/* $OpenBSD: if_bge.c,v 1.235 2008/05/24 02:21:50 brad Exp $ */ /* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_bge.c,v 1.25 2002/11/14 23:54:49 sam Exp $ */ /* * Broadcom BCM570x family gigabit ethernet driver for FreeBSD. * * Written by Bill Paul * Senior Engineer, Wind River Systems */ /* * The Broadcom BCM5700 is based on technology originally developed by * Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet * MAC chips. The BCM5700, sometimes refered to as the Tigon III, has * two on-board MIPS R4000 CPUs and can have as much as 16MB of external * SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, Jumbo * frames, highly configurable RX filtering, and 16 RX and TX queues * (which, along with RX filter rules, can be used for QOS applications). * Other features, such as TCP segmentation, may be available as part * of value-added firmware updates. Unlike the Tigon I and Tigon II, * firmware images can be stored in hardware and need not be compiled * into the driver. * * The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will * function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus. * * The BCM5701 is a single-chip solution incorporating both the BCM5700 * MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701 * does not support external SSRAM. * * Broadcom also produces a variation of the BCM5700 under the "Altima" * brand name, which is functionally similar but lacks PCI-X support. * * Without external SSRAM, you can only have at most 4 TX rings, * and the use of the mini RX ring is disabled. This seems to imply * that these features are simply not available on the BCM5701. As a * result, this driver does not implement any support for the mini RX * ring. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #ifdef __sparc64__ #include #endif #include #include #include #include #include #include #include #include const struct bge_revision * bge_lookup_rev(u_int32_t); int bge_probe(struct device *, void *, void *); void bge_attach(struct device *, struct device *, void *); struct cfattach bge_ca = { sizeof(struct bge_softc), bge_probe, bge_attach }; struct cfdriver bge_cd = { 0, "bge", DV_IFNET }; void bge_txeof(struct bge_softc *); void bge_rxeof(struct bge_softc *); void bge_tick(void *); void bge_stats_update(struct bge_softc *); void bge_stats_update_regs(struct bge_softc *); int bge_encap(struct bge_softc *, struct mbuf *, u_int32_t *); int bge_compact_dma_runt(struct mbuf *pkt); int bge_intr(void *); void bge_start(struct ifnet *); int bge_ioctl(struct ifnet *, u_long, caddr_t); void bge_init(void *); void bge_power(int, void *); void bge_stop_block(struct bge_softc *, bus_size_t, u_int32_t); void bge_stop(struct bge_softc *); void bge_watchdog(struct ifnet *); void bge_shutdown(void *); int bge_ifmedia_upd(struct ifnet *); void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *); u_int8_t bge_nvram_getbyte(struct bge_softc *, int, u_int8_t *); int bge_read_nvram(struct bge_softc *, caddr_t, int, int); u_int8_t bge_eeprom_getbyte(struct bge_softc *, int, u_int8_t *); int bge_read_eeprom(struct bge_softc *, caddr_t, int, int); void bge_iff(struct bge_softc *); int bge_alloc_jumbo_mem(struct bge_softc *); void *bge_jalloc(struct bge_softc *); void bge_jfree(caddr_t, u_int, void *); int bge_newbuf_std(struct bge_softc *, int, struct mbuf *, bus_dmamap_t); int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *); int bge_init_rx_ring_std(struct bge_softc *); void bge_free_rx_ring_std(struct bge_softc *); int bge_init_rx_ring_jumbo(struct bge_softc *); void bge_free_rx_ring_jumbo(struct bge_softc *); void bge_free_tx_ring(struct bge_softc *); int bge_init_tx_ring(struct bge_softc *); void bge_chipinit(struct bge_softc *); int bge_blockinit(struct bge_softc *); u_int32_t bge_readmem_ind(struct bge_softc *, int); void bge_writemem_ind(struct bge_softc *, int, int); void bge_writereg_ind(struct bge_softc *, int, int); void bge_writembx(struct bge_softc *, int, int); int bge_miibus_readreg(struct device *, int, int); void bge_miibus_writereg(struct device *, int, int, int); void bge_miibus_statchg(struct device *); void bge_reset(struct bge_softc *); void bge_link_upd(struct bge_softc *); #ifdef BGE_DEBUG #define DPRINTF(x) do { if (bgedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (bgedebug >= (n)) printf x; } while (0) int bgedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* * Various supported device vendors/types and their names. Note: the * spec seems to indicate that the hardware still has Alteon's vendor * ID burned into it, though it will always be overridden by the vendor * ID in the EEPROM. Just to be safe, we cover all possibilities. */ const struct pci_matchid bge_devices[] = { { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5700 }, { PCI_VENDOR_ALTEON, PCI_PRODUCT_ALTEON_BCM5701 }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1000 }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1001 }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC1003 }, { PCI_VENDOR_ALTIMA, PCI_PRODUCT_ALTIMA_AC9100 }, { PCI_VENDOR_APPLE, PCI_PRODUCT_APPLE_BCM5701 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5700 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5701 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702_ALT }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5702X }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703_ALT }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5703X }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704C }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5704S_ALT }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705K }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5705M_ALT }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5714S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5715S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5720 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5721 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5722 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5750M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5751M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5752M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5753M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5754M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5755M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5756 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5780S }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5781 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5782 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5786 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787F }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5787M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5788 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5789 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5901A2 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5903M }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906 }, { PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5906M }, { PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PW008GE4 }, { PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PW008GE5 }, { PCI_VENDOR_FUJITSU, PCI_PRODUCT_FUJITSU_PP250_450_LAN }, { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9D21 }, { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C996 } }; #define BGE_IS_5705_OR_BEYOND(sc) \ (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) #define BGE_IS_575X_PLUS(sc) \ (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) #define BGE_IS_5714_FAMILY(sc) \ (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714) #define BGE_IS_JUMBO_CAPABLE(sc) \ (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || \ BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) static