/* $OpenBSD: if_bge.c,v 1.392 2020/07/26 17:44:15 kettenis Exp $ */ /* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_bge.c,v 1.25 2002/11/14 23:54:49 sam Exp $ */ /* * Broadcom BCM57xx/BCM590x family ethernet driver for OpenBSD. * * Written by Bill Paul * Senior Engineer, Wind River Systems */ /* * The Broadcom BCM5700 is based on technology originally developed by * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet * MAC chips. The BCM5700, sometimes referred to as the Tigon III, has * two on-board MIPS R4000 CPUs and can have as much as 16MB of external * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo * frames, highly configurable RX filtering, and 16 RX and TX queues * (which, along with RX filter rules, can be used for QOS applications). * Other features, such as TCP segmentation, may be available as part * of value-added firmware updates. Unlike the Tigon I and Tigon II, * firmware images can be stored in hardware and need not be compiled * into the driver. * * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus. * * The BCM5701 is a single-chip solution incorporating both the BCM5700 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 * does not support external SSRAM. * * Broadcom also produces a variation of the BCM5700 under the "Altima" * brand name, which is functionally similar but lacks PCI-X support. * * Without external SSRAM, you can only have at most 4 TX rings, * and the use of the mini RX ring is disabled. This seems to imply * that these features are simply not available on the BCM5701. As a * result, this driver does not implement any support for the mini RX * ring. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #ifdef __sparc64__ #include #include #endif #include #include #include #include #include #include #include #include #define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */ const struct bge_revision * bge_lookup_rev(u_int32_t); int bge_can_use_msi(struct bge_softc *); int bge_probe(struct device *, void *, void *); void bge_attach(struct device *, struct device *, void *); int bge_detach(struct device *, int); int bge_activate(struct device *, int); struct cfattach bge_ca = { sizeof(struct bge_softc), bge_probe, bge_attach, bge_detach, bge_activate }; struct cfdriver bge_cd = { NULL, "bge", DV_IFNET }; void bge_txeof(struct bge_softc *); void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *); void bge_rxeof(struct bge_softc *); void bge_tick(void *); void bge_stats_update(struct bge_softc *); void bge_stats_update_regs(struct bge_softc *); int bge_cksum_pad(struct mbuf *); int bge_encap(struct bge_softc *, struct mbuf *, int *); int bge_compact_dma_runt(struct mbuf *); int bge_intr(void *); void bge_start(struct ifqueue *); int bge_ioctl(struct ifnet *, u_long, caddr_t); int bge_rxrinfo(struct bge_softc *, struct if_rxrinfo *); void bge_init(void *); void bge_stop_block(struct bge_softc *, bus_size_t, u_int32_t); void bge_stop(struct bge_softc *, int); void bge_watchdog(struct ifnet *); int bge_ifmedia_upd(struct ifnet *); void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); u_int8_t bge_nvram_getbyte(struct bge_softc *, int, u_int8_t *); int bge_read_nvram(struct bge_softc *, caddr_t, int, int); u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *); int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); void bge_iff(struct bge_softc *); int bge_newbuf_jumbo(struct bge_softc *, int); int bge_init_rx_ring_jumbo(struct bge_softc *); void bge_fill_rx_ring_jumbo(struct bge_softc *); void bge_free_rx_ring_jumbo(struct bge_softc *); int bge_newbuf(struct bge_softc *, int); int bge_init_rx_ring_std(struct bge_softc *); void bge_rxtick(void *); void bge_fill_rx_ring_std(struct bge_softc *); void bge_free_rx_ring_std(struct bge_softc *); void bge_free_tx_ring(struct bge_softc *); int bge_init_tx_ring(struct bge_softc *); void bge_chipinit(struct bge_softc *); int bge_blockinit(struct bge_softc *); u_int32_t bge_dma_swap_options(struct bge_softc *); int bge_phy_addr(struct bge_softc *); u_int32_t bge_readmem_ind(struct bge_softc *, int); void bge_writemem_ind(struct bge_softc *, int, int); void bge_writereg_ind(struct bge_softc *, int, int); void bge_writembx(struct bge_softc *, int, int); int bge_miibus_readreg(struct device *, int, int); void bge_miibus_writereg(struct device *, int, int, int); void bge_miibus_statchg(struct device *); #define BGE_RESET_SHUTDOWN 0 #define BGE_RESET_START 1 #define BGE_RESET_SUSPEND 2 void bge_sig_post_reset(struct bge_softc *, int); void bge_sig_legacy(struct bge_softc *, int); void bge_sig_pre_reset(struct bge_softc *, int); void bge_stop_fw(struct bge_softc *, int); void bge_reset(struct bge_softc *); void bge_link_upd(struct bge_softc *); void bge_ape_lock_init(struct bge_softc *); void bge_ape_read_fw_ver(struct bge_softc *); int bge_ape_lock(struct bge_softc *, int); void bge_ape_unlock(struct bge_softc *, int); void bge_ape_send_event(struct bge_softc *, uint32_t); void bge_ape_driver_state_change(struct bge_softc *, int); #ifdef BGE_DEBUG #define DPRINTF(x) do { if (bgedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (bgedebug >= (n)) printf x; } while (0) int bgedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* * Various supported device vendors/types and their names. Note: the * spec seems to indicate that the hardware still has Alteon's vendor * ID burned into it, though it will always be overridden by the vendor * ID in the EEPROM. Just to be safe, we cover all possibilities. */ const struct pci_matchid bge_devices[] = { { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700 }, { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701 }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000 }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001 }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1003 }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100 }, { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703_ALT }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5717C }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5718 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5719 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5723 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5725 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5727 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761E }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5761SE }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5762 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5764 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5784 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5785G }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57760 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57761 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57762 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57764 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57765 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57766 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57767 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57780 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57781 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57782 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57785 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57786 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57787 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57788 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57790 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57791 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM57795 }, { PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PW008GE4 }, { PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PW008GE5 }, { PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PP250_450_LAN }, { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9D21 }, { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996 } }; #define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE) #define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY) #define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS) #define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY) #define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_575X_PLUS) #define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS) #define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_5717_PLUS) #define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_57765_PLUS) static const struct bge_revision { u_int32_t br_chipid; const char *br_name; } bge_revisions[] = { { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, /* the 5702 and 5703 share the same ASIC ID */ { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" }, { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" }, { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" }, { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" }, { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" }, { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" }, { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" }, { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" }, { BGE_CHIPID_BCM5719_A1, "BCM5719 A1" }, { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" }, { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" }, { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" }, { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" }, { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" }, { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" }, { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" }, /* the 5754 and 5787 share the same ASIC ID */ { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" }, { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" }, { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" }, { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" }, { 0, NULL } }; /* * Some defaults for major revisions, so that newer steppings * that we don't know about have a shot at working. */ static const struct bge_revision bge_majorrevs[] = { { BGE_ASICREV_BCM5700, "unknown BCM5700" }, { BGE_ASICREV_BCM5701, "unknown BCM5701" }, /* 5702 and 5703 share the same ASIC ID */ { BGE_ASICREV_BCM5703, "unknown BCM5703" }, { BGE_ASICREV_BCM5704, "unknown BCM5704" }, { BGE_ASICREV_BCM5705, "unknown BCM5705" }, { BGE_ASICREV_BCM5750, "unknown BCM5750" }, { BGE_ASICREV_BCM5714, "unknown BCM5714" }, { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, { BGE_ASICREV_BCM5752, "unknown BCM5752" }, { BGE_ASICREV_BCM5780, "unknown BCM5780" }, { BGE_ASICREV_BCM5755, "unknown BCM5755" }, { BGE_ASICREV_BCM5761, "unknown BCM5761" }, { BGE_ASICREV_BCM5784, "unknown BCM5784" }, { BGE_ASICREV_BCM5785, "unknown BCM5785" }, /* 5754 and 5787 share the same ASIC ID */ { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, { BGE_ASICREV_BCM5906, "unknown BCM5906" }, { BGE_ASICREV_BCM57765, "unknown BCM57765" }, { BGE_ASICREV_BCM57766, "unknown BCM57766" }, { BGE_ASICREV_BCM57780, "unknown BCM57780" }, { BGE_ASICREV_BCM5717, "unknown BCM5717" }, { BGE_ASICREV_BCM5719, "unknown BCM5719" }, { BGE_ASICREV_BCM5720, "unknown BCM5720" }, { BGE_ASICREV_BCM5762, "unknown BCM5762" }, { 0, NULL } }; u_int32_t bge_readmem_ind(struct bge_softc *sc, int off) { struct pci_attach_args *pa = &(sc->bge_pa); u_int32_t val; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) return (0); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off); val = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, 0); return (val); } void bge_writemem_ind(struct bge_softc *sc, int off, int val) { struct pci_attach_args *pa = &(sc->bge_pa); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4) return; pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, 0); } void bge_writereg_ind(struct bge_softc *sc, int off, int val) { struct pci_attach_args *pa = &(sc->bge_pa); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val); } void bge_writembx(struct bge_softc *sc, int off, int val) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; CSR_WRITE_4(sc, off, val); } /* * Clear all stale locks and select the lock for this driver instance. */ void bge_ape_lock_init(struct bge_softc *sc) { struct pci_attach_args *pa = &(sc->bge_pa); uint32_t bit, regbase; int i; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) regbase = BGE_APE_LOCK_GRANT; else regbase = BGE_APE_PER_LOCK_GRANT; /* Clear any stale locks. */ for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) { switch (i) { case BGE_APE_LOCK_PHY0: case BGE_APE_LOCK_PHY1: case BGE_APE_LOCK_PHY2: case BGE_APE_LOCK_PHY3: bit = BGE_APE_LOCK_GRANT_DRIVER0; break; default: if (pa->pa_function == 0) bit = BGE_APE_LOCK_GRANT_DRIVER0; else bit = (1 << pa->pa_function); } APE_WRITE_4(sc, regbase + 4 * i, bit); } /* Select the PHY lock based on the device's function number. */ switch (pa->pa_function) { case 0: sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0; break; case 1: sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1; break; case 2: sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2; break; case 3: sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3; break; default: printf("%s: PHY lock not supported on function %d\n", sc->bge_dev.dv_xname, pa->pa_function); break; } } /* * Check for APE firmware, set flags, and print version info. */ void bge_ape_read_fw_ver(struct bge_softc *sc) { const char *fwtype; uint32_t apedata, features; /* Check for a valid APE signature in shared memory. */ apedata = APE_READ_4(sc, BGE_APE_SEG_SIG); if (apedata != BGE_APE_SEG_SIG_MAGIC) { sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE; return; } /* Check if APE firmware is running. */ apedata = APE_READ_4(sc, BGE_APE_FW_STATUS); if ((apedata & BGE_APE_FW_STATUS_READY) == 0) { printf("%s: APE signature found but FW status not ready! " "0x%08x\n", sc->bge_dev.dv_xname, apedata); return; } sc->bge_mfw_flags |= BGE_MFW_ON_APE; /* Fetch the APE firwmare type and version. */ apedata = APE_READ_4(sc, BGE_APE_FW_VERSION); features = APE_READ_4(sc, BGE_APE_FW_FEATURES); if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) { sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI; fwtype = "NCSI"; } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) { sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH; fwtype = "DASH"; } else fwtype = "UNKN"; /* Print the APE firmware version. */ printf(", APE firmware %s %d.