/* $OpenBSD: if_bce.c,v 1.46 2015/06/24 09:40:54 mpi Exp $ */ /* $NetBSD: if_bce.c,v 1.3 2003/09/29 01:53:02 mrg Exp $ */ /* * Copyright (c) 2003 Clifford Wright. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Broadcom BCM440x 10/100 ethernet (broadcom.com) * SiliconBackplane is technology from Sonics, Inc.(sonicsinc.com) * * Cliff Wright cliff@snipe444.org */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include /* ring descriptor */ struct bce_dma_slot { u_int32_t ctrl; u_int32_t addr; }; #define CTRL_BC_MASK 0x1fff /* buffer byte count */ #define CTRL_EOT 0x10000000 /* end of descriptor table */ #define CTRL_IOC 0x20000000 /* interrupt on completion */ #define CTRL_EOF 0x40000000 /* end of frame */ #define CTRL_SOF 0x80000000 /* start of frame */ #define BCE_RXBUF_LEN (MCLBYTES - 4) /* Packet status is returned in a pre-packet header */ struct rx_pph { u_int16_t len; u_int16_t flags; u_int16_t pad[12]; }; #define BCE_PREPKT_HEADER_SIZE 30 /* packet status flags bits */ #define RXF_NO 0x8 /* odd number of nibbles */ #define RXF_RXER 0x4 /* receive symbol error */ #define RXF_CRC 0x2 /* crc error */ #define RXF_OV 0x1 /* fifo overflow */ /* number of descriptors used in a ring */ #define BCE_NRXDESC 64 #define BCE_NTXDESC 64 #define BCE_TIMEOUT 100 /* # 10us for mii read/write */ struct bce_softc { struct device bce_dev; bus_space_tag_t bce_btag; bus_space_handle_t bce_bhandle; bus_dma_tag_t bce_dmatag; struct arpcom bce_ac; /* interface info */ void *bce_intrhand; struct pci_attach_args bce_pa; struct mii_data bce_mii; u_int32_t bce_phy; /* eeprom indicated phy */ struct bce_dma_slot *bce_rx_ring; /* receive ring */ struct bce_dma_slot *bce_tx_ring; /* transmit ring */ caddr_t bce_data; bus_dmamap_t bce_ring_map; bus_dmamap_t bce_rxdata_map; bus_dmamap_t bce_txdata_map; u_int32_t bce_intmask; /* current intr mask */ u_int32_t bce_rxin; /* last rx descriptor seen */ u_int32_t bce_txin; /* last tx descriptor seen */ int bce_txsfree; /* no. tx slots available */ int bce_txsnext; /* next available tx slot */ struct timeout bce_timeout; }; int bce_probe(struct device *, void *, void *); void bce_attach(struct device *, struct device *, void *); int bce_activate(struct device *, int); int bce_ioctl(struct ifnet *, u_long, caddr_t); void bce_start(struct ifnet *); void bce_watchdog(struct ifnet *); int bce_intr(void *); void bce_rxintr(struct bce_softc *); void bce_txintr(struct bce_softc *); int bce_init(struct ifnet *); void bce_add_mac(struct bce_softc *, u_int8_t *, unsigned long); void bce_add_rxbuf(struct bce_softc *, int); void bce_stop(struct ifnet *); void bce_reset(struct bce_softc *); void bce_iff(struct ifnet *); int bce_mii_read(struct device *, int, int); void bce_mii_write(struct device *, int, int, int); void bce_statchg(struct device *); int bce_mediachange(struct ifnet *); void bce_mediastatus(struct ifnet *, struct ifmediareq *); void bce_tick(void *); #ifdef BCE_DEBUG #define DPRINTF(x) do { \ if (bcedebug) \ printf x; \ } while (/* CONSTCOND */ 0) #define DPRINTFN(n,x) do { \ if (bcedebug >= (n)) \ printf x; \ } while (/* CONSTCOND */ 0) int bcedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif struct cfattach bce_ca = { sizeof(struct bce_softc), bce_probe, bce_attach, NULL, bce_activate }; struct cfdriver bce_cd = { NULL, "bce", DV_IFNET }; const struct pci_matchid bce_devices[] = { { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM4401 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM4401B0 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM4401B1 } }; int bce_probe(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, bce_devices, nitems(bce_devices))); } void bce_attach(struct device *parent, struct device *self, void *aux) { struct bce_softc *sc = (struct bce_softc *) self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; caddr_t kva; bus_dma_segment_t seg; int rseg; struct ifnet *ifp; pcireg_t memtype; bus_addr_t memaddr; bus_size_t memsize; int pmreg; pcireg_t pmode; int error; sc->bce_pa = *pa; sc->bce_dmatag = pa->pa_dmat; /* * Map control/status registers. */ memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BCE_PCI_BAR0); if (pci_mapreg_map(pa, BCE_PCI_BAR0, memtype, 0, &sc->bce_btag, &sc->bce_bhandle, &memaddr, &memsize, 0)) { printf(": unable to find mem space\n"); return; } /* Get it out of power save mode if needed. */ if (pci_get_capability(pc, pa->pa_tag, PCI_CAP_PWRMGMT, &pmreg, 0)) { pmode = pci_conf_read(pc, pa->pa_tag, pmreg + 4) & 0x3; if (pmode == 3) { /* * The card has lost all configuration data in * this state, so punt. */ printf(": unable to wake up from power state D3\n"); return; } if (pmode != 0) { printf(": waking up from power state D%d\n", pmode); pci_conf_write(pc, pa->pa_tag, pmreg + 4, 0); } } if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->bce_intrhand = pci_intr_establish(pc, ih, IPL_NET, bce_intr, sc, self->dv_xname); if (sc->bce_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } /* reset the chip */ bce_reset(sc); /* Create the data DMA region and maps. */ if ((sc->bce_data = (caddr_t)uvm_km_kmemalloc_pla(kernel_map, uvm.kernel_object, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES, 0, UVM_KMF_NOWAIT, 0, (paddr_t)(0x40000000 - 1), 0, 0, 1)) == NULL) { printf(": unable to alloc space for ring"); return; } /* create a dma map for the RX ring */ if ((error = bus_dmamap_create(sc->bce_dmatag, BCE_NRXDESC * MCLBYTES, 1, BCE_NRXDESC * MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->bce_rxdata_map))) { printf(": unable to create ring DMA map, error = %d\n", error); uvm_km_free(kernel_map, (vaddr_t)sc->bce_data, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES); return; } /* connect the ring space to the dma map */ if (bus_dmamap_load(sc->bce_dmatag, sc->bce_rxdata_map, sc->bce_data, BCE_NRXDESC * MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT)) { printf(": unable to load rx ring DMA map\n"); uvm_km_free(kernel_map, (vaddr_t)sc->bce_data, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_rxdata_map); return; } /* create a dma map for the TX ring */ if ((error = bus_dmamap_create(sc->bce_dmatag, BCE_NTXDESC * MCLBYTES, 1, BCE_NTXDESC * MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->bce_txdata_map))) { printf(": unable to create ring DMA map, error = %d\n", error); uvm_km_free(kernel_map, (vaddr_t)sc->bce_data, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_rxdata_map); return; } /* connect the ring space to the dma map */ if (bus_dmamap_load(sc->bce_dmatag, sc->bce_txdata_map, sc->bce_data + BCE_NRXDESC * MCLBYTES, BCE_NTXDESC * MCLBYTES, NULL, BUS_DMA_WRITE | BUS_DMA_NOWAIT)) { printf(": unable to load tx ring DMA map\n"); uvm_km_free(kernel_map, (vaddr_t)sc->bce_data, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_rxdata_map); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_txdata_map); return; } /* * Allocate DMA-safe memory for ring descriptors. * The receive, and transmit rings can not share the same * 4k space, however both are allocated at once here. */ /* * XXX PAGE_SIZE is wasteful; we only need 1KB + 1KB, but * due to the limition above. ?? */ if ((error = bus_dmamem_alloc_range(sc->bce_dmatag, 2 * PAGE_SIZE, PAGE_SIZE, 2 * PAGE_SIZE, &seg, 1, &rseg, BUS_DMA_NOWAIT, (bus_addr_t)0, (bus_addr_t)0x3fffffff))) { printf(": unable to alloc space for ring descriptors, " "error = %d\n", error); uvm_km_free(kernel_map, (vaddr_t)sc->bce_data, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_rxdata_map); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_txdata_map); return; } /* map ring space to kernel */ if ((error = bus_dmamem_map(sc->bce_dmatag, &seg, rseg, 2 * PAGE_SIZE, &kva, BUS_DMA_NOWAIT))) { printf(": unable to map DMA buffers, error = %d\n", error); uvm_km_free(kernel_map, (vaddr_t)sc->bce_data, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_rxdata_map); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_txdata_map); bus_dmamem_free(sc->bce_dmatag, &seg, rseg); return; } /* create a dma map for the ring */ if ((error = bus_dmamap_create(sc->bce_dmatag, 2 * PAGE_SIZE, 