/* $OpenBSD: if_age.c,v 1.25 2014/12/22 02:28:51 tedu Exp $ */ /*- * Copyright (c) 2008, Pyun YongHyeon * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include int age_match(struct device *, void *, void *); void age_attach(struct device *, struct device *, void *); int age_detach(struct device *, int); int age_miibus_readreg(struct device *, int, int); void age_miibus_writereg(struct device *, int, int, int); void age_miibus_statchg(struct device *); int age_init(struct ifnet *); int age_ioctl(struct ifnet *, u_long, caddr_t); void age_start(struct ifnet *); void age_watchdog(struct ifnet *); void age_mediastatus(struct ifnet *, struct ifmediareq *); int age_mediachange(struct ifnet *); int age_intr(void *); int age_dma_alloc(struct age_softc *); void age_dma_free(struct age_softc *); void age_get_macaddr(struct age_softc *); void age_phy_reset(struct age_softc *); int age_encap(struct age_softc *, struct mbuf **); void age_init_tx_ring(struct age_softc *); int age_init_rx_ring(struct age_softc *); void age_init_rr_ring(struct age_softc *); void age_init_cmb_block(struct age_softc *); void age_init_smb_block(struct age_softc *); int age_newbuf(struct age_softc *, struct age_rxdesc *); void age_mac_config(struct age_softc *); void age_txintr(struct age_softc *, int); void age_rxeof(struct age_softc *sc, struct rx_rdesc *); void age_rxintr(struct age_softc *, int); void age_tick(void *); void age_reset(struct age_softc *); void age_stop(struct age_softc *); void age_stats_update(struct age_softc *); void age_stop_txmac(struct age_softc *); void age_stop_rxmac(struct age_softc *); void age_rxvlan(struct age_softc *sc); void age_iff(struct age_softc *); const struct pci_matchid age_devices[] = { { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1 } }; struct cfattach age_ca = { sizeof (struct age_softc), age_match, age_attach }; struct cfdriver age_cd = { NULL, "age", DV_IFNET }; int agedebug = 0; #define DPRINTF(x) do { if (agedebug) printf x; } while (0) #define AGE_CSUM_FEATURES (M_TCP_CSUM_OUT | M_UDP_CSUM_OUT) int age_match(struct device *dev, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, age_devices, sizeof (age_devices) / sizeof (age_devices[0])); } void age_attach(struct device *parent, struct device *self, void *aux) { struct age_softc *sc = (struct age_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr; struct ifnet *ifp; pcireg_t memtype; int error = 0; /* * Allocate IO memory */ memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, AGE_PCIR_BAR); if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt, &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) { printf(": can't map mem space\n"); return; } if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { printf(": can't map interrupt\n"); goto fail; } /* * Allocate IRQ */ intrstr = pci_intr_string(pc, ih); sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, age_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_irq_handle == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } printf(": %s", intrstr); sc->sc_dmat = pa->pa_dmat; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; /* Set PHY address. */ sc->age_phyaddr = AGE_PHY_ADDR; /* Reset PHY. */ age_phy_reset(sc); /* Reset the ethernet controller. */ age_reset(sc); /* Get PCI and chip id/revision. */ sc->age_rev = PCI_REVISION(pa->pa_class); sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >> MASTER_CHIP_REV_SHIFT; if (agedebug) { printf("%s: PCI device revision : 0x%04x\n", sc->sc_dev.dv_xname, sc->age_rev); printf("%s: Chip id/revision : 0x%04x\n", sc->sc_dev.dv_xname, sc->age_chip_rev); } if (agedebug) { printf("%s: %d Tx FIFO, %d Rx FIFO\n", sc->sc_dev.dv_xname, CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN), CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN)); } /* Set max allowable DMA size. */ sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128; sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128; /* Allocate DMA stuffs */ error = age_dma_alloc(sc); if (error) goto fail; /* Load station address. */ age_get_macaddr(sc); ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = age_ioctl; ifp->if_start = age_start; ifp->if_watchdog = age_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->age_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; #ifdef AGE_CHECKSUM ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; #endif #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); /* Set up MII bus. */ sc->sc_miibus.mii_ifp = ifp; sc->sc_miibus.mii_readreg = age_miibus_readreg; sc->sc_miibus.mii_writereg = age_miibus_writereg; sc->sc_miibus.mii_statchg = age_miibus_statchg; ifmedia_init(&sc->sc_miibus.mii_media, 0, age_mediachange, age_mediastatus); mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL); } else ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->age_tick_ch, age_tick, sc); return; fail: age_dma_free(sc); if (sc->sc_irq_handle != NULL) pci_intr_disestablish(pc, sc->sc_irq_handle); if (sc->sc_mem_size) bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); } int age_detach(struct device *self, int flags) { struct age_softc *sc = (struct age_softc *)self; struct ifnet *ifp = &sc->sc_arpcom.ac_if; int s; s = splnet(); age_stop(sc); splx(s); mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY); /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); age_dma_free(sc); if (sc->sc_irq_handle != NULL) { pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); sc->sc_irq_handle = NULL; } return (0); } /* * Read a PHY register on the MII of the L1. */ int age_miibus_readreg(struct device *dev, int phy, int reg) { struct age_softc *sc = (struct age_softc *)dev; uint32_t v; int i; if (phy != sc->age_phyaddr) return (0); CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = AGE_PHY_TIMEOUT; i > 0; i--) { DELAY(1); v = CSR_READ_4(sc, AGE_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) { printf("%s: phy read timeout: phy %d, reg %d\n", sc->sc_dev.dv_xname, phy, reg); return (0); } return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); } /* * Write a PHY