%d.%d.%d", fwtype, (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT, (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT, (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT, (apedata & BGE_APE_FW_VERSION_BLDMSK)); } int bge_ape_lock(struct bge_softc *sc, int locknum) { struct pci_attach_args *pa = &(sc->bge_pa); uint32_t bit, gnt, req, status; int i, off; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) return (0); /* Lock request/grant registers have different bases. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) { req = BGE_APE_LOCK_REQ; gnt = BGE_APE_LOCK_GRANT; } else { req = BGE_APE_PER_LOCK_REQ; gnt = BGE_APE_PER_LOCK_GRANT; } off = 4 * locknum; switch (locknum) { case BGE_APE_LOCK_GPIO: /* Lock required when using GPIO. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) return (0); if (pa->pa_function == 0) bit = BGE_APE_LOCK_REQ_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_GRC: /* Lock required to reset the device. */ if (pa->pa_function == 0) bit = BGE_APE_LOCK_REQ_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_MEM: /* Lock required when accessing certain APE memory. */ if (pa->pa_function == 0) bit = BGE_APE_LOCK_REQ_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_PHY0: case BGE_APE_LOCK_PHY1: case BGE_APE_LOCK_PHY2: case BGE_APE_LOCK_PHY3: /* Lock required when accessing PHYs. */ bit = BGE_APE_LOCK_REQ_DRIVER0; break; default: return (EINVAL); } /* Request a lock. */ APE_WRITE_4(sc, req + off, bit); /* Wait up to 1 second to acquire lock. */ for (i = 0; i < 20000; i++) { status = APE_READ_4(sc, gnt + off); if (status == bit) break; DELAY(50); } /* Handle any errors. */ if (status != bit) { printf("%s: APE lock %d request failed! " "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n", sc->bge_dev.dv_xname, locknum, req + off, bit & 0xFFFF, gnt + off, status & 0xFFFF); /* Revoke the lock request. */ APE_WRITE_4(sc, gnt + off, bit); return (EBUSY); } return (0); } void bge_ape_unlock(struct bge_softc *sc, int locknum) { struct pci_attach_args *pa = &(sc->bge_pa); uint32_t bit, gnt; int off; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) return; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) gnt = BGE_APE_LOCK_GRANT; else gnt = BGE_APE_PER_LOCK_GRANT; off = 4 * locknum; switch (locknum) { case BGE_APE_LOCK_GPIO: if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) return; if (pa->pa_function == 0) bit = BGE_APE_LOCK_GRANT_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_GRC: if (pa->pa_function == 0) bit = BGE_APE_LOCK_GRANT_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_MEM: if (pa->pa_function == 0) bit = BGE_APE_LOCK_GRANT_DRIVER0; else bit = (1 << pa->pa_function); break; case BGE_APE_LOCK_PHY0: case BGE_APE_LOCK_PHY1: case BGE_APE_LOCK_PHY2: case BGE_APE_LOCK_PHY3: bit = BGE_APE_LOCK_GRANT_DRIVER0; break; default: return; } APE_WRITE_4(sc, gnt + off, bit); } /* * Send an event to the APE firmware. */ void bge_ape_send_event(struct bge_softc *sc, uint32_t event) { uint32_t apedata; int i; /* NCSI does not support APE events. */ if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) return; /* Wait up to 1ms for APE to service previous event. */ for (i = 10; i > 0; i--) { if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0) break; apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS); if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) { APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event | BGE_APE_EVENT_STATUS_EVENT_PENDING); bge_ape_unlock(sc, BGE_APE_LOCK_MEM); APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1); break; } bge_ape_unlock(sc, BGE_APE_LOCK_MEM); DELAY(100); } if (i == 0) { printf("%s: APE event 0x%08x send timed out\n", sc->bge_dev.dv_xname, event); } } void bge_ape_driver_state_change(struct bge_softc *sc, int kind) { uint32_t apedata, event; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0) return; switch (kind) { case BGE_RESET_START: /* If this is the first load, clear the load counter. */ apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG); if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC) APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0); else { apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT); APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata); } APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG, BGE_APE_HOST_SEG_SIG_MAGIC); APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN, BGE_APE_HOST_SEG_LEN_MAGIC); /* Add some version info if bge(4) supports it. */ APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID, BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0)); APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR, BGE_APE_HOST_BEHAV_NO_PHYLOCK); APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS, BGE_APE_HOST_HEARTBEAT_INT_DISABLE); APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, BGE_APE_HOST_DRVR_STATE_START); event = BGE_APE_EVENT_STATUS_STATE_START; break; case BGE_RESET_SHUTDOWN: APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE, BGE_APE_HOST_DRVR_STATE_UNLOAD); event = BGE_APE_EVENT_STATUS_STATE_UNLOAD; break; case BGE_RESET_SUSPEND: event = BGE_APE_EVENT_STATUS_STATE_SUSPEND; break; default: return; } bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT | BGE_APE_EVENT_STATUS_STATE_CHNGE); } u_int8_t bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest) { u_int32_t access, byte = 0; int i; /* Lock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); for (i = 0; i < 8000; i++) { if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) break; DELAY(20); } if (i == 8000) return (1); /* Enable access. */ access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); for (i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { DELAY(10); break; } } if (i == BGE_TIMEOUT * 10) { printf("%s: nvram read timed out\n", sc->bge_dev.dv_xname); return (1); } /* Get result. */ byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); *dest = (swap32(byte) >> ((addr % 4) * 8)) & 0xFF; /* Disable access. */ CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); /* Unlock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); CSR_READ_4(sc, BGE_NVRAM_SWARB); return (0); } /* * Read a sequence of bytes from NVRAM. */ int bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) { int err = 0, i; u_int8_t byte = 0; if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) return (1); for (i = 0; i < cnt; i++) { err = bge_nvram_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return (err ? 1 : 0); } /* * Read a byte of data stored in the EEPROM at address 'addr.' The * BCM570x supports both the traditional bitbang interface and an * auto access interface for reading the EEPROM. We use the auto * access method. */ u_int8_t bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest) { int i; u_int32_t byte = 0; /* * Enable use of auto EEPROM access so we can avoid * having to use the bitbang method. */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); /* Reset the EEPROM, load the clock period. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); DELAY(20); /* Issue the read EEPROM command. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); /* Wait for completion */ for(i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) break; } if (i == BGE_TIMEOUT * 10) { printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname); return (1); } /* Get result. */ byte = CSR_READ_4(sc, BGE_EE_DATA); *dest = (byte >> ((addr % 4) * 8)) & 0xFF; return (0); } /* * Read a sequence of bytes from the EEPROM. */ int bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) { int i, error = 0; u_int8_t byte = 0; for (i = 0; i < cnt; i++) { error = bge_eeprom_getbyte(sc, off + i, &byte); if (error) break; *(dest + i) = byte; } return (error ? 1 : 0); } int bge_miibus_readreg(struct device *dev, int phy, int reg) { struct bge_softc *sc = (struct bge_softc *)dev; u_int32_t val, autopoll; int i; if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) return (0); /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(80); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)); CSR_READ_4(sc, BGE_MI_COMM); /* force write */ for (i = 0; i < 200; i++) { delay(1); val = CSR_READ_4(sc, BGE_MI_COMM); if (!(val & BGE_MICOMM_BUSY)) break; delay(10); } if (i == 200) { printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname); val = 0; goto done; } val = CSR_READ_4(sc, BGE_MI_COMM); done: if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(80); } bge_ape_unlock(sc, sc->bge_phy_ape_lock); if (val & BGE_MICOMM_READFAIL) return (0); return (val & 0xFFFF); } void bge_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct bge_softc *sc = (struct bge_softc *)dev; u_int32_t autopoll; int i; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 && (reg == MII_100T2CR || reg == BRGPHY_MII_AUXCTL)) return; if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0) return; /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { DELAY(40); BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); /* 40 usec is supposed to be adequate */ } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)|val); CSR_READ_4(sc, BGE_MI_COMM); /* force write */ for (i = 0; i < 200; i++) { delay(1); if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) break; delay(10); } if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } bge_ape_unlock(sc, sc->bge_phy_ape_lock); if (i == 200) { printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname); } } void bge_miibus_statchg(struct device *dev) { struct bge_softc *sc = (struct bge_softc *)dev; struct mii_data *mii = &sc->bge_mii; u_int32_t mac_mode, rx_mode, tx_mode; /* * Get flow control negotiation result. */ if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK; if (!BGE_STS_BIT(sc, BGE_STS_LINK) && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) BGE_STS_SETBIT(sc, BGE_STS_LINK); else if (BGE_STS_BIT(sc, BGE_STS_LINK) && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) BGE_STS_CLRBIT(sc, BGE_STS_LINK); if (!BGE_STS_BIT(sc, BGE_STS_LINK)) return; /* Set the port mode (MII/GMII) to match the link speed. */ mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX); tx_mode = CSR_READ_4(sc, BGE_TX_MODE); rx_mode = CSR_READ_4(sc, BGE_RX_MODE); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) mac_mode |= BGE_PORTMODE_GMII; else mac_mode |= BGE_PORTMODE_MII; /* Set MAC flow control behavior to match link flow control settings. */ tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE; rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE; if (mii->mii_media_active & IFM_FDX) { if (sc->bge_flowflags & IFM_ETH_TXPAUSE) tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE; if (sc->bge_flowflags & IFM_ETH_RXPAUSE) rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE; } else mac_mode |= BGE_MACMODE_HALF_DUPLEX; CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode); DELAY(40); CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode); CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode); } /* * Intialize a standard receive ring descriptor. */ int bge_newbuf(struct bge_softc *sc, int i) { bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i]; struct bge_rx_bd *r = &sc->bge_rdata->bge_rx_std_ring[i]; struct mbuf *m; int error; m = MCLGETI(NULL, M_DONTWAIT, NULL, sc->bge_rx_std_len); if (!m) return (ENOBUFS); m->m_len = m->m_pkthdr.len = sc->bge_rx_std_len; if (!(sc->bge_flags & BGE_RX_ALIGNBUG)) m_adj(m, ETHER_ALIGN); error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmap, m, BUS_DMA_READ|BUS_DMA_NOWAIT); if (error) { m_freem(m); return (ENOBUFS); } bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize, BUS_DMASYNC_PREREAD); sc->bge_cdata.bge_rx_std_chain[i] = m; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_std_ring) + i * sizeof (struct bge_rx_bd), sizeof (struct bge_rx_bd), BUS_DMASYNC_POSTWRITE); BGE_HOSTADDR(r->bge_addr, dmap->dm_segs[0].ds_addr); r->bge_flags = BGE_RXBDFLAG_END; r->bge_len = m->m_len; r->bge_idx = i; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_std_ring) + i * sizeof (struct bge_rx_bd), sizeof (struct bge_rx_bd), BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize a Jumbo receive ring descriptor. */ int bge_newbuf_jumbo(struct bge_softc *sc, int i) { bus_dmamap_t dmap = sc->bge_cdata.bge_rx_jumbo_map[i]; struct bge_ext_rx_bd *r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; struct mbuf *m; int error; m = MCLGETI(NULL, M_DONTWAIT, NULL, BGE_JLEN); if (!m) return (ENOBUFS); m->m_len = m->m_pkthdr.len = BGE_JUMBO_FRAMELEN; if (!