/* $OpenBSD: if_ale.c,v 1.11 2010/02/27 08:19:47 kevlo Exp $ */ /*- * Copyright (c) 2008, Pyun YongHyeon * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $ */ /* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include int ale_match(struct device *, void *, void *); void ale_attach(struct device *, struct device *, void *); int ale_detach(struct device *, int); int ale_miibus_readreg(struct device *, int, int); void ale_miibus_writereg(struct device *, int, int, int); void ale_miibus_statchg(struct device *); int ale_init(struct ifnet *); void ale_start(struct ifnet *); int ale_ioctl(struct ifnet *, u_long, caddr_t); void ale_watchdog(struct ifnet *); int ale_mediachange(struct ifnet *); void ale_mediastatus(struct ifnet *, struct ifmediareq *); int ale_intr(void *); int ale_rxeof(struct ale_softc *sc); void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **, uint32_t, uint32_t *); void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t); void ale_txeof(struct ale_softc *); int ale_dma_alloc(struct ale_softc *); void ale_dma_free(struct ale_softc *); int ale_encap(struct ale_softc *, struct mbuf **); void ale_init_rx_pages(struct ale_softc *); void ale_init_tx_ring(struct ale_softc *); void ale_stop(struct ale_softc *); void ale_tick(void *); void ale_get_macaddr(struct ale_softc *); void ale_mac_config(struct ale_softc *); void ale_phy_reset(struct ale_softc *); void ale_reset(struct ale_softc *); void ale_iff(struct ale_softc *); void ale_rxvlan(struct ale_softc *); void ale_stats_clear(struct ale_softc *); void ale_stats_update(struct ale_softc *); void ale_stop_mac(struct ale_softc *); const struct pci_matchid ale_devices[] = { { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L1E } }; struct cfattach ale_ca = { sizeof (struct ale_softc), ale_match, ale_attach }; struct cfdriver ale_cd = { NULL, "ale", DV_IFNET }; int aledebug = 0; #define DPRINTF(x) do { if (aledebug) printf x; } while (0) #define ALE_CSUM_FEATURES (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT) int ale_miibus_readreg(struct device *dev, int phy, int reg) { struct ale_softc *sc = (struct ale_softc *)dev; uint32_t v; int i; if (phy != sc->ale_phyaddr) return (0); if (sc->ale_flags & ALE_FLAG_FASTETHER) { if (reg == MII_100T2CR || reg == MII_100T2SR || reg == MII_EXTSR) return (0); } CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = ALE_PHY_TIMEOUT; i > 0; i--) { DELAY(5); v = CSR_READ_4(sc, ALE_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) { printf("%s: phy read timeout: phy %d, reg %d\n", sc->sc_dev.dv_xname, phy, reg); return (0); } return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT); } void ale_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct ale_softc *sc = (struct ale_softc *)dev; uint32_t v; int i; if (phy != sc->ale_phyaddr) return; if (sc->ale_flags & ALE_FLAG_FASTETHER) { if (reg == MII_100T2CR || reg == MII_100T2SR || reg == MII_EXTSR) return; } CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE | (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT | MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg)); for (i = ALE_PHY_TIMEOUT; i > 0; i--) { DELAY(5); v = CSR_READ_4(sc, ALE_MDIO); if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0) break; } if (i == 0) printf("%s: phy write timeout: phy %d, reg %d\n", sc->sc_dev.dv_xname, phy, reg); } void ale_miibus_statchg(struct device *dev) { struct ale_softc *sc = (struct ale_softc *)dev; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_data *mii; uint32_t reg; if ((ifp->if_flags & IFF_RUNNING) == 0) return; mii = &sc->sc_miibus; sc->ale_flags &= ~ALE_FLAG_LINK; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: sc->ale_flags |= ALE_FLAG_LINK; break; case IFM_1000_T: if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0) sc->ale_flags |= ALE_FLAG_LINK; break; default: break; } } /* Stop Rx/Tx MACs. */ ale_stop_mac(sc); /* Program MACs with resolved speed/duplex/flow-control. */ if ((sc->ale_flags & ALE_FLAG_LINK) != 0) { ale_mac_config(sc); /* Reenable Tx/Rx MACs. */ reg = CSR_READ_4(sc, ALE_MAC_CFG); reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); } } void ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct ale_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; } int ale_mediachange(struct ifnet *ifp) { struct ale_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; int error; if (mii->mii_instance != 0) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } error = mii_mediachg(mii); return (error); } int ale_match(struct device *dev, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, ale_devices, sizeof (ale_devices) / sizeof (ale_devices[0])); } void ale_get_macaddr(struct ale_softc *sc) { uint32_t ea[2], reg; int i, vpdc; reg = CSR_READ_4(sc, ALE_SPI_CTRL); if ((reg & SPI_VPD_ENB) != 0) { reg &= ~SPI_VPD_ENB; CSR_WRITE_4(sc, ALE_SPI_CTRL, reg); } if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD, &vpdc, NULL)) { /* * PCI VPD capability found, let TWSI reload EEPROM. * This will set ethernet address of controller. */ CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) | TWSI_CTRL_SW_LD_START); for (i = 100; i > 0; i--) { DELAY(1000); reg = CSR_READ_4(sc, ALE_TWSI_CTRL); if ((reg & TWSI_CTRL_SW_LD_START) == 0) break; } if (i == 0) printf("%s: reloading EEPROM timeout!\n", sc->sc_dev.dv_xname); } else { if (aledebug) printf("%s: PCI VPD capability not found!