/* $OpenBSD: if_alc.c,v 1.40 2016/11/29 10:22:30 jsg Exp $ */ /*- * Copyright (c) 2009, Pyun YongHyeon * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* Driver for Atheros AR8131/AR8132 PCIe Ethernet. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include int alc_match(struct device *, void *, void *); void alc_attach(struct device *, struct device *, void *); int alc_detach(struct device *, int); int alc_activate(struct device *, int); int alc_init(struct ifnet *); void alc_start(struct ifnet *); int alc_ioctl(struct ifnet *, u_long, caddr_t); void alc_watchdog(struct ifnet *); int alc_mediachange(struct ifnet *); void alc_mediastatus(struct ifnet *, struct ifmediareq *); void alc_aspm(struct alc_softc *, uint64_t); void alc_disable_l0s_l1(struct alc_softc *); int alc_dma_alloc(struct alc_softc *); void alc_dma_free(struct alc_softc *); int alc_encap(struct alc_softc *, struct mbuf *); void alc_get_macaddr(struct alc_softc *); void alc_init_cmb(struct alc_softc *); void alc_init_rr_ring(struct alc_softc *); int alc_init_rx_ring(struct alc_softc *); void alc_init_smb(struct alc_softc *); void alc_init_tx_ring(struct alc_softc *); int alc_intr(void *); void alc_mac_config(struct alc_softc *); int alc_miibus_readreg(struct device *, int, int); void alc_miibus_statchg(struct device *); void alc_miibus_writereg(struct device *, int, int, int); int alc_newbuf(struct alc_softc *, struct alc_rxdesc *); void alc_phy_down(struct alc_softc *); void alc_phy_reset(struct alc_softc *); void alc_reset(struct alc_softc *); void alc_rxeof(struct alc_softc *, struct rx_rdesc *); void alc_rxintr(struct alc_softc *); void alc_iff(struct alc_softc *); void alc_rxvlan(struct alc_softc *); void alc_start_queue(struct alc_softc *); void alc_stats_clear(struct alc_softc *); void alc_stats_update(struct alc_softc *); void alc_stop(struct alc_softc *); void alc_stop_mac(struct alc_softc *); void alc_stop_queue(struct alc_softc *); void alc_tick(void *); void alc_txeof(struct alc_softc *); uint32_t alc_dma_burst[] = { 128, 256, 512, 1024, 2048, 4096, 0 }; const struct pci_matchid alc_devices[] = { { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1C }, { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L2C }, { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1D }, { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1D_1 }, { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L2C_1 }, { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L2C_2 } }; struct cfattach alc_ca = { sizeof (struct alc_softc), alc_match, alc_attach, NULL, alc_activate }; struct cfdriver alc_cd = { NULL, "alc", DV_IFNET }; int alcdebug = 0; #define DPRINTF(x) do { if (alcdebug) printf x; } while (0) #define ALC_CSUM_FEATURES (M_TCP_CSUM_OUT | M_UDP_CSUM_OUT) int alc_miibus_readreg(struct device *dev, int phy, int reg) { struct alc_softc *sc = (struct alc_softc *)dev; uint32_t v; int i; if (phy != sc->alc_phyaddr) return (0); /* * For AR8132 fast ethernet controller, do not report 1000baseT * capability to mii(4). Even though AR8132 uses the same * model/revision number of F1 gigabit PHY, the PHY has no * ability to establish 1000baseT link. */ if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0 && reg == MII_EXTSR) return (0); CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = ALC_PHY_TIMEOUT; i > 0; i--) { DELAY(5); v = CSR_READ_4(sc, ALC_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) { printf("%s: phy read timeout: phy %d, reg %d\n", sc->sc_dev.dv_xname, phy, reg); return (0); } return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); } void alc_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct alc_softc *sc = (struct alc_softc *)dev; uint32_t v; int i; if (phy != sc->alc_phyaddr) return; CSR_WRITE_4(sc, ALC_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = ALC_PHY_TIMEOUT; i > 0; i--) { DELAY(5); v = CSR_READ_4(sc, ALC_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) printf("%s: phy write timeout: phy %d, reg %d\n", sc->sc_dev.dv_xname, phy, reg); } void alc_miibus_statchg(struct device *dev) { struct alc_softc *sc = (struct alc_softc *)dev; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_data *mii = &sc->sc_miibus; uint32_t reg; if ((ifp->if_flags & IFF_RUNNING) == 0) return; sc->alc_flags &= ~ALC_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->alc_flags |= ALC_FLAG_LINK; break; case IFM_1000_T: if ((sc->alc_flags & ALC_FLAG_FASTETHER) == 0) sc->alc_flags |= ALC_FLAG_LINK; break; default: break; } } alc_stop_queue(sc); /* Stop Rx/Tx MACs. */ alc_stop_mac(sc); /* Program MACs with resolved speed/duplex/flow-control. */ if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { alc_start_queue(sc); alc_mac_config(sc); /* Re-enable Tx/Rx MACs. */ reg = CSR_READ_4(sc, ALC_MAC_CFG); reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; CSR_WRITE_4(sc, ALC_MAC_CFG, reg); alc_aspm(sc, IFM_SUBTYPE(mii->mii_media_active)); } } void alc_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct alc_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; if ((ifp->if_flags & IFF_UP) == 0) return; mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; } int alc_mediachange(struct ifnet *ifp) { struct alc_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; int error; if (mii->mii_instance != 0) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } error = mii_mediachg(mii); return (error); } int alc_match(struct device *dev, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, alc_devices, nitems(alc_devices)); } void alc_get_macaddr(struct alc_softc *sc) { uint32_t ea[2], opt; uint16_t val; int eeprom, i; eeprom = 0; opt = CSR_READ_4(sc, ALC_OPT_CFG); if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_OTP_SEL) != 0 && (CSR_READ_4(sc, ALC_TWSI_DEBUG) & TWSI_DEBUG_DEV_EXIST) != 0) { /* * EEPROM found, let TWSI reload EEPROM configuration. * This will set ethernet address of controller. */ eeprom++; switch (sc->sc_product) { case PCI_PRODUCT_ATTANSIC_L1C: case PCI_PRODUCT_ATTANSIC_L2C: if ((opt & OPT_CFG_CLK_ENB) == 0) { opt |= OPT_CFG_CLK_ENB; CSR_WRITE_4(sc, ALC_OPT_CFG, opt); CSR_READ_4(sc, ALC_OPT_CFG); DELAY(1000); } break; case PCI_PRODUCT_ATTANSIC_L1D: case PCI_PRODUCT_ATTANSIC_L1D_1: case PCI_PRODUCT_ATTANSIC_L2C_1: case PCI_PRODUCT_ATTANSIC_L2C_2: alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x00); val = alc_miibus_readreg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val & 0xFF7F); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x3B); val = alc_miibus_readreg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val | 0x0008); DELAY(20); break; } CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG, CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB); CSR_WRITE_4(sc, ALC_WOL_CFG, 0); CSR_READ_4(sc, ALC_WOL_CFG); CSR_WRITE_4(sc, ALC_TWSI_CFG, CSR_READ_4(sc, ALC_TWSI_CFG) | TWSI_CFG_SW_LD_START); for (i = 100; i > 0; i--) { DELAY(1000); if ((CSR_READ_4(sc, ALC_TWSI_CFG) & TWSI_CFG_SW_LD_START) == 0) break; } if (i == 0) printf("%s: reloading EEPROM timeout!\n", sc->sc_dev.dv_xname); } else { if (alcdebug) printf("%s: EEPROM not found!