1, 2 * PAGE_SIZE, 0, BUS_DMA_NOWAIT, &sc->bce_ring_map))) { printf(": unable to create ring DMA map, error = %d\n", error); uvm_km_free(kernel_map, (vaddr_t)sc->bce_data, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_rxdata_map); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_txdata_map); bus_dmamem_free(sc->bce_dmatag, &seg, rseg); return; } /* connect the ring space to the dma map */ if (bus_dmamap_load(sc->bce_dmatag, sc->bce_ring_map, kva, 2 * PAGE_SIZE, NULL, BUS_DMA_NOWAIT)) { printf(": unable to load ring DMA map\n"); uvm_km_free(kernel_map, (vaddr_t)sc->bce_data, (BCE_NTXDESC + BCE_NRXDESC) * MCLBYTES); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_rxdata_map); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_txdata_map); bus_dmamap_destroy(sc->bce_dmatag, sc->bce_ring_map); bus_dmamem_free(sc->bce_dmatag, &seg, rseg); return; } /* save the ring space in softc */ sc->bce_rx_ring = (struct bce_dma_slot *)kva; sc->bce_tx_ring = (struct bce_dma_slot *)(kva + PAGE_SIZE); /* Set up ifnet structure */ ifp = &sc->bce_ac.ac_if; strlcpy(ifp->if_xname, sc->bce_dev.dv_xname, IF_NAMESIZE); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bce_ioctl; ifp->if_start = bce_start; ifp->if_watchdog = bce_watchdog; IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_VLAN_MTU; /* MAC address */ sc->bce_ac.ac_enaddr[0] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_ENET0); sc->bce_ac.ac_enaddr[1] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_ENET1); sc->bce_ac.ac_enaddr[2] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_ENET2); sc->bce_ac.ac_enaddr[3] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_ENET3); sc->bce_ac.ac_enaddr[4] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_ENET4); sc->bce_ac.ac_enaddr[5] = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_ENET5); printf(": %s, address %s\n", intrstr, ether_sprintf(sc->bce_ac.ac_enaddr)); /* Initialize our media structures and probe the MII. */ sc->bce_mii.mii_ifp = ifp; sc->bce_mii.mii_readreg = bce_mii_read; sc->bce_mii.mii_writereg = bce_mii_write; sc->bce_mii.mii_statchg = bce_statchg; ifmedia_init(&sc->bce_mii.mii_media, 0, bce_mediachange, bce_mediastatus); mii_attach(&sc->bce_dev, &sc->bce_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->bce_mii.mii_phys) == NULL) { ifmedia_add(&sc->bce_mii.mii_media, IFM_ETHER | IFM_NONE, 0, NULL); ifmedia_set(&sc->bce_mii.mii_media, IFM_ETHER | IFM_NONE); } else ifmedia_set(&sc->bce_mii.mii_media, IFM_ETHER | IFM_AUTO); /* get the phy */ sc->bce_phy = bus_space_read_1(sc->bce_btag, sc->bce_bhandle, BCE_PHY) & 0x1f; /* * Enable activity led. * XXX This should be in a phy driver, but not currently. */ bce_mii_write((struct device *) sc, 1, 26, /* MAGIC */ bce_mii_read((struct device *) sc, 1, 26) & 0x7fff); /* MAGIC */ /* enable traffic meter led mode */ bce_mii_write((struct device *) sc, 1, 27, /* MAGIC */ bce_mii_read((struct device *) sc, 1, 27) | (1 << 6)); /* MAGIC */ /* Attach the interface */ if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->bce_timeout, bce_tick, sc); } int bce_activate(struct device *self, int act) { struct bce_softc *sc = (struct bce_softc *)self; struct ifnet *ifp = &sc->bce_ac.ac_if; switch (act) { case DVACT_SUSPEND: if (ifp->if_flags & IFF_RUNNING) bce_stop(ifp); break; case DVACT_RESUME: if (ifp->if_flags & IFF_UP) { bce_init(ifp); bce_start(ifp); } break; } return (0); } /* handle media, and ethernet requests */ int bce_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct bce_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) bce_init(ifp); if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc->bce_ac, ifa); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else bce_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) bce_stop(ifp); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->bce_mii.mii_media, cmd); break; default: error = ether_ioctl(ifp, &sc->bce_ac, cmd, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) bce_iff(ifp); error = 0; } splx(s); return error; } /* Start