_ON; priority_b_cnt |= PRIORITY_ALWAYS_ON; } a.full = dfixed_const(1000); b.full = dfixed_const(mode->clock); b.full = dfixed_div(b, a); c.full = dfixed_const(latency_watermark_a); c.full = dfixed_mul(c, b); c.full = dfixed_mul(c, radeon_crtc->hsc); c.full = dfixed_div(c, a); a.full = dfixed_const(16); c.full = dfixed_div(c, a); priority_a_mark = dfixed_trunc(c); priority_a_cnt |= priority_a_mark & PRIORITY_MARK_MASK; a.full = dfixed_const(1000); b.full = dfixed_const(mode->clock); b.full = dfixed_div(b, a); c.full = dfixed_const(latency_watermark_b); c.full = dfixed_mul(c, b); c.full = dfixed_mul(c, radeon_crtc->hsc); c.full = dfixed_div(c, a); a.full = dfixed_const(16); c.full = dfixed_div(c, a); priority_b_mark = dfixed_trunc(c); priority_b_cnt |= priority_b_mark & PRIORITY_MARK_MASK; /* Save number of lines the linebuffer leads before the scanout */ radeon_crtc->lb_vblank_lead_lines = DIV_ROUND_UP(lb_size, mode->crtc_hdisplay); } /* select wm A */ arb_control3 = RREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset); tmp = arb_control3; tmp &= ~LATENCY_WATERMARK_MASK(3); tmp |= LATENCY_WATERMARK_MASK(1); WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, tmp); WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset, (LATENCY_LOW_WATERMARK(latency_watermark_a) | LATENCY_HIGH_WATERMARK(line_time))); /* select wm B */ tmp = RREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset); tmp &= ~LATENCY_WATERMARK_MASK(3); tmp |= LATENCY_WATERMARK_MASK(2); WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, tmp); WREG32(DPG_PIPE_LATENCY_CONTROL + radeon_crtc->crtc_offset, (LATENCY_LOW_WATERMARK(latency_watermark_b) | LATENCY_HIGH_WATERMARK(line_time))); /* restore original selection */ WREG32(DPG_PIPE_ARBITRATION_CONTROL3 + radeon_crtc->crtc_offset, arb_control3); /* write the priority marks */ WREG32(PRIORITY_A_CNT + radeon_crtc->crtc_offset, priority_a_cnt); WREG32(PRIORITY_B_CNT + radeon_crtc->crtc_offset, priority_b_cnt); /* save values for DPM */ radeon_crtc->line_time = line_time; radeon_crtc->wm_high = latency_watermark_a; radeon_crtc->wm_low = latency_watermark_b; } void dce6_bandwidth_update(struct radeon_device *rdev) { struct drm_display_mode *mode0 = NULL; struct drm_display_mode *mode1 = NULL; u32 num_heads = 0, lb_size; int i; if (!rdev->mode_info.mode_config_initialized) return; radeon_update_display_priority(rdev); for (i = 0; i < rdev->num_crtc; i++) { if (rdev->mode_info.crtcs[i]->base.enabled) num_heads++; } for (i = 0; i < rdev->num_crtc; i += 2) { mode0 = &rdev->mode_info.crtcs[i]->base.mode; mode1 = &rdev->mode_info.crtcs[i+1]->base.mode; lb_size = dce6_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i], mode0, mode1); dce6_program_watermarks(rdev, rdev->mode_info.crtcs[i], lb_size, num_heads); lb_size = dce6_line_buffer_adjust(rdev, rdev->mode_info.crtcs[i+1], mode1, mode0); dce6_program_watermarks(rdev, rdev->mode_info.crtcs[i+1], lb_size, num_heads); } } /* * Core functions */ static void si_tiling_mode_table_init(struct radeon_device *rdev) { u32 *tile = rdev->config.si.tile_mode_array; const u32 num_tile_mode_states = ARRAY_SIZE(rdev->config.si.tile_mode_array); u32 reg_offset, split_equal_to_row_size; switch (rdev->config.si.mem_row_size_in_kb) { case 1: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_1KB; break; case 2: default: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_2KB; break; case 4: split_equal_to_row_size = ADDR_SURF_TILE_SPLIT_4KB; break; } for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) tile[reg_offset] = 0; switch(rdev->family) { case CHIP_TAHITI: case CHIP_PITCAIRN: /* non-AA compressed depth or any compressed stencil */ tile[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 2xAA/4xAA compressed depth only */ tile[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 8xAA compressed depth only */ tile[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 2xAA/4xAA compressed depth with stencil (for depth buffer) */ tile[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Maps w/ a dimension less than the 2D macro-tile dimensions (for mipmapped depth textures) */ tile[4] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Uncompressed 16bpp depth - and stencil buffer allocated with it */ tile[5] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Uncompressed 32bpp depth - and stencil buffer allocated with it */ tile[6] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); /* Uncompressed 8bpp stencil without depth (drivers typically do not use) */ tile[7] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 1D and 1D Array Surfaces */ tile[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Displayable maps. */ tile[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Display 8bpp. */ tile[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Display 16bpp. */ tile[11] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Display 32bpp. */ tile[12] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); /* Thin. */ tile[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Thin 8 bpp. */ tile[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); /* Thin 16 bpp. */ tile[15] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); /* Thin 32 bpp. */ tile[16] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); /* Thin 64 bpp. */ tile[17] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); /* 8 bpp PRT. */ tile[21] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 16 bpp PRT */ tile[22] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); /* 32 bpp PRT */ tile[23] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 64 bpp PRT */ tile[24] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 128 bpp PRT */ tile[25] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) | NUM_BANKS(ADDR_SURF_8_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(GB_TILE_MODE0 + (reg_offset * 4), tile[reg_offset]); break; case CHIP_VERDE: case CHIP_OLAND: case CHIP_HAINAN: /* non-AA compressed depth or any compressed stencil */ tile[0] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); /* 2xAA/4xAA compressed depth only */ tile[1] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); /* 8xAA compressed depth only */ tile[2] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); /* 2xAA/4xAA compressed depth with stencil (for depth buffer) */ tile[3] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_128B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); /* Maps w/ a dimension less than the 2D macro-tile dimensions (for mipmapped depth textures) */ tile[4] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Uncompressed 16bpp depth - and stencil buffer allocated with it */ tile[5] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Uncompressed 32bpp depth - and stencil buffer allocated with it */ tile[6] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Uncompressed 8bpp stencil without depth (drivers typically do not use) */ tile[7] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DEPTH_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); /* 1D and 1D Array Surfaces */ tile[8] = (ARRAY_MODE(ARRAY_LINEAR_ALIGNED) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Displayable maps. */ tile[9] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Display 8bpp. */ tile[10] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); /* Display 16bpp. */ tile[11] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Display 32bpp. */ tile[12] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_DISPLAY_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Thin. */ tile[13] = (ARRAY_MODE(ARRAY_1D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_64B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Thin 8 bpp. */ tile[14] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Thin 16 bpp. */ tile[15] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Thin 32 bpp. */ tile[16] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* Thin 64 bpp. */ tile[17] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P4_8x16) | TILE_SPLIT(split_equal_to_row_size) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 8 bpp PRT. */ tile[21] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_2) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 16 bpp PRT */ tile[22] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_4) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_4)); /* 32 bpp PRT */ tile[23] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_256B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_2) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 64 bpp PRT */ tile[24] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_512B) | NUM_BANKS(ADDR_SURF_16_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_2)); /* 128 bpp PRT */ tile[25] = (ARRAY_MODE(ARRAY_2D_TILED_THIN1) | MICRO_TILE_MODE(ADDR_SURF_THIN_MICRO_TILING) | PIPE_CONFIG(ADDR_SURF_P8_32x32_8x16) | TILE_SPLIT(ADDR_SURF_TILE_SPLIT_1KB) | NUM_BANKS(ADDR_SURF_8_BANK) | BANK_WIDTH(ADDR_SURF_BANK_WIDTH_1) | BANK_HEIGHT(ADDR_SURF_BANK_HEIGHT_1) | MACRO_TILE_ASPECT(ADDR_SURF_MACRO_ASPECT_1)); for (reg_offset = 0; reg_offset < num_tile_mode_states; reg_offset++) WREG32(GB_TILE_MODE0 + (reg_offset * 4), tile[reg_offset]); break; default: DRM_ERROR("unknown asic: 0x%x\n", rdev->family); } } static void si_select_se_sh(struct radeon_device *rdev, u32 se_num, u32 sh_num) { u32 data = INSTANCE_BROADCAST_WRITES; if ((se_num == 0xffffffff) && (sh_num == 0xffffffff)) data |= SH_BROADCAST_WRITES | SE_BROADCAST_WRITES; else if (se_num == 0xffffffff) data |= SE_BROADCAST_WRITES | SH_INDEX(sh_num); else if (sh_num == 0xffffffff) data |= SH_BROADCAST_WRITES | SE_INDEX(se_num); else data |= SH_INDEX(sh_num) | SE_INDEX(se_num); WREG32(GRBM_GFX_INDEX, data); } static u32 si_create_bitmask(u32 bit_width) { u32 i, mask = 0; for (i = 0; i < bit_width; i++) { mask <<= 1; mask |= 1; } return mask; } static u32 si_get_cu_enabled(struct radeon_device *rdev, u32 cu_per_sh) { u32 data, mask; data = RREG32(CC_GC_SHADER_ARRAY_CONFIG); if (data & 1) data &= INACTIVE_CUS_MASK; else data = 0; data |= RREG32(GC_USER_SHADER_ARRAY_CONFIG); data >>= INACTIVE_CUS_SHIFT; mask = si_create_bitmask(cu_per_sh); return ~data & mask; } static void si_setup_spi(struct radeon_device *rdev, u32 se_num, u32 sh_per_se, u32 cu_per_sh) { int i, j, k; u32 data, mask, active_cu; for (i = 0; i < se_num; i++) { for (j = 0; j < sh_per_se; j++) { si_select_se_sh(rdev, i, j); data = RREG32(SPI_STATIC_THREAD_MGMT_3); active_cu = si_get_cu_enabled(rdev, cu_per_sh); mask = 1; for (k = 0; k < 16; k++) { mask <<= k; if (active_cu & mask) { data &= ~mask; WREG32(SPI_STATIC_THREAD_MGMT_3, data); break; } } } } si_select_se_sh(rdev, 0xffffffff, 0xffffffff); } static u32 si_get_rb_disabled(struct radeon_device *rdev, u32 max_rb_num_per_se, u32 sh_per_se) { u32 data, mask; data = RREG32(CC_RB_BACKEND_DISABLE); if (data & 1) data &= BACKEND_DISABLE_MASK; else data = 0; data |= RREG32(GC_USER_RB_BACKEND_DISABLE); data >>= BACKEND_DISABLE_SHIFT; mask = si_create_bitmask(max_rb_num_per_se / sh_per_se); return data & mask; } static void si_setup_rb(struct radeon_device *rdev, u32 se_num, u32 sh_per_se, u32 max_rb_num_per_se) { int i, j; u32 data, mask; u32 disabled_rbs = 0; u32 enabled_rbs = 0; for (i = 0; i < se_num; i++) { for (j = 0; j < sh_per_se; j++) { si_select_se_sh(rdev, i, j); data = si_get_rb_disabled(rdev, max_rb_num_per_se, sh_per_se); disabled_rbs |= data << ((i * sh_per_se + j) * TAHITI_RB_BITMAP_WIDTH_PER_SH); } } si_select_se_sh(rdev, 0xffffffff, 0xffffffff); mask = 1; for (i = 0; i < max_rb_num_per_se * se_num; i++) { if (!(disabled_rbs & mask)) enabled_rbs |= mask; mask <<= 1; } rdev->config.si.backend_enable_mask = enabled_rbs; for (i = 0; i < se_num; i++) { si_select_se_sh(rdev, i, 0xffffffff); data = 0; for (j = 0; j < sh_per_se; j++) { switch (enabled_rbs & 3) { case 1: data |= (RASTER_CONFIG_RB_MAP_0 << (i * sh_per_se + j) * 2); break; case 2: data |= (RASTER_CONFIG_RB_MAP_3 << (i * sh_per_se + j) * 2); break; case 3: default: data |= (RASTER_CONFIG_RB_MAP_2 << (i * sh_per_se + j) * 2); break; } enabled_rbs >>= 2; } WREG32(PA_SC_RASTER_CONFIG, data); } si_select_se_sh(rdev, 0xffffffff, 0xffffffff); } static void si_gpu_init(struct radeon_device *rdev) { u32 gb_addr_config = 0; u32 mc_arb_ramcfg; u32 sx_debug_1; u32 hdp_host_path_cntl; u32 tmp; int i, j; switch (rdev->family) { case CHIP_TAHITI: rdev->config.si.max_shader_engines = 2; rdev->config.si.max_tile_pipes = 12; rdev->config.si.max_cu_per_sh = 8; rdev->config.si.max_sh_per_se = 2; rdev->config.si.max_backends_per_se = 4; rdev->config.si.max_texture_channel_caches = 12; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 32; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x100; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TAHITI_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_PITCAIRN: rdev->config.si.max_shader_engines = 2; rdev->config.si.max_tile_pipes = 8; rdev->config.si.max_cu_per_sh = 5; rdev->config.si.max_sh_per_se = 2; rdev->config.si.max_backends_per_se = 4; rdev->config.si.max_texture_channel_caches = 8; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 32; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x100; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = TAHITI_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_VERDE: default: rdev->config.si.max_shader_engines = 1; rdev->config.si.max_tile_pipes = 4; rdev->config.si.max_cu_per_sh = 5; rdev->config.si.max_sh_per_se = 2; rdev->config.si.max_backends_per_se = 4; rdev->config.si.max_texture_channel_caches = 4; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 32; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x40; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = VERDE_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_OLAND: rdev->config.si.max_shader_engines = 1; rdev->config.si.max_tile_pipes = 4; rdev->config.si.max_cu_per_sh = 6; rdev->config.si.max_sh_per_se = 1; rdev->config.si.max_backends_per_se = 2; rdev->config.si.max_texture_channel_caches = 4; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 16; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x40; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = VERDE_GB_ADDR_CONFIG_GOLDEN; break; case CHIP_HAINAN: rdev->config.si.max_shader_engines = 1; rdev->config.si.max_tile_pipes = 4; rdev->config.si.max_cu_per_sh = 5; rdev->config.si.max_sh_per_se = 1; rdev->config.si.max_backends_per_se = 1; rdev->config.si.max_texture_channel_caches = 2; rdev->config.si.max_gprs = 256; rdev->config.si.max_gs_threads = 16; rdev->config.si.max_hw_contexts = 8; rdev->config.si.sc_prim_fifo_size_frontend = 0x20; rdev->config.si.sc_prim_fifo_size_backend = 0x40; rdev->config.si.sc_hiz_tile_fifo_size = 0x30; rdev->config.si.sc_earlyz_tile_fifo_size = 0x130; gb_addr_config = HAINAN_GB_ADDR_CONFIG_GOLDEN; break; } /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(GRBM_CNTL, GRBM_READ_TIMEOUT(0xff)); WREG32(SRBM_INT_CNTL, 1); WREG32(SRBM_INT_ACK, 1); evergreen_fix_pci_max_read_req_size(rdev); WREG32(BIF_FB_EN, FB_READ_EN | FB_WRITE_EN); RREG32(MC_SHARED_CHMAP); mc_arb_ramcfg = RREG32(MC_ARB_RAMCFG); rdev->config.si.num_tile_pipes = rdev->config.si.max_tile_pipes; rdev->config.si.mem_max_burst_length_bytes = 256; tmp = (mc_arb_ramcfg & NOOFCOLS_MASK) >> NOOFCOLS_SHIFT; rdev->config.si.mem_row_size_in_kb = (4 * (1 << (8 + tmp))) / 1024; if (rdev->config.si.mem_row_size_in_kb > 4) rdev->config.si.mem_row_size_in_kb = 4; /* XXX use MC settings? */ rdev->config.si.shader_engine_tile_size = 32; rdev->config.si.num_gpus = 1; rdev->config.si.multi_gpu_tile_size = 64; /* fix up row size */ gb_addr_config &= ~ROW_SIZE_MASK; switch (rdev->config.si.mem_row_size_in_kb) { case 1: default: gb_addr_config |= ROW_SIZE(0); break; case 2: gb_addr_config |= ROW_SIZE(1); break; case 4: gb_addr_config |= ROW_SIZE(2); break; } /* setup tiling info dword. gb_addr_config is not adequate since it does * not have bank info, so create a custom tiling dword. * bits 3:0 num_pipes * bits 7:4 num_banks * bits 11:8 group_size * bits 15:12 row_size */ rdev->config.si.tile_config = 0; switch (rdev->config.si.num_tile_pipes) { case 1: rdev->config.si.tile_config |= (0 << 0); break; case 2: rdev->config.si.tile_config |= (1 << 0); break; case 4: rdev->config.si.tile_config |= (2 << 0); break; case 8: default: /* XXX what about 12? */ rdev->config.si.tile_config |= (3 << 0); break; } switch ((mc_arb_ramcfg & NOOFBANK_MASK) >> NOOFBANK_SHIFT) { case 0: /* four banks */ rdev->config.si.tile_config |= 0 << 4; break; case 1: /* eight banks */ rdev->config.si.tile_config |= 1 << 4; break; case 2: /* sixteen banks */ default: rdev->config.si.tile_config |= 2 << 4; break; } rdev->config.si.tile_config |= ((gb_addr_config & PIPE_INTERLEAVE_SIZE_MASK) >> PIPE_INTERLEAVE_SIZE_SHIFT) << 8; rdev->config.si.tile_config |= ((gb_addr_config & ROW_SIZE_MASK) >> ROW_SIZE_SHIFT) << 12; WREG32(GB_ADDR_CONFIG, gb_addr_config); WREG32(DMIF_ADDR_CONFIG, gb_addr_config); WREG32(DMIF_ADDR_CALC, gb_addr_config); WREG32(HDP_ADDR_CONFIG, gb_addr_config); WREG32(DMA_TILING_CONFIG + DMA0_REGISTER_OFFSET, gb_addr_config); WREG32(DMA_TILING_CONFIG + DMA1_REGISTER_OFFSET, gb_addr_config); if (rdev->has_uvd) { WREG32(UVD_UDEC_ADDR_CONFIG, gb_addr_config); WREG32(UVD_UDEC_DB_ADDR_CONFIG, gb_addr_config); WREG32(UVD_UDEC_DBW_ADDR_CONFIG, gb_addr_config); } si_tiling_mode_table_init(rdev); si_setup_rb(rdev, rdev->config.si.max_shader_engines, rdev->config.si.max_sh_per_se, rdev->config.si.max_backends_per_se); si_setup_spi(rdev, rdev->config.si.max_shader_engines, rdev->config.si.max_sh_per_se, rdev->config.si.max_cu_per_sh); rdev->config.si.active_cus = 0; for (i = 0; i < rdev->config.si.max_shader_engines; i++) { for (j = 0; j < rdev->config.si.max_sh_per_se; j++) { rdev->config.si.active_cus += hweight32(si_get_cu_active_bitmap(rdev, i, j)); } } /* set HW defaults for 3D engine */ WREG32(CP_QUEUE_THRESHOLDS, (ROQ_IB1_START(0x16) | ROQ_IB2_START(0x2b))); WREG32(CP_MEQ_THRESHOLDS, MEQ1_START(0x30) | MEQ2_START(0x60)); sx_debug_1 = RREG32(SX_DEBUG_1); WREG32(SX_DEBUG_1, sx_debug_1); WREG32(SPI_CONFIG_CNTL_1, VTX_DONE_DELAY(4)); WREG32(PA_SC_FIFO_SIZE, (SC_FRONTEND_PRIM_FIFO_SIZE(rdev->config.si.sc_prim_fifo_size_frontend) | SC_BACKEND_PRIM_FIFO_SIZE(rdev->config.si.sc_prim_fifo_size_backend) | SC_HIZ_TILE_FIFO_SIZE(rdev->config.si.sc_hiz_tile_fifo_size) | SC_EARLYZ_TILE_FIFO_SIZE(rdev->config.si.sc_earlyz_tile_fifo_size))); WREG32(VGT_NUM_INSTANCES, 1); WREG32(CP_PERFMON_CNTL, 0); WREG32(SQ_CONFIG, 0); WREG32(PA_SC_FORCE_EOV_MAX_CNTS, (FORCE_EOV_MAX_CLK_CNT(4095) | FORCE_EOV_MAX_REZ_CNT(255))); WREG32(VGT_CACHE_INVALIDATION, CACHE_INVALIDATION(VC_AND_TC) | AUTO_INVLD_EN(ES_AND_GS_AUTO)); WREG32(VGT_GS_VERTEX_REUSE, 16); WREG32(PA_SC_LINE_STIPPLE_STATE, 0); WREG32(CB_PERFCOUNTER0_SELECT0, 0); WREG32(CB_PERFCOUNTER0_SELECT1, 0); WREG32(CB_PERFCOUNTER1_SELECT0, 0); WREG32(CB_PERFCOUNTER1_SELECT1, 0); WREG32(CB_PERFCOUNTER2_SELECT0, 0); WREG32(CB_PERFCOUNTER2_SELECT1, 0); WREG32(CB_PERFCOUNTER3_SELECT0, 0); WREG32(CB_PERFCOUNTER3_SELECT1, 0); tmp = RREG32(HDP_MISC_CNTL); tmp |= HDP_FLUSH_INVALIDATE_CACHE; WREG32(HDP_MISC_CNTL, tmp); hdp_host_path_cntl = RREG32(HDP_HOST_PATH_CNTL); WREG32(HDP_HOST_PATH_CNTL, hdp_host_path_cntl); WREG32(PA_CL_ENHANCE, CLIP_VTX_REORDER_ENA | NUM_CLIP_SEQ(3)); udelay(50); } /* * GPU scratch registers helpers function. */ static void si_scratch_init(struct radeon_device *rdev) { int i; rdev->scratch.num_reg = 7; rdev->scratch.reg_base = SCRATCH_REG0; for (i = 0; i < rdev->scratch.num_reg; i++) { rdev->scratch.free[i] = true; rdev->scratch.reg[i] = rdev->scratch.reg_base + (i * 4); } } void si_fence_ring_emit(struct radeon_device *rdev, struct radeon_fence *fence) { struct radeon_ring *ring = &rdev->ring[fence->ring]; u64 addr = rdev->fence_drv[fence->ring].gpu_addr; /* flush read cache over gart */ radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, (CP_COHER_CNTL2 - PACKET3_SET_CONFIG_REG_START) >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3)); radeon_ring_write(ring, PACKET3_TCL1_ACTION_ENA | PACKET3_TC_ACTION_ENA | PACKET3_SH_KCACHE_ACTION_ENA | PACKET3_SH_ICACHE_ACTION_ENA); radeon_ring_write(ring, 0xFFFFFFFF); radeon_ring_write(ring, 0); radeon_ring_write(ring, 10); /* poll interval */ /* EVENT_WRITE_EOP - flush caches, send int */ radeon_ring_write(ring, PACKET3(PACKET3_EVENT_WRITE_EOP, 4)); radeon_ring_write(ring, EVENT_TYPE(CACHE_FLUSH_AND_INV_TS_EVENT) | EVENT_INDEX(5)); radeon_ring_write(ring, lower_32_bits(addr)); radeon_ring_write(ring, (upper_32_bits(addr) & 0xff) | DATA_SEL(1) | INT_SEL(2)); radeon_ring_write(ring, fence->seq); radeon_ring_write(ring, 0); } /* * IB stuff */ void si_ring_ib_execute(struct radeon_device *rdev, struct radeon_ib *ib) { struct radeon_ring *ring = &rdev->ring[ib->ring]; unsigned vm_id = ib->vm ? ib->vm->ids[ib->ring].id : 0; u32 header; if (ib->is_const_ib) { /* set switch buffer packet before const IB */ radeon_ring_write(ring, PACKET3(PACKET3_SWITCH_BUFFER, 0)); radeon_ring_write(ring, 0); header = PACKET3(PACKET3_INDIRECT_BUFFER_CONST, 2); } else { u32 next_rptr; if (ring->rptr_save_reg) { next_rptr = ring->wptr + 3 + 4 + 8; radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, ((ring->rptr_save_reg - PACKET3_SET_CONFIG_REG_START) >> 2)); radeon_ring_write(ring, next_rptr); } else if (rdev->wb.enabled) { next_rptr = ring->wptr + 5 + 4 + 8; radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (1 << 8)); radeon_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc); radeon_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr)); radeon_ring_write(ring, next_rptr); } header = PACKET3(PACKET3_INDIRECT_BUFFER, 2); } radeon_ring_write(ring, header); radeon_ring_write(ring, #ifdef __BIG_ENDIAN (2 << 0) | #endif (ib->gpu_addr & 0xFFFFFFFC)); radeon_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xFFFF); radeon_ring_write(ring, ib->length_dw | (vm_id << 24)); if (!ib->is_const_ib) { /* flush read cache over gart for this vmid */ radeon_ring_write(ring, PACKET3(PACKET3_SET_CONFIG_REG, 1)); radeon_ring_write(ring, (CP_COHER_CNTL2 - PACKET3_SET_CONFIG_REG_START) >> 2); radeon_ring_write(ring, vm_id); radeon_ring_write(ring, PACKET3(PACKET3_SURFACE_SYNC, 3)); radeon_ring_write(ring, PACKET3_TCL1_ACTION_ENA | PACKET3_TC_ACTION_ENA | PACKET3_SH_KCACHE_ACTION_ENA | PACKET3_SH_ICACHE_ACTION_ENA); radeon_ring_write(ring, 0xFFFFFFFF); radeon_ring_write(ring, 0); radeon_ring_write(ring, 10); /* poll interval */ } } /* * CP. */ static void si_cp_enable(struct radeon_device *rdev, bool enable) { if (enable) WREG32(CP_ME_CNTL, 0); else { if (rdev->asic->copy.copy_ring_index == RADEON_RING_TYPE_GFX_INDEX) radeon_ttm_set_active_vram_size(rdev, rdev->mc.visible_vram_size); WREG32(CP_ME_CNTL, (CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT)); WREG32(SCRATCH_UMSK, 0); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false; } udelay(50); } static int si_cp_load_microcode(struct radeon_device *rdev) { int i; if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw) return -EINVAL; si_cp_enable(rdev, false); if (rdev->new_fw) { const struct gfx_firmware_header_v1_0 *pfp_hdr = (const struct gfx_firmware_header_v1_0 *)rdev->pfp_fw->data; const struct gfx_firmware_header_v1_0 *ce_hdr = (const struct gfx_firmware_header_v1_0 *)rdev->ce_fw->data; const struct gfx_firmware_header_v1_0 *me_hdr = (const struct gfx_firmware_header_v1_0 *)rdev->me_fw->data; const __le32 *fw_data; u32 fw_size; radeon_ucode_print_gfx_hdr(&pfp_hdr->header); radeon_ucode_print_gfx_hdr(&ce_hdr->header); radeon_ucode_print_gfx_hdr(&me_hdr->header); /* PFP */ fw_data = (const __le32 *) (rdev->pfp_fw->data + le32_to_cpu(pfp_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(pfp_hdr->header.ucode_size_bytes) / 4; WREG32(CP_PFP_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32(CP_PFP_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); /* CE */ fw_data = (const __le32 *) (rdev->ce_fw->data + le32_to_cpu(ce_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(ce_hdr->header.ucode_size_bytes) / 4; WREG32(CP_CE_UCODE_ADDR, 0); for (i = 0; i < fw_size; i++) WREG32(CP_CE_UCODE_DATA, le32_to_cpup(fw_data++)); WREG32(CP_CE_UCODE_ADDR, 0); /* ME */ fw_data = (const __be32 *) (rdev->me_fw->data + le32_to_cpu(me_hdr->header.ucode_array_offset_bytes)); fw_size = le32_to_cpu(me_hdr->header.ucode_size_bytes) / 4; WREG32(CP_ME_RAM_WADDR, 0); for (i = 0; i < fw_size; i++) WREG32(CP_ME_RAM_DATA, le32_to_cpup(fw_data++)); WREG32(CP_ME_RAM_WADDR, 0); } else { const __be32 *fw_data; /* PFP */ fw_data = (const __be32 *)rdev->pfp_fw->data; WREG32(CP_PFP_UCODE_ADDR, 0); for (i = 0; i < SI_PFP_UCODE_SIZE; i++) WREG32(CP_PFP_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_PFP_UCODE_ADDR, 0); /* CE */ fw_data = (const __be32 *)rdev->ce_fw->data; WREG32(CP_CE_UCODE_ADDR, 0); for (i = 0; i < SI_CE_UCODE_SIZE; i++) WREG32(CP_CE_UCODE_DATA, be32_to_cpup(fw_data++)); WREG32(CP_CE_UCODE_ADDR, 0); /* ME */ fw_data = (const __be32 *)rdev->me_fw->data; WREG32(CP_ME_RAM_WADDR, 0); for (i = 0; i < SI_PM4_UCODE_SIZE; i++) WREG32(CP_ME_RAM_DATA, be32_to_cpup(fw_data++)); WREG32(CP_ME_RAM_WADDR, 0); } WREG32(CP_PFP_UCODE_ADDR, 0); WREG32(CP_CE_UCODE_ADDR, 0); WREG32(CP_ME_RAM_WADDR, 0); WREG32(CP_ME_RAM_RADDR, 0); return 0; } static int si_cp_start(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; int r, i; r = radeon_ring_lock(rdev, ring, 7 + 4); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } /* init the CP */ radeon_ring_write(ring, PACKET3(PACKET3_ME_INITIALIZE, 5)); radeon_ring_write(ring, 0x1); radeon_ring_write(ring, 0x0); radeon_ring_write(ring, rdev->config.si.max_hw_contexts - 1); radeon_ring_write(ring, PACKET3_ME_INITIALIZE_DEVICE_ID(1)); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); /* init the CE partitions */ radeon_ring_write(ring, PACKET3(PACKET3_SET_BASE, 2)); radeon_ring_write(ring, PACKET3_BASE_INDEX(CE_PARTITION_BASE)); radeon_ring_write(ring, 0xc000); radeon_ring_write(ring, 0xe000); radeon_ring_unlock_commit(rdev, ring, false); si_cp_enable(rdev, true); r = radeon_ring_lock(rdev, ring, si_default_size + 10); if (r) { DRM_ERROR("radeon: cp failed to lock ring (%d).\n", r); return r; } /* setup clear context state */ radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(ring, PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); for (i = 0; i < si_default_size; i++) radeon_ring_write(ring, si_default_state[i]); radeon_ring_write(ring, PACKET3(PACKET3_PREAMBLE_CNTL, 0)); radeon_ring_write(ring, PACKET3_PREAMBLE_END_CLEAR_STATE); /* set clear context state */ radeon_ring_write(ring, PACKET3(PACKET3_CLEAR_STATE, 0)); radeon_ring_write(ring, 0); radeon_ring_write(ring, PACKET3(PACKET3_SET_CONTEXT_REG, 2)); radeon_ring_write(ring, 0x00000316); radeon_ring_write(ring, 0x0000000e); /* VGT_VERTEX_REUSE_BLOCK_CNTL */ radeon_ring_write(ring, 0x00000010); /* VGT_OUT_DEALLOC_CNTL */ radeon_ring_unlock_commit(rdev, ring, false); for (i = RADEON_RING_TYPE_GFX_INDEX; i <= CAYMAN_RING_TYPE_CP2_INDEX; ++i) { ring = &rdev->ring[i]; r = radeon_ring_lock(rdev, ring, 2); /* clear the compute context state */ radeon_ring_write(ring, PACKET3_COMPUTE(PACKET3_CLEAR_STATE, 0)); radeon_ring_write(ring, 0); radeon_ring_unlock_commit(rdev, ring, false); } return 0; } static void si_cp_fini(struct radeon_device *rdev) { struct radeon_ring *ring; si_cp_enable(rdev, false); ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; radeon_ring_fini(rdev, ring); radeon_scratch_free(rdev, ring->rptr_save_reg); ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; radeon_ring_fini(rdev, ring); radeon_scratch_free(rdev, ring->rptr_save_reg); ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; radeon_ring_fini(rdev, ring); radeon_scratch_free(rdev, ring->rptr_save_reg); } static int si_cp_resume(struct radeon_device *rdev) { struct radeon_ring *ring; u32 tmp; u32 rb_bufsz; int r; si_enable_gui_idle_interrupt(rdev, false); WREG32(CP_SEM_WAIT_TIMER, 0x0); WREG32(CP_SEM_INCOMPLETE_TIMER_CNTL, 0x0); /* Set the write pointer delay */ WREG32(CP_RB_WPTR_DELAY, 0); WREG32(CP_DEBUG, 0); WREG32(SCRATCH_ADDR, ((rdev->wb.gpu_addr + RADEON_WB_SCRATCH_OFFSET) >> 8) & 0xFFFFFFFF); /* ring 0 - compute and gfx */ /* Set ring buffer size */ ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = (order_base_2(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB0_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB0_CNTL, tmp | RB_RPTR_WR_ENA); ring->wptr = 0; WREG32(CP_RB0_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(CP_RB0_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB0_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP_RPTR_OFFSET) & 0xFF); if (rdev->wb.enabled) WREG32(SCRATCH_UMSK, 0xff); else { tmp |= RB_NO_UPDATE; WREG32(SCRATCH_UMSK, 0); } mdelay(1); WREG32(CP_RB0_CNTL, tmp); WREG32(CP_RB0_BASE, ring->gpu_addr >> 8); /* ring1 - compute only */ /* Set ring buffer size */ ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = (order_base_2(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB1_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB1_CNTL, tmp | RB_RPTR_WR_ENA); ring->wptr = 0; WREG32(CP_RB1_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(CP_RB1_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB1_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP1_RPTR_OFFSET) & 