register on the MII of the L1. */ void age_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct age_softc *sc = (struct age_softc *)dev; uint32_t v; int i; if (phy != sc->age_phyaddr) return; CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = AGE_PHY_TIMEOUT; i > 0; i--) { DELAY(1); v = CSR_READ_4(sc, AGE_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) { printf("%s: phy write timeout: phy %d, reg %d\n", sc->sc_dev.dv_xname, phy, reg); } } /* * Callback from MII layer when media changes. */ void age_miibus_statchg(struct device *dev) { struct age_softc *sc = (struct age_softc *)dev; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_data *mii = &sc->sc_miibus; if ((ifp->if_flags & IFF_RUNNING) == 0) return; sc->age_flags &= ~AGE_FLAG_LINK; if ((mii->mii_media_status & IFM_AVALID) != 0) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: case IFM_1000_T: sc->age_flags |= AGE_FLAG_LINK; break; default: break; } } /* Stop Rx/Tx MACs. */ age_stop_rxmac(sc); age_stop_txmac(sc); /* Program MACs with resolved speed/duplex/flow-control. */ if ((sc->age_flags & AGE_FLAG_LINK) != 0) { uint32_t reg; age_mac_config(sc); reg = CSR_READ_4(sc, AGE_MAC_CFG); /* Restart DMA engine and Tx/Rx MAC. */ CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) | DMA_CFG_RD_ENB | DMA_CFG_WR_ENB); reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } } /* * Get the current interface media status. */ void age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct age_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; } /* * Set hardware to newly-selected media. */ int age_mediachange(struct ifnet *ifp) { struct age_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; int error; if (mii->mii_instance != 0) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } error = mii_mediachg(mii); return (error); } int age_intr(void *arg) { struct age_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct cmb *cmb; uint32_t status; status = CSR_READ_4(sc, AGE_INTR_STATUS); if (status == 0 || (status & AGE_INTRS) == 0) return (0); /* Disable interrupts. */ CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT); bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); cmb = sc->age_rdata.age_cmb_block; status = letoh32(cmb->intr_status); if ((status & AGE_INTRS) == 0) goto back; sc->age_tpd_cons = (letoh32(cmb->tpd_cons) & TPD_CONS_MASK) >> TPD_CONS_SHIFT; sc->age_rr_prod = (letoh32(cmb->rprod_cons) & RRD_PROD_MASK) >> RRD_PROD_SHIFT; /* Let hardware know CMB was served. */ cmb->intr_status = 0; bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (ifp->if_flags & IFF_RUNNING) { if (status & INTR_CMB_RX) age_rxintr(sc, sc->age_rr_prod); if (status & INTR_CMB_TX) age_txintr(sc, sc->age_tpd_cons); if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) { if (status & INTR_DMA_RD_TO_RST) printf("%s: DMA read error! -- resetting\n", sc->sc_dev.dv_xname); if (status & INTR_DMA_WR_TO_RST) printf("%s: DMA write error! -- resetting\n", sc->sc_dev.dv_xname); age_init(ifp); } age_start(ifp); if (status & INTR_SMB) age_stats_update(sc); } /* Check whether CMB was updated while serving Tx/Rx/SMB handler. */ bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); back: /* Re-enable interrupts. */ CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); return (1); } void age_get_macaddr(struct age_softc *sc) { uint32_t ea[2], reg; int i, vpdc; reg = CSR_READ_4(sc, AGE_SPI_CTRL); if ((reg & SPI_VPD_ENB) != 0) { /* Get VPD stored in TWSI EEPROM. */ reg &= ~SPI_VPD_ENB; CSR_WRITE_4(sc, AGE_SPI_CTRL, reg); } if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD, &vpdc, NULL)) { /* * PCI VPD capability found, let TWSI reload EEPROM. * This will set Ethernet address of controller. */ CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) | TWSI_CTRL_SW_LD_START); for (i = 100; i > 0; i--) { DELAY(1000); reg = CSR_READ_4(sc, AGE_TWSI_CTRL); if ((reg & TWSI_CTRL_SW_LD_START) == 0) break; } if (i == 0) printf("%s: reloading EEPROM timeout!\n", sc->sc_dev.dv_xname); } else { if (agedebug) printf("%s: PCI VPD capability not found!\n", sc->sc_dev.dv_xname); } ea[0] = CSR_READ_4(sc, AGE_PAR0); ea[1] = CSR_READ_4(sc, AGE_PAR1); sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF; sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF; sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF; sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF; sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF; sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF; } void age_phy_reset(struct age_softc *sc) { uint16_t reg, pn; int i, linkup; /* Reset PHY. */ CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST); DELAY(2000); CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR); DELAY(2000); #define ATPHY_DBG_ADDR 0x1D #define ATPHY_DBG_DATA 0x1E #define ATPHY_CDTC 0x16 #define PHY_CDTC_ENB 0x0001 #define PHY_CDTC_POFF 8 #define ATPHY_CDTS 0x1C #define PHY_CDTS_STAT_OK 0x0000 #define PHY_CDTS_STAT_SHORT 0x0100 #define PHY_CDTS_STAT_OPEN 0x0200 #define PHY_CDTS_STAT_INVAL 0x0300 #define PHY_CDTS_STAT_MASK 0x0300 /* Check power saving mode. Magic from Linux. */ age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET); for (linkup = 0, pn = 0; pn < 4; pn++) { age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC, (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB); for (i = 200; i > 0; i--) { DELAY(1000); reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC); if ((reg & PHY_CDTC_ENB) == 0) break; } DELAY(1000); reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr, ATPHY_CDTS); if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) { linkup++; break; } } age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG); if (linkup == 0) { age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_DBG_ADDR, 0); age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_DBG_DATA, 0x124E); age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_DBG_ADDR, 1); reg = age_miibus_readreg(&sc->sc_dev, sc->age_phyaddr, ATPHY_DBG_DATA); age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_DBG_DATA, reg | 0x03); /* XXX */ DELAY(1500 * 1000); age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_DBG_ADDR, 0); age_miibus_writereg(&sc->sc_dev, sc->age_phyaddr, ATPHY_DBG_DATA, 0x024E); } #undef ATPHY_DBG_ADDR #undef ATPHY_DBG_DATA #undef ATPHY_CDTC #undef PHY_CDTC_ENB #undef PHY_CDTC_POFF #undef ATPHY_CDTS #undef PHY_CDTS_STAT_OK #undef PHY_CDTS_STAT_SHORT #undef PHY_CDTS_STAT_OPEN #undef PHY_CDTS_STAT_INVAL #undef PHY_CDTS_STAT_MASK } int age_dma_alloc(struct age_softc *sc) { struct age_txdesc *txd; struct age_rxdesc *rxd; int nsegs, error, i; /* * Create DMA stuffs for TX ring */ error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1, AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for TX ring */ error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ, ETHER_ALIGN, 0, &sc->age_rdata.age_tx_ring_seg, 1, &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for Tx ring.