const struct bge_revision { u_int32_t br_chipid; const char *br_name; } bge_revisions[] = { { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" }, { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" }, { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" }, { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" }, { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" }, { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" }, { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" }, { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" }, { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" }, { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" }, { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" }, { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" }, { BGE_CHIPID_BCM5703_A0, "BCM5703 A0" }, { BGE_CHIPID_BCM5703_A1, "BCM5703 A1" }, { BGE_CHIPID_BCM5703_A2, "BCM5703 A2" }, { BGE_CHIPID_BCM5703_A3, "BCM5703 A3" }, { BGE_CHIPID_BCM5703_B0, "BCM5703 B0" }, { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" }, { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" }, { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" }, { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" }, { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" }, { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" }, { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" }, { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" }, { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" }, { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" }, { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" }, { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" }, { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" }, { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" }, { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" }, { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" }, { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" }, { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" }, { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" }, { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" }, { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" }, { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" }, { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" }, { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" }, { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" }, { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" }, { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" }, { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" }, { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" }, { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" }, /* the 5754 and 5787 share the same ASIC ID */ { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" }, { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" }, { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" }, { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" }, { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" }, { 0, NULL } }; /* * Some defaults for major revisions, so that newer steppings * that we don't know about have a shot at working. */ static const struct bge_revision bge_majorrevs[] = { { BGE_ASICREV_BCM5700, "unknown BCM5700" }, { BGE_ASICREV_BCM5701, "unknown BCM5701" }, /* 5702 and 5703 share the same ASIC ID */ { BGE_ASICREV_BCM5703, "unknown BCM5703" }, { BGE_ASICREV_BCM5704, "unknown BCM5704" }, { BGE_ASICREV_BCM5705, "unknown BCM5705" }, { BGE_ASICREV_BCM5750, "unknown BCM5750" }, { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" }, { BGE_ASICREV_BCM5752, "unknown BCM5752" }, { BGE_ASICREV_BCM5780, "unknown BCM5780" }, { BGE_ASICREV_BCM5714, "unknown BCM5714" }, { BGE_ASICREV_BCM5755, "unknown BCM5755" }, /* 5754 and 5787 share the same ASIC ID */ { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" }, { BGE_ASICREV_BCM5906, "unknown BCM5906" }, { 0, NULL } }; u_int32_t bge_readmem_ind(struct bge_softc *sc, int off) { struct pci_attach_args *pa = &(sc->bge_pa); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off); return (pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA)); } void bge_writemem_ind(struct bge_softc *sc, int off, int val) { struct pci_attach_args *pa = &(sc->bge_pa); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_BASEADDR, off); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MEMWIN_DATA, val); } void bge_writereg_ind(struct bge_softc *sc, int off, int val) { struct pci_attach_args *pa = &(sc->bge_pa); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_BASEADDR, off); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_REG_DATA, val); } void bge_writembx(struct bge_softc *sc, int off, int val) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI; CSR_WRITE_4(sc, off, val); } u_int8_t bge_nvram_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest) { u_int32_t access, byte = 0; int i; /* Lock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1); for (i = 0; i < 8000; i++) { if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1) break; DELAY(20); } if (i == 8000) return (1); /* Enable access. */ access = CSR_READ_4(sc, BGE_NVRAM_ACCESS); CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE); CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc); CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD); for (i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) { DELAY(10); break; } } if (i == BGE_TIMEOUT * 10) { printf("%s: nvram read timed out\n", sc->bge_dev.dv_xname); return (1); } /* Get result. */ byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA); *dest = (swap32(byte) >> ((addr % 4) * 8)) & 0xFF; /* Disable access. */ CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access); /* Unlock. */ CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1); CSR_READ_4(sc, BGE_NVRAM_SWARB); return (0); } /* * Read a sequence of bytes from NVRAM. */ int bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt) { int err = 0, i; u_int8_t byte = 0; if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) return (1); for (i = 0; i < cnt; i++) { err = bge_nvram_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return (err ? 1 : 0); } /* * Read a byte of data stored in the EEPROM at address 'addr.' The * BCM570x supports both the traditional bitbang interface and an * auto access interface for reading the EEPROM. We use the auto * access method. */ u_int8_t bge_eeprom_getbyte(struct bge_softc *sc, int addr, u_int8_t *dest) { int i; u_int32_t byte = 0; /* * Enable use of auto EEPROM access so we can avoid * having to use the bitbang method. */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM); /* Reset the EEPROM, load the clock period. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EEADDR_RESET|BGE_EEHALFCLK(BGE_HALFCLK_384SCL)); DELAY(20); /* Issue the read EEPROM command. */ CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr); /* Wait for completion */ for(i = 0; i < BGE_TIMEOUT * 10; i++) { DELAY(10); if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE) break; } if (i == BGE_TIMEOUT * 10) { printf("%s: eeprom read timed out\n", sc->bge_dev.dv_xname); return (1); } /* Get result. */ byte = CSR_READ_4(sc, BGE_EE_DATA); *dest = (byte >> ((addr % 4) * 8)) & 0xFF; return (0); } /* * Read a sequence of bytes from the EEPROM. */ int bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt) { int err = 0, i; u_int8_t byte = 0; for (i = 0; i < cnt; i++) { err = bge_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return (err ? 