0xFF); mdelay(1); WREG32(CP_RB1_CNTL, tmp); WREG32(CP_RB1_BASE, ring->gpu_addr >> 8); /* ring2 - compute only */ /* Set ring buffer size */ ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; rb_bufsz = order_base_2(ring->ring_size / 8); tmp = (order_base_2(RADEON_GPU_PAGE_SIZE/8) << 8) | rb_bufsz; #ifdef __BIG_ENDIAN tmp |= BUF_SWAP_32BIT; #endif WREG32(CP_RB2_CNTL, tmp); /* Initialize the ring buffer's read and write pointers */ WREG32(CP_RB2_CNTL, tmp | RB_RPTR_WR_ENA); ring->wptr = 0; WREG32(CP_RB2_WPTR, ring->wptr); /* set the wb address whether it's enabled or not */ WREG32(CP_RB2_RPTR_ADDR, (rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET) & 0xFFFFFFFC); WREG32(CP_RB2_RPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + RADEON_WB_CP2_RPTR_OFFSET) & 0xFF); mdelay(1); WREG32(CP_RB2_CNTL, tmp); WREG32(CP_RB2_BASE, ring->gpu_addr >> 8); /* start the rings */ si_cp_start(rdev); rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = true; rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = true; rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = true; r = radeon_ring_test(rdev, RADEON_RING_TYPE_GFX_INDEX, &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]); if (r) { rdev->ring[RADEON_RING_TYPE_GFX_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false; rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false; return r; } r = radeon_ring_test(rdev, CAYMAN_RING_TYPE_CP1_INDEX, &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]); if (r) { rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX].ready = false; } r = radeon_ring_test(rdev, CAYMAN_RING_TYPE_CP2_INDEX, &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]); if (r) { rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX].ready = false; } si_enable_gui_idle_interrupt(rdev, true); if (rdev->asic->copy.copy_ring_index == RADEON_RING_TYPE_GFX_INDEX) radeon_ttm_set_active_vram_size(rdev, rdev->mc.real_vram_size); return 0; } u32 si_gpu_check_soft_reset(struct radeon_device *rdev) { u32 reset_mask = 0; u32 tmp; /* GRBM_STATUS */ tmp = RREG32(GRBM_STATUS); if (tmp & (PA_BUSY | SC_BUSY | BCI_BUSY | SX_BUSY | TA_BUSY | VGT_BUSY | DB_BUSY | CB_BUSY | GDS_BUSY | SPI_BUSY | IA_BUSY | IA_BUSY_NO_DMA)) reset_mask |= RADEON_RESET_GFX; if (tmp & (CF_RQ_PENDING | PF_RQ_PENDING | CP_BUSY | CP_COHERENCY_BUSY)) reset_mask |= RADEON_RESET_CP; if (tmp & GRBM_EE_BUSY) reset_mask |= RADEON_RESET_GRBM | RADEON_RESET_GFX | RADEON_RESET_CP; /* GRBM_STATUS2 */ tmp = RREG32(GRBM_STATUS2); if (tmp & (RLC_RQ_PENDING | RLC_BUSY)) reset_mask |= RADEON_RESET_RLC; /* DMA_STATUS_REG 0 */ tmp = RREG32(DMA_STATUS_REG + DMA0_REGISTER_OFFSET); if (!(tmp & DMA_IDLE)) reset_mask |= RADEON_RESET_DMA; /* DMA_STATUS_REG 1 */ tmp = RREG32(DMA_STATUS_REG + DMA1_REGISTER_OFFSET); if (!(tmp & DMA_IDLE)) reset_mask |= RADEON_RESET_DMA1; /* SRBM_STATUS2 */ tmp = RREG32(SRBM_STATUS2); if (tmp & DMA_BUSY) reset_mask |= RADEON_RESET_DMA; if (tmp & DMA1_BUSY) reset_mask |= RADEON_RESET_DMA1; /* SRBM_STATUS */ tmp = RREG32(SRBM_STATUS); if (tmp & IH_BUSY) reset_mask |= RADEON_RESET_IH; if (tmp & SEM_BUSY) reset_mask |= RADEON_RESET_SEM; if (tmp & GRBM_RQ_PENDING) reset_mask |= RADEON_RESET_GRBM; if (tmp & VMC_BUSY) reset_mask |= RADEON_RESET_VMC; if (tmp & (MCB_BUSY | MCB_NON_DISPLAY_BUSY | MCC_BUSY | MCD_BUSY)) reset_mask |= RADEON_RESET_MC; if (evergreen_is_display_hung(rdev)) reset_mask |= RADEON_RESET_DISPLAY; /* VM_L2_STATUS */ tmp = RREG32(VM_L2_STATUS); if (tmp & L2_BUSY) reset_mask |= RADEON_RESET_VMC; /* Skip MC reset as it's mostly likely not hung, just busy */ if (reset_mask & RADEON_RESET_MC) { DRM_DEBUG("MC busy: 0x%08X, clearing.\n", reset_mask); reset_mask &= ~RADEON_RESET_MC; } return reset_mask; } static void si_gpu_soft_reset(struct radeon_device *rdev, u32 reset_mask) { struct evergreen_mc_save save; u32 grbm_soft_reset = 0, srbm_soft_reset = 0; u32 tmp; if (reset_mask == 0) return; dev_info(rdev->dev, "GPU softreset: 0x%08X\n", reset_mask); evergreen_print_gpu_status_regs(rdev); dev_info(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR)); dev_info(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS)); /* disable PG/CG */ si_fini_pg(rdev); si_fini_cg(rdev); /* stop the rlc */ si_rlc_stop(rdev); /* Disable CP parsing/prefetching */ WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT); if (reset_mask & RADEON_RESET_DMA) { /* dma0 */ tmp = RREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET, tmp); } if (reset_mask & RADEON_RESET_DMA1) { /* dma1 */ tmp = RREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET, tmp); } udelay(50); evergreen_mc_stop(rdev, &save); if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } if (reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP)) { grbm_soft_reset = SOFT_RESET_CB | SOFT_RESET_DB | SOFT_RESET_GDS | SOFT_RESET_PA | SOFT_RESET_SC | SOFT_RESET_BCI | SOFT_RESET_SPI | SOFT_RESET_SX | SOFT_RESET_TC | SOFT_RESET_TA | SOFT_RESET_VGT | SOFT_RESET_IA; } if (reset_mask & RADEON_RESET_CP) { grbm_soft_reset |= SOFT_RESET_CP | SOFT_RESET_VGT; srbm_soft_reset |= SOFT_RESET_GRBM; } if (reset_mask & RADEON_RESET_DMA) srbm_soft_reset |= SOFT_RESET_DMA; if (reset_mask & RADEON_RESET_DMA1) srbm_soft_reset |= SOFT_RESET_DMA1; if (reset_mask & RADEON_RESET_DISPLAY) srbm_soft_reset |= SOFT_RESET_DC; if (reset_mask & RADEON_RESET_RLC) grbm_soft_reset |= SOFT_RESET_RLC; if (reset_mask & RADEON_RESET_SEM) srbm_soft_reset |= SOFT_RESET_SEM; if (reset_mask & RADEON_RESET_IH) srbm_soft_reset |= SOFT_RESET_IH; if (reset_mask & RADEON_RESET_GRBM) srbm_soft_reset |= SOFT_RESET_GRBM; if (reset_mask & RADEON_RESET_VMC) srbm_soft_reset |= SOFT_RESET_VMC; if (reset_mask & RADEON_RESET_MC) srbm_soft_reset |= SOFT_RESET_MC; if (grbm_soft_reset) { tmp = RREG32(GRBM_SOFT_RESET); tmp |= grbm_soft_reset; dev_info(rdev->dev, "GRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(GRBM_SOFT_RESET, tmp); tmp = RREG32(GRBM_SOFT_RESET); udelay(50); tmp &= ~grbm_soft_reset; WREG32(GRBM_SOFT_RESET, tmp); tmp = RREG32(GRBM_SOFT_RESET); } if (srbm_soft_reset) { tmp = RREG32(SRBM_SOFT_RESET); tmp |= srbm_soft_reset; dev_info(rdev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp); WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); udelay(50); tmp &= ~srbm_soft_reset; WREG32(SRBM_SOFT_RESET, tmp); tmp = RREG32(SRBM_SOFT_RESET); } /* Wait a little for things to settle down */ udelay(50); evergreen_mc_resume(rdev, &save); udelay(50); evergreen_print_gpu_status_regs(rdev); } static void si_set_clk_bypass_mode(struct radeon_device *rdev) { u32 tmp, i; tmp = RREG32(CG_SPLL_FUNC_CNTL); tmp |= SPLL_BYPASS_EN; WREG32(CG_SPLL_FUNC_CNTL, tmp); tmp = RREG32(CG_SPLL_FUNC_CNTL_2); tmp |= SPLL_CTLREQ_CHG; WREG32(CG_SPLL_FUNC_CNTL_2, tmp); for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(SPLL_STATUS) & SPLL_CHG_STATUS) break; udelay(1); } tmp = RREG32(CG_SPLL_FUNC_CNTL_2); tmp &= ~(SPLL_CTLREQ_CHG | SCLK_MUX_UPDATE); WREG32(CG_SPLL_FUNC_CNTL_2, tmp); tmp = RREG32(MPLL_CNTL_MODE); tmp &= ~MPLL_MCLK_SEL; WREG32(MPLL_CNTL_MODE, tmp); } static void si_spll_powerdown(struct radeon_device *rdev) { u32 tmp; tmp = RREG32(SPLL_CNTL_MODE); tmp |= SPLL_SW_DIR_CONTROL; WREG32(SPLL_CNTL_MODE, tmp); tmp = RREG32(CG_SPLL_FUNC_CNTL); tmp |= SPLL_RESET; WREG32(CG_SPLL_FUNC_CNTL, tmp); tmp = RREG32(CG_SPLL_FUNC_CNTL); tmp |= SPLL_SLEEP; WREG32(CG_SPLL_FUNC_CNTL, tmp); tmp = RREG32(SPLL_CNTL_MODE); tmp &= ~SPLL_SW_DIR_CONTROL; WREG32(SPLL_CNTL_MODE, tmp); } static void si_gpu_pci_config_reset(struct radeon_device *rdev) { struct evergreen_mc_save save; u32 tmp, i; dev_info(rdev->dev, "GPU pci config reset\n"); /* disable dpm? */ /* disable cg/pg */ si_fini_pg(rdev); si_fini_cg(rdev); /* Disable CP parsing/prefetching */ WREG32(CP_ME_CNTL, CP_ME_HALT | CP_PFP_HALT | CP_CE_HALT); /* dma0 */ tmp = RREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + DMA0_REGISTER_OFFSET, tmp); /* dma1 */ tmp = RREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET); tmp &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + DMA1_REGISTER_OFFSET, tmp); /* XXX other engines? */ /* halt the rlc, disable cp internal ints */ si_rlc_stop(rdev); udelay(50); /* disable mem access */ evergreen_mc_stop(rdev, &save); if (evergreen_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timed out !\n"); } /* set mclk/sclk to bypass */ si_set_clk_bypass_mode(rdev); /* powerdown spll */ si_spll_powerdown(rdev); /* disable BM */ pci_clear_master(rdev->pdev); /* reset */ radeon_pci_config_reset(rdev); /* wait for asic to come out of reset */ for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(CONFIG_MEMSIZE) != 0xffffffff) break; udelay(1); } } int si_asic_reset(struct radeon_device *rdev, bool hard) { u32 reset_mask; if (hard) { si_gpu_pci_config_reset(rdev); return 0; } reset_mask = si_gpu_check_soft_reset(rdev); if (reset_mask) r600_set_bios_scratch_engine_hung(rdev, true); /* try soft reset */ si_gpu_soft_reset(rdev, reset_mask); reset_mask = si_gpu_check_soft_reset(rdev); /* try pci config reset */ if (reset_mask && radeon_hard_reset) si_gpu_pci_config_reset(rdev); reset_mask = si_gpu_check_soft_reset(rdev); if (!reset_mask) r600_set_bios_scratch_engine_hung(rdev, false); return 0; } /** * si_gfx_is_lockup - Check if the GFX engine is locked up * * @rdev: radeon_device pointer * @ring: radeon_ring structure holding ring information * * Check if the GFX engine is locked up. * Returns true if the engine appears to be locked up, false if not. */ bool si_gfx_is_lockup(struct radeon_device *rdev, struct radeon_ring *ring) { u32 reset_mask = si_gpu_check_soft_reset(rdev); if (!(reset_mask & (RADEON_RESET_GFX | RADEON_RESET_COMPUTE | RADEON_RESET_CP))) { radeon_ring_lockup_update(rdev, ring); return false; } return radeon_ring_test_lockup(rdev, ring); } /* MC */ static void si_mc_program(struct radeon_device *rdev) { struct evergreen_mc_save save; u32 tmp; int i, j; /* Initialize HDP */ for (i = 0, j = 0; i < 32; i++, j += 0x18) { WREG32((0x2c14 + j), 0x00000000); WREG32((0x2c18 + j), 0x00000000); WREG32((0x2c1c + j), 0x00000000); WREG32((0x2c20 + j), 0x00000000); WREG32((0x2c24 + j), 0x00000000); } WREG32(HDP_REG_COHERENCY_FLUSH_CNTL, 0); evergreen_mc_stop(rdev, &save); if (radeon_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } if (!ASIC_IS_NODCE(rdev)) /* Lockout access through VGA aperture*/ WREG32(VGA_HDP_CONTROL, VGA_MEMORY_DISABLE); /* Update configuration */ WREG32(MC_VM_SYSTEM_APERTURE_LOW_ADDR, rdev->mc.vram_start >> 12); WREG32(MC_VM_SYSTEM_APERTURE_HIGH_ADDR, rdev->mc.vram_end >> 12); WREG32(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR, rdev->vram_scratch.gpu_addr >> 12); tmp = ((rdev->mc.vram_end >> 24) & 0xFFFF) << 16; tmp |= ((rdev->mc.vram_start >> 24) & 0xFFFF); WREG32(MC_VM_FB_LOCATION, tmp); /* XXX double check these! */ WREG32(HDP_NONSURFACE_BASE, (rdev->mc.vram_start >> 8)); WREG32(HDP_NONSURFACE_INFO, (2 << 7) | (1 << 30)); WREG32(HDP_NONSURFACE_SIZE, 0x3FFFFFFF); WREG32(MC_VM_AGP_BASE, 0); WREG32(MC_VM_AGP_TOP, 0x0FFFFFFF); WREG32(MC_VM_AGP_BOT, 0x0FFFFFFF); if (radeon_mc_wait_for_idle(rdev)) { dev_warn(rdev->dev, "Wait for MC idle timedout !\n"); } evergreen_mc_resume(rdev, &save); if (!ASIC_IS_NODCE(rdev)) { /* we need to own VRAM, so turn off the VGA renderer here * to stop it overwriting our objects */ rv515_vga_render_disable(rdev); } } void si_vram_gtt_location(struct radeon_device *rdev, struct radeon_mc *mc) { if (mc->mc_vram_size > 0xFFC0000000ULL) { /* leave room for at least 1024M GTT */ dev_warn(rdev->dev, "limiting VRAM\n"); mc->real_vram_size = 0xFFC0000000ULL; mc->mc_vram_size = 0xFFC0000000ULL; } radeon_vram_location(rdev, &rdev->mc, 0); rdev->mc.gtt_base_align = 0; radeon_gtt_location(rdev, mc); } static int si_mc_init(struct radeon_device *rdev) { u32 tmp; int chansize, numchan; /* Get VRAM informations */ rdev->mc.vram_is_ddr = true; tmp = RREG32(MC_ARB_RAMCFG); if (tmp & CHANSIZE_OVERRIDE) { chansize = 16; } else if (tmp & CHANSIZE_MASK) { chansize = 64; } else { chansize = 32; } tmp = RREG32(MC_SHARED_CHMAP); switch ((tmp & NOOFCHAN_MASK) >> NOOFCHAN_SHIFT) { case 0: default: numchan = 1; break; case 1: numchan = 2; break; case 2: numchan = 4; break; case 3: numchan = 8; break; case 4: numchan = 3; break; case 5: numchan = 6; break; case 6: numchan = 10; break; case 7: numchan = 12; break; case 8: numchan = 16; break; } rdev->mc.vram_width = numchan * chansize; /* Could aper size report 0 ? */ rdev->mc.aper_base = rdev->fb_aper_offset; rdev->mc.aper_size = rdev->fb_aper_size; /* size in MB on si */ tmp = RREG32(CONFIG_MEMSIZE); /* some boards may have garbage in the upper 16 bits */ if (tmp & 0xffff0000) { DRM_INFO("Probable bad vram size: 0x%08x\n", tmp); if (tmp & 0xffff) tmp &= 0xffff; } rdev->mc.mc_vram_size = tmp * 1024ULL * 1024ULL; rdev->mc.real_vram_size = rdev->mc.mc_vram_size; rdev->mc.visible_vram_size = rdev->mc.aper_size; si_vram_gtt_location(rdev, &rdev->mc); radeon_update_bandwidth_info(rdev); return 0; } /* * GART */ void si_pcie_gart_tlb_flush(struct radeon_device *rdev) { /* flush hdp cache */ WREG32(HDP_MEM_COHERENCY_FLUSH_CNTL, 0x1); /* bits 0-15 are the VM contexts0-15 */ WREG32(VM_INVALIDATE_REQUEST, 1); } static int si_pcie_gart_enable(struct radeon_device *rdev) { int r, i; if (rdev->gart.robj == NULL) { dev_err(rdev->dev, "No VRAM object for PCIE GART.\n"); return -EINVAL; } r = radeon_gart_table_vram_pin(rdev); if (r) return r; /* Setup TLB control */ WREG32(MC_VM_MX_L1_TLB_CNTL, (0xA << 7) | ENABLE_L1_TLB | ENABLE_L1_FRAGMENT_PROCESSING | SYSTEM_ACCESS_MODE_NOT_IN_SYS | ENABLE_ADVANCED_DRIVER_MODEL | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_CACHE | ENABLE_L2_FRAGMENT_PROCESSING | ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7) | CONTEXT1_IDENTITY_ACCESS_MODE(1)); WREG32(VM_L2_CNTL2, INVALIDATE_ALL_L1_TLBS | INVALIDATE_L2_CACHE); WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | BANK_SELECT(4) | L2_CACHE_BIGK_FRAGMENT_SIZE(4)); /* setup context0 */ WREG32(VM_CONTEXT0_PAGE_TABLE_START_ADDR, rdev->mc.gtt_start >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_END_ADDR, rdev->mc.gtt_end >> 12); WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR, rdev->gart.table_addr >> 12); WREG32(VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); WREG32(VM_CONTEXT0_CNTL2, 0); WREG32(VM_CONTEXT0_CNTL, (ENABLE_CONTEXT | PAGE_TABLE_DEPTH(0) | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT)); WREG32(0x15D4, 0); WREG32(0x15D8, 0); WREG32(0x15DC, 0); /* empty context1-15 */ /* set vm size, must be a multiple of 4 */ WREG32(VM_CONTEXT1_PAGE_TABLE_START_ADDR, 0); WREG32(VM_CONTEXT1_PAGE_TABLE_END_ADDR, rdev->vm_manager.max_pfn - 1); /* Assign the pt base to something valid for now; the pts used for * the VMs are determined by the application and setup and assigned * on the fly in the vm part of radeon_gart.c */ for (i = 1; i < 16; i++) { if (i < 8) WREG32(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2), rdev->vm_manager.saved_table_addr[i]); else WREG32(VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2), rdev->vm_manager.saved_table_addr[i]); } /* enable context1-15 */ WREG32(VM_CONTEXT1_PROTECTION_FAULT_DEFAULT_ADDR, (u32)(rdev->dummy_page.addr >> 12)); WREG32(VM_CONTEXT1_CNTL2, 4); WREG32(VM_CONTEXT1_CNTL, ENABLE_CONTEXT | PAGE_TABLE_DEPTH(1) | PAGE_TABLE_BLOCK_SIZE(radeon_vm_block_size - 9) | RANGE_PROTECTION_FAULT_ENABLE_INTERRUPT | RANGE_PROTECTION_FAULT_ENABLE_DEFAULT | DUMMY_PAGE_PROTECTION_FAULT_ENABLE_INTERRUPT | DUMMY_PAGE_PROTECTION_FAULT_ENABLE_DEFAULT | PDE0_PROTECTION_FAULT_ENABLE_INTERRUPT | PDE0_PROTECTION_FAULT_ENABLE_DEFAULT | VALID_PROTECTION_FAULT_ENABLE_INTERRUPT | VALID_PROTECTION_FAULT_ENABLE_DEFAULT | READ_PROTECTION_FAULT_ENABLE_INTERRUPT | READ_PROTECTION_FAULT_ENABLE_DEFAULT | WRITE_PROTECTION_FAULT_ENABLE_INTERRUPT | WRITE_PROTECTION_FAULT_ENABLE_DEFAULT); si_pcie_gart_tlb_flush(rdev); DRM_INFO("PCIE GART of %uM enabled (table at 0x%016llX).