/* $NetBSD: eap.c,v 1.6 1998/05/26 13:28:03 augustss Exp $ */ /* * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * Author: Lennart Augustsson * * Debugging: Andreas Gustafsson * Charles Hannum * Testing: Chuck Cranor * Phil Nelson * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Ensoniq AudoiPCI ES1370 + AK4531 driver. * Data sheets can be found at * http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip * and * http://206.214.38.151/pdf/4531.pdf */ #include #include #include #include #include #include #include #include #include #include #include #include /* NetBSD 1.3 backwards compatibility */ #ifndef BUS_DMA_COHERENT #define BUS_DMA_COHERENT 0 /* XXX */ struct cfdriver eap_cd = { NULL, "eap", DV_DULL }; #endif #define PCI_CBIO 0x10 #define EAP_ICSC 0x00 /* interrupt / chip select control */ #define EAP_SERR_DISABLE 0x00000001 #define EAP_CDC_EN 0x00000002 #define EAP_JYSTK_EN 0x00000004 #define EAP_UART_EN 0x00000008 #define EAP_ADC_EN 0x00000010 #define EAP_DAC2_EN 0x00000020 #define EAP_DAC1_EN 0x00000040 #define EAP_BREQ 0x00000080 #define EAP_XTCL0 0x00000100 #define EAP_M_CB 0x00000200 #define EAP_CCB_INTRM 0x00000400 #define EAP_DAC_SYNC 0x00000800 #define EAP_WTSRSEL 0x00003000 #define EAP_WTSRSEL_5 0x00000000 #define EAP_WTSRSEL_11 0x00001000 #define EAP_WTSRSEL_22 0x00002000 #define EAP_WTSRSEL_44 0x00003000 #define EAP_M_SBB 0x00004000 #define EAP_MSFMTSEL 0x00008000 #define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16) #define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff) #define EAP_PCLKBITS 0x1fff0000 #define EAP_XTCL1 0x40000000 #define EAP_ADC_STOP 0x80000000 #define EAP_ICSS 0x04 /* interrupt / chip select status */ #define EAP_I_ADC 0x00000001 #define EAP_I_DAC2 0x00000002 #define EAP_I_DAC1 0x00000004 #define EAP_I_UART 0x00000008 #define EAP_I_MCCB 0x00000010 #define EAP_VC 0x00000060 #define EAP_CWRIP 0x00000100 #define EAP_CBUSY 0x00000200 #define EAP_CSTAT 0x00000400 #define EAP_INTR 0x80000000 #define EAP_UART_DATA 0x08 #define EAP_UART_STATUS 0x09 #define EAP_UART_CONTROL 0x09 #define EAP_MEMPAGE 0x0c #define EAP_CODEC 0x10 #define EAP_SET_CODEC(a,d) (((a)<<8) | (d)) #define EAP_SIC 0x20 #define EAP_P1_S_MB 0x00000001 #define EAP_P1_S_EB 0x00000002 #define EAP_P2_S_MB 0x00000004 #define EAP_P2_S_EB 0x00000008 #define EAP_R1_S_MB 0x00000010 #define EAP_R1_S_EB 0x00000020 #define EAP_R1P2_BITS 0x0000003c #define EAP_P2_DAC_SEN 0x00000040 #define EAP_P1_SCT_RLD 0x00000080 #define EAP_P1_INTR_EN 0x00000100 #define EAP_P2_INTR_EN 0x00000200 #define EAP_R1_INTR_EN 0x00000400 #define EAP_P1_PAUSE 0x00000800 #define EAP_P2_PAUSE 0x00001000 #define EAP_P1_LOOP_SEL 0x00002000 #define EAP_P2_LOOP_SEL 0x00004000 #define EAP_R1_LOOP_SEL 0x00008000 #define EAP_SET_P2_ST_INC(i) ((i) << 16) #define EAP_SET_P2_END_INC(i) ((i) << 19) #define EAP_INC_BITS 0x003f0000 #define EAP_DAC1_CSR 0x24 #define EAP_DAC2_CSR 0x28 #define EAP_ADC_CSR 0x2c #define EAP_GET_CURRSAMP(r) ((r) >> 16) #define EAP_DAC_PAGE 0xc #define EAP_ADC_PAGE 0xd #define EAP_UART_PAGE1 0xe #define EAP_UART_PAGE2 0xf #define EAP_DAC1_ADDR 0x30 #define EAP_DAC1_SIZE 0x34 #define EAP_DAC2_ADDR 0x38 #define EAP_DAC2_SIZE 0x3c #define EAP_ADC_ADDR 0x30 #define EAP_ADC_SIZE 0x34 #define EAP_SET_SIZE(c,s) (((c)<<16) | (s)) #define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */ /* AK4531 registers */ #define AK_MASTER_L 0x00 #define AK_MASTER_R 0x01 #define AK_VOICE_L 0x02 #define AK_VOICE_R 0x03 #define AK_FM_L 