\n", sc->sc_dev.dv_xname); } if (eeprom != 0) { switch (sc->sc_product) { case PCI_PRODUCT_ATTANSIC_L1C: case PCI_PRODUCT_ATTANSIC_L2C: if ((opt & OPT_CFG_CLK_ENB) != 0) { opt &= ~OPT_CFG_CLK_ENB; CSR_WRITE_4(sc, ALC_OPT_CFG, opt); CSR_READ_4(sc, ALC_OPT_CFG); DELAY(1000); } break; case PCI_PRODUCT_ATTANSIC_L1D: case PCI_PRODUCT_ATTANSIC_L1D_1: case PCI_PRODUCT_ATTANSIC_L2C_1: case PCI_PRODUCT_ATTANSIC_L2C_2: alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x00); val = alc_miibus_readreg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val | 0x0080); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x3B); val = alc_miibus_readreg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, val & 0xFFF7); DELAY(20); break; } } ea[0] = CSR_READ_4(sc, ALC_PAR0); ea[1] = CSR_READ_4(sc, ALC_PAR1); sc->alc_eaddr[0] = (ea[1] >> 8) & 0xFF; sc->alc_eaddr[1] = (ea[1] >> 0) & 0xFF; sc->alc_eaddr[2] = (ea[0] >> 24) & 0xFF; sc->alc_eaddr[3] = (ea[0] >> 16) & 0xFF; sc->alc_eaddr[4] = (ea[0] >> 8) & 0xFF; sc->alc_eaddr[5] = (ea[0] >> 0) & 0xFF; } void alc_disable_l0s_l1(struct alc_softc *sc) { uint32_t pmcfg; /* Another magic from vendor. */ pmcfg = CSR_READ_4(sc, ALC_PM_CFG); pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_CLK_SWH_L1 | PM_CFG_ASPM_L0S_ENB | PM_CFG_ASPM_L1_ENB | PM_CFG_MAC_ASPM_CHK | PM_CFG_SERDES_PD_EX_L1); pmcfg |= PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_L1_ENB; CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); } void alc_phy_reset(struct alc_softc *sc) { uint16_t data; /* Reset magic from Linux. */ CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_SEL_ANA_RESET); CSR_READ_2(sc, ALC_GPHY_CFG); DELAY(10 * 1000); CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET | GPHY_CFG_SEL_ANA_RESET); CSR_READ_2(sc, ALC_GPHY_CFG); DELAY(10 * 1000); /* DSP fixup, Vendor magic. */ if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_1) { alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x000A); data = alc_miibus_readreg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data & 0xDFFF); } if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D || sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D_1 || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_1 || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_2) { alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x003B); data = alc_miibus_readreg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data & 0xFFF7); DELAY(20 * 1000); } if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D) { alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x0029); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, 0x929D); } if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L1C || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C || sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D_1 || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_2) { alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x0029); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, 0xB6DD); } /* Load DSP codes, vendor magic. */ data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE | ((1 << ANA_INTERVAL_SEL_TIMER_SHIFT) & ANA_INTERVAL_SEL_TIMER_MASK); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG18); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); data = ((2 << ANA_SERDES_CDR_BW_SHIFT) & ANA_SERDES_CDR_BW_MASK) | ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL | ANA_SERDES_EN_LCKDT; alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG5); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); data = ((44 << ANA_LONG_CABLE_TH_100_SHIFT) & ANA_LONG_CABLE_TH_100_MASK) | ((33 << ANA_SHORT_CABLE_TH_100_SHIFT) & ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM | ANA_BP_SMALL_BW; alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG54); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); data = ((11 << ANA_IECHO_ADJ_3_SHIFT) & ANA_IECHO_ADJ_3_MASK) | ((11 << ANA_IECHO_ADJ_2_SHIFT) & ANA_IECHO_ADJ_2_MASK) | ((8 << ANA_IECHO_ADJ_1_SHIFT) & ANA_IECHO_ADJ_1_MASK) | ((8 << ANA_IECHO_ADJ_0_SHIFT) & ANA_IECHO_ADJ_0_MASK); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG4); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); data = ((7 & ANA_MANUL_SWICH_ON_SHIFT) & ANA_MANUL_SWICH_ON_MASK) | ANA_RESTART_CAL | ANA_MAN_ENABLE | ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M; alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, MII_ANA_CFG0); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); DELAY(1000); /* Disable hibernation. */ alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x0029); data = alc_miibus_readreg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); data &= ~0x8000; alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_ADDR, 0x000B); data = alc_miibus_readreg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA); data &= ~0x8000; alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, ALC_MII_DBG_DATA, data); } void alc_phy_down(struct alc_softc *sc) { switch (sc->sc_product) { case PCI_PRODUCT_ATTANSIC_L1D: case PCI_PRODUCT_ATTANSIC_L1D_1: /* * GPHY power down caused more problems on AR8151 v2.0. * When driver is reloaded after GPHY power down, * accesses to PHY/MAC registers hung the system. Only * cold boot recovered from it. I'm not sure whether * AR8151 v1.0 also requires this one though. I don't * have AR8151 v1.0 controller in hand. * The only option left is to isolate the PHY and * initiates power down the PHY which in turn saves * more power when driver is unloaded. */ alc_miibus_writereg(&sc->sc_dev, sc->alc_phyaddr, MII_BMCR, BMCR_ISO | BMCR_PDOWN); break; default: /* Force PHY down. */ CSR_WRITE_2(sc, ALC_GPHY_CFG, GPHY_CFG_EXT_RESET | GPHY_CFG_SEL_ANA_RESET | GPHY_CFG_PHY_IDDQ | GPHY_CFG_PWDOWN_HW); DELAY(1000); break; } } void alc_aspm(struct alc_softc *sc, uint64_t media) { uint32_t pmcfg; uint16_t linkcfg; pmcfg = CSR_READ_4(sc, ALC_PM_CFG); if ((sc->alc_flags & (ALC_FLAG_APS | ALC_FLAG_PCIE)) == (ALC_FLAG_APS | ALC_FLAG_PCIE)) linkcfg = CSR_READ_2(sc, sc->alc_expcap + PCI_PCIE_LCSR); else linkcfg = 0; pmcfg &= ~PM_CFG_SERDES_PD_EX_L1; pmcfg &= ~(PM_CFG_L1_ENTRY_TIMER_MASK | PM_CFG_LCKDET_TIMER_MASK); pmcfg |= PM_CFG_MAC_ASPM_CHK; pmcfg |= (PM_CFG_LCKDET_TIMER_DEFAULT << PM_CFG_LCKDET_TIMER_SHIFT); pmcfg &= ~(PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB); if ((sc->alc_flags & ALC_FLAG_APS) != 0) { /* Disable extended sync except AR8152 B v1.0 */ linkcfg &= ~0x80; if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_1 && sc->alc_rev == ATHEROS_AR8152_B_V10) linkcfg |= 0x80; CSR_WRITE_2(sc, sc->alc_expcap + PCI_PCIE_LCSR, linkcfg); pmcfg &= ~(PM_CFG_EN_BUFS_RX_L0S | PM_CFG_SA_DLY_ENB | PM_CFG_HOTRST); pmcfg |= (PM_CFG_L1_ENTRY_TIMER_DEFAULT << PM_CFG_L1_ENTRY_TIMER_SHIFT); pmcfg &= ~PM_CFG_PM_REQ_TIMER_MASK; pmcfg |= (PM_CFG_PM_REQ_TIMER_DEFAULT << PM_CFG_PM_REQ_TIMER_SHIFT); pmcfg |= PM_CFG_SERDES_PD_EX_L1 | PM_CFG_PCIE_RECV; } if ((sc->alc_flags & ALC_FLAG_LINK) != 0) { if ((sc->alc_flags & ALC_FLAG_L0S) != 0) pmcfg |= PM_CFG_ASPM_L0S_ENB; if ((sc->alc_flags & ALC_FLAG_L1S) != 0) pmcfg |= PM_CFG_ASPM_L1_ENB; if ((sc->alc_flags & ALC_FLAG_APS) != 0) { if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_1) pmcfg &= ~PM_CFG_ASPM_L0S_ENB; pmcfg &= ~(PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_BUDS_RX_L1_ENB); pmcfg |= PM_CFG_CLK_SWH_L1; if (media == IFM_100_TX || media == IFM_1000_T) { pmcfg &= ~PM_CFG_L1_ENTRY_TIMER_MASK; switch (sc->sc_product) { case PCI_PRODUCT_ATTANSIC_L2C_1: pmcfg |= (7 << PM_CFG_L1_ENTRY_TIMER_SHIFT); break; case PCI_PRODUCT_ATTANSIC_L1D_1: case PCI_PRODUCT_ATTANSIC_L2C_2: pmcfg |= (4 << PM_CFG_L1_ENTRY_TIMER_SHIFT); break; default: pmcfg |= (15 << PM_CFG_L1_ENTRY_TIMER_SHIFT); break; } } } else { pmcfg |= PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB | PM_CFG_SERDES_BUDS_RX_L1_ENB; pmcfg &= ~(PM_CFG_CLK_SWH_L1 | PM_CFG_ASPM_L1_ENB | PM_CFG_ASPM_L0S_ENB); } } else { pmcfg &= ~(PM_CFG_SERDES_BUDS_RX_L1_ENB | PM_CFG_SERDES_L1_ENB | PM_CFG_SERDES_PLL_L1_ENB); pmcfg |= PM_CFG_CLK_SWH_L1; if ((sc->alc_flags & ALC_FLAG_L1S) != 0) pmcfg |= PM_CFG_ASPM_L1_ENB; } CSR_WRITE_4(sc, ALC_PM_CFG, pmcfg); } void alc_attach(struct device *parent, struct device *self, void *aux) { struct alc_softc *sc = (struct alc_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr; struct ifnet *ifp; pcireg_t memtype; char *aspm_state[] = { "L0s/L1", "L0s", "L1", "L0s/L1" }; uint16_t burst; int base, state, error = 0; uint32_t cap, ctl, val; /* * Allocate IO memory */ memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALC_PCIR_BAR); if (pci_mapreg_map(pa, ALC_PCIR_BAR, memtype, 0, &sc->sc_mem_bt, &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) { printf(": can't map mem space\n"); return; } if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) { printf(": can't map interrupt\n"); goto fail; } /* * Allocate IRQ */ intrstr = pci_intr_string(pc, ih); sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, alc_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_irq_handle == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } printf(": %s", intrstr); sc->sc_dmat = pa->pa_dmat; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; /* Set PHY address. */ sc->alc_phyaddr = ALC_PHY_ADDR; /* Get PCI and chip id/revision. */ sc->sc_product = PCI_PRODUCT(pa->pa_id); sc->alc_rev = PCI_REVISION(pa->pa_class); /* Initialize DMA parameters. */ sc->alc_dma_rd_burst = 0; sc->alc_dma_wr_burst = 0; sc->alc_rcb = DMA_CFG_RCB_64; if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &base, NULL)) { sc->alc_flags |= ALC_FLAG_PCIE; sc->alc_expcap = base; burst = pci_conf_read(sc->sc_pct, sc->sc_pcitag, base + PCI_PCIE_DCSR) >> 16; sc->alc_dma_rd_burst = (burst & 0x7000) >> 12; sc->alc_dma_wr_burst = (burst & 0x00e0) >> 5; if (alcdebug) { printf("%s: Read request size : %u bytes.