\n", (unsigned)(rdev->mc.gtt_size >> 20), (unsigned long long)rdev->gart.table_addr); rdev->gart.ready = true; return 0; } static void si_pcie_gart_disable(struct radeon_device *rdev) { unsigned i; for (i = 1; i < 16; ++i) { uint32_t reg; if (i < 8) reg = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (i << 2); else reg = VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((i - 8) << 2); rdev->vm_manager.saved_table_addr[i] = RREG32(reg); } /* Disable all tables */ WREG32(VM_CONTEXT0_CNTL, 0); WREG32(VM_CONTEXT1_CNTL, 0); /* Setup TLB control */ WREG32(MC_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE_NOT_IN_SYS | SYSTEM_APERTURE_UNMAPPED_ACCESS_PASS_THRU); /* Setup L2 cache */ WREG32(VM_L2_CNTL, ENABLE_L2_PTE_CACHE_LRU_UPDATE_BY_WRITE | ENABLE_L2_PDE0_CACHE_LRU_UPDATE_BY_WRITE | EFFECTIVE_L2_QUEUE_SIZE(7) | CONTEXT1_IDENTITY_ACCESS_MODE(1)); WREG32(VM_L2_CNTL2, 0); WREG32(VM_L2_CNTL3, L2_CACHE_BIGK_ASSOCIATIVITY | L2_CACHE_BIGK_FRAGMENT_SIZE(0)); radeon_gart_table_vram_unpin(rdev); } static void si_pcie_gart_fini(struct radeon_device *rdev) { si_pcie_gart_disable(rdev); radeon_gart_table_vram_free(rdev); radeon_gart_fini(rdev); } /* vm parser */ static bool si_vm_reg_valid(u32 reg) { /* context regs are fine */ if (reg >= 0x28000) return true; /* shader regs are also fine */ if (reg >= 0xB000 && reg < 0xC000) return true; /* check config regs */ switch (reg) { case GRBM_GFX_INDEX: case CP_STRMOUT_CNTL: case VGT_VTX_VECT_EJECT_REG: case VGT_CACHE_INVALIDATION: case VGT_ESGS_RING_SIZE: case VGT_GSVS_RING_SIZE: case VGT_GS_VERTEX_REUSE: case VGT_PRIMITIVE_TYPE: case VGT_INDEX_TYPE: case VGT_NUM_INDICES: case VGT_NUM_INSTANCES: case VGT_TF_RING_SIZE: case VGT_HS_OFFCHIP_PARAM: case VGT_TF_MEMORY_BASE: case PA_CL_ENHANCE: case PA_SU_LINE_STIPPLE_VALUE: case PA_SC_LINE_STIPPLE_STATE: case PA_SC_ENHANCE: case SQC_CACHES: case SPI_STATIC_THREAD_MGMT_1: case SPI_STATIC_THREAD_MGMT_2: case SPI_STATIC_THREAD_MGMT_3: case SPI_PS_MAX_WAVE_ID: case SPI_CONFIG_CNTL: case SPI_CONFIG_CNTL_1: case TA_CNTL_AUX: case TA_CS_BC_BASE_ADDR: return true; default: DRM_ERROR("Invalid register 0x%x in CS\n", reg); return false; } } static int si_vm_packet3_ce_check(struct radeon_device *rdev, u32 *ib, struct radeon_cs_packet *pkt) { switch (pkt->opcode) { case PACKET3_NOP: case PACKET3_SET_BASE: case PACKET3_SET_CE_DE_COUNTERS: case PACKET3_LOAD_CONST_RAM: case PACKET3_WRITE_CONST_RAM: case PACKET3_WRITE_CONST_RAM_OFFSET: case PACKET3_DUMP_CONST_RAM: case PACKET3_INCREMENT_CE_COUNTER: case PACKET3_WAIT_ON_DE_COUNTER: case PACKET3_CE_WRITE: break; default: DRM_ERROR("Invalid CE packet3: 0x%x\n", pkt->opcode); return -EINVAL; } return 0; } static int si_vm_packet3_cp_dma_check(u32 *ib, u32 idx) { u32 start_reg, reg, i; u32 command = ib[idx + 4]; u32 info = ib[idx + 1]; u32 idx_value = ib[idx]; if (command & PACKET3_CP_DMA_CMD_SAS) { /* src address space is register */ if (((info & 0x60000000) >> 29) == 0) { start_reg = idx_value << 2; if (command & PACKET3_CP_DMA_CMD_SAIC) { reg = start_reg; if (!si_vm_reg_valid(reg)) { DRM_ERROR("CP DMA Bad SRC register\n"); return -EINVAL; } } else { for (i = 0; i < (command & 0x1fffff); i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) { DRM_ERROR("CP DMA Bad SRC register\n"); return -EINVAL; } } } } } if (command & PACKET3_CP_DMA_CMD_DAS) { /* dst address space is register */ if (((info & 0x00300000) >> 20) == 0) { start_reg = ib[idx + 2]; if (command & PACKET3_CP_DMA_CMD_DAIC) { reg = start_reg; if (!si_vm_reg_valid(reg)) { DRM_ERROR("CP DMA Bad DST register\n"); return -EINVAL; } } else { for (i = 0; i < (command & 0x1fffff); i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) { DRM_ERROR("CP DMA Bad DST register\n"); return -EINVAL; } } } } } return 0; } static int si_vm_packet3_gfx_check(struct radeon_device *rdev, u32 *ib, struct radeon_cs_packet *pkt) { int r; u32 idx = pkt->idx + 1; u32 idx_value = ib[idx]; u32 start_reg, end_reg, reg, i; switch (pkt->opcode) { case PACKET3_NOP: case PACKET3_SET_BASE: case PACKET3_CLEAR_STATE: case PACKET3_INDEX_BUFFER_SIZE: case PACKET3_DISPATCH_DIRECT: case PACKET3_DISPATCH_INDIRECT: case PACKET3_ALLOC_GDS: case PACKET3_WRITE_GDS_RAM: case PACKET3_ATOMIC_GDS: case PACKET3_ATOMIC: case PACKET3_OCCLUSION_QUERY: case PACKET3_SET_PREDICATION: case PACKET3_COND_EXEC: case PACKET3_PRED_EXEC: case PACKET3_DRAW_INDIRECT: case PACKET3_DRAW_INDEX_INDIRECT: case PACKET3_INDEX_BASE: case PACKET3_DRAW_INDEX_2: case PACKET3_CONTEXT_CONTROL: case PACKET3_INDEX_TYPE: case PACKET3_DRAW_INDIRECT_MULTI: case PACKET3_DRAW_INDEX_AUTO: case PACKET3_DRAW_INDEX_IMMD: case PACKET3_NUM_INSTANCES: case PACKET3_DRAW_INDEX_MULTI_AUTO: case PACKET3_STRMOUT_BUFFER_UPDATE: case PACKET3_DRAW_INDEX_OFFSET_2: case PACKET3_DRAW_INDEX_MULTI_ELEMENT: case PACKET3_DRAW_INDEX_INDIRECT_MULTI: case PACKET3_MPEG_INDEX: case PACKET3_WAIT_REG_MEM: case PACKET3_MEM_WRITE: case PACKET3_PFP_SYNC_ME: case PACKET3_SURFACE_SYNC: case PACKET3_EVENT_WRITE: case PACKET3_EVENT_WRITE_EOP: case PACKET3_EVENT_WRITE_EOS: case PACKET3_SET_CONTEXT_REG: case PACKET3_SET_CONTEXT_REG_INDIRECT: case PACKET3_SET_SH_REG: case PACKET3_SET_SH_REG_OFFSET: case PACKET3_INCREMENT_DE_COUNTER: case PACKET3_WAIT_ON_CE_COUNTER: case PACKET3_WAIT_ON_AVAIL_BUFFER: case PACKET3_ME_WRITE: break; case PACKET3_COPY_DATA: if ((idx_value & 0xf00) == 0) { reg = ib[idx + 3] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_WRITE_DATA: if ((idx_value & 0xf00) == 0) { start_reg = ib[idx + 1] * 4; if (idx_value & 0x10000) { if (!si_vm_reg_valid(start_reg)) return -EINVAL; } else { for (i = 0; i < (pkt->count - 2); i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) return -EINVAL; } } } break; case PACKET3_COND_WRITE: if (idx_value & 0x100) { reg = ib[idx + 5] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_COPY_DW: if (idx_value & 0x2) { reg = ib[idx + 3] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_SET_CONFIG_REG: start_reg = (idx_value << 2) + PACKET3_SET_CONFIG_REG_START; end_reg = 4 * pkt->count + start_reg - 4; if ((start_reg < PACKET3_SET_CONFIG_REG_START) || (start_reg >= PACKET3_SET_CONFIG_REG_END) || (end_reg >= PACKET3_SET_CONFIG_REG_END)) { DRM_ERROR("bad PACKET3_SET_CONFIG_REG\n"); return -EINVAL; } for (i = 0; i < pkt->count; i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_CP_DMA: r = si_vm_packet3_cp_dma_check(ib, idx); if (r) return r; break; default: DRM_ERROR("Invalid GFX packet3: 0x%x\n", pkt->opcode); return -EINVAL; } return 0; } static int si_vm_packet3_compute_check(struct radeon_device *rdev, u32 *ib, struct radeon_cs_packet *pkt) { int r; u32 idx = pkt->idx + 1; u32 idx_value = ib[idx]; u32 start_reg, reg, i; switch (pkt->opcode) { case PACKET3_NOP: case PACKET3_SET_BASE: case PACKET3_CLEAR_STATE: case PACKET3_DISPATCH_DIRECT: case PACKET3_DISPATCH_INDIRECT: case PACKET3_ALLOC_GDS: case PACKET3_WRITE_GDS_RAM: case PACKET3_ATOMIC_GDS: case PACKET3_ATOMIC: case PACKET3_OCCLUSION_QUERY: case PACKET3_SET_PREDICATION: case PACKET3_COND_EXEC: case PACKET3_PRED_EXEC: case PACKET3_CONTEXT_CONTROL: case PACKET3_STRMOUT_BUFFER_UPDATE: case PACKET3_WAIT_REG_MEM: case PACKET3_MEM_WRITE: case PACKET3_PFP_SYNC_ME: case PACKET3_SURFACE_SYNC: case PACKET3_EVENT_WRITE: case PACKET3_EVENT_WRITE_EOP: case PACKET3_EVENT_WRITE_EOS: case PACKET3_SET_CONTEXT_REG: case PACKET3_SET_CONTEXT_REG_INDIRECT: case PACKET3_SET_SH_REG: case PACKET3_SET_SH_REG_OFFSET: case PACKET3_INCREMENT_DE_COUNTER: case PACKET3_WAIT_ON_CE_COUNTER: case PACKET3_WAIT_ON_AVAIL_BUFFER: case PACKET3_ME_WRITE: break; case PACKET3_COPY_DATA: if ((idx_value & 0xf00) == 0) { reg = ib[idx + 3] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_WRITE_DATA: if ((idx_value & 0xf00) == 0) { start_reg = ib[idx + 1] * 4; if (idx_value & 0x10000) { if (!si_vm_reg_valid(start_reg)) return -EINVAL; } else { for (i = 0; i < (pkt->count - 2); i++) { reg = start_reg + (4 * i); if (!si_vm_reg_valid(reg)) return -EINVAL; } } } break; case PACKET3_COND_WRITE: if (idx_value & 0x100) { reg = ib[idx + 5] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_COPY_DW: if (idx_value & 0x2) { reg = ib[idx + 3] * 4; if (!si_vm_reg_valid(reg)) return -EINVAL; } break; case PACKET3_CP_DMA: r = si_vm_packet3_cp_dma_check(ib, idx); if (r) return r; break; default: DRM_ERROR("Invalid Compute packet3: 0x%x\n", pkt->opcode); return -EINVAL; } return 0; } int si_ib_parse(struct radeon_device *rdev, struct radeon_ib *ib) { int ret = 0; u32 idx = 0, i; struct radeon_cs_packet pkt; do { pkt.idx = idx; pkt.type = RADEON_CP_PACKET_GET_TYPE(ib->ptr[idx]); pkt.count = RADEON_CP_PACKET_GET_COUNT(ib->ptr[idx]); pkt.one_reg_wr = 0; switch (pkt.type) { case RADEON_PACKET_TYPE0: dev_err(rdev->dev, "Packet0 not allowed!\n"); ret = -EINVAL; break; case RADEON_PACKET_TYPE2: idx += 1; break; case RADEON_PACKET_TYPE3: pkt.opcode = RADEON_CP_PACKET3_GET_OPCODE(ib->ptr[idx]); if (ib->is_const_ib) ret = si_vm_packet3_ce_check(rdev, ib->ptr, &pkt); else { switch (ib->ring) { case RADEON_RING_TYPE_GFX_INDEX: ret = si_vm_packet3_gfx_check(rdev, ib->ptr, &pkt); break; case CAYMAN_RING_TYPE_CP1_INDEX: case CAYMAN_RING_TYPE_CP2_INDEX: ret = si_vm_packet3_compute_check(rdev, ib->ptr, &pkt); break; default: dev_err(rdev->dev, "Non-PM4 ring %d !\n", ib->ring); ret = -EINVAL; break; } } idx += pkt.count + 2; break; default: dev_err(rdev->dev, "Unknown packet type %d !\n", pkt.type); ret = -EINVAL; break; } if (ret) { for (i = 0; i < ib->length_dw; i++) { if (i == idx) printk("\t0x%08x <---\n", ib->ptr[i]); else printk("\t0x%08x\n", ib->ptr[i]); } break; } } while (idx < ib->length_dw); return ret; } /* * vm */ int si_vm_init(struct radeon_device *rdev) { /* number of VMs */ rdev->vm_manager.nvm = 16; /* base offset of vram pages */ rdev->vm_manager.vram_base_offset = 0; return 0; } void si_vm_fini(struct radeon_device *rdev) { } /** * si_vm_decode_fault - print human readable fault info * * @rdev: radeon_device pointer * @status: VM_CONTEXT1_PROTECTION_FAULT_STATUS register value * @addr: VM_CONTEXT1_PROTECTION_FAULT_ADDR register value * * Print human readable fault information (SI). */ static void si_vm_decode_fault(struct radeon_device *rdev, u32 status, u32 addr) { u32 mc_id = (status & MEMORY_CLIENT_ID_MASK) >> MEMORY_CLIENT_ID_SHIFT; u32 vmid = (status & FAULT_VMID_MASK) >> FAULT_VMID_SHIFT; u32 protections = (status & PROTECTIONS_MASK) >> PROTECTIONS_SHIFT; char *block; if (rdev->family == CHIP_TAHITI) { switch (mc_id) { case 160: case 144: case 96: case 80: case 224: case 208: case 32: case 16: block = "CB"; break; case 161: case 145: case 97: case 81: case 225: case 209: case 33: case 17: block = "CB_FMASK"; break; case 162: case 146: case 98: case 82: case 226: case 210: case 34: case 18: block = "CB_CMASK"; break; case 163: case 147: case 99: case 83: case 227: case 211: case 35: case 19: block = "CB_IMMED"; break; case 164: case 148: case 100: case 84: case 228: case 212: case 36: case 20: block = "DB"; break; case 165: case 149: case 101: case 85: case 229: case 213: case 37: case 21: block = "DB_HTILE"; break; case 167: case 151: case 103: case 87: case 231: case 215: case 39: case 23: block = "DB_STEN"; break; case 72: case 68: case 64: case 8: case 4: case 0: case 136: case 132: case 128: case 200: case 196: case 192: block = "TC"; break; case 112: case 48: block = "CP"; break; case 49: case 177: case 50: case 178: block = "SH"; break; case 53: case 190: block = "VGT"; break; case 117: block = "IH"; break; case 51: case 115: block = "RLC"; break; case 119: case 183: block = "DMA0"; break; case 61: block = "DMA1"; break; case 248: case 120: block = "HDP"; break; default: block = "unknown"; break; } } else { switch (mc_id) { case 32: case 16: case 96: case 80: case 160: case 144: case 224: case 208: block = "CB"; break; case 33: case 17: case 97: case 81: case 161: case 145: case 225: case 209: block = "CB_FMASK"; break; case 34: case 18: case 98: case 82: case 162: case 146: case 226: case 210: block = "CB_CMASK"; break; case 35: case 19: case 99: case 83: case 163: case 147: case 227: case 211: block = "CB_IMMED"; break; case 36: case 20: case 100: case 84: case 164: case 148: case 228: case 212: block = "DB"; break; case 37: case 21: case 101: case 85: case 165: case 149: case 229: case 213: block = "DB_HTILE"; break; case 39: case 23: case 103: case 87: case 167: case 151: case 231: case 215: block = "DB_STEN"; break; case 72: case 68: case 8: case 4: case 136: case 132: case 200: case 196: block = "TC"; break; case 112: case 48: block = "CP"; break; case 49: case 177: case 50: case 178: block = "SH"; break; case 53: block = "VGT"; break; case 117: block = "IH"; break; case 51: case 115: block = "RLC"; break; case 119: case 183: block = "DMA0"; break; case 61: block = "DMA1"; break; case 248: case 120: block = "HDP"; break; default: block = "unknown"; break; } } printk("VM fault (0x%02x, vmid %d) at page %u, %s from %s (%d)\n", protections, vmid, addr, (status & MEMORY_CLIENT_RW_MASK) ? "write" : "read", block, mc_id); } void si_vm_flush(struct radeon_device *rdev, struct radeon_ring *ring, unsigned vm_id, uint64_t pd_addr) { /* write new base address */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) | WRITE_DATA_DST_SEL(0))); if (vm_id < 8) { radeon_ring_write(ring, (VM_CONTEXT0_PAGE_TABLE_BASE_ADDR + (vm_id << 2)) >> 2); } else { radeon_ring_write(ring, (VM_CONTEXT8_PAGE_TABLE_BASE_ADDR + ((vm_id - 8) << 2)) >> 2); } radeon_ring_write(ring, 0); radeon_ring_write(ring, pd_addr >> 12); /* flush hdp cache */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, HDP_MEM_COHERENCY_FLUSH_CNTL >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0x1); /* bits 0-15 are the VM contexts0-15 */ radeon_ring_write(ring, PACKET3(PACKET3_WRITE_DATA, 3)); radeon_ring_write(ring, (WRITE_DATA_ENGINE_SEL(1) | WRITE_DATA_DST_SEL(0))); radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 1 << vm_id); /* wait for the invalidate to complete */ radeon_ring_write(ring, PACKET3(PACKET3_WAIT_REG_MEM, 5)); radeon_ring_write(ring, (WAIT_REG_MEM_FUNCTION(0) | /* always */ WAIT_REG_MEM_ENGINE(0))); /* me */ radeon_ring_write(ring, VM_INVALIDATE_REQUEST >> 2); radeon_ring_write(ring, 0); radeon_ring_write(ring, 0); /* ref */ radeon_ring_write(ring, 0); /* mask */ radeon_ring_write(ring, 0x20); /* poll interval */ /* sync PFP to ME, otherwise we might get invalid PFP reads */ radeon_ring_write(ring, PACKET3(PACKET3_PFP_SYNC_ME, 0)); radeon_ring_write(ring, 0x0); } /* * Power and clock gating */ static void si_wait_for_rlc_serdes(struct radeon_device *rdev) { int i; for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(RLC_SERDES_MASTER_BUSY_0) == 0) break; udelay(1); } for (i = 0; i < rdev->usec_timeout; i++) { if (RREG32(RLC_SERDES_MASTER_BUSY_1) == 0) break; udelay(1); } } static void si_enable_gui_idle_interrupt(struct radeon_device *rdev, bool enable) { u32 tmp = RREG32(CP_INT_CNTL_RING0); u32 mask; int i; if (enable) tmp |= (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); else tmp &= ~(CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); WREG32(CP_INT_CNTL_RING0, tmp); if (!enable) { /* read a gfx register */ tmp = RREG32(DB_DEPTH_INFO); mask = RLC_BUSY_STATUS | GFX_POWER_STATUS | GFX_CLOCK_STATUS | GFX_LS_STATUS; for (i = 0; i < rdev->usec_timeout; i++) { if ((RREG32(RLC_STAT) & mask) == (GFX_CLOCK_STATUS | GFX_POWER_STATUS)) break; udelay(1); } } } static void si_set_uvd_dcm(struct radeon_device *rdev, bool sw_mode) { u32 tmp, tmp2; tmp = RREG32(UVD_CGC_CTRL); tmp &= ~(CLK_OD_MASK | CG_DT_MASK); tmp |= DCM | CG_DT(1) | CLK_OD(4); if (sw_mode) { tmp &= ~0x7ffff800; tmp2 = DYN_OR_EN | DYN_RR_EN | G_DIV_ID(7); } else { tmp |= 0x7ffff800; tmp2 = 0; } WREG32(UVD_CGC_CTRL, tmp); WREG32_UVD_CTX(UVD_CGC_CTRL2, tmp2); } void si_init_uvd_internal_cg(struct radeon_device *rdev) { bool hw_mode = true; if (hw_mode) { si_set_uvd_dcm(rdev, false); } else { u32 tmp = RREG32(UVD_CGC_CTRL); tmp &= ~DCM; WREG32(UVD_CGC_CTRL, tmp); } } static u32 si_halt_rlc(struct radeon_device *rdev) { u32 data, orig; orig = data = RREG32(RLC_CNTL); if (data & RLC_ENABLE) { data &= ~RLC_ENABLE; WREG32(RLC_CNTL, data); si_wait_for_rlc_serdes(rdev); } return orig; } static void si_update_rlc(struct radeon_device *rdev, u32 rlc) { u32 tmp; tmp = RREG32(RLC_CNTL); if (tmp != rlc) WREG32(RLC_CNTL, rlc); } static void si_enable_dma_pg(struct radeon_device *rdev, bool enable) { u32 data, orig; orig = data = RREG32(DMA_PG); if (enable && (rdev->pg_flags & RADEON_PG_SUPPORT_SDMA)) data |= PG_CNTL_ENABLE; else data &= ~PG_CNTL_ENABLE; if (orig != data) WREG32(DMA_PG, data); } static void si_init_dma_pg(struct radeon_device *rdev) { u32 tmp; WREG32(DMA_PGFSM_WRITE, 0x00002000); WREG32(DMA_PGFSM_CONFIG, 0x100010ff); for (tmp = 0; tmp < 5; tmp++) WREG32(DMA_PGFSM_WRITE, 0); } static void si_enable_gfx_cgpg(struct radeon_device *rdev, bool enable) { u32 tmp; if (enable && (rdev->pg_flags & RADEON_PG_SUPPORT_GFX_PG)) { tmp = RLC_PUD(0x10) | RLC_PDD(0x10) | RLC_TTPD(0x10) | RLC_MSD(0x10); WREG32(RLC_TTOP_D, tmp); tmp = RREG32(RLC_PG_CNTL); tmp |= GFX_PG_ENABLE; WREG32(RLC_PG_CNTL, tmp); tmp = RREG32(RLC_AUTO_PG_CTRL); tmp |= AUTO_PG_EN; WREG32(RLC_AUTO_PG_CTRL, tmp); } else { tmp = RREG32(RLC_AUTO_PG_CTRL); tmp &= ~AUTO_PG_EN; WREG32(RLC_AUTO_PG_CTRL, tmp); tmp = RREG32(DB_RENDER_CONTROL); } } static void si_init_gfx_cgpg(struct radeon_device *rdev) { u32 tmp; WREG32(RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8); tmp = RREG32(RLC_PG_CNTL); tmp |= GFX_PG_SRC; WREG32(RLC_PG_CNTL, tmp); WREG32(RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8); tmp = RREG32(RLC_AUTO_PG_CTRL); tmp &= ~GRBM_REG_SGIT_MASK; tmp |= GRBM_REG_SGIT(0x700); tmp &= ~PG_AFTER_GRBM_REG_ST_MASK; WREG32(RLC_AUTO_PG_CTRL, tmp); } static u32 si_get_cu_active_bitmap(struct radeon_device *rdev, u32 se, u32 sh) { u32 mask = 0, tmp, tmp1; int i; si_select_se_sh(rdev, se, sh); tmp = RREG32(CC_GC_SHADER_ARRAY_CONFIG); tmp1 = RREG32(GC_USER_SHADER_ARRAY_CONFIG); si_select_se_sh(rdev, 0xffffffff, 0xffffffff); tmp &= 0xffff0000; tmp |= tmp1; tmp >>= 16; for (i = 0; i < rdev->config.si.max_cu_per_sh; i ++) { mask <<= 1; mask |= 1; } return (~tmp) & mask; } static void si_init_ao_cu_mask(struct radeon_device *rdev) { u32 i, j, k, active_cu_number = 0; u32 mask, counter, cu_bitmap; u32 tmp = 0; for (i = 0; i < rdev->config.si.max_shader_engines; i++) { for (j = 0; j < rdev->config.si.max_sh_per_se; j++) { mask = 1; cu_bitmap = 0; counter = 0; for (k = 0; k < rdev->config.si.max_cu_per_sh; k++) { if (si_get_cu_active_bitmap(rdev, i, j) & mask) { if (counter < 2) cu_bitmap |= mask; counter++; } mask <<= 1; } active_cu_number += counter; tmp |= (cu_bitmap << (i * 16 + j * 8)); } } WREG32(RLC_PG_AO_CU_MASK, tmp); tmp = RREG32(RLC_MAX_PG_CU); tmp &= ~MAX_PU_CU_MASK; tmp |= MAX_PU_CU(active_cu_number); WREG32(RLC_MAX_PG_CU, tmp); } static void si_enable_cgcg(struct radeon_device *rdev, bool enable) { u32 data, orig, tmp; orig = data = RREG32(RLC_CGCG_CGLS_CTRL); if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_GFX_CGCG)) { si_enable_gui_idle_interrupt(rdev, true); WREG32(RLC_GCPM_GENERAL_3, 0x00000080); tmp = si_halt_rlc(rdev); WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff); WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff); WREG32(RLC_SERDES_WR_CTRL, 0x00b000ff); si_wait_for_rlc_serdes(rdev); si_update_rlc(rdev, tmp); WREG32(RLC_SERDES_WR_CTRL, 0x007000ff); data |= CGCG_EN | CGLS_EN; } else { si_enable_gui_idle_interrupt(rdev, false); RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); RREG32(CB_CGTT_SCLK_CTRL); data &= ~(CGCG_EN | CGLS_EN); } if (orig != data) WREG32(RLC_CGCG_CGLS_CTRL, data); } static void si_enable_mgcg(struct radeon_device *rdev, bool enable) { u32 data, orig, tmp = 0; if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_GFX_MGCG)) { orig = data = RREG32(CGTS_SM_CTRL_REG); data = 0x96940200; if (orig != data) WREG32(CGTS_SM_CTRL_REG, data); if (rdev->cg_flags & RADEON_CG_SUPPORT_GFX_CP_LS) { orig = data = RREG32(CP_MEM_SLP_CNTL); data |= CP_MEM_LS_EN; if (orig != data) WREG32(CP_MEM_SLP_CNTL, data); } orig = data = RREG32(RLC_CGTT_MGCG_OVERRIDE); data &= 0xffffffc0; if (orig != data) WREG32(RLC_CGTT_MGCG_OVERRIDE, data); tmp = si_halt_rlc(rdev); WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff); WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff); WREG32(RLC_SERDES_WR_CTRL, 0x00d000ff); si_update_rlc(rdev, tmp); } else { orig = data = RREG32(RLC_CGTT_MGCG_OVERRIDE); data |= 0x00000003; if (orig != data) WREG32(RLC_CGTT_MGCG_OVERRIDE, data); data = RREG32(CP_MEM_SLP_CNTL); if (data & CP_MEM_LS_EN) { data &= ~CP_MEM_LS_EN; WREG32(CP_MEM_SLP_CNTL, data); } orig = data = RREG32(CGTS_SM_CTRL_REG); data |= LS_OVERRIDE | OVERRIDE; if (orig != data) WREG32(CGTS_SM_CTRL_REG, data); tmp = si_halt_rlc(rdev); WREG32(RLC_SERDES_WR_MASTER_MASK_0, 0xffffffff); WREG32(RLC_SERDES_WR_MASTER_MASK_1, 0xffffffff); WREG32(RLC_SERDES_WR_CTRL, 0x00e000ff); si_update_rlc(rdev, tmp); } } static void si_enable_uvd_mgcg(struct radeon_device *rdev, bool enable) { u32 orig, data, tmp; if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_UVD_MGCG)) { tmp = RREG32_UVD_CTX(UVD_CGC_MEM_CTRL); tmp |= 0x3fff; WREG32_UVD_CTX(UVD_CGC_MEM_CTRL, tmp); orig = data = RREG32(UVD_CGC_CTRL); data |= DCM; if (orig != data) WREG32(UVD_CGC_CTRL, data); WREG32_SMC(SMC_CG_IND_START + CG_CGTT_LOCAL_0, 0); WREG32_SMC(SMC_CG_IND_START + CG_CGTT_LOCAL_1, 0); } else { tmp = RREG32_UVD_CTX(UVD_CGC_MEM_CTRL); tmp &= ~0x3fff; WREG32_UVD_CTX(UVD_CGC_MEM_CTRL, tmp); orig = data = RREG32(UVD_CGC_CTRL); data &= ~DCM; if (orig != data) WREG32(UVD_CGC_CTRL, data); WREG32_SMC(SMC_CG_IND_START + CG_CGTT_LOCAL_0, 0xffffffff); WREG32_SMC(SMC_CG_IND_START + CG_CGTT_LOCAL_1, 0xffffffff); } } static const u32 mc_cg_registers[] = { MC_HUB_MISC_HUB_CG, MC_HUB_MISC_SIP_CG, MC_HUB_MISC_VM_CG, MC_XPB_CLK_GAT, ATC_MISC_CG, MC_CITF_MISC_WR_CG, MC_CITF_MISC_RD_CG, MC_CITF_MISC_VM_CG, VM_L2_CG, }; static void si_enable_mc_ls(struct radeon_device *rdev, bool enable) { int i; u32 orig, data; for (i = 0; i < ARRAY_SIZE(mc_cg_registers); i++) { orig = data = RREG32(mc_cg_registers[i]); if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_MC_LS)) data |= MC_LS_ENABLE; else data &= ~MC_LS_ENABLE; if (data != orig) WREG32(mc_cg_registers[i], data); } } static void si_enable_mc_mgcg(struct radeon_device *rdev, bool enable) { int i; u32 orig, data; for (i = 0; i < ARRAY_SIZE(mc_cg_registers); i++) { orig = data = RREG32(mc_cg_registers[i]); if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_MC_MGCG)) data |= MC_CG_ENABLE; else data &= ~MC_CG_ENABLE; if (data != orig) WREG32(mc_cg_registers[i], data); } } static void si_enable_dma_mgcg(struct radeon_device *rdev, bool enable) { u32 orig, data, offset; int i; if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_SDMA_MGCG)) { for (i = 0; i < 2; i++) { if (i == 0) offset = DMA0_REGISTER_OFFSET; else offset = DMA1_REGISTER_OFFSET; orig = data = RREG32(DMA_POWER_CNTL + offset); data &= ~MEM_POWER_OVERRIDE; if (data != orig) WREG32(DMA_POWER_CNTL + offset, data); WREG32(DMA_CLK_CTRL + offset, 0x00000100); } } else { for (i = 0; i < 2; i++) { if (i == 0) offset = DMA0_REGISTER_OFFSET; else offset = DMA1_REGISTER_OFFSET; orig = data = RREG32(DMA_POWER_CNTL + offset); data |= MEM_POWER_OVERRIDE; if (data != orig) WREG32(DMA_POWER_CNTL + offset, data); orig = data = RREG32(DMA_CLK_CTRL + offset); data = 0xff000000; if (data != orig) WREG32(DMA_CLK_CTRL + offset, data); } } } static void si_enable_bif_mgls(struct radeon_device *rdev, bool enable) { u32 orig, data; orig = data = RREG32_PCIE(PCIE_CNTL2); if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_BIF_LS)) data |= SLV_MEM_LS_EN | MST_MEM_LS_EN | REPLAY_MEM_LS_EN | SLV_MEM_AGGRESSIVE_LS_EN; else data &= ~(SLV_MEM_LS_EN | MST_MEM_LS_EN | REPLAY_MEM_LS_EN | SLV_MEM_AGGRESSIVE_LS_EN); if (orig != data) WREG32_PCIE(PCIE_CNTL2, data); } static void si_enable_hdp_mgcg(struct radeon_device *rdev, bool enable) { u32 orig, data; orig = data = RREG32(HDP_HOST_PATH_CNTL); if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_HDP_MGCG)) data &= ~CLOCK_GATING_DIS; else data |= CLOCK_GATING_DIS; if (orig != data) WREG32(HDP_HOST_PATH_CNTL, data); } static void si_enable_hdp_ls(struct radeon_device *rdev, bool enable) { u32 orig, data; orig = data = RREG32(HDP_MEM_POWER_LS); if (enable && (rdev->cg_flags & RADEON_CG_SUPPORT_HDP_LS)) data |= HDP_LS_ENABLE; else data &= ~HDP_LS_ENABLE; if (orig != data) WREG32(HDP_MEM_POWER_LS, data); } static void si_update_cg(struct radeon_device *rdev, u32 block, bool enable) { if (block & RADEON_CG_BLOCK_GFX) { si_enable_gui_idle_interrupt(rdev, false); /* order matters! */ if (enable) { si_enable_mgcg(rdev, true); si_enable_cgcg(rdev, true); } else { si_enable_cgcg(rdev, false); si_enable_mgcg(rdev, false); } si_enable_gui_idle_interrupt(rdev, true); } if (block & RADEON_CG_BLOCK_MC) { si_enable_mc_mgcg(rdev, enable); si_enable_mc_ls(rdev, enable); } if (block & RADEON_CG_BLOCK_SDMA) { si_enable_dma_mgcg(rdev, enable); } if (block & RADEON_CG_BLOCK_BIF) { si_enable_bif_mgls(rdev, enable); } if (block & RADEON_CG_BLOCK_UVD) { if (rdev->has_uvd) { si_enable_uvd_mgcg(rdev, enable); } } if (block & RADEON_CG_BLOCK_HDP) { si_enable_hdp_mgcg(rdev, enable); si_enable_hdp_ls(rdev, enable); } } static void si_init_cg(struct radeon_device *rdev) { si_update_cg(rdev, (RADEON_CG_BLOCK_GFX | RADEON_CG_BLOCK_MC | RADEON_CG_BLOCK_SDMA | RADEON_CG_BLOCK_BIF | RADEON_CG_BLOCK_HDP), true); if (rdev->has_uvd) { si_update_cg(rdev, RADEON_CG_BLOCK_UVD, true); si_init_uvd_internal_cg(rdev); } } static void si_fini_cg(struct radeon_device *rdev) { if (rdev->has_uvd) { si_update_cg(rdev, RADEON_CG_BLOCK_UVD, false); } si_update_cg(rdev, (RADEON_CG_BLOCK_GFX | RADEON_CG_BLOCK_MC | RADEON_CG_BLOCK_SDMA | RADEON_CG_BLOCK_BIF | RADEON_CG_BLOCK_HDP), false); } u32 si_get_csb_size(struct radeon_device *rdev) { u32 count = 0; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; if (rdev->rlc.cs_data == NULL) return 0; /* begin clear state */ count += 2; /* context control state */ count += 3; for (sect = rdev->rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) count += 2 + ext->reg_count; else return 0; } } /* pa_sc_raster_config */ count += 3; /* end clear state */ count += 2; /* clear state */ count += 2; return count; } void si_get_csb_buffer(struct radeon_device *rdev, volatile u32 *buffer) { u32 count = 0, i; const struct cs_section_def *sect = NULL; const struct cs_extent_def *ext = NULL; if (rdev->rlc.cs_data == NULL) return; if (buffer == NULL) return; buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_BEGIN_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CONTEXT_CONTROL, 1)); buffer[count++] = cpu_to_le32(0x80000000); buffer[count++] = cpu_to_le32(0x80000000); for (sect = rdev->rlc.cs_data; sect->section != NULL; ++sect) { for (ext = sect->section; ext->extent != NULL; ++ext) { if (sect->id == SECT_CONTEXT) { buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, ext->reg_count)); buffer[count++] = cpu_to_le32(ext->reg_index - 0xa000); for (i = 0; i < ext->reg_count; i++) buffer[count++] = cpu_to_le32(ext->extent[i]); } else { return; } } } buffer[count++] = cpu_to_le32(PACKET3(PACKET3_SET_CONTEXT_REG, 1)); buffer[count++] = cpu_to_le32(PA_SC_RASTER_CONFIG - PACKET3_SET_CONTEXT_REG_START); switch (rdev->family) { case CHIP_TAHITI: case CHIP_PITCAIRN: buffer[count++] = cpu_to_le32(0x2a00126a); break; case CHIP_VERDE: buffer[count++] = cpu_to_le32(0x0000124a); break; case CHIP_OLAND: buffer[count++] = cpu_to_le32(0x00000082); break; case CHIP_HAINAN: buffer[count++] = cpu_to_le32(0x00000000); break; default: buffer[count++] = cpu_to_le32(0x00000000); break; } buffer[count++] = cpu_to_le32(PACKET3(PACKET3_PREAMBLE_CNTL, 0)); buffer[count++] = cpu_to_le32(PACKET3_PREAMBLE_END_CLEAR_STATE); buffer[count++] = cpu_to_le32(PACKET3(PACKET3_CLEAR_STATE, 0)); buffer[count++] = cpu_to_le32(0); } static void si_init_pg(struct radeon_device *rdev) { if (rdev->pg_flags) { if (rdev->pg_flags & RADEON_PG_SUPPORT_SDMA) { si_init_dma_pg(rdev); } si_init_ao_cu_mask(rdev); if (rdev->pg_flags & RADEON_PG_SUPPORT_GFX_PG) { si_init_gfx_cgpg(rdev); } else { WREG32(RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8); WREG32(RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8); } si_enable_dma_pg(rdev, true); si_enable_gfx_cgpg(rdev, true); } else { WREG32(RLC_SAVE_AND_RESTORE_BASE, rdev->rlc.save_restore_gpu_addr >> 8); WREG32(RLC_CLEAR_STATE_RESTORE_BASE, rdev->rlc.clear_state_gpu_addr >> 8); } } static void si_fini_pg(struct radeon_device *rdev) { if (rdev->pg_flags) { si_enable_dma_pg(rdev, false); si_enable_gfx_cgpg(rdev, false); } } /* * RLC */ void si_rlc_reset(struct radeon_device *rdev) { u32 tmp = RREG32(GRBM_SOFT_RESET); tmp |= SOFT_RESET_RLC; WREG32(GRBM_SOFT_RESET, tmp); udelay(50); tmp &= ~SOFT_RESET_RLC; WREG32(GRBM_SOFT_RESET, tmp); udelay(50); } static void si_rlc_stop(struct radeon_device *rdev) { WREG32(RLC_CNTL, 0); si_enable_gui_idle_interrupt(rdev, false); si_wait_for_rlc_serdes(rdev); } static void si_rlc_start(struct radeon_device *rdev) { WREG32(RLC_CNTL, RLC_ENABLE); si_enable_gui_idle_interrupt(rdev, true); udelay(50); } static bool si_lbpw_supported(struct radeon_device *rdev) { u32 tmp; /* Enable LBPW only for DDR3 */ tmp = RREG32(MC_SEQ_MISC0); if ((tmp & 0xF0000000) == 0xB0000000) return true; return false; } static void si_enable_lbpw(struct radeon_device *rdev, bool enable) { u32 tmp; tmp = RREG32(RLC_LB_CNTL); if (enable) tmp |= LOAD_BALANCE_ENABLE; else tmp &= ~LOAD_BALANCE_ENABLE; WREG32(RLC_LB_CNTL, tmp); if (!enable) { si_select_se_sh(rdev, 0xffffffff, 0xffffffff); WREG32(SPI_LB_CU_MASK, 0x00ff); } } static int si_rlc_resume(struct radeon_device *rdev) { u32 i; if (!rdev->rlc_fw) return -EINVAL; si_rlc_stop(rdev); si_rlc_reset(rdev); si_init_pg(rdev); si_init_cg(rdev); WREG32(RLC_RL_BASE, 0); WREG32(RLC_RL_SIZE, 0); WREG32(RLC_LB_CNTL, 0); WREG32(RLC_LB_CNTR_MAX, 0xffffffff); WREG32(RLC_LB_CNTR_INIT, 0); WREG32(RLC_LB_INIT_CU_MASK, 0xffffffff); WREG32(RLC_MC_CNTL, 0); WREG32(RLC_UCODE_CNTL, 0); if (rdev->new_fw) { const struct rlc_firmware_header_v1_0 *hdr = (const struct rlc_firmware_header_v1_0 *)rdev->rlc_fw->data; u32 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4; const __le32 *fw_data = (const __le32 *) (rdev->rlc_fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes)); radeon_ucode_print_rlc_hdr(&hdr->header); for (i = 0; i < fw_size; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, le32_to_cpup(fw_data++)); } } else { const __be32 *fw_data = (const __be32 *)rdev->rlc_fw->data; for (i = 0; i < SI_RLC_UCODE_SIZE; i++) { WREG32(RLC_UCODE_ADDR, i); WREG32(RLC_UCODE_DATA, be32_to_cpup(fw_data++)); } } WREG32(RLC_UCODE_ADDR, 0); si_enable_lbpw(rdev, si_lbpw_supported(rdev)); si_rlc_start(rdev); return 0; } static void si_enable_interrupts(struct radeon_device *rdev) { u32 ih_cntl = RREG32(IH_CNTL); u32 ih_rb_cntl = RREG32(IH_RB_CNTL); ih_cntl |= ENABLE_INTR; ih_rb_cntl |= IH_RB_ENABLE; WREG32(IH_CNTL, ih_cntl); WREG32(IH_RB_CNTL, ih_rb_cntl); rdev->ih.enabled = true; } static void si_disable_interrupts(struct radeon_device *rdev) { u32 ih_rb_cntl = RREG32(IH_RB_CNTL); u32 ih_cntl = RREG32(IH_CNTL); ih_rb_cntl &= ~IH_RB_ENABLE; ih_cntl &= ~ENABLE_INTR; WREG32(IH_RB_CNTL, ih_rb_cntl); WREG32(IH_CNTL, ih_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); rdev->ih.enabled = false; rdev->ih.rptr = 0; } static void si_disable_interrupt_state(struct radeon_device *rdev) { int i; u32 tmp; tmp = RREG32(CP_INT_CNTL_RING0) & (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); WREG32(CP_INT_CNTL_RING0, tmp); WREG32(CP_INT_CNTL_RING1, 0); WREG32(CP_INT_CNTL_RING2, 0); tmp = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, tmp); tmp = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, tmp); WREG32(GRBM_INT_CNTL, 0); WREG32(SRBM_INT_CNTL, 0); for (i = 0; i < rdev->num_crtc; i++) WREG32(INT_MASK + crtc_offsets[i], 0); for (i = 0; i < rdev->num_crtc; i++) WREG32(GRPH_INT_CONTROL + crtc_offsets[i], 0); if (!ASIC_IS_NODCE(rdev)) { WREG32(DAC_AUTODETECT_INT_CONTROL, 0); for (i = 0; i < 6; i++) WREG32_AND(DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_POLARITY); } } static int si_irq_init(struct radeon_device *rdev) { int ret = 0; int rb_bufsz; u32 interrupt_cntl, ih_cntl, ih_rb_cntl; /* allocate ring */ ret = r600_ih_ring_alloc(rdev); if (ret) return ret; /* disable irqs */ si_disable_interrupts(rdev); /* init rlc */ ret = si_rlc_resume(rdev); if (ret) { r600_ih_ring_fini(rdev); return ret; } /* setup interrupt control */ /* set dummy read address to dummy page address */ WREG32(INTERRUPT_CNTL2, rdev->dummy_page.addr >> 8); interrupt_cntl = RREG32(INTERRUPT_CNTL); /* IH_DUMMY_RD_OVERRIDE=0 - dummy read disabled with msi, enabled without msi * IH_DUMMY_RD_OVERRIDE=1 - dummy read controlled by IH_DUMMY_RD_EN */ interrupt_cntl &= ~IH_DUMMY_RD_OVERRIDE; /* IH_REQ_NONSNOOP_EN=1 if ring is in non-cacheable memory, e.g., vram */ interrupt_cntl &= ~IH_REQ_NONSNOOP_EN; WREG32(INTERRUPT_CNTL, interrupt_cntl); WREG32(IH_RB_BASE, rdev->ih.gpu_addr >> 8); rb_bufsz = order_base_2(rdev->ih.ring_size / 4); ih_rb_cntl = (IH_WPTR_OVERFLOW_ENABLE | IH_WPTR_OVERFLOW_CLEAR | (rb_bufsz << 1)); if (rdev->wb.enabled) ih_rb_cntl |= IH_WPTR_WRITEBACK_ENABLE; /* set the writeback address whether it's enabled or not */ WREG32(IH_RB_WPTR_ADDR_LO, (rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFFFFFFFC); WREG32(IH_RB_WPTR_ADDR_HI, upper_32_bits(rdev->wb.gpu_addr + R600_WB_IH_WPTR_OFFSET) & 0xFF); WREG32(IH_RB_CNTL, ih_rb_cntl); /* set rptr, wptr to 0 */ WREG32(IH_RB_RPTR, 0); WREG32(IH_RB_WPTR, 0); /* Default settings for IH_CNTL (disabled at first) */ ih_cntl = MC_WRREQ_CREDIT(0x10) | MC_WR_CLEAN_CNT(0x10) | MC_VMID(0); /* RPTR_REARM only works if msi's are enabled */ if (rdev->msi_enabled) ih_cntl |= RPTR_REARM; WREG32(IH_CNTL, ih_cntl); /* force the active interrupt state to all disabled */ si_disable_interrupt_state(rdev); pci_set_master(rdev->pdev); /* enable irqs */ si_enable_interrupts(rdev); return ret; } /* The order we write back each register here is important */ int si_irq_set(struct radeon_device *rdev) { int i; u32 cp_int_cntl; u32 cp_int_cntl1 = 0, cp_int_cntl2 = 0; u32 grbm_int_cntl = 0; u32 dma_cntl, dma_cntl1; u32 thermal_int = 0; if (!rdev->irq.installed) { WARN(1, "Can't enable IRQ/MSI because no handler is installed\n"); return -EINVAL; } /* don't enable anything if the ih is disabled */ if (!rdev->ih.enabled) { si_disable_interrupts(rdev); /* force the active interrupt state to all disabled */ si_disable_interrupt_state(rdev); return 0; } cp_int_cntl = RREG32(CP_INT_CNTL_RING0) & (CNTX_BUSY_INT_ENABLE | CNTX_EMPTY_INT_ENABLE); dma_cntl = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET) & ~TRAP_ENABLE; dma_cntl1 = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET) & ~TRAP_ENABLE; thermal_int = RREG32(CG_THERMAL_INT) & ~(THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW); /* enable CP interrupts on all rings */ if (atomic_read(&rdev->irq.ring_int[RADEON_RING_TYPE_GFX_INDEX])) { DRM_DEBUG("si_irq_set: sw int gfx\n"); cp_int_cntl |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP1_INDEX])) { DRM_DEBUG("si_irq_set: sw int cp1\n"); cp_int_cntl1 |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_CP2_INDEX])) { DRM_DEBUG("si_irq_set: sw int cp2\n"); cp_int_cntl2 |= TIME_STAMP_INT_ENABLE; } if (atomic_read(&rdev->irq.ring_int[R600_RING_TYPE_DMA_INDEX])) { DRM_DEBUG("si_irq_set: sw int dma\n"); dma_cntl |= TRAP_ENABLE; } if (atomic_read(&rdev->irq.ring_int[CAYMAN_RING_TYPE_DMA1_INDEX])) { DRM_DEBUG("si_irq_set: sw int dma1\n"); dma_cntl1 |= TRAP_ENABLE; } WREG32(CP_INT_CNTL_RING0, cp_int_cntl); WREG32(CP_INT_CNTL_RING1, cp_int_cntl1); WREG32(CP_INT_CNTL_RING2, cp_int_cntl2); WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, dma_cntl); WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, dma_cntl1); WREG32(GRBM_INT_CNTL, grbm_int_cntl); if (rdev->irq.dpm_thermal) { DRM_DEBUG("dpm thermal\n"); thermal_int |= THERM_INT_MASK_HIGH | THERM_INT_MASK_LOW; } for (i = 0; i < rdev->num_crtc; i++) { radeon_irq_kms_set_irq_n_enabled( rdev, INT_MASK + crtc_offsets[i], VBLANK_INT_MASK, rdev->irq.crtc_vblank_int[i] || atomic_read(&rdev->irq.pflip[i]), "vblank", i); } for (i = 0; i < rdev->num_crtc; i++) WREG32(GRPH_INT_CONTROL + crtc_offsets[i], GRPH_PFLIP_INT_MASK); if (!ASIC_IS_NODCE(rdev)) { for (i = 0; i < 6; i++) { radeon_irq_kms_set_irq_n_enabled( rdev, DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_EN | DC_HPDx_RX_INT_EN, rdev->irq.hpd[i], "HPD", i); } } WREG32(CG_THERMAL_INT, thermal_int); /* posting read */ RREG32(SRBM_STATUS); return 0; } /* The order we write back each register here is important */ static inline void si_irq_ack(struct radeon_device *rdev) { int i, j; u32 *disp_int = rdev->irq.stat_regs.evergreen.disp_int; u32 *grph_int = rdev->irq.stat_regs.evergreen.grph_int; if (ASIC_IS_NODCE(rdev)) return; for (i = 0; i < 6; i++) { disp_int[i] = RREG32(si_disp_int_status[i]); if (i < rdev->num_crtc) grph_int[i] = RREG32(GRPH_INT_STATUS + crtc_offsets[i]); } /* We write back each interrupt register in pairs of two */ for (i = 0; i < rdev->num_crtc; i += 2) { for (j = i; j < (i + 2); j++) { if (grph_int[j] & GRPH_PFLIP_INT_OCCURRED) WREG32(GRPH_INT_STATUS + crtc_offsets[j], GRPH_PFLIP_INT_CLEAR); } for (j = i; j < (i + 2); j++) { if (disp_int[j] & LB_D1_VBLANK_INTERRUPT) WREG32(VBLANK_STATUS + crtc_offsets[j], VBLANK_ACK); if (disp_int[j] & LB_D1_VLINE_INTERRUPT) WREG32(VLINE_STATUS + crtc_offsets[j], VLINE_ACK); } } for (i = 0; i < 6; i++) { if (disp_int[i] & DC_HPD1_INTERRUPT) WREG32_OR(DC_HPDx_INT_CONTROL(i), DC_HPDx_INT_ACK); } for (i = 0; i < 6; i++) { if (disp_int[i] & DC_HPD1_RX_INTERRUPT) WREG32_OR(DC_HPDx_INT_CONTROL(i), DC_HPDx_RX_INT_ACK); } } static void si_irq_disable(struct radeon_device *rdev) { si_disable_interrupts(rdev); /* Wait and acknowledge irq */ mdelay(1); si_irq_ack(rdev); si_disable_interrupt_state(rdev); } static void si_irq_suspend(struct radeon_device *rdev) { si_irq_disable(rdev); si_rlc_stop(rdev); } static void si_irq_fini(struct radeon_device *rdev) { si_irq_suspend(rdev); r600_ih_ring_fini(rdev); } static inline u32 si_get_ih_wptr(struct radeon_device *rdev) { u32 wptr, tmp; if (rdev->wb.enabled) wptr = le32_to_cpu(rdev->wb.wb[R600_WB_IH_WPTR_OFFSET/4]); else wptr = RREG32(IH_RB_WPTR); if (wptr & RB_OVERFLOW) { wptr &= ~RB_OVERFLOW; /* When a ring buffer overflow happen start parsing interrupt * from the last not overwritten vector (wptr + 16). Hopefully * this should allow us to catchup. */ dev_warn(rdev->dev, "IH ring buffer overflow (0x%08X, 0x%08X, 0x%08X)\n", wptr, rdev->ih.rptr, (wptr + 16) & rdev->ih.ptr_mask); rdev->ih.rptr = (wptr + 16) & rdev->ih.ptr_mask; tmp = RREG32(IH_RB_CNTL); tmp |= IH_WPTR_OVERFLOW_CLEAR; WREG32(IH_RB_CNTL, tmp); } return (wptr & rdev->ih.ptr_mask); } /* SI IV Ring * Each IV ring entry is 128 bits: * [7:0] - interrupt source id * [31:8] - reserved * [59:32] - interrupt source data * [63:60] - reserved * [71:64] - RINGID * [79:72] - VMID * [127:80] - reserved */ int si_irq_process(struct radeon_device *rdev) { u32 *disp_int = rdev->irq.stat_regs.evergreen.disp_int; u32 crtc_idx, hpd_idx; u32 mask; u32 wptr; u32 rptr; u32 src_id, src_data, ring_id; u32 ring_index; bool queue_hotplug = false; bool queue_dp = false; bool queue_thermal = false; u32 status, addr; const char *event_name; if (!rdev->ih.enabled || rdev->shutdown) return IRQ_NONE; wptr = si_get_ih_wptr(rdev); if (wptr == rdev->ih.rptr) return IRQ_NONE; restart_ih: /* is somebody else already processing irqs? */ if (atomic_xchg(&rdev->ih.lock, 1)) return IRQ_NONE; rptr = rdev->ih.rptr; DRM_DEBUG("si_irq_process start: rptr %d, wptr %d\n", rptr, wptr); /* Order reading of wptr vs. reading of IH ring data */ rmb(); /* display interrupts */ si_irq_ack(rdev); while (rptr != wptr) { /* wptr/rptr are in bytes! */ ring_index = rptr / 4; src_id = le32_to_cpu(rdev->ih.ring[ring_index]) & 0xff; src_data = le32_to_cpu(rdev->ih.ring[ring_index + 1]) & 0xfffffff; ring_id = le32_to_cpu(rdev->ih.ring[ring_index + 2]) & 0xff; switch (src_id) { case 1: /* D1 vblank/vline */ case 2: /* D2 vblank/vline */ case 3: /* D3 vblank/vline */ case 4: /* D4 vblank/vline */ case 5: /* D5 vblank/vline */ case 6: /* D6 vblank/vline */ crtc_idx = src_id - 1; if (src_data == 0) { /* vblank */ mask = LB_D1_VBLANK_INTERRUPT; event_name = "vblank"; if (rdev->irq.crtc_vblank_int[crtc_idx]) { drm_handle_vblank(rdev->ddev, crtc_idx); rdev->pm.vblank_sync = true; wake_up(&rdev->irq.vblank_queue); } if (atomic_read(&rdev->irq.pflip[crtc_idx])) { radeon_crtc_handle_vblank(rdev, crtc_idx); } } else if (src_data == 1) { /* vline */ mask = LB_D1_VLINE_INTERRUPT; event_name = "vline"; } else { DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } if (!(disp_int[crtc_idx] & mask)) { DRM_DEBUG("IH: D%d %s - IH event w/o asserted irq bit?\n", crtc_idx + 1, event_name); } disp_int[crtc_idx] &= ~mask; DRM_DEBUG("IH: D%d %s\n", crtc_idx + 1, event_name); break; case 8: /* D1 page flip */ case 10: /* D2 page flip */ case 12: /* D3 page flip */ case 14: /* D4 page flip */ case 16: /* D5 page flip */ case 18: /* D6 page flip */ DRM_DEBUG("IH: D%d flip\n", ((src_id - 8) >> 1) + 1); if (radeon_use_pflipirq > 0) radeon_crtc_handle_flip(rdev, (src_id - 8) >> 1); break; case 42: /* HPD hotplug */ if (src_data <= 5) { hpd_idx = src_data; mask = DC_HPD1_INTERRUPT; queue_hotplug = true; event_name = "HPD"; } else if (src_data <= 11) { hpd_idx = src_data - 6; mask = DC_HPD1_RX_INTERRUPT; queue_dp = true; event_name = "HPD_RX"; } else { DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } if (!(disp_int[hpd_idx] & mask)) DRM_DEBUG("IH: IH event w/o asserted irq bit?