0x04 #define AK_FM_R 0x05 #define AK_CD_L 0x06 #define AK_CD_R 0x07 #define AK_LINE_L 0x08 #define AK_LINE_R 0x09 #define AK_AUX_L 0x0a #define AK_AUX_R 0x0b #define AK_MONO1 0x0c #define AK_MONO2 0x0d #define AK_MIC 0x0e #define AK_MONO 0x0f #define AK_OUT_MIXER1 0x10 #define AK_M_FM_L 0x40 #define AK_M_FM_R 0x20 #define AK_M_LINE_L 0x10 #define AK_M_LINE_R 0x08 #define AK_M_CD_L 0x04 #define AK_M_CD_R 0x02 #define AK_M_MIC 0x01 #define AK_OUT_MIXER2 0x11 #define AK_M_AUX_L 0x20 #define AK_M_AUX_R 0x10 #define AK_M_VOICE_L 0x08 #define AK_M_VOICE_R 0x04 #define AK_M_MONO2 0x02 #define AK_M_MONO1 0x01 #define AK_IN_MIXER1_L 0x12 #define AK_IN_MIXER1_R 0x13 #define AK_IN_MIXER2_L 0x14 #define AK_IN_MIXER2_R 0x15 #define AK_M_TMIC 0x80 #define AK_M_TMONO1 0x40 #define AK_M_TMONO2 0x20 #define AK_M2_AUX_L 0x10 #define AK_M2_AUX_R 0x08 #define AK_M_VOICE 0x04 #define AK_M2_MONO2 0x02 #define AK_M2_MONO1 0x01 #define AK_RESET 0x16 #define AK_PD 0x02 #define AK_NRST 0x01 #define AK_CS 0x17 #define AK_ADSEL 0x18 #define AK_MGAIN 0x19 #define AK_NPORTS 16 #define VOL_TO_ATT5(v) (0x1f - ((v) >> 3)) #define VOL_TO_GAIN5(v) VOL_TO_ATT5(v) #define ATT5_TO_VOL(v) ((0x1f - (v)) << 3) #define GAIN5_TO_VOL(v) ATT5_TO_VOL(v) #define VOL_0DB 200 #define EAP_MASTER_VOL 0 #define EAP_VOICE_VOL 1 #define EAP_FM_VOL 2 #define EAP_CD_VOL 3 #define EAP_LINE_VOL 4 #define EAP_AUX_VOL 5 #define EAP_MIC_VOL 6 #define EAP_RECORD_SOURCE 7 #define EAP_OUTPUT_CLASS 8 #define EAP_RECORD_CLASS 9 #define EAP_INPUT_CLASS 10 #define EAP_NDEVS 11 #ifdef AUDIO_DEBUG #define DPRINTF(x) if (eapdebug) printf x #define DPRINTFN(n,x) if (eapdebug>(n)) printf x int eapdebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define __BROKEN_INDIRECT_CONFIG #ifdef __BROKEN_INDIRECT_CONFIG int eap_match __P((struct device *, void *, void *)); #else int eap_match __P((struct device *, struct cfdata *, void *)); #endif void eap_attach __P((struct device *, struct device *, void *)); int eap_intr __P((void *)); struct eap_dma { bus_dmamap_t map; caddr_t addr; bus_dma_segment_t segs[1]; int nsegs; size_t size; struct eap_dma *next; }; #define DMAADDR(map) ((map)->segs[0].ds_addr) #define KERNADDR(map) ((void *)((map)->addr)) struct eap_softc { struct device sc_dev; /* base device */ void *sc_ih; /* interrupt vectoring */ bus_space_tag_t iot; bus_space_handle_t ioh; bus_dma_tag_t sc_dmatag; /* DMA tag */ struct eap_dma *sc_dmas; void (*sc_pintr)(void *); /* dma completion intr handler */ void *sc_parg; /* arg for sc_intr() */ char sc_prun; void (*sc_rintr)(void *); /* dma completion intr handler */ void *sc_rarg; /* arg for sc_intr() */ char sc_rrun; int sc_sampsize; /* bytes / sample */ u_char sc_port[AK_NPORTS]; /* mirror of the hardware setting */ u_int sc_record_source; /* recording source mask */ }; int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *)); int eap_freemem __P((struct eap_softc *, struct eap_dma *)); #define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x)) #define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x)) #define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r)) #define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r)) struct cfattach eap_ca = { sizeof(struct eap_softc), eap_match, eap_attach }; int eap_open __P((void *, int)); void eap_close __P((void *)); int eap_query_encoding __P((void *, struct audio_encoding *)); int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *)); int eap_round_blocksize __P((void *, int)); int