\n", sc->sc_dev.dv_xname, alc_dma_burst[sc->alc_dma_rd_burst]); printf("%s: TLP payload size : %u bytes.\n", sc->sc_dev.dv_xname, alc_dma_burst[sc->alc_dma_wr_burst]); } if (alc_dma_burst[sc->alc_dma_rd_burst] > 1024) sc->alc_dma_rd_burst = 3; if (alc_dma_burst[sc->alc_dma_wr_burst] > 1024) sc->alc_dma_wr_burst = 3; /* Clear data link and flow-control protocol error. */ val = CSR_READ_4(sc, ALC_PEX_UNC_ERR_SEV); val &= ~(PEX_UNC_ERR_SEV_DLP | PEX_UNC_ERR_SEV_FCP); CSR_WRITE_4(sc, ALC_PEX_UNC_ERR_SEV, val); CSR_WRITE_4(sc, ALC_LTSSM_ID_CFG, CSR_READ_4(sc, ALC_LTSSM_ID_CFG) & ~LTSSM_ID_WRO_ENB); CSR_WRITE_4(sc, ALC_PCIE_PHYMISC, CSR_READ_4(sc, ALC_PCIE_PHYMISC) | PCIE_PHYMISC_FORCE_RCV_DET); if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_1 && sc->alc_rev == ATHEROS_AR8152_B_V10) { val = CSR_READ_4(sc, ALC_PCIE_PHYMISC2); val &= ~(PCIE_PHYMISC2_SERDES_CDR_MASK | PCIE_PHYMISC2_SERDES_TH_MASK); val |= 3 << PCIE_PHYMISC2_SERDES_CDR_SHIFT; val |= 3 << PCIE_PHYMISC2_SERDES_TH_SHIFT; CSR_WRITE_4(sc, ALC_PCIE_PHYMISC2, val); } /* Disable ASPM L0S and L1. */ cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag, base + PCI_PCIE_LCAP) >> 16; if ((cap & 0x00000c00) != 0) { ctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag, base + PCI_PCIE_LCSR) >> 16; if ((ctl & 0x08) != 0) sc->alc_rcb = DMA_CFG_RCB_128; if (alcdebug) printf("%s: RCB %u bytes\n", sc->sc_dev.dv_xname, sc->alc_rcb == DMA_CFG_RCB_64 ? 64 : 128); state = ctl & 0x03; if (state & 0x01) sc->alc_flags |= ALC_FLAG_L0S; if (state & 0x02) sc->alc_flags |= ALC_FLAG_L1S; if (alcdebug) printf("%s: ASPM %s %s\n", sc->sc_dev.dv_xname, aspm_state[state], state == 0 ? "disabled" : "enabled"); alc_disable_l0s_l1(sc); } } /* Reset PHY. */ alc_phy_reset(sc); /* Reset the ethernet controller. */ alc_reset(sc); /* * One odd thing is AR8132 uses the same PHY hardware(F1 * gigabit PHY) of AR8131. So atphy(4) of AR8132 reports * the PHY supports 1000Mbps but that's not true. The PHY * used in AR8132 can't establish gigabit link even if it * shows the same PHY model/revision number of AR8131. */ switch (sc->sc_product) { case PCI_PRODUCT_ATTANSIC_L2C_1: case PCI_PRODUCT_ATTANSIC_L2C_2: sc->alc_flags |= ALC_FLAG_APS; /* FALLTHROUGH */ case PCI_PRODUCT_ATTANSIC_L2C: sc->alc_flags |= ALC_FLAG_FASTETHER; break; case PCI_PRODUCT_ATTANSIC_L1D: case PCI_PRODUCT_ATTANSIC_L1D_1: sc->alc_flags |= ALC_FLAG_APS; /* FALLTHROUGH */ default: break; } sc->alc_flags |= ALC_FLAG_ASPM_MON | ALC_FLAG_JUMBO; switch (sc->sc_product) { case PCI_PRODUCT_ATTANSIC_L1C: case PCI_PRODUCT_ATTANSIC_L2C: sc->alc_max_framelen = 9 * 1024; break; case PCI_PRODUCT_ATTANSIC_L1D: case PCI_PRODUCT_ATTANSIC_L1D_1: case PCI_PRODUCT_ATTANSIC_L2C_1: case PCI_PRODUCT_ATTANSIC_L2C_2: sc->alc_max_framelen = 6 * 1024; break; } /* * It seems that AR813x/AR815x has silicon bug for SMB. In * addition, Atheros said that enabling SMB wouldn't improve * performance. However I think it's bad to access lots of * registers to extract MAC statistics. */ sc->alc_flags |= ALC_FLAG_SMB_BUG; /* * Don't use Tx CMB. It is known to have silicon bug. */ sc->alc_flags |= ALC_FLAG_CMB_BUG; sc->alc_chip_rev = CSR_READ_4(sc, ALC_MASTER_CFG) >> MASTER_CHIP_REV_SHIFT; if (alcdebug) { printf("%s: PCI device revision : 0x%04x\n", sc->sc_dev.dv_xname, sc->alc_rev); printf("%s: Chip id/revision : 0x%04x\n", sc->sc_dev.dv_xname, sc->alc_chip_rev); printf("%s: %u Tx FIFO, %u Rx FIFO\n", sc->sc_dev.dv_xname, CSR_READ_4(sc, ALC_SRAM_TX_FIFO_LEN) * 8, CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN) * 8); } error = alc_dma_alloc(sc); if (error) goto fail; /* Load station address. */ alc_get_macaddr(sc); ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = alc_ioctl; ifp->if_start = alc_start; ifp->if_watchdog = alc_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, ALC_TX_RING_CNT - 1); bcopy(sc->alc_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; #ifdef ALC_CHECKSUM ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; #endif #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); /* Set up MII bus. */ sc->sc_miibus.mii_ifp = ifp; sc->sc_miibus.mii_readreg = alc_miibus_readreg; sc->sc_miibus.mii_writereg = alc_miibus_writereg; sc->sc_miibus.mii_statchg = alc_miibus_statchg; ifmedia_init(&sc->sc_miibus.mii_media, 0, alc_mediachange, alc_mediastatus); mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL); } else ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->alc_tick_ch, alc_tick, sc); return; fail: alc_dma_free(sc); if (sc->sc_irq_handle != NULL) pci_intr_disestablish(pc, sc->sc_irq_handle); if (sc->sc_mem_size) bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); } int alc_detach(struct device *self, int flags) { struct alc_softc *sc = (struct alc_softc *)self; struct ifnet *ifp = &sc->sc_arpcom.ac_if; int s; s = splnet(); alc_stop(sc); splx(s); mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY); /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); alc_dma_free(sc); alc_phy_down(sc); if (sc->sc_irq_handle != NULL) { pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); sc->sc_irq_handle = NULL; } return (0); } int alc_activate(struct device *self, int act) { struct alc_softc *sc = (struct alc_softc *)self; struct ifnet *ifp = &sc->sc_arpcom.ac_if; int rv = 0; switch (act) { case DVACT_SUSPEND: if (ifp->if_flags & IFF_RUNNING) alc_stop(sc); rv = config_activate_children(self, act); break; case DVACT_RESUME: if (ifp->if_flags & IFF_UP) alc_init(ifp); break; default: rv = config_activate_children(self, act); break; } return (rv); } int alc_dma_alloc(struct alc_softc *sc) { struct alc_txdesc *txd; struct alc_rxdesc *rxd; int nsegs, error, i; /* * Create DMA stuffs for TX ring */ error = bus_dmamap_create(sc->sc_dmat, ALC_TX_RING_SZ, 1, ALC_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_tx_ring_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for TX ring */ error = bus_dmamem_alloc(sc->sc_dmat, ALC_TX_RING_SZ, ETHER_ALIGN, 0, &sc->alc_rdata.alc_tx_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for Tx ring.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_tx_ring_seg, nsegs, ALC_TX_RING_SZ, (caddr_t *)&sc->alc_rdata.alc_tx_ring, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for Tx ring. */ error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, sc->alc_rdata.alc_tx_ring, ALC_TX_RING_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Tx ring.\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->alc_rdata.alc_tx_ring, 1); return error; } sc->alc_rdata.alc_tx_ring_paddr = sc->alc_cdata.alc_tx_ring_map->dm_segs[0].ds_addr; /* * Create DMA stuffs for RX ring */ error = bus_dmamap_create(sc->sc_dmat, ALC_RX_RING_SZ, 1, ALC_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_ring_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for RX ring */ error = bus_dmamem_alloc(sc->sc_dmat, ALC_RX_RING_SZ, ETHER_ALIGN, 0, &sc->alc_rdata.alc_rx_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for Rx ring.