\n"); disp_int[hpd_idx] &= ~mask; DRM_DEBUG("IH: %s%d\n", event_name, hpd_idx + 1); break; case 96: DRM_ERROR("SRBM_READ_ERROR: 0x%x\n", RREG32(SRBM_READ_ERROR)); WREG32(SRBM_INT_ACK, 0x1); break; case 124: /* UVD */ DRM_DEBUG("IH: UVD int: 0x%08x\n", src_data); radeon_fence_process(rdev, R600_RING_TYPE_UVD_INDEX); break; case 146: case 147: addr = RREG32(VM_CONTEXT1_PROTECTION_FAULT_ADDR); status = RREG32(VM_CONTEXT1_PROTECTION_FAULT_STATUS); /* reset addr and status */ WREG32_P(VM_CONTEXT1_CNTL2, 1, ~1); if (addr == 0x0 && status == 0x0) break; dev_err(rdev->dev, "GPU fault detected: %d 0x%08x\n", src_id, src_data); dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_ADDR 0x%08X\n", addr); dev_err(rdev->dev, " VM_CONTEXT1_PROTECTION_FAULT_STATUS 0x%08X\n", status); si_vm_decode_fault(rdev, status, addr); break; case 176: /* RINGID0 CP_INT */ radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 177: /* RINGID1 CP_INT */ radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX); break; case 178: /* RINGID2 CP_INT */ radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX); break; case 181: /* CP EOP event */ DRM_DEBUG("IH: CP EOP\n"); switch (ring_id) { case 0: radeon_fence_process(rdev, RADEON_RING_TYPE_GFX_INDEX); break; case 1: radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP1_INDEX); break; case 2: radeon_fence_process(rdev, CAYMAN_RING_TYPE_CP2_INDEX); break; } break; case 224: /* DMA trap event */ DRM_DEBUG("IH: DMA trap\n"); radeon_fence_process(rdev, R600_RING_TYPE_DMA_INDEX); break; case 230: /* thermal low to high */ DRM_DEBUG("IH: thermal low to high\n"); rdev->pm.dpm.thermal.high_to_low = false; queue_thermal = true; break; case 231: /* thermal high to low */ DRM_DEBUG("IH: thermal high to low\n"); rdev->pm.dpm.thermal.high_to_low = true; queue_thermal = true; break; case 233: /* GUI IDLE */ DRM_DEBUG("IH: GUI idle\n"); break; case 244: /* DMA trap event */ DRM_DEBUG("IH: DMA1 trap\n"); radeon_fence_process(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); break; default: DRM_DEBUG("Unhandled interrupt: %d %d\n", src_id, src_data); break; } /* wptr/rptr are in bytes! */ rptr += 16; rptr &= rdev->ih.ptr_mask; WREG32(IH_RB_RPTR, rptr); } if (queue_dp) schedule_work(&rdev->dp_work); if (queue_hotplug) schedule_delayed_work(&rdev->hotplug_work, 0); if (queue_thermal && rdev->pm.dpm_enabled) schedule_work(&rdev->pm.dpm.thermal.work); rdev->ih.rptr = rptr; atomic_set(&rdev->ih.lock, 0); /* make sure wptr hasn't changed while processing */ wptr = si_get_ih_wptr(rdev); if (wptr != rptr) goto restart_ih; return IRQ_HANDLED; } /* * startup/shutdown callbacks */ static void si_uvd_init(struct radeon_device *rdev) { int r; if (!rdev->has_uvd) return; r = radeon_uvd_init(rdev); if (r) { dev_err(rdev->dev, "failed UVD (%d) init.\n", r); /* * At this point rdev->uvd.vcpu_bo is NULL which trickles down * to early fails uvd_v2_2_resume() and thus nothing happens * there. So it is pointless to try to go through that code * hence why we disable uvd here. */ rdev->has_uvd = false; return; } rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_obj = NULL; r600_ring_init(rdev, &rdev->ring[R600_RING_TYPE_UVD_INDEX], 4096); } static void si_uvd_start(struct radeon_device *rdev) { int r; if (!rdev->has_uvd) return; r = uvd_v2_2_resume(rdev); if (r) { dev_err(rdev->dev, "failed UVD resume (%d).\n", r); goto error; } r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_UVD_INDEX); if (r) { dev_err(rdev->dev, "failed initializing UVD fences (%d).\n", r); goto error; } return; error: rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size = 0; } static void si_uvd_resume(struct radeon_device *rdev) { struct radeon_ring *ring; int r; if (!rdev->has_uvd || !rdev->ring[R600_RING_TYPE_UVD_INDEX].ring_size) return; ring = &rdev->ring[R600_RING_TYPE_UVD_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, 0, PACKET0(UVD_NO_OP, 0)); if (r) { dev_err(rdev->dev, "failed initializing UVD ring (%d).\n", r); return; } r = uvd_v1_0_init(rdev); if (r) { dev_err(rdev->dev, "failed initializing UVD (%d).\n", r); return; } } static void si_vce_init(struct radeon_device *rdev) { int r; if (!rdev->has_vce) return; r = radeon_vce_init(rdev); if (r) { dev_err(rdev->dev, "failed VCE (%d) init.\n", r); /* * At this point rdev->vce.vcpu_bo is NULL which trickles down * to early fails si_vce_start() and thus nothing happens * there. So it is pointless to try to go through that code * hence why we disable vce here. */ rdev->has_vce = false; return; } rdev->ring[TN_RING_TYPE_VCE1_INDEX].ring_obj = NULL; r600_ring_init(rdev, &rdev->ring[TN_RING_TYPE_VCE1_INDEX], 4096); rdev->ring[TN_RING_TYPE_VCE2_INDEX].ring_obj = NULL; r600_ring_init(rdev, &rdev->ring[TN_RING_TYPE_VCE2_INDEX], 4096); } static void si_vce_start(struct radeon_device *rdev) { int r; if (!rdev->has_vce) return; r = radeon_vce_resume(rdev); if (r) { dev_err(rdev->dev, "failed VCE resume (%d).\n", r); goto error; } r = vce_v1_0_resume(rdev); if (r) { dev_err(rdev->dev, "failed VCE resume (%d).\n", r); goto error; } r = radeon_fence_driver_start_ring(rdev, TN_RING_TYPE_VCE1_INDEX); if (r) { dev_err(rdev->dev, "failed initializing VCE1 fences (%d).\n", r); goto error; } r = radeon_fence_driver_start_ring(rdev, TN_RING_TYPE_VCE2_INDEX); if (r) { dev_err(rdev->dev, "failed initializing VCE2 fences (%d).\n", r); goto error; } return; error: rdev->ring[TN_RING_TYPE_VCE1_INDEX].ring_size = 0; rdev->ring[TN_RING_TYPE_VCE2_INDEX].ring_size = 0; } static void si_vce_resume(struct radeon_device *rdev) { struct radeon_ring *ring; int r; if (!rdev->has_vce || !rdev->ring[TN_RING_TYPE_VCE1_INDEX].ring_size) return; ring = &rdev->ring[TN_RING_TYPE_VCE1_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, 0, VCE_CMD_NO_OP); if (r) { dev_err(rdev->dev, "failed initializing VCE1 ring (%d).\n", r); return; } ring = &rdev->ring[TN_RING_TYPE_VCE2_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, 0, VCE_CMD_NO_OP); if (r) { dev_err(rdev->dev, "failed initializing VCE1 ring (%d).\n", r); return; } r = vce_v1_0_init(rdev); if (r) { dev_err(rdev->dev, "failed initializing VCE (%d).\n", r); return; } } static int si_startup(struct radeon_device *rdev) { struct radeon_ring *ring; int r; /* enable pcie gen2/3 link */ si_pcie_gen3_enable(rdev); /* enable aspm */ si_program_aspm(rdev); /* scratch needs to be initialized before MC */ r = r600_vram_scratch_init(rdev); if (r) return r; si_mc_program(rdev); if (!rdev->pm.dpm_enabled) { r = si_mc_load_microcode(rdev); if (r) { DRM_ERROR("Failed to load MC firmware!\n"); return r; } } r = si_pcie_gart_enable(rdev); if (r) return r; si_gpu_init(rdev); /* allocate rlc buffers */ if (rdev->family == CHIP_VERDE) { rdev->rlc.reg_list = verde_rlc_save_restore_register_list; rdev->rlc.reg_list_size = (u32)ARRAY_SIZE(verde_rlc_save_restore_register_list); } rdev->rlc.cs_data = si_cs_data; r = sumo_rlc_init(rdev); if (r) { DRM_ERROR("Failed to init rlc BOs!\n"); return r; } /* allocate wb buffer */ r = radeon_wb_init(rdev); if (r) return r; r = radeon_fence_driver_start_ring(rdev, RADEON_RING_TYPE_GFX_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP1_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_CP2_INDEX); if (r) { dev_err(rdev->dev, "failed initializing CP fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, R600_RING_TYPE_DMA_INDEX); if (r) { dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); return r; } r = radeon_fence_driver_start_ring(rdev, CAYMAN_RING_TYPE_DMA1_INDEX); if (r) { dev_err(rdev->dev, "failed initializing DMA fences (%d).\n", r); return r; } si_uvd_start(rdev); si_vce_start(rdev); /* Enable IRQ */ if (!rdev->irq.installed) { r = radeon_irq_kms_init(rdev); if (r) return r; } r = si_irq_init(rdev); if (r) { DRM_ERROR("radeon: IH init failed (%d).\n", r); radeon_irq_kms_fini(rdev); return r; } si_irq_set(rdev); ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP_RPTR_OFFSET, RADEON_CP_PACKET2); if (r) return r; ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP1_RPTR_OFFSET, RADEON_CP_PACKET2); if (r) return r; ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, RADEON_WB_CP2_RPTR_OFFSET, RADEON_CP_PACKET2); if (r) return r; ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, R600_WB_DMA_RPTR_OFFSET, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0)); if (r) return r; ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; r = radeon_ring_init(rdev, ring, ring->ring_size, CAYMAN_WB_DMA1_RPTR_OFFSET, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0)); if (r) return r; r = si_cp_load_microcode(rdev); if (r) return r; r = si_cp_resume(rdev); if (r) return r; r = cayman_dma_resume(rdev); if (r) return r; si_uvd_resume(rdev); si_vce_resume(rdev); r = radeon_ib_pool_init(rdev); if (r) { dev_err(rdev->dev, "IB initialization failed (%d).\n", r); return r; } r = radeon_vm_manager_init(rdev); if (r) { dev_err(rdev->dev, "vm manager initialization failed (%d).\n", r); return r; } r = radeon_audio_init(rdev); if (r) return r; return 0; } int si_resume(struct radeon_device *rdev) { int r; /* Do not reset GPU before posting, on rv770 hw unlike on r500 hw, * posting will perform necessary task to bring back GPU into good * shape. */ /* post card */ atom_asic_init(rdev->mode_info.atom_context); /* init golden registers */ si_init_golden_registers(rdev); if (rdev->pm.pm_method == PM_METHOD_DPM) radeon_pm_resume(rdev); rdev->accel_working = true; r = si_startup(rdev); if (r) { DRM_ERROR("si startup failed on resume\n"); rdev->accel_working = false; return r; } return r; } int si_suspend(struct radeon_device *rdev) { radeon_pm_suspend(rdev); radeon_audio_fini(rdev); radeon_vm_manager_fini(rdev); si_cp_enable(rdev, false); cayman_dma_stop(rdev); if (rdev->has_uvd) { uvd_v1_0_fini(rdev); radeon_uvd_suspend(rdev); } if (rdev->has_vce) radeon_vce_suspend(rdev); si_fini_pg(rdev); si_fini_cg(rdev); si_irq_suspend(rdev); radeon_wb_disable(rdev); si_pcie_gart_disable(rdev); return 0; } /* Plan is to move initialization in that function and use * helper function so that radeon_device_init pretty much * do nothing more than calling asic specific function. This * should also allow to remove a bunch of callback function * like vram_info. */ int si_init(struct radeon_device *rdev) { struct radeon_ring *ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; int r; /* Read BIOS */ if (!radeon_get_bios(rdev)) { if (ASIC_IS_AVIVO(rdev)) return -EINVAL; } /* Must be an ATOMBIOS */ if (!rdev->is_atom_bios) { dev_err(rdev->dev, "Expecting atombios for cayman GPU\n"); return -EINVAL; } r = radeon_atombios_init(rdev); if (r) return r; /* Post card if necessary */ if (!radeon_card_posted(rdev)) { if (!rdev->bios) { dev_err(rdev->dev, "Card not posted and no BIOS - ignoring\n"); return -EINVAL; } DRM_INFO("GPU not posted. posting now...\n"); atom_asic_init(rdev->mode_info.atom_context); } /* init golden registers */ si_init_golden_registers(rdev); /* Initialize scratch registers */ si_scratch_init(rdev); /* Initialize surface registers */ radeon_surface_init(rdev); /* Initialize clocks */ radeon_get_clock_info(rdev->ddev); /* Fence driver */ radeon_fence_driver_init(rdev); /* initialize memory controller */ r = si_mc_init(rdev); if (r) return r; /* Memory manager */ r = radeon_bo_init(rdev); if (r) return r; if (!rdev->me_fw || !rdev->pfp_fw || !rdev->ce_fw || !rdev->rlc_fw || !rdev->mc_fw) { r = si_init_microcode(rdev); if (r) { DRM_ERROR("Failed to load firmware!\n"); return r; } } /* Initialize power management */ radeon_pm_init(rdev); ring = &rdev->ring[RADEON_RING_TYPE_GFX_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); ring = &rdev->ring[CAYMAN_RING_TYPE_CP1_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); ring = &rdev->ring[CAYMAN_RING_TYPE_CP2_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 1024 * 1024); ring = &rdev->ring[R600_RING_TYPE_DMA_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 64 * 1024); ring = &rdev->ring[CAYMAN_RING_TYPE_DMA1_INDEX]; ring->ring_obj = NULL; r600_ring_init(rdev, ring, 64 * 1024); si_uvd_init(rdev); si_vce_init(rdev); rdev->ih.ring_obj = NULL; r600_ih_ring_init(rdev, 64 * 1024); r = r600_pcie_gart_init(rdev); if (r) return r; rdev->accel_working = true; r = si_startup(rdev); if (r) { dev_err(rdev->dev, "disabling GPU acceleration\n"); si_cp_fini(rdev); cayman_dma_fini(rdev); si_irq_fini(rdev); sumo_rlc_fini(rdev); radeon_wb_fini(rdev); radeon_ib_pool_fini(rdev); radeon_vm_manager_fini(rdev); radeon_irq_kms_fini(rdev); si_pcie_gart_fini(rdev); rdev->accel_working = false; } /* Don't start up if the MC ucode is missing. * The default clocks and voltages before the MC ucode * is loaded are not suffient for advanced operations. */ if (!rdev->mc_fw) { DRM_ERROR("radeon: MC ucode required for NI+.\n"); return -EINVAL; } return 0; } void si_fini(struct radeon_device *rdev) { radeon_pm_fini(rdev); si_cp_fini(rdev); cayman_dma_fini(rdev); si_fini_pg(rdev); si_fini_cg(rdev); si_irq_fini(rdev); sumo_rlc_fini(rdev); radeon_wb_fini(rdev); radeon_vm_manager_fini(rdev); radeon_ib_pool_fini(rdev); radeon_irq_kms_fini(rdev); if (rdev->has_uvd) { uvd_v1_0_fini(rdev); radeon_uvd_fini(rdev); } if (rdev->has_vce) radeon_vce_fini(rdev); si_pcie_gart_fini(rdev); r600_vram_scratch_fini(rdev); radeon_gem_fini(rdev); radeon_fence_driver_fini(rdev); radeon_bo_fini(rdev); radeon_atombios_fini(rdev); kfree(rdev->bios); rdev->bios = NULL; } /** * si_get_gpu_clock_counter - return GPU clock counter snapshot * * @rdev: radeon_device pointer * * Fetches a GPU clock counter snapshot (SI). * Returns the 64 bit clock counter snapshot. */ uint64_t si_get_gpu_clock_counter(struct radeon_device *rdev) { uint64_t clock; mutex_lock(&rdev->gpu_clock_mutex); WREG32(RLC_CAPTURE_GPU_CLOCK_COUNT, 1); clock = (uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_LSB) | ((uint64_t)RREG32(RLC_GPU_CLOCK_COUNT_MSB) << 32ULL); mutex_unlock(&rdev->gpu_clock_mutex); return clock; } int si_set_uvd_clocks(struct radeon_device *rdev, u32 vclk, u32 dclk) { unsigned fb_div = 0, vclk_div = 0, dclk_div = 0; int r; /* bypass vclk and dclk with bclk */ WREG32_P(CG_UPLL_FUNC_CNTL_2, VCLK_SRC_SEL(1) | DCLK_SRC_SEL(1), ~(VCLK_SRC_SEL_MASK | DCLK_SRC_SEL_MASK)); /* put PLL in bypass mode */ WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_BYPASS_EN_MASK, ~UPLL_BYPASS_EN_MASK); if (!vclk || !dclk) { /* keep the Bypass mode */ return 0; } r = radeon_uvd_calc_upll_dividers(rdev, vclk, dclk, 125000, 250000, 16384, 0x03FFFFFF, 0, 128, 5, &fb_div, &vclk_div, &dclk_div); if (r) return r; /* set RESET_ANTI_MUX to 0 */ WREG32_P(CG_UPLL_FUNC_CNTL_5, 0, ~RESET_ANTI_MUX_MASK); /* set VCO_MODE to 1 */ WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_VCO_MODE_MASK, ~UPLL_VCO_MODE_MASK); /* disable sleep mode */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_SLEEP_MASK); /* deassert UPLL_RESET */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_RESET_MASK); mdelay(1); r = radeon_uvd_send_upll_ctlreq(rdev, CG_UPLL_FUNC_CNTL); if (r) return r; /* assert UPLL_RESET again */ WREG32_P(CG_UPLL_FUNC_CNTL, UPLL_RESET_MASK, ~UPLL_RESET_MASK); /* disable spread spectrum. */ WREG32_P(CG_UPLL_SPREAD_SPECTRUM, 0, ~SSEN_MASK); /* set feedback divider */ WREG32_P(CG_UPLL_FUNC_CNTL_3, UPLL_FB_DIV(fb_div), ~UPLL_FB_DIV_MASK); /* set ref divider to 0 */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_REF_DIV_MASK); if (fb_div < 307200) WREG32_P(CG_UPLL_FUNC_CNTL_4, 0, ~UPLL_SPARE_ISPARE9); else WREG32_P(CG_UPLL_FUNC_CNTL_4, UPLL_SPARE_ISPARE9, ~UPLL_SPARE_ISPARE9); /* set PDIV_A and PDIV_B */ WREG32_P(CG_UPLL_FUNC_CNTL_2, UPLL_PDIV_A(vclk_div) | UPLL_PDIV_B(dclk_div), ~(UPLL_PDIV_A_MASK | UPLL_PDIV_B_MASK)); /* give the PLL some time to settle */ mdelay(15); /* deassert PLL_RESET */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_RESET_MASK); mdelay(15); /* switch from bypass mode to normal mode */ WREG32_P(CG_UPLL_FUNC_CNTL, 0, ~UPLL_BYPASS_EN_MASK); r = radeon_uvd_send_upll_ctlreq(rdev, CG_UPLL_FUNC_CNTL); if (r) return r; /* switch VCLK and DCLK selection */ WREG32_P(CG_UPLL_FUNC_CNTL_2, VCLK_SRC_SEL(2) | DCLK_SRC_SEL(2), ~(VCLK_SRC_SEL_MASK | DCLK_SRC_SEL_MASK)); mdelay(100); return 0; } static void si_pcie_gen3_enable(struct radeon_device *rdev) { struct pci_dev *root = rdev->pdev->bus->self; enum pci_bus_speed speed_cap; u32 speed_cntl, current_data_rate; int i; u16 tmp16; if (pci_is_root_bus(rdev->pdev->bus)) return; if (radeon_pcie_gen2 == 0) return; if (rdev->flags & RADEON_IS_IGP) return; if (!