/* SPDX-License-Identifier: GPL-2.0 OR MIT */ /************************************************************************** * * Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ /* * Authors: Thomas Hellstrom */ #include #include #include #include #include #include #include #include #include #include struct ttm_transfer_obj { struct ttm_buffer_object base; struct ttm_buffer_object *bo; }; void ttm_bo_free_old_node(struct ttm_buffer_object *bo) { ttm_bo_mem_put(bo, &bo->mem); } int ttm_bo_move_ttm(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx, struct ttm_mem_reg *new_mem) { struct ttm_tt *ttm = bo->ttm; struct ttm_mem_reg *old_mem = &bo->mem; int ret; if (old_mem->mem_type != TTM_PL_SYSTEM) { ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); if (unlikely(ret != 0)) { if (ret != -ERESTARTSYS) pr_err("Failed to expire sync object before unbinding TTM\n"); return ret; } ttm_tt_unbind(ttm); ttm_bo_free_old_node(bo); ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM, TTM_PL_MASK_MEM); old_mem->mem_type = TTM_PL_SYSTEM; } ret = ttm_tt_set_placement_caching(ttm, new_mem->placement); if (unlikely(ret != 0)) return ret; if (new_mem->mem_type != TTM_PL_SYSTEM) { ret = ttm_tt_bind(ttm, new_mem, ctx); if (unlikely(ret != 0)) return ret; } *old_mem = *new_mem; new_mem->mm_node = NULL; return 0; } EXPORT_SYMBOL(ttm_bo_move_ttm); int ttm_mem_io_lock(struct ttm_mem_type_manager *man, bool interruptible) { if (likely(man->io_reserve_fastpath)) return 0; if (interruptible) return mutex_lock_interruptible(&man->io_reserve_mutex); mutex_lock(&man->io_reserve_mutex); return 0; } void ttm_mem_io_unlock(struct ttm_mem_type_manager *man) { if (likely(man->io_reserve_fastpath)) return; mutex_unlock(&man->io_reserve_mutex); } static int ttm_mem_io_evict(struct ttm_mem_type_manager *man) { struct ttm_buffer_object *bo; if (!man->use_io_reserve_lru || list_empty(&man->io_reserve_lru)) return -EAGAIN; bo = list_first_entry(&man->io_reserve_lru, struct ttm_buffer_object, io_reserve_lru); list_del_init(&bo->io_reserve_lru); ttm_bo_unmap_virtual_locked(bo); return 0; } int ttm_mem_io_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; int ret = 0; if (!bdev->driver->io_mem_reserve) return 0; if (likely(man->io_reserve_fastpath)) return bdev->driver->io_mem_reserve(bdev, mem); if (bdev->driver->io_mem_reserve && mem->bus.io_reserved_count++ == 0) { retry: ret = bdev->driver->io_mem_reserve(bdev, mem); if (ret == -EAGAIN) { ret = ttm_mem_io_evict(man); if (ret == 0) goto retry; } } return ret; } void ttm_mem_io_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; if (likely(man->io_reserve_fastpath)) return; if (bdev->driver->io_mem_reserve && --mem->bus.io_reserved_count == 0 && bdev->driver->io_mem_free) bdev->driver->io_mem_free(bdev, mem); } int ttm_mem_io_reserve_vm(struct ttm_buffer_object *bo) { struct ttm_mem_reg *mem = &bo->mem; int ret; if (!mem->bus.io_reserved_vm) { struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type]; ret = ttm_mem_io_reserve(bo->bdev, mem); if (unlikely(ret != 0)) return ret; mem->bus.io_reserved_vm = true; if (man->use_io_reserve_lru) list_add_tail(&bo->io_reserve_lru, &man->io_reserve_lru); } return 0; } void ttm_mem_io_free_vm(struct ttm_buffer_object *bo) { struct ttm_mem_reg *mem = &bo->mem; if (mem->bus.io_reserved_vm) { mem->bus.io_reserved_vm = false; list_del_init(&bo->io_reserve_lru); ttm_mem_io_free(bo->bdev, mem); } } static int ttm_mem_reg_ioremap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, void **virtual) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; int ret; void *addr; int flags; *virtual = NULL; (void) ttm_mem_io_lock(man, false); ret = ttm_mem_io_reserve(bdev, mem); ttm_mem_io_unlock(man); if (ret || !mem->bus.is_iomem) return ret; if (mem->bus.addr) { addr = mem->bus.addr; } else { if (mem->placement & TTM_PL_FLAG_WC) flags = BUS_SPACE_MAP_PREFETCHABLE; else flags = 0; if (bus_space_map(bdev->memt, mem->bus.base + mem->bus.offset, mem->bus.size, BUS_SPACE_MAP_LINEAR | flags, &mem->bus.bsh)) { printf("%s bus_space_map failed\n", __func__); return -ENOMEM; } addr = bus_space_vaddr(bdev->memt, mem->bus.bsh); if (!addr) { (void) ttm_mem_io_lock(man, false); ttm_mem_io_free(bdev, mem); ttm_mem_io_unlock(man); return -ENOMEM; } } *virtual = addr; return 0; } static void ttm_mem_reg_iounmap(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem, void *virtual) { struct ttm_mem_type_manager *man; man = &bdev->man[mem->mem_type]; if (virtual && mem->bus.addr == NULL) bus_space_unmap(bdev->memt, mem->bus.bsh, mem->bus.size); (void) ttm_mem_io_lock(man, false); ttm_mem_io_free(bdev, mem); ttm_mem_io_unlock(man); } static int ttm_copy_io_page(void *dst, void *src, unsigned long page) { uint32_t *dstP = (uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT)); uint32_t *srcP = (uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT)); int i; for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i) iowrite32(ioread32(srcP++), dstP++); return 0; } #if defined(CONFIG_X86) && defined(__linux__) #define __ttm_kmap_atomic_prot(__page, __prot) kmap_atomic_prot(__page, __prot) #define __ttm_kunmap_atomic(__addr) kunmap_atomic(__addr) #else #define __ttm_kmap_atomic_prot(__page, __prot) vmap(&__page, 1, 0, __prot) #define __ttm_kunmap_atomic(__addr) vunmap(__addr, PAGE_SIZE) #endif /** * ttm_kmap_atomic_prot - Efficient kernel map of a single page with * specified page protection. * * @page: The page to map. * @prot: The page protection. * * This function maps a TTM page using the kmap_atomic api if available, * otherwise falls back to vmap. The user must make sure that the * specified page does not have an aliased mapping with a different caching * policy unless the architecture explicitly allows it. Also mapping and * unmapping using this api must be correctly nested. Unmapping should * occur in the reverse order of mapping. */ void *ttm_kmap_atomic_prot(struct vm_page *page, pgprot_t prot) { #if defined(__amd64__) || defined(__i386__) if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) return kmap_atomic(page); else #endif return __ttm_kmap_atomic_prot(page, prot); } EXPORT_SYMBOL(ttm_kmap_atomic_prot); /** * ttm_kunmap_atomic_prot - Unmap a page that was mapped using * ttm_kmap_atomic_prot. * * @addr: The virtual address from the map. * @prot: The page protection. */ void ttm_kunmap_atomic_prot(void *addr, pgprot_t prot) { #if defined(__amd64__) || defined(__i386__) if (pgprot_val(prot) == pgprot_val(PAGE_KERNEL)) kunmap_atomic(addr); else #endif __ttm_kunmap_atomic(addr); } EXPORT_SYMBOL(ttm_kunmap_atomic_prot); static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src, unsigned long page, pgprot_t prot) { struct vm_page *d = ttm->pages[page]; void *dst; if (!d) return -ENOMEM; src = (void *)((unsigned long)src + (page << PAGE_SHIFT)); dst = ttm_kmap_atomic_prot(d, prot); if (!dst) return -ENOMEM; memcpy_fromio(dst, src, PAGE_SIZE); ttm_kunmap_atomic_prot(dst, prot); return 0; } static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst, unsigned long page, pgprot_t prot) { struct vm_page *s = ttm->pages[page]; void *src; if (!s) return -ENOMEM; dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT)); src = ttm_kmap_atomic_prot(s, prot); if (!src) return -ENOMEM; memcpy_toio(dst, src, PAGE_SIZE); ttm_kunmap_atomic_prot(src, prot); return 0; } int ttm_bo_move_memcpy(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx, struct ttm_mem_reg *new_mem) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; struct ttm_tt *ttm = bo->ttm; struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_reg