1 : 0); } int bge_miibus_readreg(struct device *dev, int phy, int reg) { struct bge_softc *sc = (struct bge_softc *)dev; u_int32_t val, autopoll; int i; /* * Broadcom's own driver always assumes the internal * PHY is at GMII address 1. On some chips, the PHY responds * to accesses at all addresses, which could cause us to * bogusly attach the PHY 32 times at probe type. Always * restricting the lookup to address 1 is simpler than * trying to figure out which chips revisions should be * special-cased. */ if (phy != 1) return (0); /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)); for (i = 0; i < 200; i++) { delay(1); val = CSR_READ_4(sc, BGE_MI_COMM); if (!(val & BGE_MICOMM_BUSY)) break; delay(10); } if (i == 200) { printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname); val = 0; goto done; } val = CSR_READ_4(sc, BGE_MI_COMM); done: if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } if (val & BGE_MICOMM_READFAIL) return (0); return (val & 0xFFFF); } void bge_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct bge_softc *sc = (struct bge_softc *)dev; u_int32_t autopoll; int i; /* Reading with autopolling on may trigger PCI errors */ autopoll = CSR_READ_4(sc, BGE_MI_MODE); if (autopoll & BGE_MIMODE_AUTOPOLL) { DELAY(40); BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL); BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(10); /* 40 usec is supposed to be adequate */ } CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE|BGE_MICOMM_BUSY| BGE_MIPHY(phy)|BGE_MIREG(reg)|val); for (i = 0; i < 200; i++) { delay(1); if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) break; delay(10); } if (autopoll & BGE_MIMODE_AUTOPOLL) { BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL); DELAY(40); } if (i == 200) { printf("%s: PHY read timed out\n", sc->bge_dev.dv_xname); } } void bge_miibus_statchg(struct device *dev) { struct bge_softc *sc = (struct bge_softc *)dev; struct mii_data *mii = &sc->bge_mii; /* * Get flow control negotiation result. */ if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO && (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) { sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK; mii->mii_media_active &= ~IFM_ETH_FMASK; } BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T || IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII); else BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII); if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); else BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); /* * 802.3x flow control */ if (sc->bge_flowflags & IFM_ETH_RXPAUSE) BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); else BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE); if (sc->bge_flowflags & IFM_ETH_TXPAUSE) BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); else BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE); } /* * Memory management for Jumbo frames. */ int bge_alloc_jumbo_mem(struct bge_softc *sc) { caddr_t ptr, kva; bus_dma_segment_t seg; int i, rseg, state, error; struct bge_jpool_entry *entry; state = error = 0; /* Grab a big chunk o' storage. */ if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc rx buffers\n", sc->bge_dev.dv_xname); return (ENOBUFS); } state = 1; if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc->bge_dev.dv_xname, BGE_JMEM); error = ENOBUFS; goto out; } state = 2; if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0, BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) { printf("%s: can't create dma map\n", sc->bge_dev.dv_xname); error = ENOBUFS; goto out; } state = 3; if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map, kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc->bge_dev.dv_xname); error = ENOBUFS; goto out; } state = 4; sc->bge_cdata.bge_jumbo_buf = (caddr_t)kva; DPRINTFN(1,("bge_jumbo_buf = 0x%08X\n", sc->bge_cdata.bge_jumbo_buf)); SLIST_INIT(&sc->bge_jfree_listhead); SLIST_INIT(&sc->bge_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->bge_cdata.bge_jumbo_buf; for (i = 0; i < BGE_JSLOTS; i++) { sc->bge_cdata.bge_jslots[i] = ptr; ptr += BGE_JLEN; entry = malloc(sizeof(struct bge_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { printf("%s: no memory for jumbo buffer queue!\n", sc->bge_dev.dv_xname); error = ENOBUFS; goto out; } entry->slot = i; SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); } out: if (error != 0) { switch (state) { case 4: bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map); case 3: bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map); case 2: bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM); case 1: bus_dmamem_free(sc->bge_dmatag, &seg, rseg); break; default: break; } } return (error); } /* * Allocate a Jumbo buffer. */ void * bge_jalloc(struct bge_softc *sc) { struct bge_jpool_entry *entry; entry = SLIST_FIRST(&sc->bge_jfree_listhead); if (entry == NULL) return (NULL); SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries); return (sc->bge_cdata.bge_jslots[entry->slot]); } /* * Release a Jumbo buffer. */ void bge_jfree(caddr_t buf, u_int size, void *arg) { struct bge_jpool_entry *entry; struct bge_softc *sc; int i; /* Extract the softc struct pointer. */ sc = (struct bge_softc *)arg; if (sc == NULL) panic("bge_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vaddr_t)buf - (vaddr_t)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN; if ((i < 0) || (i >= BGE_JSLOTS)) panic("bge_jfree: asked to free buffer that we don't manage!"); entry = SLIST_FIRST(&sc->bge_jinuse_listhead); if (entry == NULL) panic("bge_jfree: buffer not in use!"); entry->slot = i; SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries); SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries); } /* * Intialize a standard receive ring descriptor. */ int bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m, bus_dmamap_t dmamap) { struct mbuf *m_new = NULL; struct bge_rx_bd *r; int error; if (dmamap == NULL) { error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap); if (error != 0) return (error); } sc->bge_cdata.bge_rx_std_map[i] = dmamap; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return (ENOBUFS); MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return (ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { /* * We're re-using a previously allocated mbuf; * be sure to re-init pointers and lengths to * default values. */ m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } if (!(sc->bge_flags & BGE_RX_ALIGNBUG)) m_adj(m_new, ETHER_ALIGN); error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new, BUS_DMA_READ|BUS_DMA_NOWAIT); if (error) { if (m == NULL) { m_freem(m_new); sc->bge_cdata.bge_rx_std_chain[i] = NULL; } return (ENOBUFS); } sc->bge_cdata.bge_rx_std_chain[i] = m_new; r = &sc->bge_rdata->bge_rx_std_ring[i]; BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr); r->bge_flags = BGE_RXBDFLAG_END; r->bge_len = m_new->m_len; r->bge_idx = i; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_std_ring) + i * sizeof (struct bge_rx_bd), sizeof (struct bge_rx_bd), BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); return (0); } /* * Initialize a Jumbo receive ring descriptor. This allocates * a Jumbo buffer from the pool managed internally by the driver. */ int bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m) { struct mbuf *m_new = NULL; struct bge_rx_bd *r; if (m == NULL) { caddr_t buf = NULL; /* Allocate the mbuf. */ MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return (ENOBUFS); /* Allocate the Jumbo buffer */ buf = bge_jalloc(sc); if (buf == NULL) { m_freem(m_new); return (ENOBUFS); } /* Attach the buffer to the mbuf. */ m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN; MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, 0, bge_jfree, sc); } else { /* * We're re-using a previously allocated mbuf; * be sure to re-init pointers and lengths to * default values. */ m_new = m; m_new->m_data = m_new->m_ext.ext_buf; m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN; } if (!