(rdev->flags & RADEON_IS_PCIE)) return; speed_cap = pcie_get_speed_cap(root); if (speed_cap == PCI_SPEED_UNKNOWN) return; if ((speed_cap != PCIE_SPEED_8_0GT) && (speed_cap != PCIE_SPEED_5_0GT)) return; speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); current_data_rate = (speed_cntl & LC_CURRENT_DATA_RATE_MASK) >> LC_CURRENT_DATA_RATE_SHIFT; if (speed_cap == PCIE_SPEED_8_0GT) { if (current_data_rate == 2) { DRM_INFO("PCIE gen 3 link speeds already enabled\n"); return; } DRM_INFO("enabling PCIE gen 3 link speeds, disable with radeon.pcie_gen2=0\n"); } else if (speed_cap == PCIE_SPEED_5_0GT) { if (current_data_rate == 1) { DRM_INFO("PCIE gen 2 link speeds already enabled\n"); return; } DRM_INFO("enabling PCIE gen 2 link speeds, disable with radeon.pcie_gen2=0\n"); } if (!pci_is_pcie(root) || !pci_is_pcie(rdev->pdev)) return; if (speed_cap == PCIE_SPEED_8_0GT) { /* re-try equalization if gen3 is not already enabled */ if (current_data_rate != 2) { u16 bridge_cfg, gpu_cfg; u16 bridge_cfg2, gpu_cfg2; u32 max_lw, current_lw, tmp; pcie_capability_read_word(root, PCI_EXP_LNKCTL, &bridge_cfg); pcie_capability_read_word(rdev->pdev, PCI_EXP_LNKCTL, &gpu_cfg); tmp16 = bridge_cfg | PCI_EXP_LNKCTL_HAWD; pcie_capability_write_word(root, PCI_EXP_LNKCTL, tmp16); tmp16 = gpu_cfg | PCI_EXP_LNKCTL_HAWD; pcie_capability_write_word(rdev->pdev, PCI_EXP_LNKCTL, tmp16); tmp = RREG32_PCIE(PCIE_LC_STATUS1); max_lw = (tmp & LC_DETECTED_LINK_WIDTH_MASK) >> LC_DETECTED_LINK_WIDTH_SHIFT; current_lw = (tmp & LC_OPERATING_LINK_WIDTH_MASK) >> LC_OPERATING_LINK_WIDTH_SHIFT; if (current_lw < max_lw) { tmp = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL); if (tmp & LC_RENEGOTIATION_SUPPORT) { tmp &= ~(LC_LINK_WIDTH_MASK | LC_UPCONFIGURE_DIS); tmp |= (max_lw << LC_LINK_WIDTH_SHIFT); tmp |= LC_UPCONFIGURE_SUPPORT | LC_RENEGOTIATE_EN | LC_RECONFIG_NOW; WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, tmp); } } for (i = 0; i < 10; i++) { /* check status */ pcie_capability_read_word(rdev->pdev, PCI_EXP_DEVSTA, &tmp16); if (tmp16 & PCI_EXP_DEVSTA_TRPND) break; pcie_capability_read_word(root, PCI_EXP_LNKCTL, &bridge_cfg); pcie_capability_read_word(rdev->pdev, PCI_EXP_LNKCTL, &gpu_cfg); pcie_capability_read_word(root, PCI_EXP_LNKCTL2, &bridge_cfg2); pcie_capability_read_word(rdev->pdev, PCI_EXP_LNKCTL2, &gpu_cfg2); tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4); tmp |= LC_SET_QUIESCE; WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp); tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4); tmp |= LC_REDO_EQ; WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp); drm_msleep(100); /* linkctl */ pcie_capability_read_word(root, PCI_EXP_LNKCTL, &tmp16); tmp16 &= ~PCI_EXP_LNKCTL_HAWD; tmp16 |= (bridge_cfg & PCI_EXP_LNKCTL_HAWD); pcie_capability_write_word(root, PCI_EXP_LNKCTL, tmp16); pcie_capability_read_word(rdev->pdev, PCI_EXP_LNKCTL, &tmp16); tmp16 &= ~PCI_EXP_LNKCTL_HAWD; tmp16 |= (gpu_cfg & PCI_EXP_LNKCTL_HAWD); pcie_capability_write_word(rdev->pdev, PCI_EXP_LNKCTL, tmp16); /* linkctl2 */ pcie_capability_read_word(root, PCI_EXP_LNKCTL2, &tmp16); tmp16 &= ~(PCI_EXP_LNKCTL2_ENTER_COMP | PCI_EXP_LNKCTL2_TX_MARGIN); tmp16 |= (bridge_cfg2 & (PCI_EXP_LNKCTL2_ENTER_COMP | PCI_EXP_LNKCTL2_TX_MARGIN)); pcie_capability_write_word(root, PCI_EXP_LNKCTL2, tmp16); pcie_capability_read_word(rdev->pdev, PCI_EXP_LNKCTL2, &tmp16); tmp16 &= ~(PCI_EXP_LNKCTL2_ENTER_COMP | PCI_EXP_LNKCTL2_TX_MARGIN); tmp16 |= (gpu_cfg2 & (PCI_EXP_LNKCTL2_ENTER_COMP | PCI_EXP_LNKCTL2_TX_MARGIN)); pcie_capability_write_word(rdev->pdev, PCI_EXP_LNKCTL2, tmp16); tmp = RREG32_PCIE_PORT(PCIE_LC_CNTL4); tmp &= ~LC_SET_QUIESCE; WREG32_PCIE_PORT(PCIE_LC_CNTL4, tmp); } } } /* set the link speed */ speed_cntl |= LC_FORCE_EN_SW_SPEED_CHANGE | LC_FORCE_DIS_HW_SPEED_CHANGE; speed_cntl &= ~LC_FORCE_DIS_SW_SPEED_CHANGE; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl); pcie_capability_read_word(rdev->pdev, PCI_EXP_LNKCTL2, &tmp16); tmp16 &= ~PCI_EXP_LNKCTL2_TLS; if (speed_cap == PCIE_SPEED_8_0GT) tmp16 |= PCI_EXP_LNKCTL2_TLS_8_0GT; /* gen3 */ else if (speed_cap == PCIE_SPEED_5_0GT) tmp16 |= PCI_EXP_LNKCTL2_TLS_5_0GT; /* gen2 */ else tmp16 |= PCI_EXP_LNKCTL2_TLS_2_5GT; /* gen1 */ pcie_capability_write_word(rdev->pdev, PCI_EXP_LNKCTL2, tmp16); speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); speed_cntl |= LC_INITIATE_LINK_SPEED_CHANGE; WREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL, speed_cntl); for (i = 0; i < rdev->usec_timeout; i++) { speed_cntl = RREG32_PCIE_PORT(PCIE_LC_SPEED_CNTL); if ((speed_cntl & LC_INITIATE_LINK_SPEED_CHANGE) == 0) break; udelay(1); } } static void si_program_aspm(struct radeon_device *rdev) { u32 data, orig; bool disable_l0s = false, disable_l1 = false, disable_plloff_in_l1 = false; bool disable_clkreq = false; if (radeon_aspm == 0) return; if (!(rdev->flags & RADEON_IS_PCIE)) return; orig = data = RREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL); data &= ~LC_XMIT_N_FTS_MASK; data |= LC_XMIT_N_FTS(0x24) | LC_XMIT_N_FTS_OVERRIDE_EN; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL, data); orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL3); data |= LC_GO_TO_RECOVERY; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL3, data); orig = data = RREG32_PCIE(PCIE_P_CNTL); data |= P_IGNORE_EDB_ERR; if (orig != data) WREG32_PCIE(PCIE_P_CNTL, data); orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL); data &= ~(LC_L0S_INACTIVITY_MASK | LC_L1_INACTIVITY_MASK); data |= LC_PMI_TO_L1_DIS; if (!disable_l0s) data |= LC_L0S_INACTIVITY(7); if (!disable_l1) { data |= LC_L1_INACTIVITY(7); data &= ~LC_PMI_TO_L1_DIS; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL, data); if (!disable_plloff_in_l1) { bool clk_req_support; orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0); data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK); data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7); if (orig != data) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0, data); orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1); data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK); data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7); if (orig != data) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1, data); orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0); data &= ~(PLL_POWER_STATE_IN_OFF_0_MASK | PLL_POWER_STATE_IN_TXS2_0_MASK); data |= PLL_POWER_STATE_IN_OFF_0(7) | PLL_POWER_STATE_IN_TXS2_0(7); if (orig != data) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0, data); orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1); data &= ~(PLL_POWER_STATE_IN_OFF_1_MASK | PLL_POWER_STATE_IN_TXS2_1_MASK); data |= PLL_POWER_STATE_IN_OFF_1(7) | PLL_POWER_STATE_IN_TXS2_1(7); if (orig != data) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1, data); if ((rdev->family != CHIP_OLAND) && (rdev->family != CHIP_HAINAN)) { orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0); data &= ~PLL_RAMP_UP_TIME_0_MASK; if (orig != data) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_0, data); orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1); data &= ~PLL_RAMP_UP_TIME_1_MASK; if (orig != data) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_1, data); orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_2); data &= ~PLL_RAMP_UP_TIME_2_MASK; if (orig != data) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_2, data); orig = data = RREG32_PIF_PHY0(PB0_PIF_PWRDOWN_3); data &= ~PLL_RAMP_UP_TIME_3_MASK; if (orig != data) WREG32_PIF_PHY0(PB0_PIF_PWRDOWN_3, data); orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0); data &= ~PLL_RAMP_UP_TIME_0_MASK; if (orig != data) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_0, data); orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1); data &= ~PLL_RAMP_UP_TIME_1_MASK; if (orig != data) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_1, data); orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_2); data &= ~PLL_RAMP_UP_TIME_2_MASK; if (orig != data) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_2, data); orig = data = RREG32_PIF_PHY1(PB1_PIF_PWRDOWN_3); data &= ~PLL_RAMP_UP_TIME_3_MASK; if (orig != data) WREG32_PIF_PHY1(PB1_PIF_PWRDOWN_3, data); } orig = data = RREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL); data &= ~LC_DYN_LANES_PWR_STATE_MASK; data |= LC_DYN_LANES_PWR_STATE(3); if (orig != data) WREG32_PCIE_PORT(PCIE_LC_LINK_WIDTH_CNTL, data); orig = data = RREG32_PIF_PHY0(PB0_PIF_CNTL); data &= ~LS2_EXIT_TIME_MASK; if ((rdev->family == CHIP_OLAND) || (rdev->family == CHIP_HAINAN)) data |= LS2_EXIT_TIME(5); if (orig != data) WREG32_PIF_PHY0(PB0_PIF_CNTL, data); orig = data = RREG32_PIF_PHY1(PB1_PIF_CNTL); data &= ~LS2_EXIT_TIME_MASK; if ((rdev->family == CHIP_OLAND) || (rdev->family == CHIP_HAINAN)) data |= LS2_EXIT_TIME(5); if (orig != data) WREG32_PIF_PHY1(PB1_PIF_CNTL, data); if (!disable_clkreq && !pci_is_root_bus(rdev->pdev->bus)) { struct pci_dev *root = rdev->pdev->bus->self; u32 lnkcap; clk_req_support = false; pcie_capability_read_dword(root, PCI_EXP_LNKCAP, &lnkcap); if (lnkcap & PCI_EXP_LNKCAP_CLKPM) clk_req_support = true; } else { clk_req_support = false; } if (clk_req_support) { orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL2); data |= LC_ALLOW_PDWN_IN_L1 | LC_ALLOW_PDWN_IN_L23; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL2, data); orig = data = RREG32(THM_CLK_CNTL); data &= ~(CMON_CLK_SEL_MASK | TMON_CLK_SEL_MASK); data |= CMON_CLK_SEL(1) | TMON_CLK_SEL(1); if (orig != data) WREG32(THM_CLK_CNTL, data); orig = data = RREG32(MISC_CLK_CNTL); data &= ~(DEEP_SLEEP_CLK_SEL_MASK | ZCLK_SEL_MASK); data |= DEEP_SLEEP_CLK_SEL(1) | ZCLK_SEL(1); if (orig != data) WREG32(MISC_CLK_CNTL, data); orig = data = RREG32(CG_CLKPIN_CNTL); data &= ~BCLK_AS_XCLK; if (orig != data) WREG32(CG_CLKPIN_CNTL, data); orig = data = RREG32(CG_CLKPIN_CNTL_2); data &= ~FORCE_BIF_REFCLK_EN; if (orig != data) WREG32(CG_CLKPIN_CNTL_2, data); orig = data = RREG32(MPLL_BYPASSCLK_SEL); data &= ~MPLL_CLKOUT_SEL_MASK; data |= MPLL_CLKOUT_SEL(4); if (orig != data) WREG32(MPLL_BYPASSCLK_SEL, data); orig = data = RREG32(SPLL_CNTL_MODE); data &= ~SPLL_REFCLK_SEL_MASK; if (orig != data) WREG32(SPLL_CNTL_MODE, data); } } } else { if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL, data); } orig = data = RREG32_PCIE(PCIE_CNTL2); data |= SLV_MEM_LS_EN | MST_MEM_LS_EN | REPLAY_MEM_LS_EN; if (orig != data) WREG32_PCIE(PCIE_CNTL2, data); if (!disable_l0s) { data = RREG32_PCIE_PORT(PCIE_LC_N_FTS_CNTL); if((data & LC_N_FTS_MASK) == LC_N_FTS_MASK) { data = RREG32_PCIE(PCIE_LC_STATUS1); if ((data & LC_REVERSE_XMIT) && (data & LC_REVERSE_RCVR)) { orig = data = RREG32_PCIE_PORT(PCIE_LC_CNTL); data &= ~LC_L0S_INACTIVITY_MASK; if (orig != data) WREG32_PCIE_PORT(PCIE_LC_CNTL, data); } } } } static int si_vce_send_vcepll_ctlreq(struct radeon_device *rdev) { unsigned i; /* make sure VCEPLL_CTLREQ is deasserted */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~UPLL_CTLREQ_MASK); mdelay(10); /* assert UPLL_CTLREQ */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, UPLL_CTLREQ_MASK, ~UPLL_CTLREQ_MASK); /* wait for CTLACK and CTLACK2 to get asserted */ for (i = 0; i < 100; ++i) { uint32_t mask = UPLL_CTLACK_MASK | UPLL_CTLACK2_MASK; if ((RREG32_SMC(CG_VCEPLL_FUNC_CNTL) & mask) == mask) break; mdelay(10); } /* deassert UPLL_CTLREQ */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~UPLL_CTLREQ_MASK); if (i == 100) { DRM_ERROR("Timeout setting UVD clocks!\n"); return -ETIMEDOUT; } return 0; } int si_set_vce_clocks(struct radeon_device *rdev, u32 evclk, u32 ecclk) { unsigned fb_div = 0, evclk_div = 0, ecclk_div = 0; int r; /* bypass evclk and ecclk with bclk */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_2, EVCLK_SRC_SEL(1) | ECCLK_SRC_SEL(1), ~(EVCLK_SRC_SEL_MASK | ECCLK_SRC_SEL_MASK)); /* put PLL in bypass mode */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_BYPASS_EN_MASK, ~VCEPLL_BYPASS_EN_MASK); if (!evclk || !ecclk) { /* keep the Bypass mode, put PLL to sleep */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_SLEEP_MASK, ~VCEPLL_SLEEP_MASK); return 0; } r = radeon_uvd_calc_upll_dividers(rdev, evclk, ecclk, 125000, 250000, 16384, 0x03FFFFFF, 0, 128, 5, &fb_div, &evclk_div, &ecclk_div); if (r) return r; /* set RESET_ANTI_MUX to 0 */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_5, 0, ~RESET_ANTI_MUX_MASK); /* set VCO_MODE to 1 */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_VCO_MODE_MASK, ~VCEPLL_VCO_MODE_MASK); /* toggle VCEPLL_SLEEP to 1 then back to 0 */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_SLEEP_MASK, ~VCEPLL_SLEEP_MASK); WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_SLEEP_MASK); /* deassert VCEPLL_RESET */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_RESET_MASK); mdelay(1); r = si_vce_send_vcepll_ctlreq(rdev); if (r) return r; /* assert VCEPLL_RESET again */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, VCEPLL_RESET_MASK, ~VCEPLL_RESET_MASK); /* disable spread spectrum. */ WREG32_SMC_P(CG_VCEPLL_SPREAD_SPECTRUM, 0, ~SSEN_MASK); /* set feedback divider */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_3, VCEPLL_FB_DIV(fb_div), ~VCEPLL_FB_DIV_MASK); /* set ref divider to 0 */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_REF_DIV_MASK); /* set PDIV_A and PDIV_B */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_2, VCEPLL_PDIV_A(evclk_div) | VCEPLL_PDIV_B(ecclk_div), ~(VCEPLL_PDIV_A_MASK | VCEPLL_PDIV_B_MASK)); /* give the PLL some time to settle */ mdelay(15); /* deassert PLL_RESET */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_RESET_MASK); mdelay(15); /* switch from bypass mode to normal mode */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL, 0, ~VCEPLL_BYPASS_EN_MASK); r = si_vce_send_vcepll_ctlreq(rdev); if (r) return r; /* switch VCLK and DCLK selection */ WREG32_SMC_P(CG_VCEPLL_FUNC_CNTL_2, EVCLK_SRC_SEL(16) | ECCLK_SRC_SEL(16), ~(EVCLK_SRC_SEL_MASK | ECCLK_SRC_SEL_MASK)); mdelay(100); return 0; }