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rx_ring_seg, nsegs, ALC_RX_RING_SZ, (caddr_t *)&sc->alc_rdata.alc_rx_ring, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for Rx ring. */ error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, sc->alc_rdata.alc_rx_ring, ALC_RX_RING_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Rx ring.\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->alc_rdata.alc_rx_ring, 1); return error; } sc->alc_rdata.alc_rx_ring_paddr = sc->alc_cdata.alc_rx_ring_map->dm_segs[0].ds_addr; /* * Create DMA stuffs for RX return ring */ error = bus_dmamap_create(sc->sc_dmat, ALC_RR_RING_SZ, 1, ALC_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rr_ring_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for RX return ring */ error = bus_dmamem_alloc(sc->sc_dmat, ALC_RR_RING_SZ, ETHER_ALIGN, 0, &sc->alc_rdata.alc_rr_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for Rx " "return ring.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_rr_ring_seg, nsegs, ALC_RR_RING_SZ, (caddr_t *)&sc->alc_rdata.alc_rr_ring, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for Rx return ring. */ error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, sc->alc_rdata.alc_rr_ring, ALC_RR_RING_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Rx return ring." "\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->alc_rdata.alc_rr_ring, 1); return error; } sc->alc_rdata.alc_rr_ring_paddr = sc->alc_cdata.alc_rr_ring_map->dm_segs[0].ds_addr; /* * Create DMA stuffs for CMB block */ error = bus_dmamap_create(sc->sc_dmat, ALC_CMB_SZ, 1, ALC_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_cmb_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for CMB block */ error = bus_dmamem_alloc(sc->sc_dmat, ALC_CMB_SZ, ETHER_ALIGN, 0, &sc->alc_rdata.alc_cmb_seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for " "CMB block\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_cmb_seg, nsegs, ALC_CMB_SZ, (caddr_t *)&sc->alc_rdata.alc_cmb, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for CMB block. */ error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, sc->alc_rdata.alc_cmb, ALC_CMB_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for CMB block\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->alc_rdata.alc_cmb, 1); return error; } sc->alc_rdata.alc_cmb_paddr = sc->alc_cdata.alc_cmb_map->dm_segs[0].ds_addr; /* * Create DMA stuffs for SMB block */ error = bus_dmamap_create(sc->sc_dmat, ALC_SMB_SZ, 1, ALC_SMB_SZ, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_smb_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for SMB block */ error = bus_dmamem_alloc(sc->sc_dmat, ALC_SMB_SZ, ETHER_ALIGN, 0, &sc->alc_rdata.alc_smb_seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error) { printf("%s: could not allocate DMA'able memory for " "SMB block\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->alc_rdata.alc_smb_seg, nsegs, ALC_SMB_SZ, (caddr_t *)&sc->alc_rdata.alc_smb, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); /* Load the DMA map for SMB block */ error = bus_dmamap_load(sc->sc_dmat, sc->alc_cdata.alc_smb_map, sc->alc_rdata.alc_smb, ALC_SMB_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for SMB block\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->alc_rdata.alc_smb, 1); return error; } sc->alc_rdata.alc_smb_paddr = sc->alc_cdata.alc_smb_map->dm_segs[0].ds_addr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < ALC_TX_RING_CNT; i++) { txd = &sc->alc_cdata.alc_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->sc_dmat, ALC_TSO_MAXSIZE, ALC_MAXTXSEGS, ALC_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT, &txd->tx_dmamap); if (error) { printf("%s: could not create Tx dmamap.\n", sc->sc_dev.dv_xname); return error; } } /* Create DMA maps for Rx buffers. */ error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->alc_cdata.alc_rx_sparemap); if (error) { printf("%s: could not create spare Rx dmamap.\n", sc->sc_dev.dv_xname); return error; } for (i = 0; i < ALC_RX_RING_CNT; i++) { rxd = &sc->alc_cdata.alc_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap); if (error) { printf("%s: could not create Rx dmamap.\n", sc->sc_dev.dv_xname); return error; } } return (0); } void alc_dma_free(struct alc_softc *sc) { struct alc_txdesc *txd; struct alc_rxdesc *rxd; int i; /* Tx buffers */ for (i = 0; i < ALC_TX_RING_CNT; i++) { txd = &sc->alc_cdata.alc_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap); txd->tx_dmamap = NULL; } } /* Rx buffers */ for (i = 0; i < ALC_RX_RING_CNT; i++) { rxd = &sc->alc_cdata.alc_rxdesc[i]; if (rxd->rx_dmamap != NULL) { bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->alc_cdata.alc_rx_sparemap != NULL) { bus_dmamap_destroy(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap); sc->alc_cdata.alc_rx_sparemap = NULL; } /* Tx ring. */ if (sc->alc_cdata.alc_tx_ring_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map); if (sc->alc_cdata.alc_tx_ring_map != NULL && sc->alc_rdata.alc_tx_ring != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->alc_rdata.alc_tx_ring, 1); sc->alc_rdata.alc_tx_ring = NULL; sc->alc_cdata.alc_tx_ring_map = NULL; /* Rx ring. */ if (sc->alc_cdata.alc_rx_ring_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map); if (sc->alc_cdata.alc_rx_ring_map != NULL && sc->alc_rdata.alc_rx_ring != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->alc_rdata.alc_rx_ring, 1); sc->alc_rdata.alc_rx_ring = NULL; sc->alc_cdata.alc_rx_ring_map = NULL; /* Rx return ring. */ if (sc->alc_cdata.alc_rr_ring_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map); if (sc->alc_cdata.alc_rr_ring_map != NULL && sc->alc_rdata.alc_rr_ring != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->alc_rdata.alc_rr_ring, 1); sc->alc_rdata.alc_rr_ring = NULL; sc->alc_cdata.alc_rr_ring_map = NULL; /* CMB block */ if (sc->alc_cdata.alc_cmb_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_cmb_map); if (sc->alc_cdata.alc_cmb_map != NULL && sc->alc_rdata.alc_cmb != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->alc_rdata.alc_cmb, 1); sc->alc_rdata.alc_cmb = NULL; sc->alc_cdata.alc_cmb_map = NULL; /* SMB block */ if (sc->alc_cdata.alc_smb_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->alc_cdata.alc_smb_map); if (sc->alc_cdata.alc_smb_map != NULL && sc->alc_rdata.alc_smb != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->alc_rdata.alc_smb, 1); sc->alc_rdata.alc_smb = NULL; sc->alc_cdata.alc_smb_map = NULL; } int alc_encap(struct alc_softc *sc, struct mbuf *m) { struct alc_txdesc *txd, *txd_last; struct tx_desc *desc; bus_dmamap_t map; uint32_t cflags, poff, vtag; int error, idx, prod; cflags = vtag = 0; poff = 0; prod = sc->alc_cdata.alc_tx_prod; txd = &sc->alc_cdata.alc_txdesc[prod]; txd_last = txd; map = txd->tx_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) goto drop; if (error != 0) { if (m_defrag(m, M_DONTWAIT)) { error = ENOBUFS; goto drop; } error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT); if (error != 0) goto drop; } bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); desc = NULL; idx = 0; #if NVLAN > 0 /* Configure VLAN hardware tag insertion. */ if (m->m_flags & M_VLANTAG) { vtag = htons(m->m_pkthdr.ether_vtag); vtag = (vtag << TD_VLAN_SHIFT) & TD_VLAN_MASK; cflags |= TD_INS_VLAN_TAG; } #endif /* Configure Tx checksum offload. */ if ((m->m_pkthdr.csum_flags & ALC_CSUM_FEATURES) != 0) { cflags |= TD_CUSTOM_CSUM; /* Set checksum start offset. */ cflags |= ((poff >> 1) << TD_PLOAD_OFFSET_SHIFT) & TD_PLOAD_OFFSET_MASK; } for (; idx < map->dm_nsegs; idx++) { desc = &sc->alc_rdata.alc_tx_ring[prod]; desc->len = htole32(TX_BYTES(map->dm_segs[idx].ds_len) | vtag); desc->flags = htole32(cflags); desc->addr = htole64(map->dm_segs[idx].ds_addr); sc->alc_cdata.alc_tx_cnt++; ALC_DESC_INC(prod, ALC_TX_RING_CNT); } /* Update producer index. */ sc->alc_cdata.alc_tx_prod = prod; /* Finally set EOP on the last descriptor. */ prod = (prod + ALC_TX_RING_CNT - 1) % ALC_TX_RING_CNT; desc = &sc->alc_rdata.alc_tx_ring[prod]; desc->flags |= htole32(TD_EOP); /* Swap dmamap of the first and the last. */ txd = &sc->alc_cdata.alc_txdesc[prod]; map = txd_last->tx_dmamap; txd_last->tx_dmamap = txd->tx_dmamap; txd->tx_dmamap = map; txd->tx_m = m; return (0); drop: m_freem(m); return (error); } void alc_start(struct ifnet *ifp) { struct alc_softc *sc = ifp->if_softc; struct mbuf *m; int enq = 0; /* Reclaim transmitted frames. */ if (sc->alc_cdata.alc_tx_cnt >= ALC_TX_DESC_HIWAT) alc_txeof(sc); if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) return; if ((sc->alc_flags & ALC_FLAG_LINK) == 0) return; if (IFQ_IS_EMPTY(&ifp->if_snd)) return; for (;;) { if (sc->alc_cdata.alc_tx_cnt + ALC_MAXTXSEGS >= ALC_TX_RING_CNT - 3) { ifq_set_oactive(&ifp->if_snd); break; } IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if (alc_encap(sc, m) != 0) { ifp->if_oerrors++; continue; } enq++; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf != NULL) bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif } if (enq > 0) { /* Sync descriptors. */ bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0, sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Kick. Assume we're using normal Tx priority queue. */ CSR_WRITE_4(sc, ALC_MBOX_TD_PROD_IDX, (sc->alc_cdata.alc_tx_prod << MBOX_TD_PROD_LO_IDX_SHIFT) & MBOX_TD_PROD_LO_IDX_MASK); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = ALC_TX_TIMEOUT; } } void alc_watchdog(struct ifnet *ifp) { struct alc_softc *sc = ifp->if_softc; if ((sc->alc_flags & ALC_FLAG_LINK) == 0) { printf("%s: watchdog timeout (missed link)\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; alc_init(ifp); return; } printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; alc_init(ifp); alc_start(ifp); } int alc_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct alc_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) alc_init(ifp); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else alc_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) alc_stop(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; default: error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data); break; } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) alc_iff(sc); error = 0; } splx(s); return (error); } void alc_mac_config(struct alc_softc *sc) { struct mii_data *mii; uint32_t reg; mii = &sc->sc_miibus; reg = CSR_READ_4(sc, ALC_MAC_CFG); reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | MAC_CFG_SPEED_MASK); if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D || sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D_1 || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_2) reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW; /* Reprogram MAC with resolved speed/duplex. */ switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: reg |= MAC_CFG_SPEED_10_100; break; case IFM_1000_T: reg |= MAC_CFG_SPEED_1000; break; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { reg |= MAC_CFG_FULL_DUPLEX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) reg |= MAC_CFG_TX_FC; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) reg |= MAC_CFG_RX_FC; } CSR_WRITE_4(sc, ALC_MAC_CFG, reg); } void alc_stats_clear(struct alc_softc *sc) { struct smb sb, *smb; uint32_t *reg; int i; if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); smb = sc->alc_rdata.alc_smb; /* Update done, clear. */ smb->updated = 0; bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } else { for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { CSR_READ_4(sc, ALC_RX_MIB_BASE + i); i += sizeof(uint32_t); } /* Read Tx statistics. */ for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { CSR_READ_4(sc, ALC_TX_MIB_BASE + i); i += sizeof(uint32_t); } } } void alc_stats_update(struct alc_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct alc_hw_stats *stat; struct smb sb, *smb; uint32_t *reg; int i; stat = &sc->alc_stats; if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); smb = sc->alc_rdata.alc_smb; if (smb->updated == 0) return; } else { smb = &sb; /* Read Rx statistics. */ for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { *reg = CSR_READ_4(sc, ALC_RX_MIB_BASE + i); i += sizeof(uint32_t); } /* Read Tx statistics. */ for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { *reg = CSR_READ_4(sc, ALC_TX_MIB_BASE + i); i += sizeof(uint32_t); } } /* Rx stats. */ stat->rx_frames += smb->rx_frames; stat->rx_bcast_frames += smb->rx_bcast_frames; stat->rx_mcast_frames += smb->rx_mcast_frames; stat->rx_pause_frames += smb->rx_pause_frames; stat->rx_control_frames += smb->rx_control_frames; stat->rx_crcerrs += smb->rx_crcerrs; stat->rx_lenerrs += smb->rx_lenerrs; stat->rx_bytes += smb->rx_bytes; stat->rx_runts += smb->rx_runts; stat->rx_fragments += smb->rx_fragments; stat->rx_pkts_64 += smb->rx_pkts_64; stat->rx_pkts_65_127 += smb->rx_pkts_65_127; stat->rx_pkts_128_255 += smb->rx_pkts_128_255; stat->rx_pkts_256_511 += smb->rx_pkts_256_511; stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; stat->rx_pkts_truncated += smb->rx_pkts_truncated; stat->rx_fifo_oflows += smb->rx_fifo_oflows; stat->rx_rrs_errs += smb->rx_rrs_errs; stat->rx_alignerrs += smb->rx_alignerrs; stat->rx_bcast_bytes += smb->rx_bcast_bytes; stat->rx_mcast_bytes += smb->rx_mcast_bytes; stat->rx_pkts_filtered += smb->rx_pkts_filtered; /* Tx stats. */ stat->tx_frames += smb->tx_frames; stat->tx_bcast_frames += smb->tx_bcast_frames; stat->tx_mcast_frames += smb->tx_mcast_frames; stat->tx_pause_frames += smb->tx_pause_frames; stat->tx_excess_defer += smb->tx_excess_defer; stat->tx_control_frames += smb->tx_control_frames; stat->tx_deferred += smb->tx_deferred; stat->tx_bytes += smb->tx_bytes; stat->tx_pkts_64 += smb->tx_pkts_64; stat->tx_pkts_65_127 += smb->tx_pkts_65_127; stat->tx_pkts_128_255 += smb->tx_pkts_128_255; stat->tx_pkts_256_511 += smb->tx_pkts_256_511; stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; stat->tx_single_colls += smb->tx_single_colls; stat->tx_multi_colls += smb->tx_multi_colls; stat->tx_late_colls += smb->tx_late_colls; stat->tx_excess_colls += smb->tx_excess_colls; stat->tx_underrun += smb->tx_underrun; stat->tx_desc_underrun += smb->tx_desc_underrun; stat->tx_lenerrs += smb->tx_lenerrs; stat->tx_pkts_truncated += smb->tx_pkts_truncated; stat->tx_bcast_bytes += smb->tx_bcast_bytes; stat->tx_mcast_bytes += smb->tx_mcast_bytes; /* Update counters in ifnet. */ ifp->if_opackets += smb->tx_frames; ifp->if_collisions += smb->tx_single_colls + smb->tx_multi_colls * 2 + smb->tx_late_colls + smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT; ifp->if_oerrors += smb->tx_late_colls + smb->tx_excess_colls + smb->tx_underrun + smb->tx_pkts_truncated; ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated + smb->rx_fifo_oflows + smb->rx_rrs_errs + smb->rx_alignerrs; if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) { /* Update done, clear. */ smb->updated = 0; bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } } int alc_intr(void *arg) { struct alc_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; uint32_t status; int claimed = 0; status = CSR_READ_4(sc, ALC_INTR_STATUS); if ((status & ALC_INTRS) == 0) return (0); /* Disable interrupts. */ CSR_WRITE_4(sc, ALC_INTR_STATUS, INTR_DIS_INT); status = CSR_READ_4(sc, ALC_INTR_STATUS); if ((status & ALC_INTRS) == 0) goto back; /* Acknowledge and disable interrupts. */ CSR_WRITE_4(sc, ALC_INTR_STATUS, status | INTR_DIS_INT); if (ifp->if_flags & IFF_RUNNING) { if (status & INTR_RX_PKT) alc_rxintr(sc); if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST | INTR_TXQ_TO_RST)) { if (status & INTR_DMA_RD_TO_RST) printf("%s: DMA read error! -- resetting\n", sc->sc_dev.dv_xname); if (status & INTR_DMA_WR_TO_RST) printf("%s: DMA write error! -- resetting\n", sc->sc_dev.dv_xname); if (status & INTR_TXQ_TO_RST) printf("%s: TxQ reset! -- resetting\n", sc->sc_dev.dv_xname); alc_init(ifp); return (0); } if (status & INTR_TX_PKT) alc_txeof(sc); alc_start(ifp); } claimed = 1; back: /* Re-enable