(sc->bge_flags & BGE_RX_ALIGNBUG)) m_adj(m_new, ETHER_ALIGN); /* Set up the descriptor. */ r = &sc->bge_rdata->bge_rx_jumbo_ring[i]; sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new; BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new)); r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING; r->bge_len = m_new->m_len; r->bge_idx = i; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_rx_jumbo_ring) + i * sizeof (struct bge_rx_bd), sizeof (struct bge_rx_bd), BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); return (0); } /* * The standard receive ring has 512 entries in it. At 2K per mbuf cluster, * that's 1MB or memory, which is a lot. For now, we fill only the first * 256 ring entries and hope that our CPU is fast enough to keep up with * the NIC. */ int bge_init_rx_ring_std(struct bge_softc *sc) { int i; if (sc->bge_flags & BGE_RXRING_VALID) return (0); for (i = 0; i < BGE_SSLOTS; i++) { if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS) return (ENOBUFS); } sc->bge_std = i - 1; bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); sc->bge_flags |= BGE_RXRING_VALID; return (0); } void bge_free_rx_ring_std(struct bge_softc *sc) { int i; if (!(sc->bge_flags & BGE_RXRING_VALID)) return; for (i = 0; i < BGE_STD_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_rx_std_chain[i]); sc->bge_cdata.bge_rx_std_chain[i] = NULL; bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_std_map[i]); } bzero((char *)&sc->bge_rdata->bge_rx_std_ring[i], sizeof(struct bge_rx_bd)); } sc->bge_flags &= ~BGE_RXRING_VALID; } int bge_init_rx_ring_jumbo(struct bge_softc *sc) { int i; volatile struct bge_rcb *rcb; if (sc->bge_flags & BGE_JUMBO_RXRING_VALID) return (0); for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS) return (ENOBUFS); }; sc->bge_jumbo = i - 1; sc->bge_flags |= BGE_JUMBO_RXRING_VALID; rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, 0); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); return (0); } void bge_free_rx_ring_jumbo(struct bge_softc *sc) { int i; if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID)) return; for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) { if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]); sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL; } bzero((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], sizeof(struct bge_rx_bd)); } sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID; } void bge_free_tx_ring(struct bge_softc *sc) { int i; struct txdmamap_pool_entry *dma; if (!(sc->bge_flags & BGE_TXRING_VALID)) return; for (i = 0; i < BGE_TX_RING_CNT; i++) { if (sc->bge_cdata.bge_tx_chain[i] != NULL) { m_freem(sc->bge_cdata.bge_tx_chain[i]); sc->bge_cdata.bge_tx_chain[i] = NULL; SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i], link); sc->txdma[i] = 0; } bzero((char *)&sc->bge_rdata->bge_tx_ring[i], sizeof(struct bge_tx_bd)); } while ((dma = SLIST_FIRST(&sc->txdma_list))) { SLIST_REMOVE_HEAD(&sc->txdma_list, link); bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap); free(dma, M_DEVBUF); } sc->bge_flags &= ~BGE_TXRING_VALID; } int bge_init_tx_ring(struct bge_softc *sc) { int i; bus_dmamap_t dmamap; struct txdmamap_pool_entry *dma; if (sc->bge_flags & BGE_TXRING_VALID) return (0); sc->bge_txcnt = 0; sc->bge_tx_saved_considx = 0; /* Initialize transmit producer index for host-memory send ring. */ sc->bge_tx_prodidx = 0; bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx); /* NIC-memory send ring not used; initialize to zero. */ bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0); SLIST_INIT(&sc->txdma_list); for (i = 0; i < BGE_TX_RING_CNT; i++) { if (bus_dmamap_create(sc->bge_dmatag, BGE_JLEN, BGE_NTXSEG, BGE_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) return (ENOBUFS); if (dmamap == NULL) panic("dmamap NULL in bge_init_tx_ring"); dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT); if (dma == NULL) { printf("%s: can't alloc txdmamap_pool_entry\n", sc->bge_dev.dv_xname); bus_dmamap_destroy(sc->bge_dmatag, dmamap); return (ENOMEM); } dma->dmamap = dmamap; SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); } sc->bge_flags |= BGE_TXRING_VALID; return (0); } void bge_iff(struct bge_softc *sc) { struct arpcom *ac = &sc->arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; u_int8_t hashes[16]; u_int32_t h, rxmode; /* First, zot all the existing filters. */ rxmode = CSR_READ_4(sc, BGE_RX_MODE) & ~BGE_RXMODE_RX_PROMISC; ifp->if_flags &= ~IFF_ALLMULTI; memset(hashes, 0x00, sizeof(hashes)); if (ifp->if_flags & IFF_PROMISC) rxmode |= BGE_RXMODE_RX_PROMISC; else if (ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; memset(hashes, 0xff, sizeof(hashes)); } else { ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); setbit(hashes, h & 0x7F); ETHER_NEXT_MULTI(step, enm); } } bus_space_write_raw_region_4(sc->bge_btag, sc->bge_bhandle, BGE_MAR0, hashes, sizeof(hashes)); CSR_WRITE_4(sc, BGE_RX_MODE, rxmode); } /* * Do endian, PCI and DMA initialization. */ void bge_chipinit(struct bge_softc *sc) { struct pci_attach_args *pa = &(sc->bge_pa); u_int32_t dma_rw_ctl; int i; /* Set endianness before we access any non-PCI registers. */ pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL, BGE_INIT); /* Clear the MAC control register */ CSR_WRITE_4(sc, BGE_MAC_MODE, 0); /* * Clear the MAC statistics block in the NIC's * internal memory. */ for (i = BGE_STATS_BLOCK; i < BGE_STATS_BLOCK_END + 1; i += sizeof(u_int32_t)) BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0); for (i = BGE_STATUS_BLOCK; i < BGE_STATUS_BLOCK_END + 1; i += sizeof(u_int32_t)) BGE_MEMWIN_WRITE(pa->pa_pc, pa->pa_tag, i, 0); /* * Set up the PCI DMA control register. */ dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) | BGE_PCIDMARWCTL_WR_CMD_SHIFT(7); if (sc->bge_flags & BGE_PCIE) { /* Read watermark not used, 128 bytes for write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else if (sc->bge_flags & BGE_PCIX) { /* PCI-X bus */ if (BGE_IS_5714_FAMILY(sc)) { /* 256 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(2); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; else dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL; } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { /* 1536 bytes for read, 384 bytes for write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3); } else { /* 384 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) | (0x0F); } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { u_int32_t tmp; /* Set ONEDMA_ATONCE for hardware workaround. */ tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f; if (tmp == 6 || tmp == 7) dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL; /* Set PCI-X DMA write workaround. */ dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE; } } else { /* Conventional PCI bus: 256 bytes for read and write. */ dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) | BGE_PCIDMARWCTL_WR_WAT_SHIFT(7); if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 && BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750) dma_rw_ctl |= 0x0F; } if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM | BGE_PCIDMARWCTL_ASRT_ALL_BE; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA; pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, dma_rw_ctl); /* * Set up general mode register. */ #ifndef BGE_CHECKSUM CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS| BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS| BGE_MODECTL_TX_NO_PHDR_CSUM|BGE_MODECTL_RX_NO_PHDR_CSUM); #else CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS| BGE_MODECTL_MAC_ATTN_INTR|BGE_MODECTL_HOST_SEND_BDS); #endif /* * Disable memory write invalidate. Apparently it is not supported * properly by these devices. */ PCI_CLRBIT(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, PCI_COMMAND_INVALIDATE_ENABLE); #ifdef __brokenalpha__ /* * Must insure that we do not cross an 8K (bytes) boundary * for DMA reads. Our highest limit is 1K bytes. This is a * restriction on some ALPHA platforms with early revision * 21174 PCI chipsets, such as the AlphaPC 164lx */ PCI_SETBIT(pa->pa_pc, pa->pa_tag, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024); #endif /* Set the timer prescaler (always 66MHz) */ CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/); } int bge_blockinit(struct bge_softc *sc) { volatile struct bge_rcb *rcb; vaddr_t rcb_addr; int i; bge_hostaddr taddr; u_int32_t val; /* * Initialize the memory window pointer register so that * we can access the first 32K of internal NIC RAM. This will * allow us to set up the TX send ring RCBs and the RX return * ring RCBs, plus other things which live in NIC memory. */ CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0); /* Configure mbuf memory pool */ if (!