packet transmission on the interface. */ void bce_start(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; struct mbuf *m0; u_int32_t ctrl; int txstart; int txsfree; int newpkts = 0; /* * do not start another if currently transmitting, and more * descriptors(tx slots) are needed for next packet. */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; /* determine number of descriptors available */ if (sc->bce_txsnext >= sc->bce_txin) txsfree = BCE_NTXDESC - 1 + sc->bce_txin - sc->bce_txsnext; else txsfree = sc->bce_txin - sc->bce_txsnext - 1; /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ while (txsfree > 0) { /* Grab a packet off the queue. */ IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; /* * copy mbuf chain into DMA memory buffer. */ m_copydata(m0, 0, m0->m_pkthdr.len, sc->bce_data + (sc->bce_txsnext + BCE_NRXDESC) * MCLBYTES); ctrl = m0->m_pkthdr.len & CTRL_BC_MASK; ctrl |= CTRL_SOF | CTRL_EOF | CTRL_IOC; /* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 /* Pass the packet to any BPF listeners. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif /* mbuf no longer needed */ m_freem(m0); /* Sync the data DMA map. */ bus_dmamap_sync(sc->bce_dmatag, sc->bce_txdata_map, sc->bce_txsnext * MCLBYTES, MCLBYTES, BUS_DMASYNC_PREWRITE); /* Initialize the transmit descriptor(s). */ txstart = sc->bce_txsnext; if (sc->bce_txsnext == BCE_NTXDESC - 1) ctrl |= CTRL_EOT; sc->bce_tx_ring[sc->bce_txsnext].ctrl = htole32(ctrl); sc->bce_tx_ring[sc->bce_txsnext].addr = htole32(sc->bce_txdata_map->dm_segs[0].ds_addr + sc->bce_txsnext * MCLBYTES + 0x40000000); /* MAGIC */ if (sc->bce_txsnext + 1 > BCE_NTXDESC - 1) sc->bce_txsnext = 0; else sc->bce_txsnext++; txsfree--; /* sync descriptors being used */ bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map, sizeof(struct bce_dma_slot) * txstart + PAGE_SIZE, sizeof(struct bce_dma_slot), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* Give the packet to the chip. */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_DPTR, sc->bce_txsnext * sizeof(struct bce_dma_slot)); newpkts++; } if (txsfree == 0) { /* No more slots left; notify upper layer. */ ifp->if_flags |= IFF_OACTIVE; } if (newpkts) { /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } /* Watchdog timer handler. */ void bce_watchdog(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; printf("%s: device timeout\n", sc->bce_dev.dv_xname); ifp->if_oerrors++; (void) bce_init(ifp); /* Try to get more packets going. */ bce_start(ifp); } int bce_intr(void *xsc) { struct bce_softc *sc; struct ifnet *ifp; u_int32_t intstatus; int wantinit; int handled = 0; sc = xsc; ifp = &sc->bce_ac.ac_if; for (wantinit = 0; wantinit == 0;) { intstatus = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_STS); /* ignore if not ours, or unsolicited interrupts */ intstatus &= sc->bce_intmask; if (intstatus == 0) break; handled = 1; /* Ack interrupt */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_STS, intstatus); /* Receive interrupts. */ if (intstatus & I_RI) bce_rxintr(sc); /* Transmit interrupts. */ if (intstatus & I_XI) bce_txintr(sc); /* Error interrupts */ if (intstatus & ~(I_RI | I_XI)) { if (intstatus & I_XU) printf("%s: transmit fifo underflow\n", sc->bce_dev.dv_xname); if (intstatus & I_RO) { printf("%s: receive fifo overflow\n", sc->bce_dev.dv_xname); ifp->if_ierrors++; } if (intstatus & I_RU) printf("%s: receive descriptor underflow\n", sc->bce_dev.dv_xname); if (intstatus & I_DE) printf("%s: descriptor protocol error\n", sc->bce_dev.dv_xname); if (intstatus & I_PD) printf("%s: data error\n", sc->bce_dev.dv_xname); if (intstatus & I_PC) printf("%s: descriptor error\n", sc->bce_dev.dv_xname); if (intstatus & I_TO) printf("%s: general purpose timeout\n", sc->bce_dev.dv_xname); wantinit = 1; } } if (handled) { if (wantinit) bce_init(ifp); /* Try to get more packets going. */ bce_start(ifp); } return (handled); } /* Receive interrupt handler */ void bce_rxintr(struct bce_softc *sc) { struct ifnet *ifp = &sc->bce_ac.ac_if; struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct rx_pph *pph; struct mbuf *m; int curr; int len; int i; /* get pointer to active receive slot */ curr = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS) & RS_CD_MASK; curr = curr / sizeof(struct bce_dma_slot); if (curr >= BCE_NRXDESC) curr = BCE_NRXDESC - 1; /* process packets up to but not current packet being worked on */ for (i = sc->bce_rxin; i != curr; i = (i + 1) % BCE_NRXDESC) { /* complete any post dma memory ops on packet */ bus_dmamap_sync(sc->bce_dmatag, sc->bce_rxdata_map, i * MCLBYTES, MCLBYTES, BUS_DMASYNC_POSTREAD); /* * If the packet had an error, simply recycle the buffer, * resetting the len, and flags. */ pph = (struct rx_pph *)(sc->bce_data + i * MCLBYTES); if (pph->flags & (RXF_NO | RXF_RXER | RXF_CRC | RXF_OV)) { ifp->if_ierrors++; pph->len = 0; pph->flags = 0; continue; } /* receive the packet */ len = pph->len; if (len == 0) continue; /* no packet if empty */ pph->len = 0; pph->flags = 0; /* * The chip includes the CRC with every packet. Trim * it off here. */ len -= ETHER_CRC_LEN; m = m_devget(sc->bce_data + i * MCLBYTES + BCE_PREPKT_HEADER_SIZE, len, ETHER_ALIGN); ml_enqueue(&ml, m); /* re-check current in case it changed */ curr = (bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS) & RS_CD_MASK) / sizeof(struct bce_dma_slot); if (curr >= BCE_NRXDESC) curr = BCE_NRXDESC - 1; } if_input(ifp, &ml); sc->bce_rxin = curr; } /* Transmit interrupt handler */ void bce_txintr(struct bce_softc *sc) { struct ifnet *ifp = &sc->bce_ac.ac_if; int curr; int i; ifp->if_flags &= ~IFF_OACTIVE; /* * Go through the Tx list and free mbufs for those * frames which have been transmitted. */ curr = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXSTATUS) & RS_CD_MASK; curr = curr / sizeof(struct bce_dma_slot); if (curr >= BCE_NTXDESC) curr = BCE_NTXDESC - 1; for (i = sc->bce_txin; i != curr; i = (i + 1) % BCE_NTXDESC) { /* do any post dma memory ops on transmit data */ bus_dmamap_sync(sc->bce_dmatag, sc->bce_txdata_map, i * MCLBYTES, MCLBYTES, BUS_DMASYNC_POSTWRITE); ifp->if_opackets++; } sc->bce_txin = curr; /* * If there are no more pending transmissions, cancel the watchdog * timer */ if (sc->bce_txsnext == sc->bce_txin) ifp->if_timer = 0; } /* initialize the interface */ int bce_init(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; u_int32_t reg_win; int i; /* Cancel any pending I/O. */ bce_stop(ifp); /* enable pci inerrupts, bursts, and prefetch */ /* remap the pci registers to the Sonics config registers */ /* save the current map, so it can be restored */ reg_win = pci_conf_read(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN); /* set register window to Sonics registers */ pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN, BCE_SONICS_WIN); /* enable SB to PCI interrupt */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC) | SBIV_ENET0); /* enable prefetch and bursts for sonics-to-pci translation 2 */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2) | SBTOPCI_PREF | SBTOPCI_BURST); /* restore to ethernet register space */ pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN, reg_win); /* Reset the chip to a known state. */ bce_reset(sc); /* Initialize transmit descriptors */ memset(sc->bce_tx_ring, 0, BCE_NTXDESC * sizeof(struct bce_dma_slot)); sc->bce_txsnext = 0; sc->bce_txin = 0; /* enable crc32 generation and set proper LED modes */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL) | BCE_EMC_CRC32_ENAB | BCE_EMC_LED); /* reset or clear powerdown control bit */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MACCTL) & ~BCE_EMC_PDOWN); /* setup DMA interrupt control */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMAI_CTL, 1 << 24); /* MAGIC */ /* program promiscuous mode and multicast filters */ bce_iff(ifp); /* set max frame length, account for possible VLAN tag */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_MAX, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_MAX, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN); /* set tx watermark */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_WATER, 56); /* enable transmit */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, XC_XE); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXADDR, sc->bce_ring_map->dm_segs[0].ds_addr + PAGE_SIZE + 0x40000000); /* MAGIC */ /* * Give the receive ring to the chip, and * start the receive DMA engine. */ sc->bce_rxin = 0; /* clear the rx descriptor ring */ memset(sc->bce_rx_ring, 0, BCE_NRXDESC * sizeof(struct bce_dma_slot)); /* enable receive */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXCTL, BCE_PREPKT_HEADER_SIZE << 1 | XC_XE); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXADDR, sc->bce_ring_map->dm_segs[0].ds_addr + 0x40000000); /* MAGIC */ /* Initialize receive descriptors */ for (i = 0; i < BCE_NRXDESC; i++) bce_add_rxbuf(sc, i); /* Enable interrupts */ sc->bce_intmask = I_XI | I_RI | I_XU | I_RO | I_RU | I_DE | I_PD | I_PC | I_TO; bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_MASK, sc->bce_intmask); /* start the receive dma */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXDPTR, BCE_NRXDESC * sizeof(struct bce_dma_slot)); /* set media */ mii_mediachg(&sc->bce_mii); /* turn on the ethernet mac */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL) | EC_EE); /* start timer */ timeout_add_sec(&sc->bce_timeout, 1); /* mark as running, and no outputs active */ ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; return 0; } /* add a mac address to packet filter */ void bce_add_mac(struct bce_softc *sc, u_int8_t *mac, unsigned long idx) { int i; u_int32_t rval; bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_LOW, mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5]); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_HI, mac[0] << 8 | mac[1] | 0x10000); /* MAGIC */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL, idx << 16 | 8); /* MAGIC */ /* wait for write to complete */ for (i = 0; i < 100; i++) { rval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL); if (!(rval & 0x80000000)) /* MAGIC */ break; delay(10); } if (i == 100) { printf("%s: timed out writing pkt filter ctl\n", sc->bce_dev.dv_xname); } } /* Add a receive buffer to the indiciated descriptor. */ void bce_add_rxbuf(struct bce_softc *sc, int idx) { struct bce_dma_slot *bced = &sc->bce_rx_ring[idx]; bus_dmamap_sync(sc->bce_dmatag, sc->bce_rxdata_map, idx * MCLBYTES, MCLBYTES, BUS_DMASYNC_PREREAD); *(u_int32_t *)(sc->bce_data + idx * MCLBYTES) = 0; bced->addr = htole32(sc->bce_rxdata_map->dm_segs[0].ds_addr + idx * MCLBYTES + 0x40000000); if (idx != (BCE_NRXDESC - 1)) bced->ctrl = htole32(BCE_RXBUF_LEN); else bced->ctrl = htole32(BCE_RXBUF_LEN | CTRL_EOT); bus_dmamap_sync(sc->bce_dmatag, sc->bce_ring_map, sizeof(struct bce_dma_slot) * idx, sizeof(struct bce_dma_slot), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } /* Stop transmission on the interface */ void bce_stop(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; int i; u_int32_t val; /* Stop the 1 second timer */ timeout_del(&sc->bce_timeout); /* Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; /* Down the MII. */ mii_down(&sc->bce_mii); /* Disable interrupts. */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_INT_MASK, 0); sc->bce_intmask = 0; delay(10); /* Disable emac */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_ED); for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL); if (!(val & EC_ED)) break; delay(10); } /* Stop the DMA */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXCTL, 0); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, 0); delay(10); } /* reset the chip */ void bce_reset(struct bce_softc *sc) { u_int32_t val; u_int32_t sbval; int i; /* if SB core is up */ sbval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); if ((sbval & (SBTML_RESET | SBTML_REJ | SBTML_CLK)) == SBTML_CLK) { bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMAI_CTL, 0); /* disable emac */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_ED); for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL); if (!