(sc->bge_flags & BGE_RX_ALIGNBUG)) m_adj(m, ETHER_ALIGN); error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmap, m, BUS_DMA_READ|BUS_DMA_NOWAIT); if (error) { m_freem(m); return (ENOBUFS); } bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize, BUS_DMASYNC_PREREAD); sc->bge_cdata.bge_rx_jumbo_chain[i] = m; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd), sizeof (struct bge_ext_rx_bd), BUS_DMASYNC_POSTWRITE); /* * Fill in the extended RX buffer descriptor. */ r->bge_bd.bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END; r->bge_bd.bge_idx = i; r->bge_len3 = r->bge_len2 = r->bge_len1 = 0; switch (dmap->dm_nsegs) { case 4: BGE_HOSTADDR(r->bge_addr3, dmap->dm_segs[3].ds_addr); r->bge_len3 = dmap->dm_segs[3].ds_len; /* FALLTHROUGH */ case 3: BGE_HOSTADDR(r->bge_addr2, dmap->dm_segs[2].ds_addr); r->bge_len2 = dmap->dm_segs[2].ds_len; /* FALLTHROUGH */ case 2: BGE_HOSTADDR(r->bge_addr1, dmap->dm_segs[1].ds_addr); r->bge_len1 = dmap->dm_segs[1].ds_len; /* FALLTHROUGH */ case 1: BGE_HOSTADDR(r->bge_bd.bge_addr, dmap->dm_segs[0].ds_addr); r->bge_bd.bge_len = dmap->dm_segs[0].ds_len; break; default: panic("%s: %d segments", __func__, dmap->dm_nsegs); } bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_jumbo_ring) + i * sizeof (struct bge_ext_rx_bd), sizeof (struct bge_ext_rx_bd), BUS_DMASYNC_PREWRITE); return (0); } int bge_init_rx_ring_std(struct bge_softc *sc) { int i; if (ISSET(sc->bge_flags, BGE_RXRING_VALID)) return (0); for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { if (bus_dmamap_create(sc->bge_dmatag, sc->bge_rx_std_len, 1, sc->bge_rx_std_len, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_rx_std_map[i]) != 0) { printf("%s: unable to create dmamap for slot %d\n", sc->bge_dev.dv_xname, i); goto uncreate; } bzero(&sc->bge_rdata->bge_rx_std_ring[i], sizeof(struct bge_rx_bd)); } sc->bge_std = BGE_STD_RX_RING_CNT - 1; /* lwm must be greater than the replenish threshold */ if_rxr_init(&sc->bge_std_ring, 17, BGE_STD_RX_RING_CNT); bge_fill_rx_ring_std(sc); SET(sc->bge_flags, BGE_RXRING_VALID); return (0); uncreate: while (--i) { bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_std_map[i]); } return (1); } /* * When the refill timeout for a ring is active, that ring is so empty * that no more packets can be received on it, so the interrupt handler * will not attempt to refill it, meaning we don't need to protect against * interrupts here. */ void bge_rxtick(void *arg) { struct bge_softc *sc = arg; if (ISSET(sc->bge_flags, BGE_RXRING_VALID) && if_rxr_inuse(&sc->bge_std_ring) <= 8) bge_fill_rx_ring_std(sc); } void bge_rxtick_jumbo(void *arg) { struct bge_softc *sc = arg; if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID) && if_rxr_inuse(&sc->bge_jumbo_ring) <= 8) bge_fill_rx_ring_jumbo(sc); } void bge_fill_rx_ring_std(struct bge_softc *sc) { int i; int post = 0; u_int slots; i = sc->bge_std; for (slots = if_rxr_get(&sc->bge_std_ring, BGE_STD_RX_RING_CNT); slots > 0; slots--) { BGE_INC(i, BGE_STD_RX_RING_CNT); if (bge_newbuf(sc, i) != 0) break; sc->bge_std = i; post = 1; } if_rxr_put(&sc->bge_std_ring, slots); if (post) bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); /* * bge always needs more than 8 packets on the ring. if we cant do * that now, then try again later. */ if (if_rxr_inuse(&sc->bge_std_ring) <= 8) timeout_add(&sc->bge_rxtimeout, 1); } void bge_free_rx_ring_std(struct bge_softc *sc) { bus_dmamap_t dmap; struct mbuf *m; int i; if (!ISSET(sc->bge_flags, BGE_RXRING_VALID)) return; for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { dmap = sc->bge_cdata.bge_rx_std_map[i]; m = sc->bge_cdata.bge_rx_std_chain[i]; if (m != NULL) { bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_dmatag, dmap); m_freem(m); sc->bge_cdata.bge_rx_std_chain[i] = NULL; } bus_dmamap_destroy(sc->bge_dmatag, dmap); sc->bge_cdata.bge_rx_std_map[i] = NULL; bzero(&sc->bge_rdata->bge_rx_std_ring[i], sizeof(struct bge_rx_bd)); } CLR(sc->bge_flags, BGE_RXRING_VALID); } int bge_init_rx_ring_jumbo(struct bge_softc *sc) { volatile struct bge_rcb *rcb; int i; if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)) return (0); for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (bus_dmamap_create(sc->bge_dmatag, BGE_JLEN, 4, BGE_JLEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->bge_cdata.bge_rx_jumbo_map[i]) != 0) { printf("%s: unable to create dmamap for slot %d\n", sc->bge_dev.dv_xname, i); goto uncreate; } bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i], sizeof(struct bge_ext_rx_bd)); } sc->bge_jumbo = BGE_JUMBO_RX_RING_CNT - 1; /* lwm must be greater than the replenish threshold */ if_rxr_init(&sc->bge_jumbo_ring, 17, BGE_JUMBO_RX_RING_CNT); bge_fill_rx_ring_jumbo(sc); SET(sc->bge_flags, BGE_JUMBO_RXRING_VALID); rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); return (0); uncreate: while (--i) { bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map[i]); } return (1); } void bge_fill_rx_ring_jumbo(struct bge_softc *sc) { int i; int post = 0; u_int slots; i = sc->bge_jumbo; for (slots = if_rxr_get(&sc->bge_jumbo_ring, BGE_JUMBO_RX_RING_CNT); slots > 0; slots--) { BGE_INC(i, BGE_JUMBO_RX_RING_CNT); if (bge_newbuf_jumbo(sc, i) != 0) break; sc->bge_jumbo = i; post = 1; } if_rxr_put(&sc->bge_jumbo_ring, slots); if (post) bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); /* * bge always needs more than 8 packets on the ring. if we cant do * that now, then try again later. */ if (if_rxr_inuse(&sc->bge_jumbo_ring) <= 8) timeout_add(&sc->bge_rxtimeout_jumbo, 1); } void bge_free_rx_ring_jumbo(struct bge_softc *sc) { bus_dmamap_t dmap; struct mbuf *m; int i; if (!ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)) return; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { dmap = sc->bge_cdata.bge_rx_jumbo_map[i]; m = sc->bge_cdata.bge_rx_jumbo_chain[i]; if (m != NULL) { bus_dmamap_sync(sc->bge_dmatag, dmap, 0, dmap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_dmatag, dmap); m_freem(m); sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; } bus_dmamap_destroy(sc->bge_dmatag, dmap); sc->bge_cdata.bge_rx_jumbo_map[i] = NULL; bzero(&sc->bge_rdata->bge_rx_jumbo_ring[i], sizeof(struct bge_ext_rx_bd)); } CLR(sc->bge_flags, BGE_JUMBO_RXRING_VALID); } void bge_free_tx_ring(struct bge_softc *sc) { int i; if (!(sc->bge_flags & BGE_TXRING_VALID)) return; for (i = 0; i < BGE_TX_RING_CNT; i++) { if (sc->bge_cdata.bge_tx_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_tx_chain[i]); sc->bge_cdata.bge_tx_chain[i] = NULL; sc->bge_cdata.bge_tx_map[i] = NULL; } bzero(&sc->bge_rdata->bge_tx_ring[i], sizeof(struct bge_tx_bd)); bus_dmamap_destroy(sc->bge_dmatag, sc->bge_txdma[i]); } sc->bge_flags &= ~BGE_TXRING_VALID; } int bge_init_tx_ring(struct bge_softc *sc) { int i; bus_size_t txsegsz, txmaxsegsz; if (sc->bge_flags & BGE_TXRING_VALID) return (0); sc->bge_txcnt = 0; sc->bge_tx_saved_considx = 0; /* Initialize transmit producer index for host-memory send ring. */ sc->bge_tx_prodidx = 0; bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); /* NIC-memory send ring not used; initialize to zero. */ bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); if (BGE_IS_JUMBO_CAPABLE(sc)) { txsegsz = 4096; txmaxsegsz = BGE_JLEN; } else { txsegsz = MCLBYTES; txmaxsegsz = MCLBYTES; } for (i = 0; i < BGE_TX_RING_CNT; i++) { if (bus_dmamap_create(sc->bge_dmatag, txmaxsegsz, BGE_NTXSEG, txsegsz, 0, BUS_DMA_NOWAIT, &sc->bge_txdma[i])) return (ENOBUFS); } sc->bge_flags |= BGE_TXRING_VALID; return (0); } void bge_iff(struct bge_softc *sc) { struct arpcom *ac = &sc->arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; u_int8_t hashes[16]; u_int32_t h, rxmode; /* First, zot all the existing filters. */ rxmode = CSR_READ_4(sc, BGE_RX_MODE) & ~BGE_RXMODE_RX_PROMISC; ifp->if_flags &= ~IFF_ALLMULTI; memset(hashes, 0x00, sizeof(hashes)); if (ifp->if_flags & IFF_PROMISC) { ifp->if_flags |= IFF_ALLMULTI; rxmode |= BGE_RXMODE_RX_PROMISC; } else if (ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; memset(hashes, 0xff, sizeof(hashes)); } else { ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); setbit(hashes, h & 0x7F); ETHER_NEXT_MULTI(step, enm); } } bus_space_write_raw_region_4(sc->bge_btag, sc->bge_bhandle, BGE_MAR0, hashes, sizeof(hashes)); CSR_WRITE_4(sc, BGE_RX_MODE, rxmode); } void bge_sig_pre_reset(struct bge_softc *sc, int type) { /* no bge_asf_mode. */ if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND) bge_ape_driver_state_change(sc, type); } void bge_sig_post_reset(struct bge_softc *sc, int type) { /* no bge_asf_mode. */ if (type == BGE_RESET_SHUTDOWN) bge_ape_driver_state_change(sc, type); } void bge_sig_legacy(struct bge_softc *sc, int type) { /* no bge_asf_mode. */ } void bge_stop_fw(struct bge_softc *sc, int type) { /* no bge_asf_mode. */ } u_int32_t bge_dma_swap_options(struct bge_softc *sc) { u_int32_t dma_options = BGE_DMA_SWAP_OPTIONS; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { dma_options |= BGE_MODECTL_BYTESWAP_B2HRX_DATA | BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE; } return (dma_options); } int bge_phy_addr(struct bge_softc *sc) { struct pci_attach_args *pa = &(sc->bge_pa); int phy_addr = 1; switch (BGE_ASICREV(sc->bge_chipid)) { case BGE_ASICREV_BCM5717: case BGE_ASICREV_BCM5719: case BGE_ASICREV_BCM5720: phy_addr = pa->pa_function; if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) { phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) & BGE_SGDIGSTS_IS_SERDES) ? 8 : 1; } else { phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) & BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1; } } return (phy_addr); } /* * Do endian, PCI and DMA initialization. */ void bge_chipinit(struct bge_softc *sc) { struct pci_attach_args *pa = &(sc->bge_pa); u_int32_t dma_rw_ctl, misc_ctl, mode_ctl; int i; /* Set endianness before we access any non-PCI registers. */ misc_ctl = BGE_INIT; if (sc->bge_flags & BGE_TAGGED_STATUS) misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS; pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL, misc_ctl); /* * Clear the MAC statistics block in the NIC's * internal memory. */ for (i = BGE_STATS_BLOCK; i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0); for (i = BGE_STATUS_BLOCK; i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) { /* * For the 57766 and non Ax versions of 57765, bootcode * needs to setup the PCIE Fast Training Sequence (FTS) * value to prevent transmit hangs. */ if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) { CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL, CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) | BGE_CPMU_PADRNG_CTL_RDIV2); } } /* * Set up the PCI DMA control register. */ dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); if (sc->bge_flags & BGE_PCIE) { if (sc->bge_mps >= 256) dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); else dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else if (sc->bge_flags & BGE_PCIX) { /* PCI-X bus */ if (BGE_IS_5714_FAMILY(sc)) { /* 256 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; else dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { /* 1536 bytes for read, 384 bytes for write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else { /* 384 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | (0x0F); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { u_int32_t tmp; /* Set ONEDMA_ATONCE for hardware workaround. */ tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; if (tmp == 6 || tmp == 7) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; /* Set PCI-X DMA write workaround. */ dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; } } else { /* Conventional PCI bus: 256 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750) dma_rw_ctl |= 0x0F; } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | BGE_PCIDMARWCTL_ASRT_ALL_BE; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; if (BGE_IS_5717_PLUS(sc)) { dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT; if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK; /* * Enable HW workaround for controllers that misinterpret * a status tag update and leave interrupts permanently * disabled. */ if (!BGE_IS_57765_PLUS(sc) && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762) dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA; } pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl); /* * Set up general mode register. */ mode_ctl = bge_dma_swap_options(sc); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { /* Retain Host-2-BMC settings written by APE firmware. */ mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) & (BGE_MODECTL_BYTESWAP_B2HRX_DATA | BGE_MODECTL_WORDSWAP_B2HRX_DATA | BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE); } mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS | BGE_MODECTL_TX_NO_PHDR_CSUM; /* * BCM5701 B5 have a bug causing data corruption when using * 64-bit DMA reads, which can be terminated early and then * completed later as 32-bit accesses, in combination with * certain bridges. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && sc->bge_chipid == BGE_CHIPID_BCM5701_B5) mode_ctl |= BGE_MODECTL_FORCE_PCI32; CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl); /* * Disable memory write invalidate. Apparently it is not supported * properly by these devices. */ PCI_CLRBIT(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, PCI_COMMAND_INVALIDATE_ENABLE); #ifdef __brokenalpha__ /* * Must ensure that we do not cross an 8K (bytes) boundary * for DMA reads. Our highest limit is 1K bytes. This is a * restriction on some ALPHA platforms with early revision * 21174 PCI chipsets, such as the AlphaPC 164lx */ PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024); #endif /* Set the timer prescaler (always 66MHz) */ CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { DELAY(40); /* XXX */ /* Put PHY into ready state */ BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ); CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */ DELAY(40); } } int bge_blockinit(struct bge_softc *sc) { volatile struct bge_rcb *rcb; vaddr_t rcb_addr; bge_hostaddr taddr; u_int32_t dmactl, rdmareg, mimode, val; int i, limit; /* * Initialize the memory window pointer register so that * we can access the first 32K of internal NIC RAM. This will * allow us to set up the TX send ring RCBs and the RX return * ring RCBs, plus other things which live in NIC memory. */ CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); /* Configure mbuf memory pool */ if (!BGE_IS_5705_PLUS(sc)) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); else CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); /* Configure DMA resource pool */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); } /* Configure mbuf pool watermarks */ /* new Broadcom docs strongly recommend these: */ if (BGE_IS_5717_PLUS(sc)) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0); } else if (BGE_IS_5705_PLUS(sc)) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } /* Configure DMA resource watermarks */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); /* Enable buffer manager */ val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN; /* * Change the arbitration algorithm of TXMBUF read request to * round-robin instead of priority based for BCM5719. When * TXFIFO is almost empty, RDMA will hold its request until * TXFIFO is not almost empty. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) val |= BGE_BMANMODE_NO_TX_UNDERRUN; CSR_WRITE_4(sc, BGE_BMAN_MODE, val); /* Poll for buffer manager start indication */ for (i = 0; i < 2000; i++) { if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) break; DELAY(10); } if (i == 2000) { printf("%s: buffer manager failed to start\n", sc->bge_dev.dv_xname); return (ENXIO); } /* Enable flow-through queues */ CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); /* Wait until queue initialization is complete */ for (i = 0; i < 2000; i++) { if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) break; DELAY(10); } if (i == 2000) { printf("%s: flow-through queue init failed\n", sc->bge_dev.dv_xname); return (ENXIO); } /* * Summary of rings supported by the controller: * * Standard Receive Producer Ring * - This ring is used to feed receive buffers for "standard" * sized frames (typically 1536 bytes) to the controller. * * Jumbo Receive Producer Ring * - This ring is used to feed receive buffers for jumbo sized * frames (i.e. anything bigger than the "standard" frames) * to the controller. * * Mini Receive Producer Ring * - This ring is used to feed receive buffers for "mini" * sized frames to the controller. * - This feature required external memory for the controller * but was never used in a production system. Should always * be disabled. * * Receive Return Ring * - After the controller has placed an incoming frame into a * receive buffer that buffer is moved into a receive return * ring. The driver is then responsible to passing the * buffer up to the stack. Many versions of the controller * support multiple RR rings. * * Send Ring * - This ring is used for outgoing frames. Many versions of * the controller support multiple send rings. */ /* Initialize the standard RX ring control block */ rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring)); if (BGE_IS_5717_PLUS(sc)) { /* * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32) * Bits 15-2 : Maximum RX frame size * Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled * Bit 0 : Reserved */ rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, ETHER_MAX_DIX_LEN << 2); } else if (BGE_IS_5705_PLUS(sc)) { /* * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32) * Bits 15-2 : Reserved (should be 0) * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled * Bit 0 : Reserved */ rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); } else { /* * Ring size is always XXX entries * Bits 31-16: Maximum RX frame size * Bits 15-2 : Reserved (should be 0) * Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled * Bit 0 : Reserved */ rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(ETHER_MAX_DIX_LEN, 0); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717; else rcb->bge_nicaddr = BGE_STD_RX_RINGS; /* Write the standard receive producer ring control block. */ CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); /* Reset the standard receive producer ring producer index. */ bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); /* * Initialize the Jumbo RX ring control block * We set the 'ring disabled' bit in the flags * field until we're actually ready to start * using this ring (i.e. once we set the MTU * high enough to require it). */ if (sc->bge_flags & BGE_JUMBO_RING) { rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring)); rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717; else rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); /* Program the jumbo receive producer ring RCB parameters. */ CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); /* Reset the jumbo receive producer ring producer index. */ bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); } /* Disable the mini receive producer ring RCB. */ if (BGE_IS_5700_FAMILY(sc)) { /* Set up dummy disabled mini ring RCB */ rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); /* Reset the mini receive producer ring producer index. */ bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); /* XXX why? */ bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 || sc->bge_chipid == BGE_CHIPID_BCM5906_A1 || sc->bge_chipid == BGE_CHIPID_BCM5906_A2) CSR_WRITE_4(sc, BGE_ISO_PKT_TX, (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2); } /* * The BD ring replenish thresholds control how often the * hardware fetches new BD's from the producer rings in host * memory. Setting the value too low on a busy system can * starve the hardware and recue the throughpout. * * Set the BD ring replenish thresholds. The recommended * values are 1/8th the number of descriptors allocated to * each ring, but since we try to avoid filling the entire * ring we set these to the minimal value of 8. This needs to * be done on several of the supported chip revisions anyway, * to work around HW bugs. */ CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8); if (sc->bge_flags & BGE_JUMBO_RING) CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8); if (BGE_IS_5717_PLUS(sc)) { CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4); CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4); } /* * Disable all send rings by setting the 'ring disabled' bit * in the flags field of all the TX send ring control blocks, * located in NIC memory. */ if (BGE_IS_5700_FAMILY(sc)) { /* 5700 to 5704 had 16 send rings. */ limit = BGE_TX_RINGS_EXTSSRAM_MAX; } else if (BGE_IS_57765_PLUS(sc) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) limit = 2; else if (BGE_IS_5717_PLUS(sc)) limit = 4; else limit = 1; rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; for (i = 0; i < limit; i++) { RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); rcb_addr += sizeof(struct bge_rcb); } /* Configure send ring RCB 0 (we use only the first ring) */ rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring)); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717); else RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); /* * Disable all receive return rings by setting the * 'ring diabled' bit in the flags field of all the receive * return ring control blocks, located in NIC memory. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { /* Should be 17, use 16 until we get an SRAM map. */ limit = 16; } else if (BGE_IS_5700_FAMILY(sc)) limit = BGE_RX_RINGS_MAX; else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 || BGE_IS_57765_PLUS(sc)) limit = 4; else limit = 1; /* Disable all receive return rings */ rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; for (i = 0; i < limit; i++) { RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0); RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); bge_writembx(sc, BGE_MBX_RX_CONS0_LO + (i * (sizeof(u_int64_t))), 0); rcb_addr += sizeof(struct bge_rcb); } /* * Set up receive return ring 0. Note that the NIC address * for RX return rings is 0x0. The return rings live entirely * within the host, so the nicaddr field in the RCB isn't used. */ rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring)); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000); RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); /* Set random backoff seed for TX */ CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, (sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5]) & BGE_TX_BACKOFF_SEED_MASK); /* Set inter-packet gap */ val = 0x2620; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) val |= CSR_READ_4(sc, BGE_TX_LENGTHS) & (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK); CSR_WRITE_4(sc, BGE_TX_LENGTHS, val); /* * Specify which ring to use for packets that don't match * any RX rules. */ CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); /* * Configure number of RX lists. One interrupt distribution * list, sixteen active lists, one bad frames class. */ CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); /* Inialize RX list placement stats mask. */ CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007BFFFF); CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); /* Disable host coalescing until we get it set up */ CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); /* Poll to make sure it's shut down. */ for (i = 0; i < 2000; i++) { if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) break; DELAY(10); } if (i == 2000) { printf("%s: host coalescing engine failed to idle\n", sc->bge_dev.dv_xname); return (ENXIO); } /* Set up host coalescing defaults */ CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); if (!(BGE_IS_5705_PLUS(sc))) { CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); } CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); /* Set up address of statistics block */ if (!(BGE_IS_5705_PLUS(sc))) { BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats)); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); } /* Set up address of status block */ BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block)); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo); sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; /* Set up status block size. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 && sc->bge_chipid != BGE_CHIPID_BCM5700_C0) { val = BGE_STATBLKSZ_FULL; bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ); } else { val = BGE_STATBLKSZ_32BYTE; bzero(&sc->bge_rdata->bge_status_block, 32); } /* Turn on host coalescing state machine */ CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE); /* Turn on RX BD completion state machine and enable attentions */ CSR_WRITE_4(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); /* Turn on RX list placement state machine */ CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); /* Turn on RX list selector state machine. */ if (!(BGE_IS_5705_PLUS(sc))) CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB; if (sc->bge_flags & BGE_FIBER_TBI) val |= BGE_PORTMODE_TBI; else if (sc->bge_flags & BGE_FIBER_MII) val |= BGE_PORTMODE_GMII; else val |= BGE_PORTMODE_MII; /* Allow APE to send/receive frames. */ if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; /* Turn on DMA, clear stats */ CSR_WRITE_4(sc, BGE_MAC_MODE, val); DELAY(40); /* Set misc. local control, enable interrupts on attentions */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); #ifdef notdef /* Assert GPIO pins for PHY reset */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); #endif /* Turn on DMA completion state machine */ if (!(BGE_IS_5705_PLUS(sc))) CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS; /* Enable host coalescing bug fix. */ if (BGE_IS_5755_PLUS(sc)) val |= BGE_WDMAMODE_STATUS_TAG_FIX; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) val |= BGE_WDMAMODE_BURST_ALL_DATA; /* Turn on write DMA state machine */ CSR_WRITE_4(sc, BGE_WDMA_MODE, val); DELAY(40); val = BGE_RDMAMODE_ENABLE|BGE_RDMAMODE_ALL_ATTNS; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717) val |= BGE_RDMAMODE_MULT_DMA_RD_DIS; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN | BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN | BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN; if (sc->bge_flags & BGE_PCIE) val |= BGE_RDMAMODE_FIFO_LONG_BURST; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { val |= CSR_READ_4(sc, BGE_RDMA_MODE) & BGE_RDMAMODE_H2BNC_VLAN_DET; /* * Allow multiple outstanding read requests from * non-LSO read DMA engine. */ val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS; } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 || BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) rdmareg = BGE_RDMA_RSRVCTRL_REG2; else rdmareg = BGE_RDMA_RSRVCTRL; dmactl = CSR_READ_4(sc, rdmareg); /* * Adjust tx margin to prevent TX data corruption and * fix internal FIFO overflow. */ if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK | BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK | BGE_RDMA_RSRVCTRL_TXMRGN_MASK); dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K | BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K | BGE_RDMA_RSRVCTRL_TXMRGN_320B; } /* * Enable fix for read DMA FIFO overruns. * The fix is to limit the number of RX BDs * the hardware would fetch at a fime. */ CSR_WRITE_4(sc, rdmareg, dmactl | BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) { CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { /* * Allow 4KB burst length reads for non-LSO frames. * Enable 512B burst length reads for buffer descriptors. */ CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2, CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K | BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K); } CSR_WRITE_4(sc, BGE_RDMA_MODE, val); DELAY(40); if (sc->bge_flags & BGE_RDMA_BUG) { for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) { val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4); if ((val & 0xFFFF) > ETHER_MAX_LEN) break; if (((val >> 16) & 0xFFFF) > ETHER_MAX_LEN) break; } if (i != BGE_NUM_RDMA_CHANNELS / 2) { val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) val |= BGE_RDMA_TX_LENGTH_WA_5719; else val |= BGE_RDMA_TX_LENGTH_WA_5720; CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); } } /* Turn on RX data completion state machine */ CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); /* Turn on RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); /* Turn on RX data and RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); /* Turn on Mbuf cluster free state machine */ if (!BGE_IS_5705_PLUS(sc)) CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); /* Turn on send BD completion state machine */ CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* Turn on send data completion state machine */ val = BGE_SDCMODE_ENABLE; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) val |= BGE_SDCMODE_CDELAY; CSR_WRITE_4(sc, BGE_SDC_MODE, val); /* Turn on send data initiator state machine */ CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); /* Turn on send BD initiator state machine */ CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); /* Turn on send BD selector state machine */ CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007BFFFF); CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); /* ack/clear link change events */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED | BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE | BGE_MACSTAT_LINK_CHANGED); /* Enable PHY auto polling (for MII/GMII only) */ if (sc->bge_flags & BGE_FIBER_TBI) { CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); } else { if ((sc->bge_flags & BGE_CPMU_PRESENT) != 0) mimode = BGE_MIMODE_500KHZ_CONST; else mimode = BGE_MIMODE_BASE; if (BGE_IS_5700_FAMILY(sc) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) { mimode |= BGE_MIMODE_AUTOPOLL; BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); } mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr); CSR_WRITE_4(sc, BGE_MI_MODE, mimode); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); } /* * Clear any pending link state attention. * Otherwise some link state change events may be lost until attention * is cleared by bge_intr() -> bge_link_upd() sequence. * It's not necessary on newer BCM chips - perhaps enabling link * state change attentions implies clearing pending attention. */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); /* Enable link state change attentions. */ BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); return (0); } const struct bge_revision * bge_lookup_rev(u_int32_t chipid) { const struct bge_revision *br; for (br = bge_revisions; br->br_name != NULL; br++) { if (br->br_chipid == chipid) return (br); } for (br = bge_majorrevs; br->br_name != NULL; br++) { if (br->br_chipid == BGE_ASICREV(chipid)) return (br); } return (NULL); } int bge_can_use_msi(struct bge_softc *sc) { int can_use_msi = 0; switch (BGE_ASICREV(sc->bge_chipid)) { case BGE_ASICREV_BCM5714_A0: case BGE_ASICREV_BCM5714: /* * Apparently, MSI doesn't work when these chips are * configured in single-port mode. */ break; case BGE_ASICREV_BCM5750: if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX && BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX) can_use_msi = 1; break; default: if (BGE_IS_575X_PLUS(sc)) can_use_msi = 1; } return (can_use_msi); } /* * Probe for a Broadcom chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. Note * that since the Broadcom controller contains VPD support, we * can get the device name string from the controller itself instead * of the compiled-in string. This is a little slow, but it guarantees * we'll always announce the right product name. */ int bge_probe(struct device *parent, void *match, void *aux) { return (pci_matchbyid(aux, bge_devices, nitems(bge_devices))); } void bge_attach(struct device *parent, struct device *self, void *aux) { struct bge_softc *sc = (struct bge_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; const struct bge_revision *br; pcireg_t pm_ctl, memtype, subid, reg; pci_intr_handle_t ih; const char *intrstr = NULL; int gotenaddr = 0; u_int32_t hwcfg = 0; u_int32_t mac_addr = 0; u_int32_t misccfg; struct ifnet *ifp; caddr_t kva; #ifdef __sparc64__ char name[32]; #endif sc->bge_pa = *pa; subid = pci_conf_read(pc, pa->pa_tag, PCI_SUBSYS_ID_REG); /* * Map control/status registers. */ DPRINTFN(5, ("Map control/status regs\n")); DPRINTFN(5, ("pci_mapreg_map\n")); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0); if (pci_mapreg_map(pa, BGE_PCI_BAR0, memtype, 0, &sc->bge_btag, &sc->bge_bhandle, NULL, &sc->bge_bsize, 0)) { printf(": can't find mem space\n"); return; } /* * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?) * can clobber the chip's PCI config-space power control registers, * leaving the card in D3 powersave state. * We do not have memory-mapped registers in this state, * so force device into D0 state before starting initialization. */ pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD); pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3); pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */ pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl); DELAY(1000); /* 27 usec is allegedly sufficent */ /* * Save ASIC rev. */ sc->bge_chipid = (pci_conf_read(pc, pa->pa_tag, BGE_PCI_MISC_CTL) >> BGE_PCIMISCCTL_ASICREV_SHIFT); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) { switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_BROADCOM_BCM5717: case PCI_PRODUCT_BROADCOM_BCM5718: case PCI_PRODUCT_BROADCOM_BCM5719: case PCI_PRODUCT_BROADCOM_BCM5720: case PCI_PRODUCT_BROADCOM_BCM5725: case PCI_PRODUCT_BROADCOM_BCM5727: case PCI_PRODUCT_BROADCOM_BCM5762: case PCI_PRODUCT_BROADCOM_BCM57764: case PCI_PRODUCT_BROADCOM_BCM57767: case PCI_PRODUCT_BROADCOM_BCM57787: sc->bge_chipid = pci_conf_read(pc, pa->pa_tag, BGE_PCI_GEN2_PRODID_ASICREV); break; case PCI_PRODUCT_BROADCOM_BCM57761: case PCI_PRODUCT_BROADCOM_BCM57762: case PCI_PRODUCT_BROADCOM_BCM57765: case PCI_PRODUCT_BROADCOM_BCM57766: case PCI_PRODUCT_BROADCOM_BCM57781: case PCI_PRODUCT_BROADCOM_BCM57782: case PCI_PRODUCT_BROADCOM_BCM57785: case PCI_PRODUCT_BROADCOM_BCM57786: case PCI_PRODUCT_BROADCOM_BCM57791: case PCI_PRODUCT_BROADCOM_BCM57795: sc->bge_chipid = pci_conf_read(pc, pa->pa_tag, BGE_PCI_GEN15_PRODID_ASICREV); break; default: sc->bge_chipid = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PRODID_ASICREV); break; } } sc->bge_phy_addr = bge_phy_addr(sc); printf(", "); br = bge_lookup_rev(sc->bge_chipid); if (br == NULL) printf("unknown ASIC (0x%x)", sc->bge_chipid); else printf("%s (0x%x)", br->br_name, sc->bge_chipid); /* * PCI Express or PCI-X controller check. */ if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &sc->bge_expcap, NULL) != 0) { /* Extract supported maximum payload size. */ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, sc->bge_expcap + PCI_PCIE_DCAP); sc->bge_mps = 128 << (reg & 0x7); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) sc->bge_expmrq = (fls(2048) - 8) << 12; else sc->bge_expmrq = (fls(4096) - 8) << 12; /* Disable PCIe Active State Power Management (ASPM). */ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, sc->bge_expcap + PCI_PCIE_LCSR); reg &= ~(PCI_PCIE_LCSR_ASPM_L0S | PCI_PCIE_LCSR_ASPM_L1); pci_conf_write(pa->pa_pc, pa->pa_tag, sc->bge_expcap + PCI_PCIE_LCSR, reg); sc->bge_flags |= BGE_PCIE; } else { if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) & BGE_PCISTATE_PCI_BUSMODE) == 0) sc->bge_flags |= BGE_PCIX; } /* * SEEPROM check. */ #ifdef __sparc64__ /* * Onboard interfaces on UltraSPARC systems generally don't * have a SEEPROM fitted. These interfaces, and cards that * have FCode, are named "network" by the PROM, whereas cards * without FCode show up as "ethernet". Since we don't really * need the information from the SEEPROM on cards that have * FCode it's fine to pretend they don't have one. */ if (OF_getprop(PCITAG_NODE(pa->pa_tag), "name", name, sizeof(name)) > 0 && strcmp(name, "network") == 0) sc->bge_flags |= BGE_NO_EEPROM; #endif /* Save chipset family. */ switch (BGE_ASICREV(sc->bge_chipid)) { case BGE_ASICREV_BCM5762: case BGE_ASICREV_BCM57765: case BGE_ASICREV_BCM57766: sc->bge_flags |= BGE_57765_PLUS; /* FALLTHROUGH */ case BGE_ASICREV_BCM5717: case BGE_ASICREV_BCM5719: case BGE_ASICREV_BCM5720: sc->bge_flags |= BGE_5717_PLUS | BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS | BGE_JUMBO_CAPABLE | BGE_JUMBO_RING | BGE_JUMBO_FRAME; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) { /* * Enable work around for DMA engine miscalculation * of TXMBUF available space. */ sc->bge_flags |= BGE_RDMA_BUG; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 && sc->bge_chipid == BGE_CHIPID_BCM5719_A0) { /* Jumbo frame on BCM5719 A0 does not work. */ sc->bge_flags &= ~(BGE_JUMBO_CAPABLE | BGE_JUMBO_RING | BGE_JUMBO_FRAME); } } break; case BGE_ASICREV_BCM5755: case BGE_ASICREV_BCM5761: case BGE_ASICREV_BCM5784: case BGE_ASICREV_BCM5785: case BGE_ASICREV_BCM5787: case BGE_ASICREV_BCM57780: sc->bge_flags |= BGE_5755_PLUS | BGE_575X_PLUS | BGE_5705_PLUS; break; case BGE_ASICREV_BCM5700: case BGE_ASICREV_BCM5701: case BGE_ASICREV_BCM5703: case BGE_ASICREV_BCM5704: sc->bge_flags |= BGE_5700_FAMILY | BGE_JUMBO_CAPABLE | BGE_JUMBO_RING; break; case BGE_ASICREV_BCM5714_A0: case BGE_ASICREV_BCM5780: case BGE_ASICREV_BCM5714: sc->bge_flags |= BGE_5714_FAMILY | BGE_JUMBO_CAPABLE | BGE_JUMBO_STD; /* FALLTHROUGH */ case BGE_ASICREV_BCM5750: case BGE_ASICREV_BCM5752: case BGE_ASICREV_BCM5906: sc->bge_flags |= BGE_575X_PLUS; /* FALLTHROUGH */ case BGE_ASICREV_BCM5705: sc->bge_flags |= BGE_5705_PLUS; break; } if (sc->bge_flags & BGE_JUMBO_STD) sc->bge_rx_std_len = BGE_JLEN; else sc->bge_rx_std_len = MCLBYTES; /* * When using the BCM5701 in PCI-X mode, data corruption has * been observed in the first few bytes of some received packets. * Aligning the packet buffer in memory eliminates the corruption. * Unfortunately, this misaligns the packet payloads. On platforms * which do not support unaligned accesses, we will realign the * payloads by copying the received packets. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && sc->bge_flags & BGE_PCIX) sc->bge_flags |= BGE_RX_ALIGNBUG; if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) && PCI_VENDOR(subid) == DELL_VENDORID) sc->bge_phy_flags |= BGE_PHY_NO_3LED; misccfg = CSR_READ_4(sc, BGE_MISC_CFG); misccfg &= BGE_MISCCFG_BOARD_ID_MASK; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && (misccfg == BGE_MISCCFG_BOARD_ID_5788 || misccfg == BGE_MISCCFG_BOARD_ID_5788M)) sc->bge_flags |= BGE_IS_5788; if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 && (misccfg == 0x4000 || misccfg == 0x8000)) || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) || (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) sc->bge_phy_flags |= BGE_PHY_10_100_ONLY; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED; if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || sc->bge_chipid == BGE_CHIPID_BCM5701_B0) sc->bge_phy_flags |= BGE_PHY_CRC_BUG; if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX || BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX) sc->bge_phy_flags |= BGE_PHY_ADC_BUG; if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG; if ((BGE_IS_5705_PLUS(sc)) && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 && !BGE_IS_5717_PLUS(sc)) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) { if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 && PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756) sc->bge_phy_flags |= BGE_PHY_JITTER_BUG; if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M) sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM; } else sc->bge_phy_flags |= BGE_PHY_BER_BUG; } /* Identify chips with APE processor. */ switch (BGE_ASICREV(sc->bge_chipid)) { case BGE_ASICREV_BCM5717: case BGE_ASICREV_BCM5719: case BGE_ASICREV_BCM5720: case BGE_ASICREV_BCM5761: case BGE_ASICREV_BCM5762: sc->bge_flags |= BGE_APE; break; } /* Chips with APE need BAR2 access for APE registers/memory. */ if ((sc->bge_flags & BGE_APE) != 0) { memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2); if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0, &sc->bge_apetag, &sc->bge_apehandle, NULL, &sc->bge_apesize, 0)) { printf(": couldn't map BAR2 memory\n"); goto fail_1; } /* Enable APE register/memory access by host driver. */ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE); reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | BGE_PCISTATE_ALLOW_APE_SHMEM_WR | BGE_PCISTATE_ALLOW_APE_PSPACE_WR; pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg); bge_ape_lock_init(sc); bge_ape_read_fw_ver(sc); } /* Identify the chips that use an CPMU. */ if (BGE_IS_5717_PLUS(sc) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) sc->bge_flags |= BGE_CPMU_PRESENT; if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &sc->bge_msicap, NULL)) { if (bge_can_use_msi(sc) == 0) pa->pa_flags &= ~PCI_FLAGS_MSI_ENABLED; } DPRINTFN(5, ("pci_intr_map\n")); if (pci_intr_map_msi(pa, &ih) == 0) sc->bge_flags |= BGE_MSI; else if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail_1; } /* * All controllers except BCM5700 supports tagged status but * we use tagged status only for MSI case on BCM5717. Otherwise * MSI on BCM5717 does not work. */ if (BGE_IS_5717_PLUS(sc) && sc->bge_flags & BGE_MSI) sc->bge_flags |= BGE_TAGGED_STATUS; DPRINTFN(5, ("pci_intr_string\n")); intrstr = pci_intr_string(pc, ih); /* Try to reset the chip. */ DPRINTFN(5, ("bge_reset\n")); bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); bge_reset(sc); bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); bge_chipinit(sc); #ifdef __sparc64__ if (!gotenaddr) { if (OF_getprop(PCITAG_NODE(pa->pa_tag), "local-mac-address", sc->arpcom.ac_enaddr, ETHER_ADDR_LEN) == ETHER_ADDR_LEN) gotenaddr = 1; } #endif /* * Get station address from the EEPROM. */ if (!gotenaddr) { mac_addr = bge_readmem_ind(sc, 0x0c14); if ((mac_addr >> 16) == 0x484b) { sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8); sc->arpcom.ac_enaddr[1] = (u_char)mac_addr; mac_addr = bge_readmem_ind(sc, 0x0c18); sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24); sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16); sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8); sc->arpcom.ac_enaddr[5] = (u_char)mac_addr; gotenaddr = 1; } } if (!gotenaddr) { int mac_offset = BGE_EE_MAC_OFFSET; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) mac_offset = BGE_EE_MAC_OFFSET_5906; if (bge_read_nvram(sc, (caddr_t)&sc->arpcom.ac_enaddr, mac_offset + 2, ETHER_ADDR_LEN) == 0) gotenaddr = 1; } if (!gotenaddr && (!