(BGE_IS_5705_OR_BEYOND(sc))) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000); else CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000); /* Configure DMA resource pool */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR, BGE_DMA_DESCRIPTORS); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000); } /* Configure mbuf pool watermarks */ /* new Broadcom docs strongly recommend these: */ if (!(BGE_IS_5705_OR_BEYOND(sc))) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10); } else { CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10); CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60); } /* Configure DMA resource watermarks */ CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5); CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10); /* Enable buffer manager */ CSR_WRITE_4(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE|BGE_BMANMODE_LOMBUF_ATTN); /* Poll for buffer manager start indication */ for (i = 0; i < 2000; i++) { if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE) break; DELAY(10); } if (i == 2000) { printf("%s: buffer manager failed to start\n", sc->bge_dev.dv_xname); return (ENXIO); } /* Enable flow-through queues */ CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); /* Wait until queue initialization is complete */ for (i = 0; i < 2000; i++) { if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0) break; DELAY(10); } if (i == 2000) { printf("%s: flow-through queue init failed\n", sc->bge_dev.dv_xname); return (ENXIO); } /* Initialize the standard RX ring control block */ rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring)); if (BGE_IS_5705_OR_BEYOND(sc)) rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0); else rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(ETHER_MAX_DIX_LEN, 0); rcb->bge_nicaddr = BGE_STD_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr); /* * Initialize the Jumbo RX ring control block * We set the 'ring disabled' bit in the flags * field until we're actually ready to start * using this ring (i.e. once we set the MTU * high enough to require it). */ if (BGE_IS_JUMBO_CAPABLE(sc)) { rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb; BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring)); rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(BGE_JUMBO_FRAMELEN, BGE_RCB_FLAG_RING_DISABLED); rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS; CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr); /* Set up dummy disabled mini ring RCB */ rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb; rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED); CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_info), sizeof (struct bge_gib), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } /* * Set the BD ring replenish thresholds. The recommended * values are 1/8th the number of descriptors allocated to * each ring. */ i = BGE_STD_RX_RING_CNT / 8; /* * Use a value of 8 for the following chips to workaround HW errata. * Some of these chips have been added based on empirical * evidence (they don't work unless this is done). */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) i = 8; CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i); CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8); /* * Disable all unused send rings by setting the 'ring disabled' * bit in the flags field of all the TX send ring control blocks. * These are located in NIC memory. */ rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) { RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); rcb_addr += sizeof(struct bge_rcb); } /* Configure TX RCB 0 (we use only the first ring) */ rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB; BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring)); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT)); if (!(BGE_IS_5705_OR_BEYOND(sc))) RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0)); /* Disable all unused RX return rings */ rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; for (i = 0; i < BGE_RX_RINGS_MAX; i++) { RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0); RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, BGE_RCB_FLAG_RING_DISABLED)); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0); bge_writembx(sc, BGE_MBX_RX_CONS0_LO + (i * (sizeof(u_int64_t))), 0); rcb_addr += sizeof(struct bge_rcb); } /* Initialize RX ring indexes */ bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0); bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0); bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0); /* * Set up RX return ring 0 * Note that the NIC address for RX return rings is 0x00000000. * The return rings live entirely within the host, so the * nicaddr field in the RCB isn't used. */ rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB; BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring)); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi); RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo); RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000); RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags, BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0)); /* Set random backoff seed for TX */ CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF, sc->arpcom.ac_enaddr[0] + sc->arpcom.ac_enaddr[1] + sc->arpcom.ac_enaddr[2] + sc->arpcom.ac_enaddr[3] + sc->arpcom.ac_enaddr[4] + sc->arpcom.ac_enaddr[5] + BGE_TX_BACKOFF_SEED_MASK); /* Set inter-packet gap */ CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620); /* * Specify which ring to use for packets that don't match * any RX rules. */ CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08); /* * Configure number of RX lists. One interrupt distribution * list, sixteen active lists, one bad frames class. */ CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181); /* Inialize RX list placement stats mask. */ CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1); /* Disable host coalescing until we get it set up */ CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000); /* Poll to make sure it's shut down. */ for (i = 0; i < 2000; i++) { if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE)) break; DELAY(10); } if (i == 2000) { printf("%s: host coalescing engine failed to idle\n", sc->bge_dev.dv_xname); return (ENXIO); } /* Set up host coalescing defaults */ CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks); CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds); if (!(BGE_IS_5705_OR_BEYOND(sc))) { CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0); } CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0); CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0); /* Set up address of statistics block */ if (!