(val & EC_ED)) break; delay(10); } if (i == 200) printf("%s: timed out disabling ethernet mac\n", sc->bce_dev.dv_xname); /* reset the dma engines */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_TXCTL, 0); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS); /* if error on receive, wait to go idle */ if (val & RS_ERROR) { for (i = 0; i < 100; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS); if (val & RS_DMA_IDLE) break; delay(10); } if (i == 100) printf("%s: receive dma did not go idle after" " error\n", sc->bce_dev.dv_xname); } bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DMA_RXSTATUS, 0); /* reset ethernet mac */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_ES); for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL); if (!(val & EC_ES)) break; delay(10); } if (i == 200) printf("%s: timed out resetting ethernet mac\n", sc->bce_dev.dv_xname); } else { u_int32_t reg_win; /* remap the pci registers to the Sonics config registers */ /* save the current map, so it can be restored */ reg_win = pci_conf_read(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN); /* set register window to Sonics registers */ pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN, BCE_SONICS_WIN); /* enable SB to PCI interrupt */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBINTVEC) | SBIV_ENET0); /* enable prefetch and bursts for sonics-to-pci translation 2 */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SPCI_TR2) | SBTOPCI_PREF | SBTOPCI_BURST); /* restore to ethernet register space */ pci_conf_write(sc->bce_pa.pa_pc, sc->bce_pa.pa_tag, BCE_REG_WIN, reg_win); } /* disable SB core if not in reset */ if (!(sbval & SBTML_RESET)) { /* set the reject bit */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_REJ | SBTML_CLK); for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); if (val & SBTML_REJ) break; delay(1); } if (i == 200) printf("%s: while resetting core, reject did not set\n", sc->bce_dev.dv_xname); /* wait until busy is clear */ for (i = 0; i < 200; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATEHI); if (!(val & 0x4)) break; delay(1); } if (i == 200) printf("%s: while resetting core, busy did not clear\n", sc->bce_dev.dv_xname); /* set reset and reject while enabling the clocks */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_FGC | SBTML_CLK | SBTML_REJ | SBTML_RESET); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); delay(10); bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_REJ | SBTML_RESET); delay(1); } /* enable clock */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_FGC | SBTML_CLK | SBTML_RESET); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); delay(1); /* clear any error bits that may be on */ val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATEHI); if (val & 1) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATEHI, 0); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBIMSTATE); if (val & SBIM_ERRORBITS) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBIMSTATE, val & ~SBIM_ERRORBITS); /* clear reset and allow it to propagate throughout the core */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_FGC | SBTML_CLK); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); delay(1); /* leave clock enabled */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW, SBTML_CLK); val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_SBTMSTATELOW); delay(1); /* initialize MDC preamble, frequency */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_CTL, 0x8d); /* MAGIC */ /* enable phy, differs for internal, and external */ val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_DEVCTL); if (!