eap_dma_init_output __P((void *, void *, int)); int eap_dma_init_input __P((void *, void *, int)); int eap_dma_output __P((void *, void *, int, void (*)(void *), void*)); int eap_dma_input __P((void *, void *, int, void (*)(void *), void*)); int eap_halt_in_dma __P((void *)); int eap_halt_out_dma __P((void *)); int eap_getdev __P((void *, struct audio_device *)); int eap_mixer_set_port __P((void *, mixer_ctrl_t *)); int eap_mixer_get_port __P((void *, mixer_ctrl_t *)); int eap_query_devinfo __P((void *, mixer_devinfo_t *)); void *eap_malloc __P((void *, u_long, int, int)); void eap_free __P((void *, void *, int)); u_long eap_round __P((void *, u_long)); int eap_mappage __P((void *, void *, int, int)); int eap_get_props __P((void *)); void eap_write_codec __P((struct eap_softc *sc, int a, int d)); void eap_set_mixer __P((struct eap_softc *sc, int a, int d)); struct audio_hw_if eap_hw_if = { eap_open, eap_close, NULL, eap_query_encoding, eap_set_params, eap_round_blocksize, NULL, eap_dma_init_output, eap_dma_init_input, eap_dma_output, eap_dma_input, eap_halt_out_dma, eap_halt_in_dma, NULL, eap_getdev, NULL, eap_mixer_set_port, eap_mixer_get_port, eap_query_devinfo, eap_malloc, eap_free, eap_round, eap_mappage, eap_get_props, }; struct audio_device eap_device = { "Ensoniq AudioPCI", "", "eap" }; int eap_match(parent, match, aux) struct device *parent; #ifdef __BROKEN_INDIRECT_CONFIG void *match; #else struct cfdata *match; #endif void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *) aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ) return (0); if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI) return (0); return (1); } void eap_write_codec(sc, a, d) struct eap_softc *sc; int a, d; { int icss; do { icss = EREAD4(sc, EAP_ICSS); DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss)); } while(icss & EAP_CWRIP); EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d)); } void eap_attach(parent, self, aux) struct device *parent; struct device *self; void *aux; { struct eap_softc *sc = (struct eap_softc *)self; struct pci_attach_args *pa = (struct pci_attach_args *)aux; pci_chipset_tag_t pc = pa->pa_pc; char const *intrstr; bus_addr_t iobase; bus_size_t iosize; pci_intr_handle_t ih; pcireg_t csr; char devinfo[256]; mixer_ctrl_t ctl; pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo); printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class)); /* Map I/O register */ if (pci_io_find(pc, pa->pa_tag, PCI_CBIO, &iobase, &iosize)) { printf("%s: can't find i/o base\n", sc->sc_dev.dv_xname); return; } #if defined(__OpenBSD__) if (bus_space_map(sc->iot, iobase, iosize, 0, &sc->ioh)) { #else if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0, &sc->iot, &sc->ioh, NULL, NULL)) { #endif printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname); return; } sc->sc_dmatag = pa->pa_dmat; /* Enable the device. */ csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, csr | PCI_COMMAND_MASTER_ENABLE); /* Map and establish the interrupt. */ if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf("%s: couldn't establish interrupt", sc->sc_dev.dv_xname); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr); /* Enable interrupts and looping mode. */ EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN); EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */ eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */ eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST); /* normal operation */ eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */ /* Enable all relevant mixer switches. */ eap_write_codec(sc, AK_OUT_MIXER1, AK_M_FM_L | AK_M_FM_R | AK_M_LINE_L | AK_M_LINE_R | AK_M_CD_L | AK_M_CD_R); eap_write_codec(sc, AK_OUT_MIXER2, AK_M_AUX_L | AK_M_AUX_R | AK_M_VOICE_L | AK_M_VOICE_R | AK_M_MONO2 | AK_M_MONO1); ctl.type = AUDIO_MIXER_VALUE; ctl.un.value.num_channels = 1; for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) { ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB; eap_mixer_set_port(sc, &ctl); } ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0; eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */ ctl.dev = EAP_RECORD_SOURCE; ctl.type = AUDIO_MIXER_SET; ctl.un.mask = 1 << EAP_MIC_VOL; eap_mixer_set_port(sc, &ctl); audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev); } int eap_intr(p) void *p; { struct eap_softc *sc = p; u_int32_t intr, sic; intr = EREAD4(sc, EAP_ICSS); if (!(intr & EAP_INTR)) return (0); sic = EREAD4(sc, EAP_SIC); DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic)); if (intr & EAP_I_ADC) { /* * XXX This is a hack! * The EAP chip sometimes generates the recording interrupt * while it is still transferring the data. To make sure * it has all arrived we busy wait until the count is right. * The transfer we are waiting for is 8 longwords. */ int s, nw, n; EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE); s = EREAD4(sc, EAP_ADC_CSR); nw = ((s & 0xffff) + 1) / 4; /* # of words in DMA */ n = 0; while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) { delay(10); if (++n > 100) { printf("eapintr: dma fix timeout"); break; } } /* Continue with normal interrupt handling. */ EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN); EWRITE4(sc, EAP_SIC, sic); if (sc->sc_rintr) sc->sc_rintr(sc->sc_rarg); } if (intr & EAP_I_DAC2) { EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN); EWRITE4(sc, EAP_SIC, sic); if (sc->sc_pintr) sc->sc_pintr(sc->sc_parg); } return (1); } int eap_allocmem(sc, size, align, p) struct eap_softc *sc; size_t size; size_t align; struct eap_dma *p; { int error; p->size = size; error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0, p->segs, sizeof(p->segs)/sizeof(p->segs[0]), &p->nsegs, BUS_DMA_NOWAIT); if (error) return (error); error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size, &p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT); if (error) goto free; error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size, 0, BUS_DMA_NOWAIT, &p->map); if (error) goto unmap; error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL, BUS_DMA_NOWAIT); if (error) goto destroy; return (0); destroy: bus_dmamap_destroy(sc->sc_dmatag, p->map); unmap: bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); free: bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); return (error); } int eap_freemem(sc, p) struct eap_softc *sc; struct eap_dma *p; { bus_dmamap_unload(sc->sc_dmatag, p->map); bus_dmamap_destroy(sc->sc_dmatag, p->map); bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size); bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs); return (0); } int eap_open(addr, flags) void *addr; int flags; { struct eap_softc *sc = addr; DPRINTF(("eap_open: sc=%p\n", sc)); sc->sc_pintr = 0; sc->sc_rintr = 0; return (0); } /* * Close function is called at splaudio(). */ void eap_close(addr) void *addr; { struct eap_softc *sc = addr; eap_halt_in_dma(sc); eap_halt_out_dma(sc); sc->sc_pintr = 0; sc->sc_rintr = 