(sc->bge_flags & BGE_NO_EEPROM))) { if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN) == 0) gotenaddr = 1; } #ifdef __sparc64__ if (!gotenaddr) { extern void myetheraddr(u_char *); myetheraddr(sc->arpcom.ac_enaddr); gotenaddr = 1; } #endif if (!gotenaddr) { printf(": failed to read station address\n"); goto fail_2; } /* Allocate the general information block and ring buffers. */ sc->bge_dmatag = pa->pa_dmat; DPRINTFN(5, ("bus_dmamem_alloc\n")); if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data), PAGE_SIZE, 0, &sc->bge_ring_seg, 1, &sc->bge_ring_nseg, BUS_DMA_NOWAIT)) { printf(": can't alloc rx buffers\n"); goto fail_2; } DPRINTFN(5, ("bus_dmamem_map\n")); if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_nseg, sizeof(struct bge_ring_data), &kva, BUS_DMA_NOWAIT)) { printf(": can't map dma buffers (%lu bytes)\n", sizeof(struct bge_ring_data)); goto fail_3; } DPRINTFN(5, ("bus_dmamem_create\n")); if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1, sizeof(struct bge_ring_data), 0, BUS_DMA_NOWAIT, &sc->bge_ring_map)) { printf(": can't create dma map\n"); goto fail_4; } DPRINTFN(5, ("bus_dmamem_load\n")); if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva, sizeof(struct bge_ring_data), NULL, BUS_DMA_NOWAIT)) { goto fail_5; } DPRINTFN(5, ("bzero\n")); sc->bge_rdata = (struct bge_ring_data *)kva; bzero(sc->bge_rdata, sizeof(struct bge_ring_data)); /* Set default tuneable values. */ sc->bge_stat_ticks = BGE_TICKS_PER_SEC; sc->bge_rx_coal_ticks = 150; sc->bge_rx_max_coal_bds = 64; sc->bge_tx_coal_ticks = 300; sc->bge_tx_max_coal_bds = 400; /* 5705 limits RX return ring to 512 entries. */ if (BGE_IS_5700_FAMILY(sc) || BGE_IS_5717_PLUS(sc)) sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; else sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; /* Set up ifnet structure */ ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_xflags = IFXF_MPSAFE; ifp->if_ioctl = bge_ioctl; ifp->if_qstart = bge_start; ifp->if_watchdog = bge_watchdog; ifq_set_maxlen(&ifp->if_snd, BGE_TX_RING_CNT - 1); DPRINTFN(5, ("bcopy\n")); bcopy(sc->bge_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif /* * 5700 B0 chips do not support checksumming correctly due * to hardware bugs. * * It seems all controllers have a bug that can generate UDP * datagrams with a checksum value 0 when TX UDP checksum * offloading is enabled. Generating UDP checksum value 0 is * a violation of RFC 768. */ if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0) ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4; if (BGE_IS_JUMBO_CAPABLE(sc)) ifp->if_hardmtu = BGE_JUMBO_MTU; /* * Do MII setup. */ DPRINTFN(5, ("mii setup\n")); sc->bge_mii.mii_ifp = ifp; sc->bge_mii.mii_readreg = bge_miibus_readreg; sc->bge_mii.mii_writereg = bge_miibus_writereg; sc->bge_mii.mii_statchg = bge_miibus_statchg; /* * Figure out what sort of media we have by checking the hardware * config word in the first 32K of internal NIC memory, or fall back to * examining the EEPROM if necessary. Note: on some BCM5700 cards, * this value seems to be unset. If that's the case, we have to rely on * identifying the NIC by its PCI subsystem ID, as we do below for the * SysKonnect SK-9D41. */ if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); else if (!(sc->bge_flags & BGE_NO_EEPROM)) { if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, sizeof(hwcfg))) { printf(": failed to read media type\n"); goto fail_6; } hwcfg = ntohl(hwcfg); } /* The SysKonnect SK-9D41 is a 1000baseSX card. */ if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { if (BGE_IS_5700_FAMILY(sc)) sc->bge_flags |= BGE_FIBER_TBI; else sc->bge_flags |= BGE_FIBER_MII; } /* Take advantage of single-shot MSI. */ if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_MSI) CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) & ~BGE_MSIMODE_ONE_SHOT_DISABLE); /* Hookup IRQ last. */ DPRINTFN(5, ("pci_intr_establish\n")); sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET | IPL_MPSAFE, bge_intr, sc, sc->bge_dev.dv_xname); if (sc->bge_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail_6; } /* * A Broadcom chip was detected. Inform the world. */ printf(": %s, address %s\n", intrstr, ether_sprintf(sc->arpcom.ac_enaddr)); if (sc->bge_flags & BGE_FIBER_TBI) { ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, bge_ifmedia_sts); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; } else { int mii_flags; /* * Do transceiver setup. */ ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd, bge_ifmedia_sts); mii_flags = MIIF_DOPAUSE; if (sc->bge_flags & BGE_FIBER_MII) mii_flags |= MIIF_HAVEFIBER; mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff, sc->bge_phy_addr, MII_OFFSET_ANY, mii_flags); if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->bge_dev.dv_xname); ifmedia_add(&sc->bge_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->bge_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc->bge_mii.mii_media, IFM_ETHER|IFM_AUTO); } /* * Call MI attach routine. */ if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->bge_timeout, bge_tick, sc); timeout_set(&sc->bge_rxtimeout, bge_rxtick, sc); timeout_set(&sc->bge_rxtimeout_jumbo, bge_rxtick_jumbo, sc); return; fail_6: bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map); fail_5: bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); fail_4: bus_dmamem_unmap(sc->bge_dmatag, (caddr_t)sc->bge_rdata, sizeof(struct bge_ring_data)); fail_3: bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_nseg); fail_2: if ((sc->bge_flags & BGE_APE) != 0) bus_space_unmap(sc->bge_apetag, sc->bge_apehandle, sc->bge_apesize); fail_1: bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize); } int bge_detach(struct device *self, int flags) { struct bge_softc *sc = (struct bge_softc *)self; struct ifnet *ifp = &sc->arpcom.ac_if; if (sc->bge_intrhand) pci_intr_disestablish(sc->bge_pa.pa_pc, sc->bge_intrhand); bge_stop(sc, 1); /* Detach any PHYs we might have. */ if (LIST_FIRST(&sc->bge_mii.mii_phys) != NULL) mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY); /* Delete any remaining media. */ ifmedia_delete_instance(&sc->bge_mii.mii_media, IFM_INST_ANY); ether_ifdetach(ifp); if_detach(ifp); bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map); bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); bus_dmamem_unmap(sc->bge_dmatag, (caddr_t)sc->bge_rdata, sizeof(struct bge_ring_data)); bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg, sc->bge_ring_nseg); if ((sc->bge_flags & BGE_APE) != 0) bus_space_unmap(sc->bge_apetag, sc->bge_apehandle, sc->bge_apesize); bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize); return (0); } int bge_activate(struct device *self, int act) { struct bge_softc *sc = (struct bge_softc *)self; struct ifnet *ifp = &sc->arpcom.ac_if; int rv = 0; switch (act) { case DVACT_SUSPEND: rv = config_activate_children(self, act); if (ifp->if_flags & IFF_RUNNING) bge_stop(sc, 0); break; case DVACT_RESUME: if (ifp->if_flags & IFF_UP) bge_init(sc); break; default: rv = config_activate_children(self, act); break; } return (rv); } void bge_reset(struct bge_softc *sc) { struct pci_attach_args *pa = &sc->bge_pa; pcireg_t cachesize, command, devctl; u_int32_t reset, mac_mode, mac_mode_mask, val; void (*write_op)(struct bge_softc *, int, int); int i; mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN; mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask; if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) { if (sc->bge_flags & BGE_PCIE) write_op = bge_writembx; else write_op = bge_writemem_ind; } else write_op = bge_writereg_ind; if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701 && !(sc->bge_flags & BGE_NO_EEPROM)) { CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); for (i = 0; i < 8000; i++) { if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) break; DELAY(20); } if (i == 8000) printf("%s: nvram lock timed out\n", sc->bge_dev.dv_xname); } /* Take APE lock when performing reset. */ bge_ape_lock(sc, BGE_APE_LOCK_GRC); /* Save some important PCI state. */ cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ); command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | BGE_PCIMISCCTL_ENDIAN_WORDSWAP | BGE_PCIMISCCTL_PCISTATE_RW); /* Disable fastboot on controllers that support it. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || BGE_IS_5755_PLUS(sc)) CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0); /* * Write the magic number to SRAM at offset 0xB50. * When firmware finishes its initialization it will * write ~BGE_SRAM_FW_MB_MAGIC to the same location. */ bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ; if (sc->bge_flags & BGE_PCIE) { if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 && !BGE_IS_5717_PLUS(sc)) { if (CSR_READ_4(sc, 0x7e2c) == 0x60) { /* PCI Express 1.0 system */ CSR_WRITE_4(sc, 0x7e2c, 0x20); } } if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { /* * Prevent PCI Express link training * during global reset. */ CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29)); reset |= (1<<29); } } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { val = CSR_READ_4(sc, BGE_VCPU_STATUS); CSR_WRITE_4(sc, BGE_VCPU_STATUS, val | BGE_VCPU_STATUS_DRV_RESET); val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, val & ~BGE_VCPU_EXT_CTRL_HALT_CPU); sc->bge_flags |= BGE_NO_EEPROM; } /* * Set GPHY Power Down Override to leave GPHY * powered up in D0 uninitialized. */ if (BGE_IS_5705_PLUS(sc) && (sc->bge_flags & BGE_CPMU_PRESENT) == 0) reset |= BGE_MISCCFG_KEEP_GPHY_POWER; /* Issue global reset */ write_op(sc, BGE_MISC_CFG, reset); if (sc->bge_flags & BGE_PCIE) DELAY(100 * 1000); else DELAY(1000); if (sc->bge_flags & BGE_PCIE) { if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { pcireg_t v; DELAY(500000); /* wait for link training to complete */ v = pci_conf_read(pa->pa_pc, pa->pa_tag, 0xc4); pci_conf_write(pa->pa_pc, pa->pa_tag, 0xc4, v | (1<<15)); } devctl = pci_conf_read(pa->pa_pc, pa->pa_tag, sc->bge_expcap + PCI_PCIE_DCSR); /* Clear enable no snoop and disable relaxed ordering. */ devctl &= ~(PCI_PCIE_DCSR_ERO | PCI_PCIE_DCSR_ENS); /* Set PCI Express max payload size. */ devctl = (devctl & ~PCI_PCIE_DCSR_MPS) | sc->bge_expmrq; /* Clear error status. */ devctl |= PCI_PCIE_DCSR_CEE | PCI_PCIE_DCSR_NFE | PCI_PCIE_DCSR_FEE | PCI_PCIE_DCSR_URE; pci_conf_write(pa->pa_pc, pa->pa_tag, sc->bge_expcap + PCI_PCIE_DCSR, devctl); } /* Reset some of the PCI state that got zapped by reset */ pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR | BGE_PCIMISCCTL_ENDIAN_WORDSWAP | BGE_PCIMISCCTL_PCISTATE_RW); val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE; if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 && (sc->bge_flags & BGE_PCIX) != 0) val |= BGE_PCISTATE_RETRY_SAME_DMA; if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0) val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR | BGE_PCISTATE_ALLOW_APE_SHMEM_WR | BGE_PCISTATE_ALLOW_APE_PSPACE_WR; pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, val); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command); /* Re-enable MSI, if necessary, and enable memory arbiter. */ if (BGE_IS_5714_FAMILY(sc)) { /* This chip disables MSI on reset. */ if (sc->bge_flags & BGE_MSI) { val = pci_conf_read(pa->pa_pc, pa->pa_tag, sc->bge_msicap + PCI_MSI_MC); pci_conf_write(pa->pa_pc, pa->pa_tag, sc->bge_msicap + PCI_MSI_MC, val | PCI_MSI_MC_MSIE); val = CSR_READ_4(sc, BGE_MSI_MODE); CSR_WRITE_4(sc, BGE_MSI_MODE, val | BGE_MSIMODE_ENABLE); } val = CSR_READ_4(sc, BGE_MARB_MODE); CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); } else CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); /* Fix up byte swapping */ CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc)); val = CSR_READ_4(sc, BGE_MAC_MODE); val = (val & ~mac_mode_mask) | mac_mode; CSR_WRITE_4(sc, BGE_MAC_MODE, val); DELAY(40); bge_ape_unlock(sc, BGE_APE_LOCK_GRC); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { for (i = 0; i < BGE_TIMEOUT; i++) { val = CSR_READ_4(sc, BGE_VCPU_STATUS); if (val & BGE_VCPU_STATUS_INIT_DONE) break; DELAY(100); } if (i >= BGE_TIMEOUT) printf("%s: reset timed out\n", sc->bge_dev.dv_xname); } else { /* * Poll until we see 1's complement of the magic number. * This indicates that the firmware initialization * is complete. We expect this to fail if no SEEPROM * is fitted. */ for (i = 0; i < BGE_TIMEOUT * 10; i++) { val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); if (val == ~BGE_MAGIC_NUMBER) break; DELAY(10); } if ((i >= BGE_TIMEOUT * 10) && (!(sc->bge_flags & BGE_NO_EEPROM))) printf("%s: firmware handshake timed out\n", sc->bge_dev.dv_xname); /* BCM57765 A0 needs additional time before accessing. */ if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) DELAY(10 * 1000); /* XXX */ } /* * The 5704 in TBI mode apparently needs some special * adjustment to ensure the SERDES drive level is set * to 1.2V. */ if (sc->bge_flags & BGE_FIBER_TBI && BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { val = CSR_READ_4(sc, BGE_SERDES_CFG); val = (val & ~0xFFF) | 0x880; CSR_WRITE_4(sc, BGE_SERDES_CFG, val); } if (sc->bge_flags & BGE_PCIE && !BGE_IS_5717_PLUS(sc) && sc->bge_chipid != BGE_CHIPID_BCM5750_A0 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) { /* Enable Data FIFO protection. */ val = CSR_READ_4(sc, 0x7c00); CSR_WRITE_4(sc, 0x7c00, val | (1<<25)); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE, CPMU_CLCK_ORIDE_MAC_ORIDE_EN); } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle two possibilities here: * 1) the frame is from the jumbo receive ring * 2) the frame is from the standard receive ring */ void bge_rxeof(struct bge_softc *sc) { struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct ifnet *ifp; uint16_t rx_prod, rx_cons; int stdcnt = 0, jumbocnt = 0; bus_dmamap_t dmamap; bus_addr_t offset, toff; bus_size_t tlen; int tosync; int livelocked; rx_cons = sc->bge_rx_saved_considx; rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx; /* Nothing to do */ if (rx_cons == rx_prod) return; ifp = &sc->arpcom.ac_if; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof (struct bge_status_block), BUS_DMASYNC_POSTREAD); offset = offsetof(struct bge_ring_data, bge_rx_return_ring); tosync = rx_prod - rx_cons; toff = offset + (rx_cons * sizeof (struct bge_rx_bd)); if (tosync < 0) { tlen = (sc->bge_return_ring_cnt - rx_cons) * sizeof (struct bge_rx_bd); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, toff, tlen, BUS_DMASYNC_POSTREAD); tosync = -tosync; } bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offset, tosync * sizeof (struct bge_rx_bd), BUS_DMASYNC_POSTREAD); while (rx_cons != rx_prod) { struct bge_rx_bd *cur_rx; u_int32_t rxidx; struct mbuf *m = NULL; cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons]; rxidx = cur_rx->bge_idx; BGE_INC(rx_cons, sc->bge_return_ring_cnt); if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; jumbocnt++; dmamap = sc->bge_cdata.bge_rx_jumbo_map[rxidx]; bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_dmatag, dmamap); if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { m_freem(m); continue; } } else { m = sc->bge_cdata.bge_rx_std_chain[rxidx]; sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; stdcnt++; dmamap = sc->bge_cdata.bge_rx_std_map[rxidx]; bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->bge_dmatag, dmamap); if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { m_freem(m); continue; } } #ifdef __STRICT_ALIGNMENT /* * The i386 allows unaligned accesses, but for other * platforms we must make sure the payload is aligned. */ if (sc->bge_flags & BGE_RX_ALIGNBUG) { bcopy(m->m_data, m->m_data + ETHER_ALIGN, cur_rx->bge_len); m->m_data += ETHER_ALIGN; } #endif m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; bge_rxcsum(sc, cur_rx, m); #if NVLAN > 0 if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING && cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) { m->m_pkthdr.ether_vtag = cur_rx->bge_vlan_tag; m->m_flags |= M_VLANTAG; } #endif ml_enqueue(&ml, m); } sc->bge_rx_saved_considx = rx_cons; bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); livelocked = ifiq_input(&ifp->if_rcv, &ml); if (stdcnt) { if_rxr_put(&sc->bge_std_ring, stdcnt); if (livelocked) if_rxr_livelocked(&sc->bge_std_ring); bge_fill_rx_ring_std(sc); } if (jumbocnt) { if_rxr_put(&sc->bge_jumbo_ring, jumbocnt); if (livelocked) if_rxr_livelocked(&sc->bge_jumbo_ring); bge_fill_rx_ring_jumbo(sc); } } void bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m) { if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) { /* * 5700 B0 chips do not support checksumming correctly due * to hardware bugs. */ return; } else if (BGE_IS_5717_PLUS(sc)) { if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) { if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM && (cur_rx->bge_error_flag & BGE_RXERRFLAG_IP_CSUM_NOK) == 0) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK|M_UDP_CSUM_IN_OK; } } } else { if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM && cur_rx->bge_ip_csum == 0xFFFF) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM && m->m_pkthdr.len >= ETHER_MIN_NOPAD && cur_rx->bge_tcp_udp_csum == 0xFFFF) { m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK|M_UDP_CSUM_IN_OK; } } } void bge_txeof(struct bge_softc *sc) { struct bge_tx_bd *cur_tx = NULL; struct ifnet *ifp; bus_dmamap_t dmamap; bus_addr_t offset, toff; bus_size_t tlen; int tosync, freed, txcnt; u_int32_t cons, newcons; struct mbuf *m; /* Nothing to do */ cons = sc->bge_tx_saved_considx; newcons = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx; if (cons == newcons) return; ifp = &sc->arpcom.ac_if; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof (struct bge_status_block), BUS_DMASYNC_POSTREAD); offset = offsetof(struct bge_ring_data, bge_tx_ring); tosync = newcons - cons; toff = offset + (cons * sizeof (struct bge_tx_bd)); if (tosync < 0) { tlen = (BGE_TX_RING_CNT - cons) * sizeof (struct bge_tx_bd); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); tosync = -tosync; } bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offset, tosync * sizeof (struct bge_tx_bd), BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ freed = 0; while (cons != newcons) { cur_tx = &sc->bge_rdata->bge_tx_ring[cons]; m = sc->bge_cdata.bge_tx_chain[cons]; if (m != NULL) { dmamap = sc->bge_cdata.bge_tx_map[cons]; sc->bge_cdata.bge_tx_chain[cons] = NULL; sc->bge_cdata.bge_tx_map[cons] = NULL; bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bge_dmatag, dmamap); m_freem(m); } freed++; BGE_INC(cons, BGE_TX_RING_CNT); } txcnt = atomic_sub_int_nv(&sc->bge_txcnt, freed); sc->bge_tx_saved_considx = cons; if (ifq_is_oactive(&ifp->if_snd)) ifq_restart(&ifp->if_snd); else if (txcnt == 0) ifp->if_timer = 0; } int bge_intr(void *xsc) { struct bge_softc *sc; struct ifnet *ifp; u_int32_t statusword, statustag; sc = xsc; ifp = &sc->arpcom.ac_if; /* read status word from status block */ bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof (struct bge_status_block), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); statusword = sc->bge_rdata->bge_status_block.bge_status; statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24; if (sc->bge_flags & BGE_TAGGED_STATUS) { if (sc->bge_lasttag == statustag && (CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE)) return (0); sc->bge_lasttag = statustag; } else { if (!(statusword & BGE_STATFLAG_UPDATED) && (CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE)) return (0); /* Ack interrupt and stop others from occurring. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); statustag = 0; } /* clear status word */ sc->bge_rdata->bge_status_block.bge_status = 0; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof (struct bge_status_block), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || statusword & BGE_STATFLAG_LINKSTATE_CHANGED || BGE_STS_BIT(sc, BGE_STS_LINK_EVT)) { KERNEL_LOCK(); bge_link_upd(sc); KERNEL_UNLOCK(); } /* Re-enable interrupts. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, statustag); if (ifp->if_flags & IFF_RUNNING) { /* Check RX return ring producer/consumer */ bge_rxeof(sc); /* Check TX ring producer/consumer */ bge_txeof(sc); } return (1); } void bge_tick(void *xsc) { struct bge_softc *sc = xsc; struct mii_data *mii = &sc->bge_mii; int s; s = splnet(); if (BGE_IS_5705_PLUS(sc)) bge_stats_update_regs(sc); else bge_stats_update(sc); if (sc->bge_flags & BGE_FIBER_TBI) { /* * Since in TBI mode auto-polling can't be used we should poll * link status manually. Here we register pending link event * and trigger interrupt. */ BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); } else { /* * Do not touch PHY if we have link up. This could break * IPMI/ASF mode or produce extra input errors. * (extra input errors was reported for bcm5701 & bcm5704). */ if (!BGE_STS_BIT(sc, BGE_STS_LINK)) mii_tick(mii); } timeout_add_sec(&sc->bge_timeout, 1); splx(s); } void bge_stats_update_regs(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; sc->bge_tx_collisions += CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, etherStatsCollisions)); sc->bge_rx_overruns += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); /* * XXX * Unlike other controllers, the BGE_RXLP_LOCSTAT_IFIN_DROPS counter * of the BCM5717, BCM5718, BCM5762, BCM5719 A0 and BCM5720 A0 * controllers includes the number of unwanted multicast frames. * This comes from a silicon bug and known workaround to get rough * (not exact) counter is to enable interrupt on MBUF low watermark * attention. This can be accomplished by setting BGE_HCCMODE_ATTN * bit of BGE_HDD_MODE, BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE * and BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL. However * that change would generate more interrupts and there are still * possibilities of losing multiple frames during * BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling. Given that * the workaround still would not get correct counter I don't think * it's worth to implement it. So ignore reading the counter on * controllers that have the silicon bug. */ if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762 && sc->bge_chipid != BGE_CHIPID_BCM5719_A0 && sc->bge_chipid != BGE_CHIPID_BCM5720_A0) sc->bge_rx_discards += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); sc->bge_rx_inerrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); ifp->if_collisions = sc->bge_tx_collisions; ifp->if_ierrors = sc->bge_rx_discards + sc->bge_rx_inerrors; if (sc->bge_flags & BGE_RDMA_BUG) { u_int32_t val, ucast, mcast, bcast; ucast = CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts)); mcast = CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts)); bcast = CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts)); /* * If controller transmitted more than BGE_NUM_RDMA_CHANNELS * frames, it's safe to disable workaround for DMA engine's * miscalculation of TXMBUF space. */ if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) { val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) val &= ~BGE_RDMA_TX_LENGTH_WA_5719; else val &= ~BGE_RDMA_TX_LENGTH_WA_5720; CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val); sc->bge_flags &= ~BGE_RDMA_BUG; } } } void bge_stats_update(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; u_int32_t cnt; #define READ_STAT(sc, stats, stat) \ CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); ifp->if_collisions += (u_int32_t)(cnt - sc->bge_tx_collisions); sc->bge_tx_collisions = cnt; cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); sc->bge_rx_overruns = cnt; cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); ifp->if_ierrors += (uint32_t)(cnt - sc->bge_rx_inerrors); sc->bge_rx_inerrors = cnt; cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); ifp->if_ierrors += (u_int32_t)(cnt - sc->bge_rx_discards); sc->bge_rx_discards = cnt; cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); ifp->if_oerrors += (u_int32_t)(cnt - sc->bge_tx_discards); sc->bge_tx_discards = cnt; #undef READ_STAT } /* * Compact outbound packets to avoid bug with DMA segments less than 8 bytes. */ int bge_compact_dma_runt(struct mbuf *pkt) { struct mbuf *m, *prev, *n = NULL; int totlen, newprevlen; prev = NULL; totlen = 0; for (m = pkt; m != NULL; prev = m,m = m->m_next) { int mlen = m->m_len; int shortfall = 8 - mlen ; totlen += mlen; if (mlen == 0) continue; if (mlen >= 8) continue; /* If we get here, mbuf data is too small for DMA engine. * Try to fix by shuffling data to prev or next in chain. * If that fails, do a compacting deep-copy of the whole chain. */ /* Internal frag. If fits in prev, copy it there. */ if (prev && m_trailingspace(prev) >= m->m_len) { bcopy(m->m_data, prev->m_data+prev->m_len, mlen); prev->m_len += mlen; m->m_len = 0; /* XXX stitch chain */ prev->m_next = m_free(m); m = prev; continue; } else if (m->m_next != NULL && m_trailingspace(m) >= shortfall && m->m_next->m_len >= (8 + shortfall)) { /* m is writable and have enough data in next, pull up. */ bcopy(m->m_next->m_data, m->m_data+m->m_len, shortfall); m->m_len += shortfall; m->m_next->m_len -= shortfall; m->m_next->m_data += shortfall; } else if (m->m_next == NULL || 1) { /* Got a runt at the very end of the packet. * borrow data from the tail of the preceding mbuf and * update its length in-place. (The original data is still * valid, so we can do this even if prev is not writable.) */ /* if we'd make prev a runt, just move all of its data. */ #ifdef DEBUG KASSERT(prev != NULL /*, ("runt but null PREV")*/); KASSERT(prev->m_len >= 8 /*, ("runt prev")*/); #endif if ((prev->m_len - shortfall) < 8) shortfall = prev->m_len; newprevlen = prev->m_len - shortfall; MGET(n, M_NOWAIT, MT_DATA); if (n == NULL) return (ENOBUFS); KASSERT(m->m_len + shortfall < MLEN /*, ("runt %d +prev %d too big\n", m->m_len, shortfall)*/); /* first copy the data we're stealing from prev */ bcopy(prev->m_data + newprevlen, n->m_data, shortfall); /* update prev->m_len accordingly */ prev->m_len -= shortfall; /* copy data from runt m */ bcopy(m->m_data, n->m_data + shortfall, m->m_len); /* n holds what we stole from prev, plus m */ n->m_len = shortfall + m->m_len; /* stitch n into chain and free m */ n->m_next = m->m_next; prev->m_next = n; /* KASSERT(m->m_next == NULL); */ m->m_next = NULL; m_free(m); m = n; /* for continuing loop */ } } return (0); } /* * Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason. * The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD, * but when such padded frames employ the bge IP/TCP checksum offload, * the hardware checksum assist gives incorrect results (possibly * from incorporating its own padding into the UDP/TCP checksum; who knows). * If we pad such runts with zeros, the onboard checksum comes out correct. */ int bge_cksum_pad(struct mbuf *m) { int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len; struct mbuf *last; /* If there's only the packet-header and we can pad there, use it. */ if (m->m_pkthdr.len == m->m_len && m_trailingspace(m) >= padlen) { last = m; } else { /* * Walk packet chain to find last mbuf. We will either * pad there, or append a new mbuf and pad it. */ for (last = m; last->m_next != NULL; last = last->m_next); if (m_trailingspace(last) < padlen) { /* Allocate new empty mbuf, pad it. Compact later. */ struct mbuf *n; MGET(n, M_DONTWAIT, MT_DATA); if (n == NULL) return (ENOBUFS); n->m_len = 0; last->m_next = n; last = n; } } /* Now zero the pad area, to avoid the bge cksum-assist bug. */ memset(mtod(last, caddr_t) + last->m_len, 0, padlen); last->m_len += padlen; m->m_pkthdr.len += padlen; return (0); } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ int bge_encap(struct bge_softc *sc, struct mbuf *m, int *txinc) { struct bge_tx_bd *f = NULL; u_int32_t frag, cur; u_int16_t csum_flags = 0; bus_dmamap_t dmamap; int i = 0; cur = frag = (sc->bge_tx_prodidx + *txinc) % BGE_TX_RING_CNT; if (m->m_pkthdr.csum_flags) { if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) csum_flags |= BGE_TXBDFLAG_IP_CSUM; if (m->m_pkthdr.csum_flags & (M_TCP_CSUM_OUT | M_UDP_CSUM_OUT)) { csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; if (m->m_pkthdr.len < ETHER_MIN_NOPAD && bge_cksum_pad(m) != 0) return (ENOBUFS); } } if (sc->bge_flags & BGE_JUMBO_FRAME && m->m_pkthdr.len > ETHER_MAX_LEN) csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME; if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)) goto doit; /* * bcm5700 Revision B silicon cannot handle DMA descriptors with * less than eight bytes. If we encounter a teeny mbuf * at the end of a chain, we can pad. Otherwise, copy. */ if (bge_compact_dma_runt(m) != 0) return (ENOBUFS); doit: dmamap = sc->bge_txdma[cur]; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ switch (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m, BUS_DMA_NOWAIT)) { case 0: break; case EFBIG: if (m_defrag(m, M_DONTWAIT) == 0 && bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m, BUS_DMA_NOWAIT) == 0) break; /* FALLTHROUGH */ default: return (ENOBUFS); } for (i = 0; i < dmamap->dm_nsegs; i++) { f = &sc->bge_rdata->bge_tx_ring[frag]; if (sc->bge_cdata.bge_tx_chain[frag] != NULL) break; BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr); f->bge_len = dmamap->dm_segs[i].ds_len; f->bge_flags = csum_flags; f->bge_vlan_tag = 0; #if NVLAN > 0 if (m->m_flags & M_VLANTAG) { f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; f->bge_vlan_tag = m->m_pkthdr.ether_vtag; } #endif cur = frag; BGE_INC(frag, BGE_TX_RING_CNT); } if (i < dmamap->dm_nsegs) goto fail_unload; if (frag == sc->bge_tx_saved_considx) goto fail_unload; bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; sc->bge_cdata.bge_tx_chain[cur] = m; sc->bge_cdata.bge_tx_map[cur] = dmamap; *txinc += dmamap->dm_nsegs; return (0); fail_unload: bus_dmamap_unload(sc->bge_dmatag, dmamap); return (ENOBUFS); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ void bge_start(struct ifqueue *ifq) { struct ifnet *ifp = ifq->ifq_if; struct bge_softc *sc = ifp->if_softc; struct mbuf *m; int txinc; if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { ifq_purge(ifq); return; } txinc = 0; while (1) { /* Check if we have enough free send BDs. */ if (sc->bge_txcnt + txinc + BGE_NTXSEG + 16 >= BGE_TX_RING_CNT) { ifq_set_oactive(ifq); break; } m = ifq_dequeue(ifq); if (m == NULL) break; if (bge_encap(sc, m, &txinc) != 0) { m_freem(m); continue; } #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif } if (txinc != 0) { /* Transmit */ sc->bge_tx_prodidx = (sc->bge_tx_prodidx + txinc) % BGE_TX_RING_CNT; bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); atomic_add_int(&sc->bge_txcnt, txinc); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } } void bge_init(void *xsc) { struct bge_softc *sc = xsc; struct ifnet *ifp; u_int16_t *m; u_int32_t mode; int s; s = splnet(); ifp = &sc->arpcom.ac_if; /* Cancel pending I/O and flush buffers. */ bge_stop(sc, 0); bge_sig_pre_reset(sc, BGE_RESET_START); bge_reset(sc); bge_sig_legacy(sc, BGE_RESET_START); bge_sig_post_reset(sc, BGE_RESET_START); bge_chipinit(sc); /* * Init the various state machines, ring * control blocks and firmware. */ if (bge_blockinit(sc)) { printf("%s: initialization failure\n", sc->bge_dev.dv_xname); splx(s); return; } /* Specify MRU. */ if (BGE_IS_JUMBO_CAPABLE(sc)) CSR_WRITE_4(sc, BGE_RX_MTU, BGE_JUMBO_FRAMELEN + ETHER_VLAN_ENCAP_LEN); else CSR_WRITE_4(sc, BGE_RX_MTU, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN); /* Load our MAC address. */ m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); if (!