(val & BCE_DC_IP)) { /* select external phy */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_ENET_CTL, EC_EP); } else if (val & BCE_DC_ER) { /* internal, clear reset bit if on */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_DEVCTL, val & ~BCE_DC_ER); delay(100); } } /* Set up the receive filter. */ void bce_iff(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; struct arpcom *ac = &sc->bce_ac; u_int32_t rxctl; rxctl = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL); rxctl &= ~(ERC_AM | ERC_DB | ERC_PE); ifp->if_flags |= IFF_ALLMULTI; /* disable the filter */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL, 0); /* add our own address */ bce_add_mac(sc, ac->ac_enaddr, 0); if (ifp->if_flags & IFF_PROMISC || ac->ac_multicnt > 0) { ifp->if_flags |= IFF_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) rxctl |= ERC_PE; else rxctl |= ERC_AM; } bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_RX_CTL, rxctl); /* enable the filter */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL, bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_FILT_CTL) | 1); } /* Read a PHY register on the MII. */ int bce_mii_read(struct device *self, int phy, int reg) { struct bce_softc *sc = (struct bce_softc *) self; int i; u_int32_t val; /* clear mii_int */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS, BCE_MIINTR); /* Read the PHY register */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM, (MII_COMMAND_READ << 28) | (MII_COMMAND_START << 30) | /* MAGIC */ (MII_COMMAND_ACK << 16) | BCE_MIPHY(phy) | BCE_MIREG(reg)); /* MAGIC */ for (i = 0; i < BCE_TIMEOUT; i++) { val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS); if (val & BCE_MIINTR) break; delay(10); } val = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM); if (i == BCE_TIMEOUT) { printf("%s: PHY read timed out reading phy %d, reg %d, val = " "0x%08x\n", sc->bce_dev.dv_xname, phy, reg, val); return (0); } return (val & BCE_MICOMM_DATA); } /* Write a PHY register on the MII */ void bce_mii_write(struct device *self, int phy, int reg, int val) { struct bce_softc *sc = (struct bce_softc *) self; int i; u_int32_t rval; /* clear mii_int */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS, BCE_MIINTR); /* Write the PHY register */ bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM, (MII_COMMAND_WRITE << 28) | (MII_COMMAND_START << 30) | /* MAGIC */ (MII_COMMAND_ACK << 16) | (val & BCE_MICOMM_DATA) | /* MAGIC */ BCE_MIPHY(phy) | BCE_MIREG(reg)); /* wait for write to complete */ for (i = 0; i < BCE_TIMEOUT; i++) { rval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_STS); if (rval & BCE_MIINTR) break; delay(10); } rval = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_MI_COMM); if (i == BCE_TIMEOUT) { printf("%s: PHY timed out writing phy %d, reg %d, val " "= 0x%08x\n", sc->bce_dev.dv_xname, phy, reg, val); } } /* sync hardware duplex mode to software state */ void bce_statchg(struct device *self) { struct bce_softc *sc = (struct bce_softc *) self; u_int32_t reg; /* if needed, change register to match duplex mode */ reg = bus_space_read_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL); if (sc->bce_mii.mii_media_active & IFM_FDX && !(reg & EXC_FD)) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL, reg | EXC_FD); else if (!(sc->bce_mii.mii_media_active & IFM_FDX) && reg & EXC_FD) bus_space_write_4(sc->bce_btag, sc->bce_bhandle, BCE_TX_CTL, reg & ~EXC_FD); /* * Enable activity led. * XXX This should be in a phy driver, but not currently. */ bce_mii_write((struct device *) sc, 1, 26, /* MAGIC */ bce_mii_read((struct device *) sc, 1, 26) & 0x7fff); /* MAGIC */ /* enable traffic meter led mode */ bce_mii_write((struct device *) sc, 1, 26, /* MAGIC */ bce_mii_read((struct device *) sc, 1, 27) | (1 << 6)); /* MAGIC */ } /* Set hardware to newly-selected media */ int bce_mediachange(struct ifnet *ifp) { struct bce_softc *sc = ifp->if_softc; if (ifp->if_flags & IFF_UP) mii_mediachg(&sc->bce_mii); return (0); } /* Get the current interface media status */ void bce_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bce_softc *sc = ifp->if_softc; mii_pollstat(&sc->bce_mii); ifmr->ifm_active = sc->bce_mii.mii_media_active; ifmr->ifm_status = sc->bce_mii.mii_media_status; } /* One second timer, checks link status */ void bce_tick(void *v) { struct bce_softc *sc = v; int s; s = splnet(); mii_tick(&sc->bce_mii); splx(s); timeout_add_sec(&sc->bce_timeout, 1); }