\n", sc->sc_dev.dv_xname); } ea[0] = CSR_READ_4(sc, ALE_PAR0); ea[1] = CSR_READ_4(sc, ALE_PAR1); sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF; sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF; sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF; sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF; sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF; sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF; } void ale_phy_reset(struct ale_softc *sc) { /* Reset magic from Linux. */ CSR_WRITE_2(sc, ALE_GPHY_CTRL, GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); DELAY(1000); CSR_WRITE_2(sc, ALE_GPHY_CTRL, GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON); DELAY(1000); #define ATPHY_DBG_ADDR 0x1D #define ATPHY_DBG_DATA 0x1E /* Enable hibernation mode. */ ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x0B); ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_DATA, 0xBC00); /* Set Class A/B for all modes. */ ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x00); ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_DATA, 0x02EF); /* Enable 10BT power saving. */ ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x12); ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_DATA, 0x4C04); /* Adjust 1000T power. */ ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x04); ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x8BBB); /* 10BT center tap voltage. */ ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x05); ale_miibus_writereg(&sc->sc_dev, sc->ale_phyaddr, ATPHY_DBG_ADDR, 0x2C46); #undef ATPHY_DBG_ADDR #undef ATPHY_DBG_DATA DELAY(1000); } void ale_attach(struct device *parent, struct device *self, void *aux) { struct ale_softc *sc = (struct ale_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr; struct ifnet *ifp; pcireg_t memtype; int mii_flags, error = 0; uint32_t rxf_len, txf_len; const char *chipname; /* * Allocate IO memory */ memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, ALE_PCIR_BAR); if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt, &sc->sc_mem_bh, NULL, &sc->sc_mem_size, 0)) { printf(": can't map mem space\n"); return; } if (pci_intr_map(pa, &ih) != 0) { printf(": can't map interrupt\n"); goto fail; } /* * Allocate IRQ */ intrstr = pci_intr_string(pc, ih); sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_irq_handle == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } sc->sc_dmat = pa->pa_dmat; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; /* Set PHY address. */ sc->ale_phyaddr = ALE_PHY_ADDR; /* Reset PHY. */ ale_phy_reset(sc); /* Reset the ethernet controller. */ ale_reset(sc); /* Get PCI and chip id/revision. */ sc->ale_rev = PCI_REVISION(pa->pa_class); if (sc->ale_rev >= 0xF0) { /* L2E Rev. B. AR8114 */ sc->ale_flags |= ALE_FLAG_FASTETHER; chipname = "AR8114"; } else { if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) { /* L1E AR8121 */ sc->ale_flags |= ALE_FLAG_JUMBO; chipname = "AR8121"; } else { /* L2E Rev. A. AR8113 */ sc->ale_flags |= ALE_FLAG_FASTETHER; chipname = "AR8113"; } } printf(": %s, %s", chipname, intrstr); /* * All known controllers seems to require 4 bytes alignment * of Tx buffers to make Tx checksum offload with custom * checksum generation method work. */ sc->ale_flags |= ALE_FLAG_TXCSUM_BUG; /* * All known controllers seems to have issues on Rx checksum * offload for fragmented IP datagrams. */ sc->ale_flags |= ALE_FLAG_RXCSUM_BUG; /* * Don't use Tx CMB. It is known to cause RRS update failure * under certain circumstances. Typical phenomenon of the * issue would be unexpected sequence number encountered in * Rx handler. */ sc->ale_flags |= ALE_FLAG_TXCMB_BUG; sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >> MASTER_CHIP_REV_SHIFT; if (aledebug) { printf("%s: PCI device revision : 0x%04x\n", sc->sc_dev.dv_xname, sc->ale_rev); printf("%s: Chip id/revision : 0x%04x\n", sc->sc_dev.dv_xname, sc->ale_chip_rev); } /* * Uninitialized hardware returns an invalid chip id/revision * as well as 0xFFFFFFFF for Tx/Rx fifo length. */ txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN); rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF || rxf_len == 0xFFFFFFF) { printf("%s: chip revision : 0x%04x, %u Tx FIFO " "%u Rx FIFO -- not initialized?\n", sc->sc_dev.dv_xname, sc->ale_chip_rev, txf_len, rxf_len); goto fail; } if (aledebug) { printf("%s: %u Tx FIFO, %u Rx FIFO\n", sc->sc_dev.dv_xname, txf_len, rxf_len); } /* Set max allowable DMA size. */ sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128; sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128; error = ale_dma_alloc(sc); if (error) goto fail; /* Load station address. */ ale_get_macaddr(sc); ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = ale_init; ifp->if_ioctl = ale_ioctl; ifp->if_start = ale_start; ifp->if_watchdog = ale_watchdog; ifp->if_baudrate = IF_Gbps(1); IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->ale_eaddr, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; #ifdef ALE_CHECKSUM ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; #endif #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); /* Set up MII bus. */ sc->sc_miibus.mii_ifp = ifp; sc->sc_miibus.mii_readreg = ale_miibus_readreg; sc->sc_miibus.mii_writereg = ale_miibus_writereg; sc->sc_miibus.mii_statchg = ale_miibus_statchg; ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange, ale_mediastatus); mii_flags = 0; if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) mii_flags |= MIIF_DOPAUSE; mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, mii_flags); if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL); } else ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->ale_tick_ch, ale_tick, sc); return; fail: ale_dma_free(sc); if (sc->sc_irq_handle != NULL) pci_intr_disestablish(pc, sc->sc_irq_handle); if (sc->sc_mem_size) bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size); } int ale_detach(struct device *self, int flags) { struct ale_softc *sc = (struct ale_softc *)self; struct ifnet *ifp = &sc->sc_arpcom.ac_if; int s; s = splnet(); ale_stop(sc); splx(s); mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY); /* Delete all remaining media. */ ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); ale_dma_free(sc); if (sc->sc_irq_handle != NULL) { pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle); sc->sc_irq_handle = NULL; } return (0); } int ale_dma_alloc(struct ale_softc *sc) { struct ale_txdesc *txd; int nsegs, error, guard_size, i; if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) guard_size = ALE_JUMBO_FRAMELEN; else guard_size = ALE_MAX_FRAMELEN; sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ, ALE_RX_PAGE_ALIGN); /* * Create DMA stuffs for TX ring */ error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1, ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for TX ring */ error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ, ETHER_ALIGN, 0, &sc->ale_cdata.ale_tx_ring_seg, 1, &nsegs, BUS_DMA_WAITOK); if (error) { printf("%s: could not allocate DMA'able memory for Tx ring.