(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING)) { /* Disable hardware decapsulation of VLAN frames. */ BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); } /* Program promiscuous mode and multicast filters. */ bge_iff(sc); /* Init RX ring. */ bge_init_rx_ring_std(sc); /* * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's * memory to ensure that the chip has in fact read the first * entry of the ring. */ if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { u_int32_t v, i; for (i = 0; i < 10; i++) { DELAY(20); v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); if (v == (MCLBYTES - ETHER_ALIGN)) break; } if (i == 10) printf("%s: 5705 A0 chip failed to load RX ring\n", sc->bge_dev.dv_xname); } /* Init Jumbo RX ring. */ if (sc->bge_flags & BGE_JUMBO_RING) bge_init_rx_ring_jumbo(sc); /* Init our RX return ring index */ sc->bge_rx_saved_considx = 0; /* Init our RX/TX stat counters. */ sc->bge_tx_collisions = 0; sc->bge_rx_discards = 0; sc->bge_rx_inerrors = 0; sc->bge_rx_overruns = 0; sc->bge_tx_discards = 0; /* Init TX ring. */ bge_init_tx_ring(sc); /* Enable TX MAC state machine lockup fix. */ mode = CSR_READ_4(sc, BGE_TX_MODE); if (BGE_IS_5755_PLUS(sc) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) mode |= BGE_TXMODE_MBUF_LOCKUP_FIX; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) { mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); mode |= CSR_READ_4(sc, BGE_TX_MODE) & (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE); } /* Turn on transmitter */ CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE); DELAY(100); mode = CSR_READ_4(sc, BGE_RX_MODE); if (BGE_IS_5755_PLUS(sc)) mode |= BGE_RXMODE_IPV6_ENABLE; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) mode |= BGE_RXMODE_IPV4_FRAG_FIX; /* Turn on receiver */ CSR_WRITE_4(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE); DELAY(10); /* * Set the number of good frames to receive after RX MBUF * Low Watermark has been reached. After the RX MAC receives * this number of frames, it will drop subsequent incoming * frames until the MBUF High Watermark is reached. */ if (BGE_IS_57765_PLUS(sc)) CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1); else CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); /* Tell firmware we're alive. */ BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Enable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); bge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); splx(s); timeout_add_sec(&sc->bge_timeout, 1); } /* * Set media options. */ int bge_ifmedia_upd(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->bge_mii; struct ifmedia *ifm = &sc->bge_ifmedia; /* If this is a 1000baseX NIC, enable the TBI port. */ if (sc->bge_flags & BGE_FIBER_TBI) { if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: /* * The BCM5704 ASIC appears to have a special * mechanism for programming the autoneg * advertisement registers in TBI mode. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { u_int32_t sgdig; sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); if (sgdig & BGE_SGDIGSTS_DONE) { CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); sgdig |= BGE_SGDIGCFG_AUTO | BGE_SGDIGCFG_PAUSE_CAP | BGE_SGDIGCFG_ASYM_PAUSE; CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig | BGE_SGDIGCFG_SEND); DELAY(5); CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); } } break; case IFM_1000_SX: if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } DELAY(40); break; default: return (EINVAL); } /* XXX 802.3x flow control for 1000BASE-SX */ return (0); } BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); /* * Force an interrupt so that we will call bge_link_upd * if needed and clear any pending link state attention. * Without this we are not getting any further interrupts * for link state changes and thus will not UP the link and * not be able to send in bge_start. The only way to get * things working was to receive a packet and get a RX intr. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || sc->bge_flags & BGE_IS_5788) BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); else BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW); return (0); } /* * Report current media status. */ void bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->bge_mii; if (sc->bge_flags & BGE_FIBER_TBI) { ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) { ifmr->ifm_status |= IFM_ACTIVE; } else { ifmr->ifm_active |= IFM_NONE; return; } ifmr->ifm_active |= IFM_1000_SX; if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; else ifmr->ifm_active |= IFM_FDX; return; } mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) | sc->bge_flowflags; } int bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct bge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; struct mii_data *mii; s = splnet(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) bge_init(sc); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else bge_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) bge_stop(sc, 0); } break; case SIOCSIFMEDIA: /* XXX Flow control is not supported for 1000BASE-SX */ if (sc->bge_flags & BGE_FIBER_TBI) { ifr->ifr_media &= ~IFM_ETH_FMASK; sc->bge_flowflags = 0; } /* Flow control requires full-duplex mode. */ if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || (ifr->ifr_media & IFM_FDX) == 0) { ifr->ifr_media &= ~IFM_ETH_FMASK; } if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { /* We can do both TXPAUSE and RXPAUSE. */ ifr->ifr_media |= IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; } sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK; } /* FALLTHROUGH */ case SIOCGIFMEDIA: if (sc->bge_flags & BGE_FIBER_TBI) { error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, command); } else { mii = &sc->bge_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; case SIOCGIFRXR: error = bge_rxrinfo(sc, (struct if_rxrinfo *)ifr->ifr_data); break; default: error = ether_ioctl(ifp, &sc->arpcom, command, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) bge_iff(sc); error = 0; } splx(s); return (error); } int bge_rxrinfo(struct bge_softc *sc, struct if_rxrinfo *ifri) { struct if_rxring_info ifr[2]; u_int n = 0; memset(ifr, 0, sizeof(ifr)); if (ISSET(sc->bge_flags, BGE_RXRING_VALID)) { ifr[n].ifr_size = sc->bge_rx_std_len; strlcpy(ifr[n].ifr_name, "std", sizeof(ifr[n].ifr_name)); ifr[n].ifr_info = sc->bge_std_ring; n++; } if (ISSET(sc->bge_flags, BGE_JUMBO_RXRING_VALID)) { ifr[n].ifr_size = BGE_JLEN; strlcpy(ifr[n].ifr_name, "jumbo", sizeof(ifr[n].ifr_name)); ifr[n].ifr_info = sc->bge_jumbo_ring; n++; } return (if_rxr_info_ioctl(ifri, n, ifr)); } void bge_watchdog(struct ifnet *ifp) { struct bge_softc *sc; sc = ifp->if_softc; printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname); bge_init(sc); ifp->if_oerrors++; } void bge_stop_block(struct bge_softc *sc, bus_size_t reg, u_int32_t bit) { int i; BGE_CLRBIT(sc, reg, bit); for (i = 0; i < BGE_TIMEOUT; i++) { if ((CSR_READ_4(sc, reg) & bit) == 0) return; delay(100); } DPRINTFN(5, ("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n", sc->bge_dev.dv_xname, (u_long) reg, bit)); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void bge_stop(struct bge_softc *sc, int softonly) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmedia_entry *ifm; struct mii_data *mii; int mtmp, itmp; timeout_del(&sc->bge_timeout); timeout_del(&sc->bge_rxtimeout); timeout_del(&sc->bge_rxtimeout_jumbo); ifp->if_flags &= ~IFF_RUNNING; ifp->if_timer = 0; if (!softonly) { /* * Tell firmware we're shutting down. */ /* bge_stop_fw(sc); */ bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN); /* * Disable all of the receiver blocks */ bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); if (BGE_IS_5700_FAMILY(sc)) bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); /* * Disable all of the transmit blocks */ bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); if (BGE_IS_5700_FAMILY(sc)) bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* * Shut down all of the memory managers and related * state machines. */ bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); if (BGE_IS_5700_FAMILY(sc)) bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); if (!BGE_IS_5705_PLUS(sc)) { bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); } bge_reset(sc); bge_sig_legacy(sc, BGE_RESET_SHUTDOWN); bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN); /* * Tell firmware we're shutting down. */ BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); } intr_barrier(sc->bge_intrhand); ifq_barrier(&ifp->if_snd); ifq_clr_oactive(&ifp->if_snd); /* Free the RX lists. */ bge_free_rx_ring_std(sc); /* Free jumbo RX list. */ if (sc->bge_flags & BGE_JUMBO_RING) bge_free_rx_ring_jumbo(sc); /* Free TX buffers. */ bge_free_tx_ring(sc); /* * Isolate/power down the PHY, but leave the media selection * unchanged so that things will be put back to normal when * we bring the interface back up. */ if (!(sc->bge_flags & BGE_FIBER_TBI)) { mii = &sc->bge_mii; itmp = ifp->if_flags; ifp->if_flags |= IFF_UP; ifm = mii->mii_media.ifm_cur; mtmp = ifm->ifm_media; ifm->ifm_media = IFM_ETHER|IFM_NONE; mii_mediachg(mii); ifm->ifm_media = mtmp; ifp->if_flags = itmp; } sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; if (!softonly) { /* Clear MAC's link state (PHY may still have link UP). */ BGE_STS_CLRBIT(sc, BGE_STS_LINK); } } void bge_link_upd(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = &sc->bge_mii; u_int32_t status; int link; /* Clear 'pending link event' flag */ BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT); /* * Process link state changes. * Grrr. The link status word in the status block does * not work correctly on the BCM5700 rev AX and BX chips, * according to all available information. Hence, we have * to enable MII interrupts in order to properly obtain * async link changes. Unfortunately, this also means that * we have to read the MAC status register to detect link * changes, thereby adding an additional register access to * the interrupt handler. * */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_MI_INTERRUPT) { mii_pollstat(mii); if (!BGE_STS_BIT(sc, BGE_STS_LINK) && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) BGE_STS_SETBIT(sc, BGE_STS_LINK); else if (BGE_STS_BIT(sc, BGE_STS_LINK) && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) BGE_STS_CLRBIT(sc, BGE_STS_LINK); /* Clear the interrupt */ CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); bge_miibus_readreg(&sc->bge_dev, sc->bge_phy_addr, BRGPHY_MII_ISR); bge_miibus_writereg(&sc->bge_dev, sc->bge_phy_addr, BRGPHY_MII_IMR, BRGPHY_INTRS); } return; } if (sc->bge_flags & BGE_FIBER_TBI) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { BGE_STS_SETBIT(sc, BGE_STS_LINK); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_TBI_SEND_CFGS); CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); status = CSR_READ_4(sc, BGE_MAC_MODE); link = (status & BGE_MACMODE_HALF_DUPLEX) ? LINK_STATE_HALF_DUPLEX : LINK_STATE_FULL_DUPLEX; ifp->if_baudrate = IF_Gbps(1); if (ifp->if_link_state != link) { ifp->if_link_state = link; if_link_state_change(ifp); } } } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) { BGE_STS_CLRBIT(sc, BGE_STS_LINK); link = LINK_STATE_DOWN; ifp->if_baudrate = 0; if (ifp->if_link_state != link) { ifp->if_link_state = link; if_link_state_change(ifp); } } } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) { /* * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit * in status word always set. Workaround this bug by reading * PHY link status directly. */ link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)? BGE_STS_LINK : 0; if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) { mii_pollstat(mii); if (!BGE_STS_BIT(sc, BGE_STS_LINK) && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) BGE_STS_SETBIT(sc, BGE_STS_LINK); else if (BGE_STS_BIT(sc, BGE_STS_LINK) && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) BGE_STS_CLRBIT(sc, BGE_STS_LINK); } } else { /* * For controllers that call mii_tick, we have to poll * link status. */ mii_pollstat(mii); } /* Clear the attention */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); }