0; } int eap_query_encoding(addr, fp) void *addr; struct audio_encoding *fp; { switch (fp->index) { case 0: strcpy(fp->name, AudioEulinear); fp->encoding = AUDIO_ENCODING_ULINEAR; fp->precision = 8; fp->flags = 0; return (0); case 1: strcpy(fp->name, AudioEmulaw); fp->encoding = AUDIO_ENCODING_ULAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 2: strcpy(fp->name, AudioEalaw); fp->encoding = AUDIO_ENCODING_ALAW; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 3: strcpy(fp->name, AudioEslinear); fp->encoding = AUDIO_ENCODING_SLINEAR; fp->precision = 8; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 4: strcpy(fp->name, AudioEslinear_le); fp->encoding = AUDIO_ENCODING_SLINEAR_LE; fp->precision = 16; fp->flags = 0; return (0); case 5: strcpy(fp->name, AudioEulinear_le); fp->encoding = AUDIO_ENCODING_ULINEAR_LE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 6: strcpy(fp->name, AudioEslinear_be); fp->encoding = AUDIO_ENCODING_SLINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); case 7: strcpy(fp->name, AudioEulinear_be); fp->encoding = AUDIO_ENCODING_ULINEAR_BE; fp->precision = 16; fp->flags = AUDIO_ENCODINGFLAG_EMULATED; return (0); default: return (EINVAL); } } int eap_set_params(addr, setmode, usemode, p, r) void *addr; int setmode, usemode; struct audio_params *p, *r; { struct eap_softc *sc = addr; void (*pswcode) __P((void *, u_char *buf, int cnt)); void (*rswcode) __P((void *, u_char *buf, int cnt)); u_int32_t mode, div; pswcode = rswcode = 0; switch (p->encoding) { case AUDIO_ENCODING_SLINEAR_BE: if (p->precision == 16) rswcode = pswcode = swap_bytes; else pswcode = rswcode = change_sign8; break; case AUDIO_ENCODING_SLINEAR_LE: if (p->precision != 16) pswcode = rswcode = change_sign8; break; case AUDIO_ENCODING_ULINEAR_BE: if (p->precision == 16) { pswcode = swap_bytes_change_sign16; rswcode = change_sign16_swap_bytes; } break; case AUDIO_ENCODING_ULINEAR_LE: if (p->precision == 16) pswcode = rswcode = change_sign16; break; case AUDIO_ENCODING_ULAW: pswcode = mulaw_to_ulinear8; rswcode = ulinear8_to_mulaw; break; case AUDIO_ENCODING_ALAW: pswcode = alaw_to_ulinear8; rswcode = ulinear8_to_alaw; break; default: return (EINVAL); } if (p->precision == 16) mode = EAP_P2_S_EB | EAP_R1_S_EB; else mode = 0; if (p->channels == 2) mode |= EAP_P2_S_MB | EAP_R1_S_MB; else if (p->channels != 1) return (EINVAL); if (p->sample_rate < 4000 || p->sample_rate > 50000) return (EINVAL); sc->sc_sampsize = p->precision / 8 * p->channels; /* bytes / sample */ p->sw_code = pswcode; r->sw_code = rswcode; /* Set the encoding */ mode |= EREAD4(sc, EAP_SIC) & ~(EAP_R1P2_BITS | EAP_INC_BITS); mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(p->precision / 8); EWRITE4(sc, EAP_SIC, mode); DPRINTFN(2, ("eap_set_params: set SIC = 0x%08x\n", mode)); /* Set the speed */ DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n", EREAD4(sc, EAP_ICSC))); div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS; div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / p->sample_rate - 2); div |= EAP_CCB_INTRM; EWRITE4(sc, EAP_ICSC, div); DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div)); return (0); } int eap_round_blocksize(addr, blk) void *addr; int blk; { return (blk & -32); /* keep good alignment */ } int eap_dma_init_input(addr, buf, cc) void *addr; void *buf; int cc; { struct eap_softc *sc = addr; struct eap_dma *p; DPRINTF(("eap_dma_init_input: dma start loop input addr=%p