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg, nsegs, ALE_TX_RING_SZ, (caddr_t *)&sc->ale_cdata.ale_tx_ring, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ); /* Load the DMA map for Tx ring. */ error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Tx ring.\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->ale_cdata.ale_tx_ring, 1); return error; } sc->ale_cdata.ale_tx_ring_paddr = sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr; for (i = 0; i < ALE_RX_PAGES; i++) { /* * Create DMA stuffs for RX pages */ error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1, sc->ale_pagesize, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_rx_page[i].page_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for RX pages */ error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize, ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg, 1, &nsegs, BUS_DMA_WAITOK); if (error) { printf("%s: could not allocate DMA'able memory for " "Rx ring.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_rx_page[i].page_seg, nsegs, sc->ale_pagesize, (caddr_t *)&sc->ale_cdata.ale_rx_page[i].page_addr, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); bzero(sc->ale_cdata.ale_rx_page[i].page_addr, sc->ale_pagesize); /* Load the DMA map for Rx pages. */ error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_rx_page[i].page_map, sc->ale_cdata.ale_rx_page[i].page_addr, sc->ale_pagesize, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for " "Rx pages.\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].page_addr, 1); return error; } sc->ale_cdata.ale_rx_page[i].page_paddr = sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr; } /* * Create DMA stuffs for Tx CMB. */ error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1, ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for Tx CMB. */ error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0, &sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK); if (error) { printf("%s: could not allocate DMA'able memory for Tx CMB.\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg, nsegs, ALE_TX_CMB_SZ, (caddr_t *)&sc->ale_cdata.ale_tx_cmb, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ); /* Load the DMA map for Tx CMB. */ error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Tx CMB.\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->ale_cdata.ale_tx_cmb, 1); return error; } sc->ale_cdata.ale_tx_cmb_paddr = sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr; for (i = 0; i < ALE_RX_PAGES; i++) { /* * Create DMA stuffs for Rx CMB. */ error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1, ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_rx_page[i].cmb_map); if (error) return (ENOBUFS); /* Allocate DMA'able memory for Rx CMB */ error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ, ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1, &nsegs, BUS_DMA_WAITOK); if (error) { printf("%s: could not allocate DMA'able memory for " "Rx CMB\n", sc->sc_dev.dv_xname); return error; } error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs, ALE_RX_CMB_SZ, (caddr_t *)&sc->ale_cdata.ale_rx_page[i].cmb_addr, BUS_DMA_NOWAIT); if (error) return (ENOBUFS); bzero(sc->ale_cdata.ale_rx_page[i].cmb_addr, ALE_RX_CMB_SZ); /* Load the DMA map for Rx CMB */ error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_rx_page[i].cmb_map, sc->ale_cdata.ale_rx_page[i].cmb_addr, ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK); if (error) { printf("%s: could not load DMA'able memory for Rx CMB" "\n", sc->sc_dev.dv_xname); bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)&sc->ale_cdata.ale_rx_page[i].cmb_addr, 1); return error; } sc->ale_cdata.ale_rx_page[i].cmb_paddr = sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr; } /* Create DMA maps for Tx buffers. */ for (i = 0; i < ALE_TX_RING_CNT; i++) { txd = &sc->ale_cdata.ale_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE, ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT, &txd->tx_dmamap); if (error) { printf("%s: could not create Tx dmamap.\n", sc->sc_dev.dv_xname); return error; } } return (0); } void ale_dma_free(struct ale_softc *sc) { struct ale_txdesc *txd; int i; /* Tx buffers. */ for (i = 0; i < ALE_TX_RING_CNT; i++) { txd = &sc->ale_cdata.ale_txdesc[i]; if (txd->tx_dmamap != NULL) { bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap); txd->tx_dmamap = NULL; } } /* Tx descriptor ring. */ if (sc->ale_cdata.ale_tx_ring_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map); if (sc->ale_cdata.ale_tx_ring_map != NULL && sc->ale_cdata.ale_tx_ring != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->ale_cdata.ale_tx_ring, 1); sc->ale_cdata.ale_tx_ring = NULL; sc->ale_cdata.ale_tx_ring_map = NULL; /* Rx page block. */ for (i = 0; i < ALE_RX_PAGES; i++) { if (sc->ale_cdata.ale_rx_page[i].page_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_rx_page[i].page_map); if (sc->ale_cdata.ale_rx_page[i].page_map != NULL && sc->ale_cdata.ale_rx_page[i].page_addr != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].page_addr, 1); sc->ale_cdata.ale_rx_page[i].page_addr = NULL; sc->ale_cdata.ale_rx_page[i].page_map = NULL; } /* Rx CMB. */ for (i = 0; i < ALE_RX_PAGES; i++) { if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_rx_page[i].cmb_map); if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL && sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->ale_cdata.ale_rx_page[i].cmb_addr, 1); sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL; sc->ale_cdata.ale_rx_page[i].cmb_map = NULL; } /* Tx CMB. */ if (sc->ale_cdata.ale_tx_cmb_map != NULL) bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map); if (sc->ale_cdata.ale_tx_cmb_map != NULL && sc->ale_cdata.ale_tx_cmb != NULL) bus_dmamem_free(sc->sc_dmat, (bus_dma_segment_t *)sc->ale_cdata.ale_tx_cmb, 1); sc->ale_cdata.ale_tx_cmb = NULL; sc->ale_cdata.ale_tx_cmb_map = NULL; } int ale_encap(struct ale_softc *sc, struct mbuf **m_head) { struct ale_txdesc *txd, *txd_last; struct tx_desc *desc; struct mbuf *m; bus_dmamap_t map; uint32_t cflags, poff, vtag; int error, i, nsegs, prod; m = *m_head; cflags = vtag = 0; poff = 0; prod = sc->ale_cdata.ale_tx_prod; txd = &sc->ale_cdata.ale_txdesc[prod]; txd_last = txd; map = txd->tx_dmamap; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT); if (error != 0) { bus_dmamap_unload(sc->sc_dmat, map); error = EFBIG; } if (error == EFBIG) { if (m_defrag(*m_head, M_DONTWAIT)) { printf("%s: can't defrag TX mbuf\n", sc->sc_dev.dv_xname); m_freem(*m_head); *m_head = NULL; return (ENOBUFS); } error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load defragged TX mbuf\n", sc->sc_dev.dv_xname); m_freem(*m_head); *m_head = NULL; return (error); } } else if (error) { printf("%s: could not load TX mbuf\n", sc->sc_dev.dv_xname); return (error); } nsegs = map->dm_nsegs; if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check descriptor overrun. */ if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) { bus_dmamap_unload(sc->sc_dmat, map); return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); m = *m_head; /* Configure Tx checksum offload. */ if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) { /* * AR81xx supports Tx custom checksum offload feature * that offloads single 16bit checksum computation. * So you can choose one among IP, TCP and UDP. * Normally driver sets checksum start/insertion * position from the information of TCP/UDP frame as * TCP/UDP checksum takes more time than that of IP. * However it seems that custom checksum offload * requires 4 bytes aligned Tx buffers due to hardware * bug. * AR81xx also supports explicit Tx checksum computation * if it is told that the size of IP header and TCP * header(for UDP, the header size does not matter * because it's fixed length). However with this scheme * TSO does not work so you have to choose one either * TSO or explicit Tx checksum offload. I chosen TSO * plus custom checksum offload with work-around which * will cover most common usage for this consumer * ethernet controller. The work-around takes a lot of * CPU cycles if Tx buffer is not aligned on 4 bytes * boundary, though. */ cflags |= ALE_TD_CXSUM; /* Set checksum start offset. */ cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT); } #if NVLAN > 0 /* Configure VLAN hardware tag insertion. */ if (m->m_flags & M_VLANTAG) { vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag); vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK); cflags |= ALE_TD_INSERT_VLAN_TAG; } #endif desc = NULL; for (i = 0; i < nsegs; i++) { desc = &sc->ale_cdata.ale_tx_ring[prod]; desc->addr = htole64(map->dm_segs[i].ds_addr); desc->len = htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag); desc->flags = htole32(cflags); sc->ale_cdata.ale_tx_cnt++; ALE_DESC_INC(prod, ALE_TX_RING_CNT); } /* Update producer index. */ sc->ale_cdata.ale_tx_prod = prod; /* Finally set EOP on the last descriptor. */ prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT; desc = &sc->ale_cdata.ale_tx_ring[prod]; desc->flags |= htole32(ALE_TD_EOP); /* Swap dmamap of the first and the last. */ txd = &sc->ale_cdata.ale_txdesc[prod]; map = txd_last->tx_dmamap; txd_last->tx_dmamap = txd->tx_dmamap; txd->tx_dmamap = map; txd->tx_m = m; /* Sync descriptors. */ bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0, sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); return (0); } void ale_start(struct ifnet *ifp) { struct ale_softc *sc = ifp->if_softc; struct mbuf *m_head; int enq; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; /* Reclaim transmitted frames. */ if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT) ale_txeof(sc); enq = 0; for (;;) { IFQ_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (ale_encap(sc, &m_head)) { if (m_head == NULL) break; ifp->if_flags |= IFF_OACTIVE; break; } enq = 1; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf != NULL) bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif } if (enq) { /* Kick. */ CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX, sc->ale_cdata.ale_tx_prod); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = ALE_TX_TIMEOUT; } } void ale_watchdog(struct ifnet *ifp) { struct ale_softc *sc = ifp->if_softc; if ((sc->ale_flags & ALE_FLAG_LINK) == 0) { printf("%s: watchdog timeout (missed link)\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; ale_init(ifp); return; } printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; ale_init(ifp); if (!IFQ_IS_EMPTY(&ifp->if_snd)) ale_start(ifp); } int ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ale_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_miibus; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) ale_init(ifp); #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc->sc_arpcom, ifa); #endif break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else ale_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) ale_stop(sc); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd); break; default: error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data); break; } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) ale_iff(sc); error = 0; } splx(s); return (error); } void ale_mac_config(struct ale_softc *sc) { struct mii_data *mii; uint32_t reg; mii = &sc->sc_miibus; reg = CSR_READ_4(sc, ALE_MAC_CFG); reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC | MAC_CFG_SPEED_MASK); /* Reprogram MAC with resolved speed/duplex. */ switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: case IFM_100_TX: reg |= MAC_CFG_SPEED_10_100; break; case IFM_1000_T: reg |= MAC_CFG_SPEED_1000; break; } if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { reg |= MAC_CFG_FULL_DUPLEX; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0) reg |= MAC_CFG_TX_FC; if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0) reg |= MAC_CFG_RX_FC; } CSR_WRITE_4(sc, ALE_MAC_CFG, reg); } void ale_stats_clear(struct ale_softc *sc) { struct smb sb; uint32_t *reg; int i; for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { CSR_READ_4(sc, ALE_RX_MIB_BASE + i); i += sizeof(uint32_t); } /* Read Tx statistics. */ for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { CSR_READ_4(sc, ALE_TX_MIB_BASE + i); i += sizeof(uint32_t); } } void ale_stats_update(struct ale_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ale_hw_stats *stat; struct smb sb, *smb; uint32_t *reg; int i; stat = &sc->ale_stats; smb = &sb; /* Read Rx statistics. */ for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) { *reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i); i += sizeof(uint32_t); } /* Read Tx statistics. */ for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) { *reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i); i += sizeof(uint32_t); } /* Rx stats. */ stat->rx_frames += smb->rx_frames; stat->rx_bcast_frames += smb->rx_bcast_frames; stat->rx_mcast_frames += smb->rx_mcast_frames; stat->rx_pause_frames += smb->rx_pause_frames; stat->rx_control_frames += smb->rx_control_frames; stat->rx_crcerrs += smb->rx_crcerrs; stat->rx_lenerrs += smb->rx_lenerrs; stat->rx_bytes += smb->rx_bytes; stat->rx_runts += smb->rx_runts; stat->rx_fragments += smb->rx_fragments; stat->rx_pkts_64 += smb->rx_pkts_64; stat->rx_pkts_65_127 += smb->rx_pkts_65_127; stat->rx_pkts_128_255 += smb->rx_pkts_128_255; stat->rx_pkts_256_511 += smb->rx_pkts_256_511; stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023; stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518; stat->rx_pkts_1519_max += smb->rx_pkts_1519_max; stat->rx_pkts_truncated += smb->rx_pkts_truncated; stat->rx_fifo_oflows += smb->rx_fifo_oflows; stat->rx_rrs_errs += smb->rx_rrs_errs; stat->rx_alignerrs += smb->rx_alignerrs; stat->rx_bcast_bytes += smb->rx_bcast_bytes; stat->rx_mcast_bytes += smb->rx_mcast_bytes; stat->rx_pkts_filtered += smb->rx_pkts_filtered; /* Tx stats. */ stat->tx_frames += smb->tx_frames; stat->tx_bcast_frames += smb->tx_bcast_frames; stat->tx_mcast_frames += smb->tx_mcast_frames; stat->tx_pause_frames += smb->tx_pause_frames; stat->tx_excess_defer += smb->tx_excess_defer; stat->tx_control_frames += smb->tx_control_frames; stat->tx_deferred += smb->tx_deferred; stat->tx_bytes += smb->tx_bytes; stat->tx_pkts_64 += smb->tx_pkts_64; stat->tx_pkts_65_127 += smb->tx_pkts_65_127; stat->tx_pkts_128_255 += smb->tx_pkts_128_255; stat->tx_pkts_256_511 += smb->tx_pkts_256_511; stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023; stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518; stat->tx_pkts_1519_max += smb->tx_pkts_1519_max; stat->tx_single_colls += smb->tx_single_colls; stat->tx_multi_colls += smb->tx_multi_colls; stat->tx_late_colls += smb->tx_late_colls; stat->tx_excess_colls += smb->tx_excess_colls; stat->tx_abort += smb->tx_abort; stat->tx_underrun += smb->tx_underrun; stat->tx_desc_underrun += smb->tx_desc_underrun; stat->tx_lenerrs += smb->tx_lenerrs; stat->tx_pkts_truncated += smb->tx_pkts_truncated; stat->tx_bcast_bytes += smb->tx_bcast_bytes; stat->tx_mcast_bytes += smb->tx_mcast_bytes; /* Update counters in ifnet. */ ifp->if_opackets += smb->tx_frames; ifp->if_collisions += smb->tx_single_colls + smb->tx_multi_colls * 2 + smb->tx_late_colls + smb->tx_abort * HDPX_CFG_RETRY_DEFAULT; /* * XXX * tx_pkts_truncated counter looks suspicious. It constantly * increments with no sign of Tx errors. This may indicate * the counter name is not correct one so I've removed the * counter in output errors. */ ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls + smb->tx_underrun; ifp->if_ipackets += smb->rx_frames; ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated + smb->rx_fifo_oflows + smb->rx_rrs_errs + smb->rx_alignerrs; } int ale_intr(void *xsc) { struct ale_softc *sc = xsc; struct ifnet *ifp = &sc->sc_arpcom.ac_if; uint32_t status; status = CSR_READ_4(sc, ALE_INTR_STATUS); if ((status & ALE_INTRS) == 0) return (0); /* Acknowledge and disable interrupts. */ CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT); if (ifp->if_flags & IFF_RUNNING) { int error; error = ale_rxeof(sc); if (error) { sc->ale_stats.reset_brk_seq++; ale_init(ifp); return (0); } if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) { if (status & INTR_DMA_RD_TO_RST) printf("%s: DMA read error! -- resetting\n", sc->sc_dev.dv_xname); if (status & INTR_DMA_WR_TO_RST) printf("%s: DMA write error! -- resetting\n", sc->sc_dev.dv_xname); ale_init(ifp); return (0); } ale_txeof(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd)) ale_start(ifp); } /* Re-enable interrupts. */ CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF); return (1); } void ale_txeof(struct ale_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ale_txdesc *txd; uint32_t cons, prod; int prog; if (sc->ale_cdata.ale_tx_cnt == 0) return; bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0, sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD); if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) { bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0, sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD); prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK; } else prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX); cons = sc->ale_cdata.ale_tx_cons; /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ for (prog = 0; cons != prod; prog++, ALE_DESC_INC(cons, ALE_TX_RING_CNT)) { if (sc->ale_cdata.ale_tx_cnt <= 0) break; prog++; ifp->if_flags &= ~IFF_OACTIVE; sc->ale_cdata.ale_tx_cnt--; txd = &sc->ale_cdata.ale_txdesc[cons]; if (txd->tx_m != NULL) { /* Reclaim transmitted mbufs. */ bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } if (prog > 0) { sc->ale_cdata.ale_tx_cons = cons; /* * Unarm watchdog timer only when there is no pending * Tx descriptors in queue. */ if (sc->ale_cdata.ale_tx_cnt == 0) ifp->if_timer = 0; } } void ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page, uint32_t length, uint32_t *prod) { struct ale_rx_page *rx_page; rx_page = *page; /* Update consumer position. */ rx_page->cons += roundup(length + sizeof(struct rx_rs), ALE_RX_PAGE_ALIGN); if (rx_page->cons >= ALE_RX_PAGE_SZ) { /* * End of Rx page reached, let hardware reuse * this page. */ rx_page->cons = 0; *rx_page->cmb_addr = 0; bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0, rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE); CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp, RXF_VALID); /* Switch to alternate Rx page. */ sc->ale_cdata.ale_rx_curp ^= 1; rx_page = *page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; /* Page flipped, sync CMB and Rx page. */ bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0, rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0, rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD); /* Sync completed, cache updated producer index. */ *prod = *rx_page->cmb_addr; } } /* * It seems that AR81xx controller can compute partial checksum. * The partial checksum value can be used to accelerate checksum * computation for fragmented TCP/UDP packets. Upper network stack * already takes advantage of the partial checksum value in IP * reassembly stage. But I'm not sure the correctness of the * partial hardware checksum assistance due to lack of data sheet. * In addition, the Rx feature of controller that requires copying * for every frames effectively nullifies one of most nice offload * capability of controller. */ void ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status) { struct ip *ip; char *p; if ((status & ALE_RD_IPCSUM_NOK) == 0) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) { if (((status & ALE_RD_IPV4_FRAG) == 0) && ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) && ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) { m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK; } } else { if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 && (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) { p = mtod(m, char *); p += ETHER_HDR_LEN; if ((status & ALE_RD_802_3) != 0) p += LLC_SNAPFRAMELEN; #if NVLAN > 0 if (status & ALE_RD_VLAN) p += EVL_ENCAPLEN; #endif ip = (struct ip *)p; if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0) return; m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK; } } /* * Don't mark bad checksum for TCP/UDP frames * as fragmented frames may always have set * bad checksummed bit of frame status. */ } /* Process received frames. */ int ale_rxeof(struct ale_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ale_rx_page *rx_page; struct rx_rs *rs; struct mbuf *m; uint32_t length, prod, seqno, status; int prog; rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp]; bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0, rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0, rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD); /* * Don't directly access producer index as hardware may * update it while Rx handler is in progress. It would * be even better if there is a way to let hardware * know how far driver processed its received frames. * Alternatively, hardware could provide a way to disable * CMB updates until driver acknowledges the end of CMB * access. */ prod = *rx_page->cmb_addr; for (prog = 0; ; prog++) { if (rx_page->cons >= prod) break; rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons); seqno = ALE_RX_SEQNO(letoh32(rs->seqno)); if (sc->ale_cdata.ale_rx_seqno != seqno) { /* * Normally I believe this should not happen unless * severe driver bug or corrupted memory. However * it seems to happen under certain conditions which * is triggered by abrupt Rx events such as initiation * of bulk transfer of remote host. It's not easy to * reproduce this and I doubt it could be related * with FIFO overflow of hardware or activity of Tx * CMB updates. I also remember similar behaviour * seen on RealTek 8139 which uses resembling Rx * scheme. */ if (aledebug) printf("%s: garbled seq: %u, expected: %u -- " "resetting!\n", sc->sc_dev.dv_xname, seqno, sc->ale_cdata.ale_rx_seqno); return (EIO); } /* Frame received. */ sc->ale_cdata.ale_rx_seqno++; length = ALE_RX_BYTES(letoh32(rs->length)); status = letoh32(rs->flags); if (status & ALE_RD_ERROR) { /* * We want to pass the following frames to upper * layer regardless of error status of Rx return * status. * * o IP/TCP/UDP checksum is bad. * o frame length and protocol specific length * does not match. */ if (status & (ALE_RD_CRC | ALE_RD_CODE | ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW | ALE_RD_TRUNC)) { ale_rx_update_page(sc, &rx_page, length, &prod); continue; } } /* * m_devget(9) is major bottle-neck of ale(4)(It comes * from hardware limitation). For jumbo frames we could * get a slightly better performance if driver use * m_getjcl(9) with proper buffer size argument. However * that would make code more complicated and I don't * think users would expect good Rx performance numbers * on these low-end consumer ethernet controller. */ m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN, ETHER_ALIGN, ifp, NULL); if (m == NULL) { ifp->if_iqdrops++; ale_rx_update_page(sc, &rx_page, length, &prod); continue; } if (status & ALE_RD_IPV4) ale_rxcsum(sc, m, status); #if NVLAN > 0 if (status & ALE_RD_VLAN) { uint32_t vtags = ALE_RX_VLAN(letoh32(rs->vtags)); m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags); m->m_flags |= M_VLANTAG; } #endif #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* Pass it to upper layer. */ ether_input_mbuf(ifp, m); ale_rx_update_page(sc, &rx_page, length, &prod); } return 0; } void ale_tick(void *xsc) { struct ale_softc *sc = xsc; struct mii_data *mii = &sc->sc_miibus; int s; s = splnet(); mii_tick(mii); ale_stats_update(sc); timeout_add_sec(&sc->ale_tick_ch, 1); splx(s); } void ale_reset(struct ale_softc *sc) { uint32_t reg; int i; /* Initialize PCIe module. From Linux. */ CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000); CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET); for (i = ALE_RESET_TIMEOUT; i > 0; i--) { DELAY(10); if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0) break; } if (i == 0) printf("%s: master reset timeout!