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg, nsegs, AGE_TX_RING_SZ, (caddr_t *)&sc->age_rdata.age_tx_ring, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for Tx ring. */ error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Tx ring.\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->age_rdata.age_tx_ring, 1); return error; } sc->age_rdata.age_tx_ring_paddr = sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr; /* * Create DMA stuffs for RX ring */ error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1, AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for RX ring */ error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ, ETHER_ALIGN, 0, &sc->age_rdata.age_rx_ring_seg, 1, &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for Rx ring.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg, nsegs, AGE_RX_RING_SZ, (caddr_t *)&sc->age_rdata.age_rx_ring, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for Rx ring. */ error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Rx ring.\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1); return error; } sc->age_rdata.age_rx_ring_paddr = sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr; /* * Create DMA stuffs for RX return ring */ error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1, AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for RX return ring */ error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ, ETHER_ALIGN, 0, &sc->age_rdata.age_rr_ring_seg, 1, &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for Rx " "return ring.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg, nsegs, AGE_RR_RING_SZ, (caddr_t *)&sc->age_rdata.age_rr_ring, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for Rx return ring. */ error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Rx return ring." "\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->age_rdata.age_rr_ring, 1); return error; } sc->age_rdata.age_rr_ring_paddr = sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr; /* * Create DMA stuffs for CMB block */ error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1, AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_cmb_block_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for CMB block */ error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ, ETHER_ALIGN, 0, &sc->age_rdata.age_cmb_block_seg, 1, &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for " "CMB block\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg, nsegs, AGE_CMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_cmb_block, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for CMB block. */ error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for CMB block\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->age_rdata.age_cmb_block, 1); return error; } sc->age_rdata.age_cmb_block_paddr = sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr; /* * Create DMA stuffs for SMB block */ error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1, AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_smb_block_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for SMB block */ error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ, ETHER_ALIGN, 0, &sc->age_rdata.age_smb_block_seg, 1, &nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for " "SMB block\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg, nsegs, AGE_SMB_BLOCK_SZ, (caddr_t *)&sc->age_rdata.age_smb_block, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for SMB block */ error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for SMB block\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->age_rdata.age_smb_block, 1); return error; } sc->age_rdata.age_smb_block_paddr = sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < AGE_TX_RING_CNT; i++) { txd = &sc->age_cdata.age_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE, AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT, &txd->tx_dmamap); if (error) { printf("%s: could not create Tx dmamap.\n", sc->sc_dev.dv_xname); return error; } } /* Create DMA maps for Rx buffers. */ error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap); if (error) { printf("%s: could not create spare Rx dmamap.\n", sc->sc_dev.dv_xname); return error; } for (i = 0; i < AGE_RX_RING_CNT; i++) { rxd = &sc->age_cdata.age_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap); if (error) { printf("%s: could not create Rx dmamap.\n", sc->sc_dev.dv_xname); return error; } } return (0); } void age_dma_free(struct age_softc *sc) { struct age_txdesc *txd; struct age_rxdesc *rxd; int i; /* Tx buffers */ for (i = 0; i < AGE_TX_RING_CNT; i++) { txd = &sc->age_cdata.age_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap); txd->tx_dmamap = NULL; } } /* Rx buffers */ for (i = 0; i < AGE_RX_RING_CNT; i++) { rxd = &sc->age_cdata.age_rxdesc[i]; if (rxd->rx_dmamap != NULL) { bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->age_cdata.age_rx_sparemap != NULL) { bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap); sc->age_cdata.age_rx_sparemap = NULL; } /* Tx ring. */ if (sc->age_cdata.age_tx_ring_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map); if (sc->age_cdata.age_tx_ring_map != NULL && sc->age_rdata.age_tx_ring != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->age_rdata.age_tx_ring, 1); sc->age_rdata.age_tx_ring = NULL; sc->age_cdata.age_tx_ring_map = NULL; /* Rx ring. */ if (sc->age_cdata.age_rx_ring_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map); if (sc->age_cdata.age_rx_ring_map != NULL && sc->age_rdata.age_rx_ring != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->age_rdata.age_rx_ring, 1); sc->age_rdata.age_rx_ring = NULL; sc->age_cdata.age_rx_ring_map = NULL; /* Rx return ring. */ if (sc->age_cdata.age_rr_ring_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map); if (sc->age_cdata.age_rr_ring_map != NULL && sc->age_rdata.age_rr_ring != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->age_rdata.age_rr_ring, 1); sc->age_rdata.age_rr_ring = NULL; sc->age_cdata.age_rr_ring_map = NULL; /* CMB block */ if (sc->age_cdata.age_cmb_block_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map); if (sc->age_cdata.age_cmb_block_map != NULL && sc->age_rdata.age_cmb_block != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->age_rdata.age_cmb_block, 1); sc->age_rdata.age_cmb_block = NULL; sc->age_cdata.age_cmb_block_map = NULL; /* SMB block */ if (sc->age_cdata.age_smb_block_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map); if (sc->age_cdata.age_smb_block_map != NULL && sc->age_rdata.age_smb_block != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->age_rdata.age_smb_block, 1); sc->age_rdata.age_smb_block = NULL; sc->age_cdata.age_smb_block_map = NULL; } void age_start(struct ifnet *ifp) { struct age_softc *sc = ifp->if_softc; struct mbuf *m_head; int enq; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; if ((sc->age_flags & AGE_FLAG_LINK) == 0) return; if (IFQ_IS_EMPTY(&ifp->if_snd)) return; enq = 0; for (;;) { IFQ_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (age_encap(sc, &m_head)) { if (m_head == NULL) ifp->if_oerrors++; else { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; } break; } enq = 1; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf != NULL) bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif } if (enq) { /* Update mbox. */ AGE_COMMIT_MBOX(sc); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = AGE_TX_TIMEOUT; } } void age_watchdog(struct ifnet *ifp) { struct age_softc *sc = ifp->if_softc; if ((sc->age_flags & AGE_FLAG_LINK) == 0) { printf("%s: watchdog timeout (missed link)\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; age_init(ifp); return; } if (sc->age_cdata.age_tx_cnt == 0) { printf("%s: watchdog timeout (missed Tx interrupts) " "-- recovering\n", sc->sc_dev.dv_xname); age_start(ifp); return; } printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; age_init(ifp); age_start(ifp); } int age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct age_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) age_init(ifp); if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc->sc_arpcom, ifa); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else age_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) age_stop(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; default: error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data); break; } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) age_iff(sc); error = 0; } splx(s); return (error); } void age_mac_config(struct age_softc *sc) { struct mii_data *mii = &sc->sc_miibus; uint32_t reg; reg = CSR_READ_4(sc, AGE_MAC_CFG); reg &= ~MAC_CFG_FULL_DUPLEX; reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC); reg &= ~MAC_CFG_SPEED_MASK; /* Reprogram MAC with resolved speed/duplex. */ switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: reg |= MAC_CFG_SPEED_10_100; break; case IFM_1000_T: reg |= MAC_CFG_SPEED_1000; break; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { reg |= MAC_CFG_FULL_DUPLEX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) reg |= MAC_CFG_TX_FC; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) reg |= MAC_CFG_RX_FC; } CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } int age_encap(struct age_softc *sc, struct mbuf **m_head) { struct age_txdesc *txd, *txd_last; struct tx_desc *desc; struct mbuf *m; bus_dmamap_t map; uint32_t cflags, poff, vtag; int error, i, prod; m = *m_head; cflags = vtag = 0; poff = 0; prod = sc->age_cdata.age_tx_prod; txd = &sc->age_cdata.age_txdesc[prod]; txd_last = txd; map = txd->tx_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) goto drop; if (error != 0) { if (m_defrag(*m_head, M_DONTWAIT)) { error = ENOBUFS; goto drop; } error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT); if (error != 0) goto drop; } /* Check descriptor overrun. */ if (sc->age_cdata.age_tx_cnt + map->dm_nsegs >= AGE_TX_RING_CNT - 2) { bus_dmamap_unload(sc->sc_dmat, map); return (ENOBUFS); } m = *m_head; /* Configure Tx IP/TCP/UDP checksum offload. */ if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) { cflags |= AGE_TD_CSUM; if ((m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) != 0) cflags |= AGE_TD_TCPCSUM; if ((m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) != 0) cflags |= AGE_TD_UDPCSUM; /* Set checksum start offset. */ cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT); } #if NVLAN > 0 /* Configure VLAN hardware tag insertion. */ if (m->m_flags & M_VLANTAG) { vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK); cflags |= AGE_TD_INSERT_VLAN_TAG; } #endif desc = NULL; for (i = 0; i < map->dm_nsegs; i++) { desc = &sc->age_rdata.age_tx_ring[prod]; desc->addr = htole64(map->dm_segs[i].ds_addr); desc->len = htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag); desc->flags = htole32(cflags); sc->age_cdata.age_tx_cnt++; AGE_DESC_INC(prod, AGE_TX_RING_CNT); } /* Update producer index. */ sc->age_cdata.age_tx_prod = prod; /* Set EOP on the last descriptor. */ prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT; desc = &sc->age_rdata.age_tx_ring[prod]; desc->flags |= htole32(AGE_TD_EOP); /* Swap dmamap of the first and the last. */ txd = &sc->age_cdata.age_txdesc[prod]; map = txd_last->tx_dmamap; txd_last->tx_dmamap = txd->tx_dmamap; txd->tx_dmamap = map; txd->tx_m = m; /* Sync descriptors. */ bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); drop: m_freem(*m_head); *m_head = NULL; return (error); } void age_txintr(struct age_softc *sc, int tpd_cons) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct age_txdesc *txd; int cons, prog; bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ cons = sc->age_cdata.age_tx_cons; for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) { if (sc->age_cdata.age_tx_cnt <= 0) break; prog++; ifp->if_flags &= ~IFF_OACTIVE; sc->age_cdata.age_tx_cnt--; txd = &sc->age_cdata.age_txdesc[cons]; /* * Clear Tx descriptors, it's not required but would * help debugging in case of Tx issues. */ txd->tx_desc->addr = 0; txd->tx_desc->len = 0; txd->tx_desc->flags = 0; if (txd->tx_m == NULL) continue; /* Reclaim transmitted mbufs. */ bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } if (prog > 0) { sc->age_cdata.age_tx_cons = cons; /* * Unarm watchdog timer only when there are no pending * Tx descriptors in queue. */ if (sc->age_cdata.age_tx_cnt == 0) ifp->if_timer = 0; bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } /* Receive a frame. */ void age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct age_rxdesc *rxd; struct rx_desc *desc; struct mbuf *mp, *m; uint32_t status, index; int count, nsegs, pktlen; int rx_cons; status = letoh32(rxrd->flags); index = letoh32(rxrd->index); rx_cons = AGE_RX_CONS(index); nsegs = AGE_RX_NSEGS(index); sc->age_cdata.age_rxlen = AGE_RX_BYTES(letoh32(rxrd->len)); if ((status & AGE_RRD_ERROR) != 0 && (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE | AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) { /* * We want to pass the following frames to upper * layer regardless of error status of Rx return * ring. * * o IP/TCP/UDP checksum is bad. * o frame length and protocol specific length * does not match. */ sc->age_cdata.age_rx_cons += nsegs; sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; return; } pktlen = 0; for (count = 0; count < nsegs; count++, AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) { rxd = &sc->age_cdata.age_rxdesc[rx_cons]; mp = rxd->rx_m; desc = rxd->rx_desc; /* Add a new receive buffer to the ring. */ if (age_newbuf(sc, rxd) != 0) { ifp->if_iqdrops++; /* Reuse Rx buffers. */ if (sc->age_cdata.age_rxhead != NULL) { m_freem(sc->age_cdata.age_rxhead); AGE_RXCHAIN_RESET(sc); } break; } /* The length of the first mbuf is computed last. */ if (count != 0) { mp->m_len = AGE_RX_BYTES(letoh32(desc->len)); pktlen += mp->m_len; } /* Chain received mbufs. */ if (sc->age_cdata.age_rxhead == NULL) { sc->age_cdata.age_rxhead = mp; sc->age_cdata.age_rxtail = mp; } else { mp->m_flags &= ~M_PKTHDR; sc->age_cdata.age_rxprev_tail = sc->age_cdata.age_rxtail; sc->age_cdata.age_rxtail->m_next = mp; sc->age_cdata.age_rxtail = mp; } if (count == nsegs - 1) { /* * It seems that L1 controller has no way * to tell hardware to strip CRC bytes. */ sc->age_cdata.age_rxlen -= ETHER_CRC_LEN; if (nsegs > 1) { /* Remove the CRC bytes in chained mbufs. */ pktlen -= ETHER_CRC_LEN; if (mp->m_len <= ETHER_CRC_LEN) { sc->age_cdata.age_rxtail = sc->age_cdata.age_rxprev_tail; sc->age_cdata.age_rxtail->m_len -= (ETHER_CRC_LEN - mp->m_len); sc->age_cdata.age_rxtail->m_next = NULL; m_freem(mp); } else { mp->m_len -= ETHER_CRC_LEN; } } m = sc->age_cdata.age_rxhead; m->m_flags |= M_PKTHDR; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = sc->age_cdata.age_rxlen; /* Set the first mbuf length. */ m->m_len = sc->age_cdata.age_rxlen - pktlen; /* * Set checksum information. * It seems that L1 controller can compute partial * checksum. The partial checksum value can be used * to accelerate checksum computation for fragmented * TCP/UDP packets. Upper network stack already * takes advantage of the partial checksum value in * IP reassembly stage. But I'm not sure the * correctness of the partial hardware checksum * assistance due to lack of data sheet. If it is * proven to work on L1 I'll enable it. */ if (status & AGE_RRD_IPV4) { if ((status & AGE_RRD_IPCSUM_NOK) == 0) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) && (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) { m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK; } /* * Don't mark bad checksum for TCP/UDP frames * as fragmented frames may always have set * bad checksummed bit of descriptor status. */ } #if NVLAN > 0 /* Check for VLAN tagged frames. */ if (status & AGE_RRD_VLAN) { u_int32_t vtag = AGE_RX_VLAN(letoh32(rxrd->vtags)); m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag); m->m_flags |= M_VLANTAG; } #endif #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* Pass it on. */ ether_input_mbuf(ifp, m); /* Reset mbuf chains. */ AGE_RXCHAIN_RESET(sc); } } if (count != nsegs) { sc->age_cdata.age_rx_cons += nsegs; sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT; } else sc->age_cdata.age_rx_cons = rx_cons; } void age_rxintr(struct age_softc *sc, int rr_prod) { struct rx_rdesc *rxrd; int rr_cons, nsegs, pktlen, prog; rr_cons = sc->age_cdata.age_rr_cons; if (rr_cons == rr_prod) return; bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0, sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); for (prog = 0; rr_cons != rr_prod; prog++) { rxrd = &sc->age_rdata.age_rr_ring[rr_cons]; nsegs = AGE_RX_NSEGS(letoh32(rxrd->index)); if (nsegs == 0) break; /* * Check number of segments against received bytes * Non-matching value would indicate that hardware * is still trying to update Rx return descriptors. * I'm not sure whether this check is really needed. */ pktlen = AGE_RX_BYTES(letoh32(rxrd->len)); if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) / (MCLBYTES - ETHER_ALIGN))) break; /* Received a frame. */ age_rxeof(sc, rxrd); /* Clear return ring. */ rxrd->index = 0; AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT); } if (prog > 0) { /* Update the consumer index. */ sc->age_cdata.age_rr_cons = rr_cons; bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0, sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Sync descriptors. */ bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Notify hardware availability of new Rx buffers. */ AGE_COMMIT_MBOX(sc); } } void age_tick(void *xsc) { struct age_softc *sc = xsc; struct mii_data *mii = &sc->sc_miibus; int s; s = splnet(); mii_tick(mii); timeout_add_sec(&sc->age_tick_ch, 1); splx(s); } void age_reset(struct age_softc *sc) { uint32_t reg; int i; CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET); CSR_READ_4(sc, AGE_MASTER_CFG); DELAY(1000); for (i = AGE_RESET_TIMEOUT; i > 0; i--) { if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) break; DELAY(10); } if (i == 0) printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname, reg); /* Initialize PCIe module. From Linux. */ CSR_WRITE_4(sc, 0x12FC, 0x6500); CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); } int age_init(struct ifnet *ifp) { struct age_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; uint8_t eaddr[ETHER_ADDR_LEN]; bus_addr_t paddr; uint32_t reg, fsize; uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo; int error; /* * Cancel any pending I/O. */ age_stop(sc); /* * Reset the chip to a known state. */ age_reset(sc); /* Initialize descriptors. */ error = age_init_rx_ring(sc); if (error != 0) { printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname); age_stop(sc); return (error); } age_init_rr_ring(sc); age_init_tx_ring(sc); age_init_cmb_block(sc); age_init_smb_block(sc); /* Reprogram the station address. */ bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN); CSR_WRITE_4(sc, AGE_PAR0, eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]); /* Set descriptor base addresses. */ paddr = sc->age_rdata.age_tx_ring_paddr; CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr)); paddr = sc->age_rdata.age_rx_ring_paddr; CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr)); paddr = sc->age_rdata.age_rr_ring_paddr; CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr)); paddr = sc->age_rdata.age_tx_ring_paddr; CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr)); paddr = sc->age_rdata.age_cmb_block_paddr; CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr)); paddr = sc->age_rdata.age_smb_block_paddr; CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr)); /* Set Rx/Rx return descriptor counter. */ CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT, ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) & DESC_RRD_CNT_MASK) | ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK)); /* Set Tx descriptor counter. */ CSR_WRITE_4(sc, AGE_DESC_TPD_CNT, (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK); /* Tell hardware that we're ready to load descriptors. */ CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD); /* * Initialize mailbox register. * Updated producer/consumer index information is exchanged * through this mailbox register. However Tx producer and * Rx return consumer/Rx producer are all shared such that * it's hard to separate code path between Tx and Rx without * locking. If L1 hardware have a separate mail box register * for Tx and Rx consumer/producer management we could have * independent Tx/Rx handler which in turn Rx handler could have * been run without any locking. */ AGE_COMMIT_MBOX(sc); /* Configure IPG/IFG parameters. */ CSR_WRITE_4(sc, AGE_IPG_IFG_CFG, ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) | ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK)); /* Set parameters for half-duplex media. */ CSR_WRITE_4(sc, AGE_HDPX_CFG, ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & HDPX_CFG_LCOL_MASK) | ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & HDPX_CFG_ABEBT_MASK) | ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & HDPX_CFG_JAMIPG_MASK)); /* Configure interrupt moderation timer. */ sc->age_int_mod = AGE_IM_TIMER_DEFAULT; CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod)); reg = CSR_READ_4(sc, AGE_MASTER_CFG); reg &= ~MASTER_MTIMER_ENB; if (AGE_USECS(sc->age_int_mod) == 0) reg &= ~MASTER_ITIMER_ENB; else reg |= MASTER_ITIMER_ENB; CSR_WRITE_4(sc, AGE_MASTER_CFG, reg); if (agedebug) printf("%s: interrupt moderation is %d us.\n", sc->sc_dev.dv_xname, sc->age_int_mod); CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000)); /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */ if (ifp->if_mtu < ETHERMTU) sc->age_max_frame_size = ETHERMTU; else sc->age_max_frame_size = ifp->if_mtu; sc->age_max_frame_size += ETHER_HDR_LEN + sizeof(struct ether_vlan_header) + ETHER_CRC_LEN; CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size); /* Configure jumbo frame. */ fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t)); CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG, (((fsize / sizeof(uint64_t)) << RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) | ((RXQ_JUMBO_CFG_LKAH_DEFAULT << RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) | ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) & RXQ_JUMBO_CFG_RRD_TIMER_MASK)); /* Configure flow-control parameters. From Linux. */ if ((sc->age_flags & AGE_FLAG_PCIE) != 0) { /* * Magic workaround for old-L1. * Don't know which hw revision requires this magic. */ CSR_WRITE_4(sc, 0x12FC, 0x6500); /* * Another magic workaround for flow-control mode * change. From Linux. */ CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); } /* * TODO * Should understand pause parameter relationships between FIFO * size and number of Rx descriptors and Rx return descriptors. * * Magic parameters came from Linux. */ switch (sc->age_chip_rev) { case 0x8001: case 0x9001: case 0x9002: case 0x9003: rxf_hi = AGE_RX_RING_CNT / 16; rxf_lo = (AGE_RX_RING_CNT * 7) / 8; rrd_hi = (AGE_RR_RING_CNT * 7) / 8; rrd_lo = AGE_RR_RING_CNT / 16; break; default: reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN); rxf_lo = reg / 16; if (rxf_lo < 192) rxf_lo = 192; rxf_hi = (reg * 7) / 8; if (rxf_hi < rxf_lo) rxf_hi = rxf_lo + 16; reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN); rrd_lo = reg / 8; rrd_hi = (reg * 7) / 8; if (rrd_lo < 2) rrd_lo = 2; if (rrd_hi < rrd_lo) rrd_hi = rrd_lo + 3; break; } CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH, ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) & RXQ_FIFO_PAUSE_THRESH_LO_MASK) | ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) & RXQ_FIFO_PAUSE_THRESH_HI_MASK)); CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH, ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) & RXQ_RRD_PAUSE_THRESH_LO_MASK) | ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) & RXQ_RRD_PAUSE_THRESH_HI_MASK)); /* Configure RxQ. */ CSR_WRITE_4(sc, AGE_RXQ_CFG, ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & RXQ_CFG_RD_BURST_MASK) | ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT << RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) | ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT << RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); /* Configure TxQ. */ CSR_WRITE_4(sc, AGE_TXQ_CFG, ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & TXQ_CFG_TPD_BURST_MASK) | ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK) | ((TXQ_CFG_TPD_FETCH_DEFAULT << TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) | TXQ_CFG_ENB); /* Configure DMA parameters. */ CSR_WRITE_4(sc, AGE_DMA_CFG, DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 | sc->age_dma_rd_burst | DMA_CFG_RD_ENB | sc->age_dma_wr_burst | DMA_CFG_WR_ENB); /* Configure CMB DMA write threshold. */ CSR_WRITE_4(sc, AGE_CMB_WR_THRESH, ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) & CMB_WR_THRESH_RRD_MASK) | ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) & CMB_WR_THRESH_TPD_MASK)); /* Set CMB/SMB timer and enable them. */ CSR_WRITE_4(sc, AGE_CMB_WR_TIMER, ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) | ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK)); /* Request SMB updates for every seconds. */ CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000)); CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB); /* * Disable all WOL bits as WOL can interfere normal Rx * operation. */ CSR_WRITE_4(sc, AGE_WOL_CFG, 0); /* * Configure Tx/Rx MACs. * - Auto-padding for short frames. * - Enable CRC generation. * Start with full-duplex/1000Mbps media. Actual reconfiguration * of MAC is followed after link establishment. */ CSR_WRITE_4(sc, AGE_MAC_CFG, MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 | ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & MAC_CFG_PREAMBLE_MASK)); /* Set up the receive filter. */ age_iff(sc); age_rxvlan(sc); reg = CSR_READ_4(sc, AGE_MAC_CFG); reg |= MAC_CFG_RXCSUM_ENB; /* Ack all pending interrupts and clear it. */ CSR_WRITE_4(sc, AGE_INTR_STATUS, 0); CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS); /* Finally enable Tx/Rx MAC. */ CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); sc->age_flags &= ~AGE_FLAG_LINK; /* Switch to the current media. */ mii_mediachg(mii); timeout_add_sec(&sc->age_tick_ch, 1); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; return (0); } void age_stop(struct age_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct age_txdesc *txd; struct age_rxdesc *rxd; uint32_t reg; int i; /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; sc->age_flags &= ~AGE_FLAG_LINK; timeout_del(&sc->age_tick_ch); /* * Disable interrupts. */ CSR_WRITE_4(sc, AGE_INTR_MASK, 0); CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF); /* Stop CMB/SMB updates. */ CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0); /* Stop Rx/Tx MAC. */ age_stop_rxmac(sc); age_stop_txmac(sc); /* Stop DMA. */ CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB)); /* Stop TxQ/RxQ. */ CSR_WRITE_4(sc, AGE_TXQ_CFG, CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB); CSR_WRITE_4(sc, AGE_RXQ_CFG, CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB); for (i = AGE_RESET_TIMEOUT; i > 0; i--) { if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0) break; DELAY(10); } if (i == 0) printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n", sc->sc_dev.dv_xname, reg); /* Reclaim Rx buffers that have been processed. */ if (sc->age_cdata.age_rxhead != NULL) m_freem(sc->age_cdata.age_rxhead); AGE_RXCHAIN_RESET(sc); /* * Free RX and TX mbufs still in the queues. */ for (i = 0; i < AGE_RX_RING_CNT; i++) { rxd = &sc->age_cdata.age_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < AGE_TX_RING_CNT; i++) { txd = &sc->age_cdata.age_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } } void age_stats_update(struct age_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct age_stats *stat; struct smb *smb; stat = &sc->age_stat; bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); smb = sc->age_rdata.age_smb_block; if (smb->updated == 0) return; /* Rx stats. */ stat->rx_frames += smb->rx_frames; stat->rx_bcast_frames += smb->rx_bcast_frames; stat->rx_mcast_frames += smb->rx_mcast_frames; stat->rx_pause_frames += smb->rx_pause_frames; stat->rx_control_frames += smb->rx_control_frames; stat->rx_crcerrs += smb->rx_crcerrs; stat->rx_lenerrs += smb->rx_lenerrs; stat->rx_bytes += smb->rx_bytes; stat->rx_runts += smb->rx_runts; stat->rx_fragments += smb->rx_fragments; stat->rx_pkts_64 += smb->rx_pkts_64; stat->rx_pkts_65_127 += smb->rx_pkts_65_127; stat->rx_pkts_128_255 += smb->rx_pkts_128_255; stat->rx_pkts_256_511 += smb->rx_pkts_256_511; stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; stat->rx_pkts_truncated += smb->rx_pkts_truncated; stat->rx_fifo_oflows += smb->rx_fifo_oflows; stat->rx_desc_oflows += smb->rx_desc_oflows; stat->rx_alignerrs += smb->rx_alignerrs; stat->rx_bcast_bytes += smb->rx_bcast_bytes; stat->rx_mcast_bytes += smb->rx_mcast_bytes; stat->rx_pkts_filtered += smb->rx_pkts_filtered; /* Tx stats. */ stat->tx_frames += smb->tx_frames; stat->tx_bcast_frames += smb->tx_bcast_frames; stat->tx_mcast_frames += smb->tx_mcast_frames; stat->tx_pause_frames += smb->tx_pause_frames; stat->tx_excess_defer += smb->tx_excess_defer; stat->tx_control_frames += smb->tx_control_frames; stat->tx_deferred += smb->tx_deferred; stat->tx_bytes += smb->tx_bytes; stat->tx_pkts_64 += smb->tx_pkts_64; stat->tx_pkts_65_127 += smb->tx_pkts_65_127; stat->tx_pkts_128_255 += smb->tx_pkts_128_255; stat->tx_pkts_256_511 += smb->tx_pkts_256_511; stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; stat->tx_single_colls += smb->tx_single_colls; stat->tx_multi_colls += smb->tx_multi_colls; stat->tx_late_colls += smb->tx_late_colls; stat->tx_excess_colls += smb->tx_excess_colls; stat->tx_underrun += smb->tx_underrun; stat->tx_desc_underrun += smb->tx_desc_underrun; stat->tx_lenerrs += smb->tx_lenerrs; stat->tx_pkts_truncated += smb->tx_pkts_truncated; stat->tx_bcast_bytes += smb->tx_bcast_bytes; stat->tx_mcast_bytes += smb->tx_mcast_bytes; /* Update counters in ifnet. */ ifp->if_opackets += smb->tx_frames; ifp->if_collisions += smb->tx_single_colls + smb->tx_multi_colls + smb->tx_late_colls + smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; ifp->if_oerrors += smb->tx_excess_colls + smb->tx_late_colls + smb->tx_underrun + smb->tx_pkts_truncated; ifp->if_ipackets += smb->rx_frames; ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated + smb->rx_fifo_oflows + smb->rx_desc_oflows + smb->rx_alignerrs; /* Update done, clear. */ smb->updated = 0; bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } void age_stop_txmac(struct age_softc *sc) { uint32_t reg; int i; reg = CSR_READ_4(sc, AGE_MAC_CFG); if ((reg & MAC_CFG_TX_ENB) != 0) { reg &= ~MAC_CFG_TX_ENB; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } /* Stop Tx DMA engine. */ reg = CSR_READ_4(sc, AGE_DMA_CFG); if ((reg & DMA_CFG_RD_ENB) != 0) { reg &= ~DMA_CFG_RD_ENB; CSR_WRITE_4(sc, AGE_DMA_CFG, reg); } for (i = AGE_RESET_TIMEOUT; i > 0; i--) { if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0) break; DELAY(10); } if (i == 0) printf("%s: stopping TxMAC timeout!\n", sc->sc_dev.dv_xname); } void age_stop_rxmac(struct age_softc *sc) { uint32_t reg; int i; reg = CSR_READ_4(sc, AGE_MAC_CFG); if ((reg & MAC_CFG_RX_ENB) != 0) { reg &= ~MAC_CFG_RX_ENB; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } /* Stop Rx DMA engine. */ reg = CSR_READ_4(sc, AGE_DMA_CFG); if ((reg & DMA_CFG_WR_ENB) != 0) { reg &= ~DMA_CFG_WR_ENB; CSR_WRITE_4(sc, AGE_DMA_CFG, reg); } for (i = AGE_RESET_TIMEOUT; i > 0; i--) { if ((CSR_READ_4(sc, AGE_IDLE_STATUS) & (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0) break; DELAY(10); } if (i == 0) printf("%s: stopping RxMAC timeout!\n", sc->sc_dev.dv_xname); } void age_init_tx_ring(struct age_softc *sc) { struct age_ring_data *rd; struct age_txdesc *txd; int i; sc->age_cdata.age_tx_prod = 0; sc->age_cdata.age_tx_cons = 0; sc->age_cdata.age_tx_cnt = 0; rd = &sc->age_rdata; bzero(rd->age_tx_ring, AGE_TX_RING_SZ); for (i = 0; i < AGE_TX_RING_CNT; i++) { txd = &sc->age_cdata.age_txdesc[i]; txd->tx_desc = &rd->age_tx_ring[i]; txd->tx_m = NULL; } bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0, sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } int age_init_rx_ring(struct age_softc *sc) { struct age_ring_data *rd; struct age_rxdesc *rxd; int i; sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1; rd = &sc->age_rdata; bzero(rd->age_rx_ring, AGE_RX_RING_SZ); for (i = 0; i < AGE_RX_RING_CNT; i++) { rxd = &sc->age_cdata.age_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_desc = &rd->age_rx_ring[i]; if (age_newbuf(sc, rxd) != 0) return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0, sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); return (0); } void age_init_rr_ring(struct age_softc *sc) { struct age_ring_data *rd; sc->age_cdata.age_rr_cons = 0; AGE_RXCHAIN_RESET(sc); rd = &sc->age_rdata; bzero(rd->age_rr_ring, AGE_RR_RING_SZ); bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0, sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } void age_init_cmb_block(struct age_softc *sc) { struct age_ring_data *rd; rd = &sc->age_rdata; bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ); bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0, sc->age_cdata.age_cmb_block_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } void age_init_smb_block(struct age_softc *sc) { struct age_ring_data *rd; rd = &sc->age_rdata; bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ); bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0, sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } int age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd) { struct rx_desc *desc; struct mbuf *m; bus_dmamap_t map; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return (ENOBUFS); } m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, ETHER_ALIGN); error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m); printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname); return (error); } if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap; sc->age_cdata.age_rx_sparemap = map; bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); rxd->rx_m = m; desc = rxd->rx_desc; desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr); desc->len = htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) << AGE_RD_LEN_SHIFT); return (0); } void age_rxvlan(struct age_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; uint32_t reg; reg = CSR_READ_4(sc, AGE_MAC_CFG); reg &= ~MAC_CFG_VLAN_TAG_STRIP; if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) reg |= MAC_CFG_VLAN_TAG_STRIP; CSR_WRITE_4(sc, AGE_MAC_CFG, reg); } void age_iff(struct age_softc *sc) { struct arpcom *ac = &sc->sc_arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; uint32_t crc; uint32_t mchash[2]; uint32_t rxcfg; rxcfg = CSR_READ_4(sc, AGE_MAC_CFG); rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept broadcast frames. */ rxcfg |= MAC_CFG_BCAST; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) rxcfg |= MAC_CFG_PROMISC; else rxcfg |= MAC_CFG_ALLMULTI; mchash[0] = mchash[1] = 0xFFFFFFFF; } else { /* Program new filter. */ bzero(mchash, sizeof(mchash)); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); ETHER_NEXT_MULTI(step, enm); } } CSR_WRITE_4(sc, AGE_MAR0, mchash[0]); CSR_WRITE_4(sc, AGE_MAR1, mchash[1]); CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg); }