cc=%d\n", buf, cc)); for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) ; if (!p) { printf("eap_dma_init_input: bad addr %p\n", buf); return (EINVAL); } EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE); EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p)); EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, cc / 4 - 1)); DPRINTF(("eap_dma_init_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n", (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1))); return (0); } int eap_dma_init_output(addr, buf, cc) void *addr; void *buf; int cc; { struct eap_softc *sc = addr; struct eap_dma *p; DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc)); for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next) ; if (!p) { printf("eap_dma_init_output: bad addr %p\n", buf); return (EINVAL); } EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE); EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p)); EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, cc / 4 - 1)); DPRINTF(("eap_dma_init_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n", (int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1))); return (0); } int eap_dma_output(addr, p, cc, intr, arg) void *addr; void *p; int cc; void (*intr) __P((void *)); void *arg; { struct eap_softc *sc = addr; u_int32_t mode; DPRINTFN(sc->sc_prun ? 5 : 1, ("eap_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n", addr, p, cc, intr, arg)); sc->sc_pintr = intr; sc->sc_parg = arg; if (!sc->sc_prun) { #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG) if (sc->sc_sampsize == 0) { printf("eap_dma_output: sampsize == 0\n"); return EINVAL; } #endif EWRITE2(sc, EAP_DAC2_CSR, cc / sc->sc_sampsize - 1); DPRINTFN(1, ("eap_dma_output: set DAC2_CSR = %d\n", cc / sc->sc_sampsize - 1)); DPRINTFN(1, ("eap_dma_output: old ICSC = 0x%08x\n", EREAD4(sc, EAP_ICSC))); mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN; EWRITE4(sc, EAP_ICSC, mode); mode |= EAP_DAC2_EN; EWRITE4(sc, EAP_ICSC, mode); DPRINTFN(1, ("eap_dma_output: set ICSC = 0x%08x\n", mode)); sc->sc_prun = 1; } return (0); } int eap_dma_input(addr, p, cc, intr, arg) void *addr; void *p; int cc; void (*intr) __P((void *)); void *arg; { struct eap_softc *sc = addr; u_int32_t mode; DPRINTFN(1, ("eap_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n", addr, p, cc, intr, arg)); sc->sc_rintr = intr; sc->sc_rarg = arg; if (!sc->sc_rrun) { #if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG) if (sc->sc_sampsize == 0) { printf("eap_dma_input: sampsize == 0\n"); return EINVAL; } #endif EWRITE2(sc, EAP_ADC_CSR, cc / sc->sc_sampsize - 1); mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN; EWRITE4(sc, EAP_ICSC, mode); mode |= EAP_ADC_EN; EWRITE4(sc, EAP_ICSC, mode); DPRINTFN(1, ("eap_dma_input: set ICSC = 0x%08x\n", mode)); sc->sc_rrun = 1; } return (0); } int eap_halt_out_dma(addr) void *addr; { struct eap_softc *sc = addr; u_int32_t mode; DPRINTF(("eap: eap_halt_out_dma\n")); mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN; EWRITE4(sc, EAP_ICSC, mode); sc->sc_prun = 0; return (0); } int eap_halt_in_dma(addr) void *addr; { struct eap_softc *sc = addr; u_int32_t mode; DPRINTF(("eap: eap_halt_in_dma\n")); mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN; EWRITE4(sc, EAP_ICSC, mode); sc->sc_rrun = 0; return (0); } int eap_getdev(addr, retp) void *addr; struct audio_device *retp; { *retp = eap_device; return (0); } void eap_set_mixer(sc, a, d) struct eap_softc *sc; int