\n", sc->sc_dev.dv_xname); for (i = ALE_RESET_TIMEOUT; i > 0; i--) { if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0) break; DELAY(10); } if (i == 0) printf("%s: reset timeout(0x%08x)!\n", sc->sc_dev.dv_xname, reg); } int ale_init(struct ifnet *ifp) { struct ale_softc *sc = ifp->if_softc; struct mii_data *mii; uint8_t eaddr[ETHER_ADDR_LEN]; bus_addr_t paddr; uint32_t reg, rxf_hi, rxf_lo; /* * Cancel any pending I/O. */ ale_stop(sc); /* * Reset the chip to a known state. */ ale_reset(sc); /* Initialize Tx descriptors, DMA memory blocks. */ ale_init_rx_pages(sc); ale_init_tx_ring(sc); /* Reprogram the station address. */ bcopy(LLADDR(ifp->if_sadl), eaddr, ETHER_ADDR_LEN); CSR_WRITE_4(sc, ALE_PAR0, eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]); CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]); /* * Clear WOL status and disable all WOL feature as WOL * would interfere Rx operation under normal environments. */ CSR_READ_4(sc, ALE_WOL_CFG); CSR_WRITE_4(sc, ALE_WOL_CFG, 0); /* * Set Tx descriptor/RXF0/CMB base addresses. They share * the same high address part of DMAable region. */ paddr = sc->ale_cdata.ale_tx_ring_paddr; CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr)); CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr)); CSR_WRITE_4(sc, ALE_TPD_CNT, (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK); /* Set Rx page base address, note we use single queue. */ paddr = sc->ale_cdata.ale_rx_page[0].page_paddr; CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr)); paddr = sc->ale_cdata.ale_rx_page[1].page_paddr; CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr)); /* Set Tx/Rx CMB addresses. */ paddr = sc->ale_cdata.ale_tx_cmb_paddr; CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr)); paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr; CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr)); paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr; CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr)); /* Mark RXF0 is valid. */ CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID); CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID); /* * No need to initialize RFX1/RXF2/RXF3. We don't use * multi-queue yet. */ /* Set Rx page size, excluding guard frame size. */ CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ); /* Tell hardware that we're ready to load DMA blocks. */ CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD); /* Set Rx/Tx interrupt trigger threshold. */ CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) | (4 << INT_TRIG_TX_THRESH_SHIFT)); /* * XXX * Set interrupt trigger timer, its purpose and relation * with interrupt moderation mechanism is not clear yet. */ CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER, ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) | (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT))); /* Configure interrupt moderation timer. */ sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT; sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT; reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT; reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT; CSR_WRITE_4(sc, ALE_IM_TIMER, reg); reg = CSR_READ_4(sc, ALE_MASTER_CFG); reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK); reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB); if (ALE_USECS(sc->ale_int_rx_mod) != 0) reg |= MASTER_IM_RX_TIMER_ENB; if (ALE_USECS(sc->ale_int_tx_mod) != 0) reg |= MASTER_IM_TX_TIMER_ENB; CSR_WRITE_4(sc, ALE_MASTER_CFG, reg); CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000)); /* Set Maximum frame size of controller. */ if (ifp->if_mtu < ETHERMTU) sc->ale_max_frame_size = ETHERMTU; else sc->ale_max_frame_size = ifp->if_mtu; sc->ale_max_frame_size += ETHER_HDR_LEN + EVL_ENCAPLEN + ETHER_CRC_LEN; CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size); /* Configure IPG/IFG parameters. */ CSR_WRITE_4(sc, ALE_IPG_IFG_CFG, ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) | ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) | ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) | ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK)); /* Set parameters for half-duplex media. */ CSR_WRITE_4(sc, ALE_HDPX_CFG, ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) & HDPX_CFG_LCOL_MASK) | ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) & HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN | ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) & HDPX_CFG_ABEBT_MASK) | ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) & HDPX_CFG_JAMIPG_MASK)); /* Configure Tx jumbo frame parameters. */ if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { if (ifp->if_mtu < ETHERMTU) reg = sc->ale_max_frame_size; else if (ifp->if_mtu < 6 * 1024) reg = (sc->ale_max_frame_size * 2) / 3; else reg = sc->ale_max_frame_size / 2; CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH, roundup(reg, TX_JUMBO_THRESH_UNIT) >> TX_JUMBO_THRESH_UNIT_SHIFT); } /* Configure TxQ. */ reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT)) << TXQ_CFG_TX_FIFO_BURST_SHIFT; reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) & TXQ_CFG_TPD_BURST_MASK; CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB); /* Configure Rx jumbo frame & flow control parameters. */ if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) { reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT); CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH, (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) << RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) | ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) & RX_JUMBO_LKAH_MASK)); reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN); rxf_hi = (reg * 7) / 10; rxf_lo = (reg * 3)/ 10; CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH, ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) & RX_FIFO_PAUSE_THRESH_LO_MASK) | ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) & RX_FIFO_PAUSE_THRESH_HI_MASK)); } /* Disable RSS. */ CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0); CSR_WRITE_4(sc, ALE_RSS_CPU, 0); /* Configure RxQ. */ CSR_WRITE_4(sc, ALE_RXQ_CFG, RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB); /* Configure DMA parameters. */ reg = 0; if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) reg |= DMA_CFG_TXCMB_ENB; CSR_WRITE_4(sc, ALE_DMA_CFG, DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 | sc->ale_dma_rd_burst | reg | sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB | ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) & DMA_CFG_RD_DELAY_CNT_MASK) | ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) & DMA_CFG_WR_DELAY_CNT_MASK)); /* * Hardware can be configured to issue SMB interrupt based * on programmed interval. Since there is a callout that is * invoked for every hz in driver we use that instead of * relying on periodic SMB interrupt. */ CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0)); /* Clear MAC statistics. */ ale_stats_clear(sc); /* * Configure Tx/Rx MACs. * - Auto-padding for short frames. * - Enable CRC generation. * Actual reconfiguration of MAC for resolved speed/duplex * is followed after detection of link establishment. * AR81xx always does checksum computation regardless of * MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will * cause Rx handling issue for fragmented IP datagrams due * to silicon bug. */ reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX | ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) & MAC_CFG_PREAMBLE_MASK); if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0) reg |= MAC_CFG_SPEED_10_100; else reg |= MAC_CFG_SPEED_1000; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); /* Set up the receive filter. */ ale_iff(sc); ale_rxvlan(sc); /* Acknowledge all pending interrupts and clear it. */ CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS); CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); CSR_WRITE_4(sc, ALE_INTR_STATUS, 0); sc->ale_flags &= ~ALE_FLAG_LINK; /* Switch to the current media. */ mii = &sc->sc_miibus; mii_mediachg(mii); timeout_add_sec(&sc->ale_tick_ch, 1); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; return 0; } void ale_stop(struct ale_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ale_txdesc *txd; uint32_t reg; int i; /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; timeout_del(&sc->ale_tick_ch); sc->ale_flags &= ~ALE_FLAG_LINK; ale_stats_update(sc); /* Disable interrupts. */ CSR_WRITE_4(sc, ALE_INTR_MASK, 0); CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); /* Disable queue processing and DMA. */ reg = CSR_READ_4(sc, ALE_TXQ_CFG); reg &= ~TXQ_CFG_ENB; CSR_WRITE_4(sc, ALE_TXQ_CFG, reg); reg = CSR_READ_4(sc, ALE_RXQ_CFG); reg &= ~RXQ_CFG_ENB; CSR_WRITE_4(sc, ALE_RXQ_CFG, reg); reg = CSR_READ_4(sc, ALE_DMA_CFG); reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB); CSR_WRITE_4(sc, ALE_DMA_CFG, reg); DELAY(1000); /* Stop Rx/Tx MACs. */ ale_stop_mac(sc); /* Disable interrupts again? XXX */ CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF); /* * Free TX mbufs still in the queues. */ for (i = 0; i < ALE_TX_RING_CNT; i++) { txd = &sc->ale_cdata.ale_txdesc[i]; if (txd->tx_m != NULL) { bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap); m_freem(txd->tx_m); txd->tx_m = NULL; } } } void ale_stop_mac(struct ale_softc *sc) { uint32_t reg; int i; reg = CSR_READ_4(sc, ALE_MAC_CFG); if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) { reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); } for (i = ALE_TIMEOUT; i > 0; i--) { reg = CSR_READ_4(sc, ALE_IDLE_STATUS); if (reg == 0) break; DELAY(10); } if (i == 0) printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n", sc->sc_dev.dv_xname, reg); } void ale_init_tx_ring(struct ale_softc *sc) { struct ale_txdesc *txd; int i; sc->ale_cdata.ale_tx_prod = 0; sc->ale_cdata.ale_tx_cons = 0; sc->ale_cdata.ale_tx_cnt = 0; bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ); bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ); for (i = 0; i < ALE_TX_RING_CNT; i++) { txd = &sc->ale_cdata.ale_txdesc[i]; txd->tx_m = NULL; } *sc->ale_cdata.ale_tx_cmb = 0; bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0, sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0, sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE); } void ale_init_rx_pages(struct ale_softc *sc) { struct ale_rx_page *rx_page; int i; sc->ale_cdata.ale_rx_seqno = 0; sc->ale_cdata.ale_rx_curp = 0; for (i = 0; i < ALE_RX_PAGES; i++) { rx_page = &sc->ale_cdata.ale_rx_page[i]; bzero(rx_page->page_addr, sc->ale_pagesize); bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ); rx_page->cons = 0; *rx_page->cmb_addr = 0; bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0, rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0, rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE); } } void ale_rxvlan(struct ale_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; uint32_t reg; reg = CSR_READ_4(sc, ALE_MAC_CFG); reg &= ~MAC_CFG_VLAN_TAG_STRIP; if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) reg |= MAC_CFG_VLAN_TAG_STRIP; CSR_WRITE_4(sc, ALE_MAC_CFG, reg); } void ale_iff(struct ale_softc *sc) { struct arpcom *ac = &sc->sc_arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; uint32_t crc; uint32_t mchash[2]; uint32_t rxcfg; rxcfg = CSR_READ_4(sc, ALE_MAC_CFG); rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept broadcast frames. */ rxcfg |= MAC_CFG_BCAST; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) rxcfg |= MAC_CFG_PROMISC; else rxcfg |= MAC_CFG_ALLMULTI; mchash[0] = mchash[1] = 0xFFFFFFFF; } else { /* Program new filter. */ bzero(mchash, sizeof(mchash)); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f); ETHER_NEXT_MULTI(step, enm); } } CSR_WRITE_4(sc, ALE_MAR0, mchash[0]); CSR_WRITE_4(sc, ALE_MAR1, mchash[1]); CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg); }