interrupts. */ CSR_WRITE_4(sc, ALC_INTR_STATUS, 0x7FFFFFFF); return (claimed); } void alc_txeof(struct alc_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct alc_txdesc *txd; uint32_t cons, prod; int prog; if (sc->alc_cdata.alc_tx_cnt == 0) return; bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0, sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) { bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0, sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD); prod = sc->alc_rdata.alc_cmb->cons; } else prod = CSR_READ_4(sc, ALC_MBOX_TD_CONS_IDX); /* Assume we're using normal Tx priority queue. */ prod = (prod & MBOX_TD_CONS_LO_IDX_MASK) >> MBOX_TD_CONS_LO_IDX_SHIFT; cons = sc->alc_cdata.alc_tx_cons; /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ for (prog = 0; cons != prod; prog++, ALC_DESC_INC(cons, ALC_TX_RING_CNT)) { if (sc->alc_cdata.alc_tx_cnt <= 0) break; prog++; ifq_clr_oactive(&ifp->if_snd); sc->alc_cdata.alc_tx_cnt--; txd = &sc->alc_cdata.alc_txdesc[cons]; if (txd->tx_m != NULL) { /* Reclaim transmitted mbufs. */ bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0, sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD); sc->alc_cdata.alc_tx_cons = cons; /* * Unarm watchdog timer only when there is no pending * frames in Tx queue. */ if (sc->alc_cdata.alc_tx_cnt == 0) ifp->if_timer = 0; } int alc_newbuf(struct alc_softc *sc, struct alc_rxdesc *rxd) { struct mbuf *m; bus_dmamap_t map; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return (ENOBUFS); } m->m_len = m->m_pkthdr.len = RX_BUF_SIZE_MAX; error = bus_dmamap_load_mbuf(sc->sc_dmat, sc->alc_cdata.alc_rx_sparemap, m, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m); printf("%s: can't load RX mbuf\n", sc->sc_dev.dv_xname); return (error); } if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->alc_cdata.alc_rx_sparemap; sc->alc_cdata.alc_rx_sparemap = map; bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); rxd->rx_m = m; rxd->rx_desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr); return (0); } void alc_rxintr(struct alc_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct rx_rdesc *rrd; uint32_t nsegs, status; int rr_cons, prog; bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0, sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0, sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rr_cons = sc->alc_cdata.alc_rr_cons; for (prog = 0; (ifp->if_flags & IFF_RUNNING) != 0;) { rrd = &sc->alc_rdata.alc_rr_ring[rr_cons]; status = letoh32(rrd->status); if ((status & RRD_VALID) == 0) break; nsegs = RRD_RD_CNT(letoh32(rrd->rdinfo)); if (nsegs == 0) { /* This should not happen! */ if (alcdebug) printf("%s: unexpected segment count -- " "resetting\n", sc->sc_dev.dv_xname); break; } alc_rxeof(sc, rrd); /* Clear Rx return status. */ rrd->status = 0; ALC_DESC_INC(rr_cons, ALC_RR_RING_CNT); sc->alc_cdata.alc_rx_cons += nsegs; sc->alc_cdata.alc_rx_cons %= ALC_RR_RING_CNT; prog += nsegs; } if (prog > 0) { /* Update the consumer index. */ sc->alc_cdata.alc_rr_cons = rr_cons; /* Sync Rx return descriptors. */ bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0, sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * Sync updated Rx descriptors such that controller see * modified buffer addresses. */ bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0, sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* * Let controller know availability of new Rx buffers. * Since alc(4) use RXQ_CFG_RD_BURST_DEFAULT descriptors * it may be possible to update ALC_MBOX_RD0_PROD_IDX * only when Rx buffer pre-fetching is required. In * addition we already set ALC_RX_RD_FREE_THRESH to * RX_RD_FREE_THRESH_LO_DEFAULT descriptors. However * it still seems that pre-fetching needs more * experimentation. */ CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons); } } /* Receive a frame. */ void alc_rxeof(struct alc_softc *sc, struct rx_rdesc *rrd) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct alc_rxdesc *rxd; struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct mbuf *mp, *m; uint32_t rdinfo, status; int count, nsegs, rx_cons; status = letoh32(rrd->status); rdinfo = letoh32(rrd->rdinfo); rx_cons = RRD_RD_IDX(rdinfo); nsegs = RRD_RD_CNT(rdinfo); sc->alc_cdata.alc_rxlen = RRD_BYTES(status); if (status & (RRD_ERR_SUM | RRD_ERR_LENGTH)) { /* * We want to pass the following frames to upper * layer regardless of error status of Rx return * ring. * * o IP/TCP/UDP checksum is bad. * o frame length and protocol specific length * does not match. * * Force network stack compute checksum for * errored frames. */ if ((status & (RRD_ERR_CRC | RRD_ERR_ALIGN | RRD_ERR_TRUNC | RRD_ERR_RUNT)) != 0) return; } for (count = 0; count < nsegs; count++, ALC_DESC_INC(rx_cons, ALC_RX_RING_CNT)) { rxd = &sc->alc_cdata.alc_rxdesc[rx_cons]; mp = rxd->rx_m; /* Add a new receive buffer to the ring. */ if (alc_newbuf(sc, rxd) != 0) { ifp->if_iqdrops++; /* Reuse Rx buffers. */ m_freem(sc->alc_cdata.alc_rxhead); break; } /* * Assume we've received a full sized frame. * Actual size is fixed when we encounter the end of * multi-segmented frame. */ mp->m_len = sc->alc_buf_size; /* Chain received mbufs. */ if (sc->alc_cdata.alc_rxhead == NULL) { sc->alc_cdata.alc_rxhead = mp; sc->alc_cdata.alc_rxtail = mp; } else { mp->m_flags &= ~M_PKTHDR; sc->alc_cdata.alc_rxprev_tail = sc->alc_cdata.alc_rxtail; sc->alc_cdata.alc_rxtail->m_next = mp; sc->alc_cdata.alc_rxtail = mp; } if (count == nsegs - 1) { /* Last desc. for this frame. */ m = sc->alc_cdata.alc_rxhead; m->m_flags |= M_PKTHDR; /* * It seems that L1C/L2C controller has no way * to tell hardware to strip CRC bytes. */ m->m_pkthdr.len = sc->alc_cdata.alc_rxlen - ETHER_CRC_LEN; if (nsegs > 1) { /* Set last mbuf size. */ mp->m_len = sc->alc_cdata.alc_rxlen - (nsegs - 1) * sc->alc_buf_size; /* Remove the CRC bytes in chained mbufs. */ if (mp->m_len <= ETHER_CRC_LEN) { sc->alc_cdata.alc_rxtail = sc->alc_cdata.alc_rxprev_tail; sc->alc_cdata.alc_rxtail->m_len -= (ETHER_CRC_LEN - mp->m_len); sc->alc_cdata.alc_rxtail->m_next = NULL; m_freem(mp); } else { mp->m_len -= ETHER_CRC_LEN; } } else m->m_len = m->m_pkthdr.len; /* * Due to hardware bugs, Rx checksum offloading * was intentionally disabled. */ #if NVLAN > 0 if (status & RRD_VLAN_TAG) { u_int32_t vtag = RRD_VLAN(letoh32(rrd->vtag)); m->m_pkthdr.ether_vtag = ntohs(vtag); m->m_flags |= M_VLANTAG; } #endif ml_enqueue(&ml, m); } } if_input(ifp, &ml); /* Reset mbuf chains. */ ALC_RXCHAIN_RESET(sc); } void alc_tick(void *xsc) { struct alc_softc *sc = xsc; struct mii_data *mii = &sc->sc_miibus; int s; s = splnet(); mii_tick(mii); alc_stats_update(sc); timeout_add_sec(&sc->alc_tick_ch, 1); splx(s); } void alc_reset(struct alc_softc *sc) { uint32_t reg; int i; reg = CSR_READ_4(sc, ALC_MASTER_CFG) & 0xFFFF; reg |= MASTER_OOB_DIS_OFF | MASTER_RESET; CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); for (i = ALC_RESET_TIMEOUT; i > 0; i--) { DELAY(10); if ((CSR_READ_4(sc, ALC_MASTER_CFG) & MASTER_RESET) == 0) break; } if (i == 0) printf("%s: master reset timeout!\n", sc->sc_dev.dv_xname); for (i = ALC_RESET_TIMEOUT; i > 0; i--) { if ((reg = CSR_READ_4(sc, ALC_IDLE_STATUS)) == 0) break; DELAY(10); } if (i == 0) printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname, reg); } int alc_init(struct ifnet *ifp) { struct alc_softc *sc = ifp->if_softc; struct mii_data *mii; uint8_t eaddr[ETHER_ADDR_LEN]; bus_addr_t paddr; uint32_t reg, rxf_hi, rxf_lo; int error; /* * Cancel any pending I/O. */ alc_stop(sc); /* * Reset the chip to a known state. */ alc_reset(sc); /* Initialize Rx descriptors. */ error = alc_init_rx_ring(sc); if (error != 0) { printf("%s: no memory for Rx buffers.