a, d; { eap_write_codec(sc, a, d); DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d)); } int eap_mixer_set_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct eap_softc *sc = addr; int lval, rval, l, r, la, ra; int l1, r1, l2, r2, m; if (cp->dev == EAP_RECORD_SOURCE) { if (cp->type != AUDIO_MIXER_SET) return (EINVAL); m = sc->sc_record_source = cp->un.mask; l1 = l2 = r1 = r2 = 0; if (m & (1 << EAP_VOICE_VOL)) l2 |= AK_M_VOICE_L, r2 |= AK_M_VOICE_R; if (m & (1 << EAP_FM_VOL)) l1 |= AK_M_FM_L, r1 |= AK_M_FM_R; if (m & (1 << EAP_CD_VOL)) l1 |= AK_M_CD_L, r1 |= AK_M_CD_R; if (m & (1 << EAP_LINE_VOL)) l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R; if (m & (1 << EAP_AUX_VOL)) l2 |= AK_M_AUX_L, r2 |= AK_M_AUX_R; if (m & (1 << EAP_MIC_VOL)) l2 |= AK_M_TMIC, r2 |= AK_M_TMIC; eap_set_mixer(sc, AK_IN_MIXER1_L, l1); eap_set_mixer(sc, AK_IN_MIXER1_R, r1); eap_set_mixer(sc, AK_IN_MIXER2_L, l2); eap_set_mixer(sc, AK_IN_MIXER2_R, r2); return (0); } if (cp->type != AUDIO_MIXER_VALUE) return (EINVAL); if (cp->un.value.num_channels == 1) lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]; else if (cp->un.value.num_channels == 2) { lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]; rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]; } else return (EINVAL); ra = -1; switch (cp->dev) { case EAP_MASTER_VOL: l = VOL_TO_ATT5(lval); r = VOL_TO_ATT5(rval); la = AK_MASTER_L; ra = AK_MASTER_R; break; case EAP_MIC_VOL: if (cp->un.value.num_channels != 1) return (EINVAL); la = AK_MIC; goto lr; case EAP_VOICE_VOL: la = AK_VOICE_L; ra = AK_VOICE_R; goto lr; case EAP_FM_VOL: la = AK_FM_L; ra = AK_FM_R; goto lr; case EAP_CD_VOL: la = AK_CD_L; ra = AK_CD_R; goto lr; case EAP_LINE_VOL: la = AK_LINE_L; ra = AK_LINE_R; goto lr; case EAP_AUX_VOL: la = AK_AUX_L; ra = AK_AUX_R; lr: l = VOL_TO_GAIN5(lval); r = VOL_TO_GAIN5(rval); break; default: return (EINVAL); } eap_set_mixer(sc, la, l); sc->sc_port[la] = l; if (ra >= 0) { eap_set_mixer(sc, ra, r); sc->sc_port[ra] = r; } return (0); } int eap_mixer_get_port(addr, cp) void *addr; mixer_ctrl_t *cp; { struct eap_softc *sc = addr; int la, ra, l, r; switch (cp->dev) { case EAP_RECORD_SOURCE: cp->un.mask = sc->sc_record_source; return (0); case EAP_MASTER_VOL: l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]); r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]); break; case EAP_MIC_VOL: if (cp->un.value.num_channels != 1) return (EINVAL); la = ra = AK_MIC; goto lr; case EAP_VOICE_VOL: la = AK_VOICE_L; ra = AK_VOICE_R; goto lr; case EAP_FM_VOL: la = AK_FM_L; ra = AK_FM_R; goto lr; case EAP_CD_VOL: la = AK_CD_L; ra = AK_CD_R; goto lr; case EAP_LINE_VOL: la = AK_LINE_L; ra = AK_LINE_R; goto lr; case EAP_AUX_VOL: la = AK_AUX_L; ra = AK_AUX_R; lr: l = GAIN5_TO_VOL(sc->sc_port[la]); r = GAIN5_TO_VOL(sc->sc_port[ra]); break; default: return (EINVAL); } if (cp->un.value.num_channels == 1) cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2; else if (cp->un.value.num_channels == 2) { cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l; cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r; } return (0); } int eap_query_devinfo(addr, dip) void *addr; mixer_devinfo_t *dip; { switch (dip->index) { case EAP_MASTER_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = EAP_OUTPUT_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNmaster); dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); return (0); case EAP_VOICE_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = EAP_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNdac); dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); return (0); case EAP_FM_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = EAP_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNfmsynth); dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); return (0); case EAP_CD_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = EAP_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNcd); dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); return (0); case EAP_LINE_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = EAP_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNline); dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); return (0); case EAP_AUX_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = EAP_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNaux); dip->un.v.num_channels = 2; strcpy(dip->un.v.units.name, AudioNvolume); return (0); case EAP_MIC_VOL: dip->type = AUDIO_MIXER_VALUE; dip->mixer_class = EAP_INPUT_CLASS; dip->prev = AUDIO_MIXER_LAST; dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNmicrophone); dip->un.v.num_channels = 1; strcpy(dip->un.v.units.name, AudioNvolume); return (0); case EAP_RECORD_SOURCE: dip->mixer_class = EAP_RECORD_CLASS; dip->prev = dip->next = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioNsource); dip->type = AUDIO_MIXER_SET; dip->un.s.num_mem = 5; strcpy(dip->un.s.member[0].label.name, AudioNmicrophone); dip->un.s.member[0].mask = 1 << EAP_MIC_VOL; strcpy(dip->un.s.member[1].label.name, AudioNcd); dip->un.s.member[1].mask = 1 << EAP_CD_VOL; strcpy(dip->un.s.member[2].label.name, AudioNline); dip->un.s.member[2].mask = 1 << EAP_LINE_VOL; strcpy(dip->un.s.member[3].label.name, AudioNfmsynth); dip->un.s.member[3].mask = 1 << EAP_FM_VOL; strcpy(dip->un.s.member[4].label.name, AudioNaux); dip->un.s.member[4].mask = 1 << EAP_AUX_VOL; return (0); case EAP_OUTPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = EAP_OUTPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioCoutputs); return (0); case EAP_RECORD_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = EAP_RECORD_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioCrecord); return (0); case EAP_INPUT_CLASS: dip->type = AUDIO_MIXER_CLASS; dip->mixer_class = EAP_INPUT_CLASS; dip->next = dip->prev = AUDIO_MIXER_LAST; strcpy(dip->label.name, AudioCinputs); return (0); } return (ENXIO); } void * eap_malloc(addr, size, pool, flags) void *addr; u_long size; int pool; int flags; { struct eap_softc *sc = addr; struct eap_dma *p; int error; p = malloc(sizeof(*p), pool, flags); if (!p) return (0); error = eap_allocmem(sc, size, 16, p); if (error) { free(p, pool); return (0); } p->next = sc->sc_dmas; sc->sc_dmas = p; return (KERNADDR(p)); } void eap_free(addr, ptr, pool) void *addr; void *ptr; int pool; { struct eap_softc *sc = addr; struct eap_dma **p; for (p = &sc->sc_dmas; *p; p = &(*p)->next) { if (KERNADDR(*p) == ptr) { eap_freemem(sc, *p); *p = (*p)->next; free(*p, pool); return; } } } u_long eap_round(addr, size) void *addr; u_long size; { return (size); } int eap_mappage(addr, mem, off, prot) void *addr; void *mem; int off; int prot; { struct eap_softc *sc = addr; struct eap_dma *p; for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next) ; if (!p) return (-1); return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs, off, prot, BUS_DMA_WAITOK)); } int eap_get_props(addr) void *addr; { return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX); }