old_copy = *old_mem; void *old_iomap; void *new_iomap; int ret; unsigned long i; unsigned long page; unsigned long add = 0; int dir; ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu); if (ret) return ret; ret = ttm_mem_reg_ioremap(bdev, old_mem, &old_iomap); if (ret) return ret; ret = ttm_mem_reg_ioremap(bdev, new_mem, &new_iomap); if (ret) goto out; /* * Single TTM move. NOP. */ if (old_iomap == NULL && new_iomap == NULL) goto out2; /* * Don't move nonexistent data. Clear destination instead. */ if (old_iomap == NULL && (ttm == NULL || (ttm->state == tt_unpopulated && !(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) { memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE); goto out2; } /* * TTM might be null for moves within the same region. */ if (ttm) { ret = ttm_tt_populate(ttm, ctx); if (ret) goto out1; } add = 0; dir = 1; if ((old_mem->mem_type == new_mem->mem_type) && (new_mem->start < old_mem->start + old_mem->size)) { dir = -1; add = new_mem->num_pages - 1; } for (i = 0; i < new_mem->num_pages; ++i) { page = i * dir + add; if (old_iomap == NULL) { pgprot_t prot = ttm_io_prot(old_mem->placement, PAGE_KERNEL); ret = ttm_copy_ttm_io_page(ttm, new_iomap, page, prot); } else if (new_iomap == NULL) { pgprot_t prot = ttm_io_prot(new_mem->placement, PAGE_KERNEL); ret = ttm_copy_io_ttm_page(ttm, old_iomap, page, prot); } else { ret = ttm_copy_io_page(new_iomap, old_iomap, page); } if (ret) goto out1; } mb(); out2: old_copy = *old_mem; *old_mem = *new_mem; new_mem->mm_node = NULL; if (man->flags & TTM_MEMTYPE_FLAG_FIXED) { ttm_tt_destroy(ttm); bo->ttm = NULL; } out1: ttm_mem_reg_iounmap(bdev, old_mem, new_iomap); out: ttm_mem_reg_iounmap(bdev, &old_copy, old_iomap); /* * On error, keep the mm node! */ if (!ret) ttm_bo_mem_put(bo, &old_copy); return ret; } EXPORT_SYMBOL(ttm_bo_move_memcpy); static void ttm_transfered_destroy(struct ttm_buffer_object *bo) { struct ttm_transfer_obj *fbo; fbo = container_of(bo, struct ttm_transfer_obj, base); ttm_bo_put(fbo->bo); kfree(fbo); } /** * ttm_buffer_object_transfer * * @bo: A pointer to a struct ttm_buffer_object. * @new_obj: A pointer to a pointer to a newly created ttm_buffer_object, * holding the data of @bo with the old placement. * * This is a utility function that may be called after an accelerated move * has been scheduled. A new buffer object is created as a placeholder for * the old data while it's being copied. When that buffer object is idle, * it can be destroyed, releasing the space of the old placement. * Returns: * !0: Failure. */ static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo, struct ttm_buffer_object **new_obj) { struct ttm_transfer_obj *fbo; int ret; fbo = kmalloc(sizeof(*fbo), GFP_KERNEL); if (!fbo) return -ENOMEM; fbo->base = *bo; fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT; ttm_bo_get(bo); fbo->bo = bo; /** * Fix up members that we shouldn't copy directly: * TODO: Explicit member copy would probably be better here. */ atomic_inc(&ttm_bo_glob.bo_count); INIT_LIST_HEAD(&fbo->base.ddestroy); INIT_LIST_HEAD(&fbo->base.lru); INIT_LIST_HEAD(&fbo->base.swap); INIT_LIST_HEAD(&fbo->base.io_reserve_lru); fbo->base.moving = NULL; drm_vma_node_reset(&fbo->base.base.vma_node); kref_init(&fbo->base.kref); fbo->base.destroy = &ttm_transfered_destroy; fbo->base.acc_size = 0; if (bo->type != ttm_bo_type_sg) fbo->base.base.resv = &fbo->base.base._resv; dma_resv_init(&fbo->base.base._resv); fbo->base.base.dev = NULL; ret = dma_resv_trylock(&fbo->base.base._resv); WARN_ON(!ret); *new_obj = &fbo->base; return 0; } #ifdef __linux__ pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) { /* Cached mappings need no adjustment */ if (caching_flags & TTM_PL_FLAG_CACHED) return tmp; #if defined(__i386__) || defined(__x86_64__) if (caching_flags & TTM_PL_FLAG_WC) tmp = pgprot_writecombine(tmp); else if (boot_cpu_data.x86 > 3) tmp = pgprot_noncached(tmp); #endif #if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \ defined(__powerpc__) || defined(__mips__) if (caching_flags & TTM_PL_FLAG_WC) tmp = pgprot_writecombine(tmp); else tmp = pgprot_noncached(tmp); #endif #if defined(__sparc__) tmp = pgprot_noncached(tmp); #endif return tmp; } EXPORT_SYMBOL(ttm_io_prot); #endif pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp) { /* Cached mappings need no adjustment */ if (caching_flags & TTM_PL_FLAG_CACHED) return tmp; if (caching_flags & TTM_PL_FLAG_WC) tmp = pgprot_writecombine(tmp); else tmp = pgprot_noncached(tmp); return tmp; } static int ttm_bo_ioremap(struct ttm_buffer_object *bo, unsigned long offset, unsigned long size, struct ttm_bo_kmap_obj *map) { int flags; struct ttm_mem_reg *mem = &bo->mem; if (bo->mem.bus.addr) { map->bo_kmap_type = ttm_bo_map_premapped; map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset); } else { map->bo_kmap_type = ttm_bo_map_iomap; if (mem->placement & TTM_PL_FLAG_WC) flags = BUS_SPACE_MAP_PREFETCHABLE; else flags = 0; if (bus_space_map(bo->bdev->memt, mem->bus.base + bo->mem.bus.offset + offset, size, BUS_SPACE_MAP_LINEAR | flags, &bo->mem.bus.bsh)) { printf("%s bus_space_map failed\n", __func__); map->virtual = 0; } else map->virtual = bus_space_vaddr(bo->bdev->memt, bo->mem.bus.bsh); } return (!map->virtual) ? -ENOMEM : 0; } static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo, unsigned long start_page, unsigned long num_pages, struct ttm_bo_kmap_obj *map) { struct ttm_mem_reg *mem = &bo->mem; struct ttm_operation_ctx ctx = { .interruptible = false, .no_wait_gpu = false }; struct ttm_tt *ttm = bo->ttm; pgprot_t prot; int ret; BUG_ON(!ttm); ret = ttm_tt_populate(ttm, &ctx); if (ret) return ret; if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) { /* * We're mapping a single page, and the desired * page protection is consistent with the bo. */ map->bo_kmap_type = ttm_bo_map_kmap; map->page = ttm->pages[start_page]; map->virtual = kmap(map->page); } else { /* * We need to use vmap to get the desired page protection * or to make the buffer object look contiguous. */ prot = ttm_io_prot(mem->placement, PAGE_KERNEL); map->bo_kmap_type = ttm_bo_map_vmap; map->virtual = vmap(ttm->pages + start_page, num_pages, 0, prot); } return (!map->virtual) ? -ENOMEM : 0; } int ttm_bo_kmap(struct ttm_buffer_object *bo, unsigned long start_page, unsigned long num_pages, struct ttm_bo_kmap_obj *map) { struct ttm_mem_type_manager *man = &bo->bdev->man[bo->mem.mem_type]; unsigned long offset, size; int ret; map->virtual = NULL; map->bo = bo; if (num_pages > bo->num_pages) return -EINVAL; if (start_page > bo->num_pages) return -EINVAL; (void) ttm_mem_io_lock(man, false); ret = ttm_mem_io_reserve(bo->bdev, &bo->mem); ttm_mem_io_unlock(man); if (ret) return ret; if (!bo->mem.bus.is_iomem) { return ttm_bo_kmap_ttm(bo, start_page, num_pages, map); } else { offset = start_page << PAGE_SHIFT; size = num_pages << PAGE_SHIFT; return ttm_bo_ioremap(bo, offset, size, map); } } EXPORT_SYMBOL(ttm_bo_kmap); void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map) { struct ttm_buffer_object *bo = map->bo; struct ttm_mem_type_manager *man = &bo->bdev->man[bo->mem.mem_type]; if (!map->virtual) return; switch (map->bo_kmap_type) { case ttm_bo_map_iomap: bus_space_unmap(bo->bdev->memt, bo->mem.bus.bsh, bo->mem.bus.size); break; case ttm_bo_map_vmap: vunmap(map->virtual, bo->mem.bus.size); break; case ttm_bo_map_kmap: kunmap_va(map->virtual); break; case ttm_bo_map_premapped: break; default: BUG(); } (void) ttm_mem_io_lock(man, false); ttm_mem_io_free(map->bo->bdev, &map->bo->mem); ttm_mem_io_unlock(man); map->virtual = NULL; map->page = NULL; } EXPORT_SYMBOL(ttm_bo_kunmap); int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo, struct dma_fence *fence, bool evict, struct ttm_mem_reg *new_mem) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_mem_type_manager *man = &bdev->man[new_mem->mem_type]; struct ttm_mem_reg *old_mem = &bo->mem; int ret; struct ttm_buffer_object *ghost_obj; dma_resv_add_excl_fence(bo->base.resv, fence); if (evict) { ret = ttm_bo_wait(bo, false, false); if (ret) return ret; if (man->flags & TTM_MEMTYPE_FLAG_FIXED) { ttm_tt_destroy(bo->ttm); bo->ttm = NULL; } ttm_bo_free_old_node(bo); } else { /** * This should help pipeline ordinary buffer moves. * * Hang old buffer memory on a new buffer object, * and leave it to be released when the GPU * operation has completed. */ dma_fence_put(bo->moving); bo->moving = dma_fence_get(fence); ret = ttm_buffer_object_transfer(bo, &ghost_obj); if (ret) return ret; dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); /** * If we're not moving to fixed memory, the TTM object * needs to stay alive. Otherwhise hang it on the ghost * bo to be unbound and destroyed. */ if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) ghost_obj->ttm = NULL; else bo->ttm = NULL; dma_resv_unlock(&ghost_obj->base._resv); ttm_bo_put(ghost_obj); } *old_mem = *new_mem; new_mem->mm_node = NULL; return 0; } EXPORT_SYMBOL(ttm_bo_move_accel_cleanup); int ttm_bo_pipeline_move(struct ttm_buffer_object *bo, struct dma_fence *fence, bool evict, struct ttm_mem_reg *new_mem) { struct ttm_bo_device *bdev = bo->bdev; struct ttm_mem_reg *old_mem = &bo->mem; struct ttm_mem_type_manager *from = &bdev->man[old_mem->mem_type]; struct ttm_mem_type_manager *to = &bdev->man[new_mem->mem_type]; int ret; dma_resv_add_excl_fence(bo->base.resv, fence); if (!evict) { struct ttm_buffer_object *ghost_obj; /** * This should help pipeline ordinary buffer moves. * * Hang old buffer memory on a new buffer object, * and leave it to be released when the GPU * operation has completed. */ dma_fence_put(bo->moving); bo->moving = dma_fence_get(fence); ret = ttm_buffer_object_transfer(bo, &ghost_obj); if (ret) return ret; dma_resv_add_excl_fence(&ghost_obj->base._resv, fence); /** * If we're not moving to fixed memory, the TTM object * needs to stay alive. Otherwhise hang it on the ghost * bo to be unbound and destroyed. */ if (!(to->flags & TTM_MEMTYPE_FLAG_FIXED)) ghost_obj->ttm = NULL; else bo->ttm = NULL; dma_resv_unlock(&ghost_obj->base._resv); ttm_bo_put(ghost_obj); } else if (from->flags & TTM_MEMTYPE_FLAG_FIXED) { /** * BO doesn't have a TTM we need to bind/unbind. Just remember * this eviction and free up the allocation */ spin_lock(&from->move_lock); if (!from->move || dma_fence_is_later(fence, from->move)) { dma_fence_put(from->move); from->move = dma_fence_get(fence); } spin_unlock(&from->move_lock); ttm_bo_free_old_node(bo); dma_fence_put(bo->moving); bo->moving = dma_fence_get(fence); } else { /** * Last resort, wait for the move to be completed. * * Should never happen in pratice. */ ret = ttm_bo_wait(bo, false, false); if (ret) return ret; if (to->flags & TTM_MEMTYPE_FLAG_FIXED) { ttm_tt_destroy(bo->ttm); bo->ttm = NULL; } ttm_bo_free_old_node(bo); } *old_mem = *new_mem; new_mem->mm_node = NULL; return 0; } EXPORT_SYMBOL(ttm_bo_pipeline_move); int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo) { struct ttm_buffer_object *ghost; int ret; ret = ttm_buffer_object_transfer(bo, &ghost); if (ret) return ret; ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv); /* Last resort, wait for the BO to be idle when we are OOM */ if (ret) ttm_bo_wait(bo, false, false); memset(&bo->mem, 0, sizeof(bo->mem)); bo->mem.mem_type = TTM_PL_SYSTEM; bo->ttm = NULL; dma_resv_unlock(&ghost->base._resv); ttm_bo_put(ghost); return 0; }