\n", sc->sc_dev.dv_xname); alc_stop(sc); return (error); } alc_init_rr_ring(sc); alc_init_tx_ring(sc); alc_init_cmb(sc); alc_init_smb(sc); /* Enable all clocks. */ CSR_WRITE_4(sc, ALC_CLK_GATING_CFG, 0); /* Reprogram the station address. */ bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN); CSR_WRITE_4(sc, ALC_PAR0, eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); CSR_WRITE_4(sc, ALC_PAR1, eaddr[0] << 8 | eaddr[1]); /* * Clear WOL status and disable all WOL feature as WOL * would interfere Rx operation under normal environments. */ CSR_READ_4(sc, ALC_WOL_CFG); CSR_WRITE_4(sc, ALC_WOL_CFG, 0); /* Set Tx descriptor base addresses. */ paddr = sc->alc_rdata.alc_tx_ring_paddr; CSR_WRITE_4(sc, ALC_TX_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); CSR_WRITE_4(sc, ALC_TDL_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); /* We don't use high priority ring. */ CSR_WRITE_4(sc, ALC_TDH_HEAD_ADDR_LO, 0); /* Set Tx descriptor counter. */ CSR_WRITE_4(sc, ALC_TD_RING_CNT, (ALC_TX_RING_CNT << TD_RING_CNT_SHIFT) & TD_RING_CNT_MASK); /* Set Rx descriptor base addresses. */ paddr = sc->alc_rdata.alc_rx_ring_paddr; CSR_WRITE_4(sc, ALC_RX_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); CSR_WRITE_4(sc, ALC_RD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); /* We use one Rx ring. */ CSR_WRITE_4(sc, ALC_RD1_HEAD_ADDR_LO, 0); CSR_WRITE_4(sc, ALC_RD2_HEAD_ADDR_LO, 0); CSR_WRITE_4(sc, ALC_RD3_HEAD_ADDR_LO, 0); /* Set Rx descriptor counter. */ CSR_WRITE_4(sc, ALC_RD_RING_CNT, (ALC_RX_RING_CNT << RD_RING_CNT_SHIFT) & RD_RING_CNT_MASK); /* * Let hardware split jumbo frames into alc_max_buf_sized chunks. * if it do not fit the buffer size. Rx return descriptor holds * a counter that indicates how many fragments were made by the * hardware. The buffer size should be multiple of 8 bytes. * Since hardware has limit on the size of buffer size, always * use the maximum value. * For strict-alignment architectures make sure to reduce buffer * size by 8 bytes to make room for alignment fixup. */ sc->alc_buf_size = RX_BUF_SIZE_MAX; CSR_WRITE_4(sc, ALC_RX_BUF_SIZE, sc->alc_buf_size); paddr = sc->alc_rdata.alc_rr_ring_paddr; /* Set Rx return descriptor base addresses. */ CSR_WRITE_4(sc, ALC_RRD0_HEAD_ADDR_LO, ALC_ADDR_LO(paddr)); /* We use one Rx return ring. */ CSR_WRITE_4(sc, ALC_RRD1_HEAD_ADDR_LO, 0); CSR_WRITE_4(sc, ALC_RRD2_HEAD_ADDR_LO, 0); CSR_WRITE_4(sc, ALC_RRD3_HEAD_ADDR_LO, 0); /* Set Rx return descriptor counter. */ CSR_WRITE_4(sc, ALC_RRD_RING_CNT, (ALC_RR_RING_CNT << RRD_RING_CNT_SHIFT) & RRD_RING_CNT_MASK); paddr = sc->alc_rdata.alc_cmb_paddr; CSR_WRITE_4(sc, ALC_CMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr)); paddr = sc->alc_rdata.alc_smb_paddr; CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_HI, ALC_ADDR_HI(paddr)); CSR_WRITE_4(sc, ALC_SMB_BASE_ADDR_LO, ALC_ADDR_LO(paddr)); if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_1) { /* Reconfigure SRAM - Vendor magic. */ CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_LEN, 0x000002A0); CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_LEN, 0x00000100); CSR_WRITE_4(sc, ALC_SRAM_RX_FIFO_ADDR, 0x029F0000); CSR_WRITE_4(sc, ALC_SRAM_RD0_ADDR, 0x02BF02A0); CSR_WRITE_4(sc, ALC_SRAM_TX_FIFO_ADDR, 0x03BF02C0); CSR_WRITE_4(sc, ALC_SRAM_TD_ADDR, 0x03DF03C0); CSR_WRITE_4(sc, ALC_TXF_WATER_MARK, 0x00000000); CSR_WRITE_4(sc, ALC_RD_DMA_CFG, 0x00000000); } /* Tell hardware that we're ready to load DMA blocks. */ CSR_WRITE_4(sc, ALC_DMA_BLOCK, DMA_BLOCK_LOAD); /* Configure interrupt moderation timer. */ sc->alc_int_rx_mod = ALC_IM_RX_TIMER_DEFAULT; sc->alc_int_tx_mod = ALC_IM_TX_TIMER_DEFAULT; reg = ALC_USECS(sc->alc_int_rx_mod) << IM_TIMER_RX_SHIFT; reg |= ALC_USECS(sc->alc_int_tx_mod) << IM_TIMER_TX_SHIFT; CSR_WRITE_4(sc, ALC_IM_TIMER, reg); /* * We don't want to automatic interrupt clear as task queue * for the interrupt should know interrupt status. */ reg = MASTER_SA_TIMER_ENB; if (ALC_USECS(sc->alc_int_rx_mod) != 0) reg |= MASTER_IM_RX_TIMER_ENB; if (ALC_USECS(sc->alc_int_tx_mod) != 0) reg |= MASTER_IM_TX_TIMER_ENB; CSR_WRITE_4(sc, ALC_MASTER_CFG, reg); /* * Disable interrupt re-trigger timer. We don't want automatic * re-triggering of un-ACKed interrupts. */ CSR_WRITE_4(sc, ALC_INTR_RETRIG_TIMER, ALC_USECS(0)); /* Configure CMB. */ if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) { CSR_WRITE_4(sc, ALC_CMB_TD_THRESH, 4); CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(5000)); } else CSR_WRITE_4(sc, ALC_CMB_TX_TIMER, ALC_USECS(0)); /* * Hardware can be configured to issue SMB interrupt based * on programmed interval. Since there is a callout that is * invoked for every hz in driver we use that instead of * relying on periodic SMB interrupt. */ CSR_WRITE_4(sc, ALC_SMB_STAT_TIMER, ALC_USECS(0)); /* Clear MAC statistics. */ alc_stats_clear(sc); /* * Always use maximum frame size that controller can support. * Otherwise received frames that has larger frame length * than alc(4) MTU would be silently dropped in hardware. This * would make path-MTU discovery hard as sender wouldn't get * any responses from receiver. alc(4) supports * multi-fragmented frames on Rx path so it has no issue on * assembling fragmented frames. Using maximum frame size also * removes the need to reinitialize hardware when interface * MTU configuration was changed. * * Be conservative in what you do, be liberal in what you * accept from others - RFC 793. */ CSR_WRITE_4(sc, ALC_FRAME_SIZE, sc->alc_max_framelen); /* Disable header split(?) */ CSR_WRITE_4(sc, ALC_HDS_CFG, 0); /* Configure IPG/IFG parameters. */ CSR_WRITE_4(sc, ALC_IPG_IFG_CFG, ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); /* Set parameters for half-duplex media. */ CSR_WRITE_4(sc, ALC_HDPX_CFG, ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & HDPX_CFG_LCOL_MASK) | ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & HDPX_CFG_ABEBT_MASK) | ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & HDPX_CFG_JAMIPG_MASK)); /* * Set TSO/checksum offload threshold. For frames that is * larger than this threshold, hardware wouldn't do * TSO/checksum offloading. */ CSR_WRITE_4(sc, ALC_TSO_OFFLOAD_THRESH, (sc->alc_max_framelen >> TSO_OFFLOAD_THRESH_UNIT_SHIFT) & TSO_OFFLOAD_THRESH_MASK); /* Configure TxQ. */ reg = (alc_dma_burst[sc->alc_dma_rd_burst] << TXQ_CFG_TX_FIFO_BURST_SHIFT) & TXQ_CFG_TX_FIFO_BURST_MASK; if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_1 || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_2) reg >>= 1; reg |= (TXQ_CFG_TD_BURST_DEFAULT << TXQ_CFG_TD_BURST_SHIFT) & TXQ_CFG_TD_BURST_MASK; CSR_WRITE_4(sc, ALC_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE); /* Configure Rx free descriptor pre-fetching. */ CSR_WRITE_4(sc, ALC_RX_RD_FREE_THRESH, ((RX_RD_FREE_THRESH_HI_DEFAULT << RX_RD_FREE_THRESH_HI_SHIFT) & RX_RD_FREE_THRESH_HI_MASK) | ((RX_RD_FREE_THRESH_LO_DEFAULT << RX_RD_FREE_THRESH_LO_SHIFT) & RX_RD_FREE_THRESH_LO_MASK)); /* * Configure flow control parameters. * XON : 80% of Rx FIFO * XOFF : 30% of Rx FIFO */ if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L1C || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C) { reg = CSR_READ_4(sc, ALC_SRAM_RX_FIFO_LEN); rxf_hi = (reg * 8) / 10; rxf_lo = (reg * 3) / 10; CSR_WRITE_4(sc, ALC_RX_FIFO_PAUSE_THRESH, ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & RX_FIFO_PAUSE_THRESH_LO_MASK) | ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & RX_FIFO_PAUSE_THRESH_HI_MASK)); } if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D_1 || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_1) CSR_WRITE_4(sc, ALC_SERDES_LOCK, CSR_READ_4(sc, ALC_SERDES_LOCK) | SERDES_MAC_CLK_SLOWDOWN | SERDES_PHY_CLK_SLOWDOWN); /* Disable RSS until I understand L1C/L2C's RSS logic. */ CSR_WRITE_4(sc, ALC_RSS_IDT_TABLE0, 0); CSR_WRITE_4(sc, ALC_RSS_CPU, 0); /* Configure RxQ. */ reg = (RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) & RXQ_CFG_RD_BURST_MASK; reg |= RXQ_CFG_RSS_MODE_DIS; if ((sc->alc_flags & ALC_FLAG_ASPM_MON) != 0) reg |= RXQ_CFG_ASPM_THROUGHPUT_LIMIT_1M; CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); /* Configure DMA parameters. */ reg = DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI; reg |= sc->alc_rcb; if ((sc->alc_flags & ALC_FLAG_CMB_BUG) == 0) reg |= DMA_CFG_CMB_ENB; if ((sc->alc_flags & ALC_FLAG_SMB_BUG) == 0) reg |= DMA_CFG_SMB_ENB; else reg |= DMA_CFG_SMB_DIS; reg |= (sc->alc_dma_rd_burst & DMA_CFG_RD_BURST_MASK) << DMA_CFG_RD_BURST_SHIFT; reg |= (sc->alc_dma_wr_burst & DMA_CFG_WR_BURST_MASK) << DMA_CFG_WR_BURST_SHIFT; reg |= (DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & DMA_CFG_RD_DELAY_CNT_MASK; reg |= (DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & DMA_CFG_WR_DELAY_CNT_MASK; CSR_WRITE_4(sc, ALC_DMA_CFG, reg); /* * Configure Tx/Rx MACs. * - Auto-padding for short frames. * - Enable CRC generation. * Actual reconfiguration of MAC for resolved speed/duplex * is followed after detection of link establishment. * AR813x/AR815x always does checksum computation regardless * of MAC_CFG_RXCSUM_ENB bit. Also the controller is known to * have bug in protocol field in Rx return structure so * these controllers can't handle fragmented frames. Disable * Rx checksum offloading until there is a newer controller * that has sane implementation. */ reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & MAC_CFG_PREAMBLE_MASK); if (sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D || sc->sc_product == PCI_PRODUCT_ATTANSIC_L1D_1 || sc->sc_product == PCI_PRODUCT_ATTANSIC_L2C_2) reg |= MAC_CFG_HASH_ALG_CRC32 | MAC_CFG_SPEED_MODE_SW; if ((sc->alc_flags & ALC_FLAG_FASTETHER) != 0) reg |= MAC_CFG_SPEED_10_100; else reg |= MAC_CFG_SPEED_1000; CSR_WRITE_4(sc, ALC_MAC_CFG, reg); /* Set up the receive filter. */ alc_iff(sc); alc_rxvlan(sc); /* Acknowledge all pending interrupts and clear it. */ CSR_WRITE_4(sc, ALC_INTR_MASK, ALC_INTRS); CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); CSR_WRITE_4(sc, ALC_INTR_STATUS, 0); sc->alc_flags &= ~ALC_FLAG_LINK; /* Switch to the current media. */ mii = &sc->sc_miibus; mii_mediachg(mii); timeout_add_sec(&sc->alc_tick_ch, 1); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); return (0); } void alc_stop(struct alc_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct alc_txdesc *txd; struct alc_rxdesc *rxd; uint32_t reg; int i; /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); ifp->if_timer = 0; timeout_del(&sc->alc_tick_ch); sc->alc_flags &= ~ALC_FLAG_LINK; alc_stats_update(sc); /* Disable interrupts. */ CSR_WRITE_4(sc, ALC_INTR_MASK, 0); CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); alc_stop_queue(sc); /* Disable DMA. */ reg = CSR_READ_4(sc, ALC_DMA_CFG); reg &= ~(DMA_CFG_CMB_ENB | DMA_CFG_SMB_ENB); reg |= DMA_CFG_SMB_DIS; CSR_WRITE_4(sc, ALC_DMA_CFG, reg); DELAY(1000); /* Stop Rx/Tx MACs. */ alc_stop_mac(sc); /* Disable interrupts which might be touched in taskq handler. */ CSR_WRITE_4(sc, ALC_INTR_STATUS, 0xFFFFFFFF); /* Reclaim Rx buffers that have been processed. */ m_freem(sc->alc_cdata.alc_rxhead); ALC_RXCHAIN_RESET(sc); /* * Free Tx/Rx mbufs still in the queues. */ for (i = 0; i < ALC_RX_RING_CNT; i++) { rxd = &sc->alc_cdata.alc_rxdesc[i]; if (rxd->rx_m != NULL) { bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0, rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap); m_freem(rxd->rx_m); rxd->rx_m = NULL; } } for (i = 0; i < ALC_TX_RING_CNT; i++) { txd = &sc->alc_cdata.alc_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_sync(sc->sc_dmat, txd->tx_dmamap, 0, txd->tx_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } } void alc_stop_mac(struct alc_softc *sc) { uint32_t reg; int i; /* Disable Rx/Tx MAC. */ reg = CSR_READ_4(sc, ALC_MAC_CFG); if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB); CSR_WRITE_4(sc, ALC_MAC_CFG, reg); } for (i = ALC_TIMEOUT; i > 0; i--) { reg = CSR_READ_4(sc, ALC_IDLE_STATUS); if (reg == 0) break; DELAY(10); } if (i == 0) printf("%s: could not disable Rx/Tx MAC(0x%08x)!\n", sc->sc_dev.dv_xname, reg); } void alc_start_queue(struct alc_softc *sc) { uint32_t qcfg[] = { 0, RXQ_CFG_QUEUE0_ENB, RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB, RXQ_CFG_QUEUE0_ENB | RXQ_CFG_QUEUE1_ENB | RXQ_CFG_QUEUE2_ENB, RXQ_CFG_ENB }; uint32_t cfg; /* Enable RxQ. */ cfg = CSR_READ_4(sc, ALC_RXQ_CFG); cfg &= ~RXQ_CFG_ENB; cfg |= qcfg[1]; CSR_WRITE_4(sc, ALC_RXQ_CFG, cfg); /* Enable TxQ. */ cfg = CSR_READ_4(sc, ALC_TXQ_CFG); cfg |= TXQ_CFG_ENB; CSR_WRITE_4(sc, ALC_TXQ_CFG, cfg); } void alc_stop_queue(struct alc_softc *sc) { uint32_t reg; int i; /* Disable RxQ. */ reg = CSR_READ_4(sc, ALC_RXQ_CFG); if ((reg & RXQ_CFG_ENB) != 0) { reg &= ~RXQ_CFG_ENB; CSR_WRITE_4(sc, ALC_RXQ_CFG, reg); } /* Disable TxQ. */ reg = CSR_READ_4(sc, ALC_TXQ_CFG); if ((reg & TXQ_CFG_ENB) != 0) { reg &= ~TXQ_CFG_ENB; CSR_WRITE_4(sc, ALC_TXQ_CFG, reg); } for (i = ALC_TIMEOUT; i > 0; i--) { reg = CSR_READ_4(sc, ALC_IDLE_STATUS); if ((reg & (IDLE_STATUS_RXQ | IDLE_STATUS_TXQ)) == 0) break; DELAY(10); } if (i == 0) printf("%s: could not disable RxQ/TxQ (0x%08x)!\n", sc->sc_dev.dv_xname, reg); } void alc_init_tx_ring(struct alc_softc *sc) { struct alc_ring_data *rd; struct alc_txdesc *txd; int i; sc->alc_cdata.alc_tx_prod = 0; sc->alc_cdata.alc_tx_cons = 0; sc->alc_cdata.alc_tx_cnt = 0; rd = &sc->alc_rdata; bzero(rd->alc_tx_ring, ALC_TX_RING_SZ); for (i = 0; i < ALC_TX_RING_CNT; i++) { txd = &sc->alc_cdata.alc_txdesc[i]; txd->tx_m = NULL; } bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_tx_ring_map, 0, sc->alc_cdata.alc_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); } int alc_init_rx_ring(struct alc_softc *sc) { struct alc_ring_data *rd; struct alc_rxdesc *rxd; int i; sc->alc_cdata.alc_rx_cons = ALC_RX_RING_CNT - 1; rd = &sc->alc_rdata; bzero(rd->alc_rx_ring, ALC_RX_RING_SZ); for (i = 0; i < ALC_RX_RING_CNT; i++) { rxd = &sc->alc_cdata.alc_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_desc = &rd->alc_rx_ring[i]; if (alc_newbuf(sc, rxd) != 0) return (ENOBUFS); } /* * Since controller does not update Rx descriptors, driver * does have to read Rx descriptors back so BUS_DMASYNC_PREWRITE * is enough to ensure coherence. */ bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rx_ring_map, 0, sc->alc_cdata.alc_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Let controller know availability of new Rx buffers. */ CSR_WRITE_4(sc, ALC_MBOX_RD0_PROD_IDX, sc->alc_cdata.alc_rx_cons); return (0); } void alc_init_rr_ring(struct alc_softc *sc) { struct alc_ring_data *rd; sc->alc_cdata.alc_rr_cons = 0; ALC_RXCHAIN_RESET(sc); rd = &sc->alc_rdata; bzero(rd->alc_rr_ring, ALC_RR_RING_SZ); bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_rr_ring_map, 0, sc->alc_cdata.alc_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } void alc_init_cmb(struct alc_softc *sc) { struct alc_ring_data *rd; rd = &sc->alc_rdata; bzero(rd->alc_cmb, ALC_CMB_SZ); bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_cmb_map, 0, sc->alc_cdata.alc_cmb_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } void alc_init_smb(struct alc_softc *sc) { struct alc_ring_data *rd; rd = &sc->alc_rdata; bzero(rd->alc_smb, ALC_SMB_SZ); bus_dmamap_sync(sc->sc_dmat, sc->alc_cdata.alc_smb_map, 0, sc->alc_cdata.alc_smb_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } void alc_rxvlan(struct alc_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; uint32_t reg; reg = CSR_READ_4(sc, ALC_MAC_CFG); if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) reg |= MAC_CFG_VLAN_TAG_STRIP; else reg &= ~MAC_CFG_VLAN_TAG_STRIP; CSR_WRITE_4(sc, ALC_MAC_CFG, reg); } void alc_iff(struct alc_softc *sc) { struct arpcom *ac = &sc->sc_arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; uint32_t crc; uint32_t mchash[2]; uint32_t rxcfg; rxcfg = CSR_READ_4(sc, ALC_MAC_CFG); rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept broadcast frames. */ rxcfg |= MAC_CFG_BCAST; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) rxcfg |= MAC_CFG_PROMISC; else rxcfg |= MAC_CFG_ALLMULTI; mchash[0] = mchash[1] = 0xFFFFFFFF; } else { /* Program new filter. */ bzero(mchash, sizeof(mchash)); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); ETHER_NEXT_MULTI(step, enm); } } CSR_WRITE_4(sc, ALC_MAR0, mchash[0]); CSR_WRITE_4(sc, ALC_MAR1, mchash[1]); CSR_WRITE_4(sc, ALC_MAC_CFG, rxcfg); }