(BGE_IS_5705_OR_BEYOND(sc))) { CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, 0); CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats)); CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK); CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks); } /* Set up address of status block */ BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block)); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi); CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo); sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0; sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0; /* Turn on host coalescing state machine */ CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); /* Turn on RX BD completion state machine and enable attentions */ CSR_WRITE_4(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE|BGE_RBDCMODE_ATTN); /* Turn on RX list placement state machine */ CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); /* Turn on RX list selector state machine. */ if (!(BGE_IS_5705_OR_BEYOND(sc))) CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB | BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR | BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB | BGE_MACMODE_FRMHDR_DMA_ENB; if (sc->bge_flags & BGE_PHY_FIBER_TBI) val |= BGE_PORTMODE_TBI; else if (sc->bge_flags & BGE_PHY_FIBER_MII) val |= BGE_PORTMODE_GMII; else val |= BGE_PORTMODE_MII; /* Turn on DMA, clear stats */ CSR_WRITE_4(sc, BGE_MAC_MODE, val); /* Set misc. local control, enable interrupts on attentions */ CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN); #ifdef notdef /* Assert GPIO pins for PHY reset */ BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0| BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0| BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2); #endif /* Turn on DMA completion state machine */ if (!(BGE_IS_5705_OR_BEYOND(sc))) CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); val = BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS; /* Enable host coalescing bug fix. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) val |= (1 << 29); /* Turn on write DMA state machine */ CSR_WRITE_4(sc, BGE_WDMA_MODE, val); /* Turn on read DMA state machine */ { uint32_t dma_read_modebits; dma_read_modebits = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS; if (sc->bge_flags & BGE_PCIE && 0) dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST; CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits); } /* Turn on RX data completion state machine */ CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); /* Turn on RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); /* Turn on RX data and RX BD initiator state machine */ CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE); /* Turn on Mbuf cluster free state machine */ if (!(BGE_IS_5705_OR_BEYOND(sc))) CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); /* Turn on send BD completion state machine */ CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* Turn on send data completion state machine */ CSR_WRITE_4(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); /* Turn on send data initiator state machine */ CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); /* Turn on send BD initiator state machine */ CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); /* Turn on send BD selector state machine */ CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF); CSR_WRITE_4(sc, BGE_SDI_STATS_CTL, BGE_SDISTATSCTL_ENABLE|BGE_SDISTATSCTL_FASTER); /* ack/clear link change events */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); /* Enable PHY auto polling (for MII/GMII only) */ if (sc->bge_flags & BGE_PHY_FIBER_TBI) { CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK); } else { BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL); BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL|10<<16); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); } /* * Clear any pending link state attention. * Otherwise some link state change events may be lost until attention * is cleared by bge_intr() -> bge_link_upd() sequence. * It's not necessary on newer BCM chips - perhaps enabling link * state change attentions implies clearing pending attention. */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); /* Enable link state change attentions. */ BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED); return (0); } const struct bge_revision * bge_lookup_rev(u_int32_t chipid) { const struct bge_revision *br; for (br = bge_revisions; br->br_name != NULL; br++) { if (br->br_chipid == chipid) return (br); } for (br = bge_majorrevs; br->br_name != NULL; br++) { if (br->br_chipid == BGE_ASICREV(chipid)) return (br); } return (NULL); } /* * Probe for a Broadcom chip. Check the PCI vendor and device IDs * against our list and return its name if we find a match. Note * that since the Broadcom controller contains VPD support, we * can get the device name string from the controller itself instead * of the compiled-in string. This is a little slow, but it guarantees * we'll always announce the right product name. */ int bge_probe(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, bge_devices, sizeof(bge_devices)/sizeof(bge_devices[0]))); } void bge_attach(struct device *parent, struct device *self, void *aux) { struct bge_softc *sc = (struct bge_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; const struct bge_revision *br; pcireg_t pm_ctl, memtype, subid; pci_intr_handle_t ih; const char *intrstr = NULL; bus_size_t size; bus_dma_segment_t seg; int rseg, gotenaddr = 0; u_int32_t hwcfg = 0; u_int32_t mac_addr = 0; u_int32_t misccfg; struct ifnet *ifp; caddr_t kva; #ifdef __sparc64__ int subvendor; #endif sc->bge_pa = *pa; subid = pci_conf_read(pc, pa->pa_tag, PCI_SUBSYS_ID_REG); /* * Map control/status registers. */ DPRINTFN(5, ("Map control/status regs\n")); DPRINTFN(5, ("pci_mapreg_map\n")); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0); if (pci_mapreg_map(pa, BGE_PCI_BAR0, memtype, 0, &sc->bge_btag, &sc->bge_bhandle, NULL, &size, 0)) { printf(": can't find mem space\n"); return; } DPRINTFN(5, ("pci_intr_map\n")); if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail_1; } DPRINTFN(5, ("pci_intr_string\n")); intrstr = pci_intr_string(pc, ih); /* * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?) * can clobber the chip's PCI config-space power control registers, * leaving the card in D3 powersave state. * We do not have memory-mapped registers in this state, * so force device into D0 state before starting initialization. */ pm_ctl = pci_conf_read(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD); pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3); pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */ pci_conf_write(pc, pa->pa_tag, BGE_PCI_PWRMGMT_CMD, pm_ctl); DELAY(1000); /* 27 usec is allegedly sufficent */ /* * Save ASIC rev. */ sc->bge_chipid = pci_conf_read(pc, pa->pa_tag, BGE_PCI_MISC_CTL) & BGE_PCIMISCCTL_ASICREV; printf(", "); br = bge_lookup_rev(sc->bge_chipid); if (br == NULL) printf("unknown ASIC (0x%04x)", sc->bge_chipid >> 16); else printf("%s (0x%04x)", br->br_name, sc->bge_chipid >> 16); /* * PCI Express check. */ if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, NULL, NULL) != 0) sc->bge_flags |= BGE_PCIE; /* * PCI-X check. */ if ((pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE) & BGE_PCISTATE_PCI_BUSMODE) == 0) sc->bge_flags |= BGE_PCIX; /* * SEEPROM check. */ #ifdef __sparc64__ if (OF_getprop(PCITAG_NODE(pa->pa_tag), "subsystem-vendor-id", &subvendor, sizeof(subvendor)) == sizeof(subvendor)) { if (subvendor == PCI_VENDOR_SUN) sc->bge_flags |= BGE_NO_EEPROM; } #endif /* * When using the BCM5701 in PCI-X mode, data corruption has * been observed in the first few bytes of some received packets. * Aligning the packet buffer in memory eliminates the corruption. * Unfortunately, this misaligns the packet payloads. On platforms * which do not support unaligned accesses, we will realign the * payloads by copying the received packets. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 && sc->bge_flags & BGE_PCIX) sc->bge_flags |= BGE_RX_ALIGNBUG; if (BGE_IS_JUMBO_CAPABLE(sc)) sc->bge_flags |= BGE_JUMBO_CAP; if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) && PCI_VENDOR(subid) == DELL_VENDORID) sc->bge_flags |= BGE_NO_3LED; misccfg = CSR_READ_4(sc, BGE_MISC_CFG); misccfg &= BGE_MISCCFG_BOARD_ID_MASK; if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 && (misccfg == 0x4000 || misccfg == 0x8000)) || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) || (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM && (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F || PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) sc->bge_flags |= BGE_10_100_ONLY; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 && (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 && sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED; if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 || sc->bge_chipid == BGE_CHIPID_BCM5701_B0) sc->bge_flags |= BGE_PHY_CRC_BUG; if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX || BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX) sc->bge_flags |= BGE_PHY_ADC_BUG; if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0) sc->bge_flags |= BGE_PHY_5704_A0_BUG; if (BGE_IS_5705_OR_BEYOND(sc)) { if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) { if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 && PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756) sc->bge_flags |= BGE_PHY_JITTER_BUG; if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M) sc->bge_flags |= BGE_PHY_ADJUST_TRIM; } else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906) sc->bge_flags |= BGE_PHY_BER_BUG; } /* Try to reset the chip. */ DPRINTFN(5, ("bge_reset\n")); bge_reset(sc); bge_chipinit(sc); #ifdef __sparc64__ if (!gotenaddr) { if (OF_getprop(PCITAG_NODE(pa->pa_tag), "local-mac-address", sc->arpcom.ac_enaddr, ETHER_ADDR_LEN) == ETHER_ADDR_LEN) gotenaddr = 1; } #endif /* * Get station address from the EEPROM. */ if (!gotenaddr) { mac_addr = bge_readmem_ind(sc, 0x0c14); if ((mac_addr >> 16) == 0x484b) { sc->arpcom.ac_enaddr[0] = (u_char)(mac_addr >> 8); sc->arpcom.ac_enaddr[1] = (u_char)mac_addr; mac_addr = bge_readmem_ind(sc, 0x0c18); sc->arpcom.ac_enaddr[2] = (u_char)(mac_addr >> 24); sc->arpcom.ac_enaddr[3] = (u_char)(mac_addr >> 16); sc->arpcom.ac_enaddr[4] = (u_char)(mac_addr >> 8); sc->arpcom.ac_enaddr[5] = (u_char)mac_addr; gotenaddr = 1; } } if (!gotenaddr) { int mac_offset = BGE_EE_MAC_OFFSET; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) mac_offset = BGE_EE_MAC_OFFSET_5906; if (bge_read_nvram(sc, (caddr_t)&sc->arpcom.ac_enaddr, mac_offset + 2, ETHER_ADDR_LEN) == 0) gotenaddr = 1; } if (!gotenaddr && (!(sc->bge_flags & BGE_NO_EEPROM))) { if (bge_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, BGE_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN) == 0) gotenaddr = 1; } #ifdef __sparc64__ if (!gotenaddr) { extern void myetheraddr(u_char *); myetheraddr(sc->arpcom.ac_enaddr); gotenaddr = 1; } #endif if (!gotenaddr) { printf(": failed to read station address\n"); goto fail_1; } /* Allocate the general information block and ring buffers. */ sc->bge_dmatag = pa->pa_dmat; DPRINTFN(5, ("bus_dmamem_alloc\n")); if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data), PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf(": can't alloc rx buffers\n"); goto fail_1; } DPRINTFN(5, ("bus_dmamem_map\n")); if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, sizeof(struct bge_ring_data), &kva, BUS_DMA_NOWAIT)) { printf(": can't map dma buffers (%zu bytes)\n", sizeof(struct bge_ring_data)); goto fail_2; } DPRINTFN(5, ("bus_dmamem_create\n")); if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1, sizeof(struct bge_ring_data), 0, BUS_DMA_NOWAIT, &sc->bge_ring_map)) { printf(": can't create dma map\n"); goto fail_3; } DPRINTFN(5, ("bus_dmamem_load\n")); if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva, sizeof(struct bge_ring_data), NULL, BUS_DMA_NOWAIT)) { goto fail_4; } DPRINTFN(5, ("bzero\n")); sc->bge_rdata = (struct bge_ring_data *)kva; bzero(sc->bge_rdata, sizeof(struct bge_ring_data)); /* * Try to allocate memory for Jumbo buffers. */ if (BGE_IS_JUMBO_CAPABLE(sc)) { if (bge_alloc_jumbo_mem(sc)) { printf(": jumbo buffer allocation failed\n"); goto fail_5; } } /* Set default tuneable values. */ sc->bge_stat_ticks = BGE_TICKS_PER_SEC; sc->bge_rx_coal_ticks = 150; sc->bge_rx_max_coal_bds = 64; sc->bge_tx_coal_ticks = 300; sc->bge_tx_max_coal_bds = 400; /* 5705 limits RX return ring to 512 entries. */ if (BGE_IS_5705_OR_BEYOND(sc)) sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705; else sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT; /* Set up ifnet structure */ ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = bge_ioctl; ifp->if_start = bge_start; ifp->if_watchdog = bge_watchdog; ifp->if_baudrate = 1000000000; IFQ_SET_MAXLEN(&ifp->if_snd, BGE_TX_RING_CNT - 1); IFQ_SET_READY(&ifp->if_snd); DPRINTFN(5, ("bcopy\n")); bcopy(sc->bge_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif if (BGE_IS_JUMBO_CAPABLE(sc)) ifp->if_hardmtu = BGE_JUMBO_MTU; /* * Do MII setup. */ DPRINTFN(5, ("mii setup\n")); sc->bge_mii.mii_ifp = ifp; sc->bge_mii.mii_readreg = bge_miibus_readreg; sc->bge_mii.mii_writereg = bge_miibus_writereg; sc->bge_mii.mii_statchg = bge_miibus_statchg; /* * Figure out what sort of media we have by checking the hardware * config word in the first 32K of internal NIC memory, or fall back to * examining the EEPROM if necessary. Note: on some BCM5700 cards, * this value seems to be unset. If that's the case, we have to rely on * identifying the NIC by its PCI subsystem ID, as we do below for the * SysKonnect SK-9D41. */ if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG); else if (!(sc->bge_flags & BGE_NO_EEPROM)) { if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET, sizeof(hwcfg))) { printf(": failed to read media type\n"); goto fail_5; } hwcfg = ntohl(hwcfg); } /* The SysKonnect SK-9D41 is a 1000baseSX card. */ if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) { if (BGE_IS_5714_FAMILY(sc)) sc->bge_flags |= BGE_PHY_FIBER_MII; else sc->bge_flags |= BGE_PHY_FIBER_TBI; } /* Hookup IRQ last. */ DPRINTFN(5, ("pci_intr_establish\n")); sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc, sc->bge_dev.dv_xname); if (sc->bge_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail_5; } /* * A Broadcom chip was detected. Inform the world. */ printf(": %s, address %s\n", intrstr, ether_sprintf(sc->arpcom.ac_enaddr)); if (sc->bge_flags & BGE_PHY_FIBER_TBI) { ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd, bge_ifmedia_sts); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); ifmedia_add(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->bge_ifmedia, IFM_ETHER|IFM_AUTO); sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media; } else { int mii_flags; /* * Do transceiver setup. */ ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd, bge_ifmedia_sts); mii_flags = MIIF_DOPAUSE; if (sc->bge_flags & BGE_PHY_FIBER_MII) mii_flags |= MIIF_HAVEFIBER; mii_attach(&sc->bge_dev, &sc->bge_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, mii_flags); if (LIST_FIRST(&sc->bge_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->bge_dev.dv_xname); ifmedia_add(&sc->bge_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->bge_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc->bge_mii.mii_media, IFM_ETHER|IFM_AUTO); } /* * Call MI attach routine. */ if_attach(ifp); ether_ifattach(ifp); sc->sc_shutdownhook = shutdownhook_establish(bge_shutdown, sc); sc->sc_powerhook = powerhook_establish(bge_power, sc); timeout_set(&sc->bge_timeout, bge_tick, sc); return; fail_5: bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map); fail_4: bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map); fail_3: bus_dmamem_unmap(sc->bge_dmatag, kva, sizeof(struct bge_ring_data)); fail_2: bus_dmamem_free(sc->bge_dmatag, &seg, rseg); fail_1: bus_space_unmap(sc->bge_btag, sc->bge_bhandle, size); } void bge_reset(struct bge_softc *sc) { struct pci_attach_args *pa = &sc->bge_pa; pcireg_t cachesize, command, pcistate, new_pcistate; u_int32_t reset; int i, val = 0; /* Save some important PCI state. */ cachesize = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ); command = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD); pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW); /* Disable fastboot on controllers that support it. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 || BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0); reset = BGE_MISCCFG_RESET_CORE_CLOCKS|(65<<1); if (sc->bge_flags & BGE_PCIE) { if (CSR_READ_4(sc, 0x7e2c) == 0x60) { /* PCI Express 1.0 system */ CSR_WRITE_4(sc, 0x7e2c, 0x20); } if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { /* * Prevent PCI Express link training * during global reset. */ CSR_WRITE_4(sc, BGE_MISC_CFG, (1<<29)); reset |= (1<<29); } } /* * Set GPHY Power Down Override to leave GPHY * powered up in D0 uninitialized. */ if (BGE_IS_5705_OR_BEYOND(sc)) reset |= BGE_MISCCFG_KEEP_GPHY_POWER; /* Issue global reset */ bge_writereg_ind(sc, BGE_MISC_CFG, reset); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { u_int32_t status, ctrl; status = CSR_READ_4(sc, BGE_VCPU_STATUS); CSR_WRITE_4(sc, BGE_VCPU_STATUS, status | BGE_VCPU_STATUS_DRV_RESET); ctrl = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL); CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL, ctrl & ~BGE_VCPU_EXT_CTRL_HALT_CPU); sc->bge_flags |= BGE_NO_EEPROM; } DELAY(1000); if (sc->bge_flags & BGE_PCIE) { if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) { pcireg_t v; DELAY(500000); /* wait for link training to complete */ v = pci_conf_read(pa->pa_pc, pa->pa_tag, 0xc4); pci_conf_write(pa->pa_pc, pa->pa_tag, 0xc4, v | (1<<15)); } /* * Set PCI Express max payload size to 128 bytes * and clear error status. */ pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CONF_DEV_CTRL, 0xf5000); } /* Reset some of the PCI state that got zapped by reset */ pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_INDIRECT_ACCESS|BGE_PCIMISCCTL_MASK_PCI_INTR| BGE_PCIMISCCTL_ENDIAN_WORDSWAP|BGE_PCIMISCCTL_PCISTATE_RW); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CACHESZ, cachesize); pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_CMD, command); bge_writereg_ind(sc, BGE_MISC_CFG, (65 << 1)); /* Enable memory arbiter. */ if (BGE_IS_5714_FAMILY(sc)) { u_int32_t val; val = CSR_READ_4(sc, BGE_MARB_MODE); CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val); } else CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); /* * Prevent PXE restart: write a magic number to the * general communications memory at 0xB50. */ bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) { for (i = 0; i < BGE_TIMEOUT; i++) { val = CSR_READ_4(sc, BGE_VCPU_STATUS); if (val & BGE_VCPU_STATUS_INIT_DONE) break; DELAY(100); } if (i >= BGE_TIMEOUT) printf("%s: reset timed out\n", sc->bge_dev.dv_xname); } else { /* * Poll until we see 1's complement of the magic number. * This indicates that the firmware initialization * is complete. We expect this to fail if no SEEPROM * is fitted. */ for (i = 0; i < BGE_TIMEOUT; i++) { val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM); if (val == ~BGE_MAGIC_NUMBER) break; DELAY(10); } if (i >= BGE_TIMEOUT && (!(sc->bge_flags & BGE_NO_EEPROM))) printf("%s: firmware handshake timed out\n", sc->bge_dev.dv_xname); } /* * XXX Wait for the value of the PCISTATE register to * return to its original pre-reset state. This is a * fairly good indicator of reset completion. If we don't * wait for the reset to fully complete, trying to read * from the device's non-PCI registers may yield garbage * results. */ for (i = 0; i < BGE_TIMEOUT; i++) { new_pcistate = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE); if ((new_pcistate & ~BGE_PCISTATE_RESERVED) == (pcistate & ~BGE_PCISTATE_RESERVED)) break; DELAY(10); } if ((new_pcistate & ~BGE_PCISTATE_RESERVED) != (pcistate & ~BGE_PCISTATE_RESERVED)) { DPRINTFN(5, ("%s: pcistate failed to revert\n", sc->bge_dev.dv_xname)); } /* Fix up byte swapping */ CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS); CSR_WRITE_4(sc, BGE_MAC_MODE, 0); /* * The 5704 in TBI mode apparently needs some special * adjustment to insure the SERDES drive level is set * to 1.2V. */ if (sc->bge_flags & BGE_PHY_FIBER_TBI && BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { u_int32_t serdescfg; serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG); serdescfg = (serdescfg & ~0xFFF) | 0x880; CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg); } if (sc->bge_flags & BGE_PCIE && sc->bge_chipid != BGE_CHIPID_BCM5750_A0) { u_int32_t v; /* Enable PCI Express bug fix */ v = CSR_READ_4(sc, 0x7c00); CSR_WRITE_4(sc, 0x7c00, v | (1<<25)); } DELAY(10000); } /* * Frame reception handling. This is called if there's a frame * on the receive return list. * * Note: we have to be able to handle two possibilities here: * 1) the frame is from the Jumbo receive ring * 2) the frame is from the standard receive ring */ void bge_rxeof(struct bge_softc *sc) { struct ifnet *ifp; int stdcnt = 0, jumbocnt = 0; bus_dmamap_t dmamap; bus_addr_t offset, toff; bus_size_t tlen; int tosync; /* Nothing to do */ if (sc->bge_rx_saved_considx == sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) return; ifp = &sc->arpcom.ac_if; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof (struct bge_status_block), BUS_DMASYNC_POSTREAD); offset = offsetof(struct bge_ring_data, bge_rx_return_ring); tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx - sc->bge_rx_saved_considx; toff = offset + (sc->bge_rx_saved_considx * sizeof (struct bge_rx_bd)); if (tosync < 0) { tlen = (sc->bge_return_ring_cnt - sc->bge_rx_saved_considx) * sizeof (struct bge_rx_bd); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, toff, tlen, BUS_DMASYNC_POSTREAD); tosync = -tosync; } bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offset, tosync * sizeof (struct bge_rx_bd), BUS_DMASYNC_POSTREAD); while(sc->bge_rx_saved_considx != sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx) { struct bge_rx_bd *cur_rx; u_int32_t rxidx; struct mbuf *m = NULL; #ifdef BGE_CHECKSUM int sumflags = 0; #endif cur_rx = &sc->bge_rdata-> bge_rx_return_ring[sc->bge_rx_saved_considx]; rxidx = cur_rx->bge_idx; BGE_INC(sc->bge_rx_saved_considx, sc->bge_return_ring_cnt); if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) { BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT); m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx]; sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL; jumbocnt++; if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { ifp->if_ierrors++; bge_newbuf_jumbo(sc, sc->bge_jumbo, m); continue; } if (bge_newbuf_jumbo(sc, sc->bge_jumbo, NULL) == ENOBUFS) { struct mbuf *m0; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, cur_rx->bge_len - ETHER_CRC_LEN + ETHER_ALIGN, 0, ifp, NULL); bge_newbuf_jumbo(sc, sc->bge_jumbo, m); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; } } else { BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT); m = sc->bge_cdata.bge_rx_std_chain[rxidx]; sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL; stdcnt++; dmamap = sc->bge_cdata.bge_rx_std_map[rxidx]; sc->bge_cdata.bge_rx_std_map[rxidx] = 0; bus_dmamap_unload(sc->bge_dmatag, dmamap); if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) { ifp->if_ierrors++; bge_newbuf_std(sc, sc->bge_std, m, dmamap); continue; } if (bge_newbuf_std(sc, sc->bge_std, NULL, dmamap) == ENOBUFS) { ifp->if_ierrors++; bge_newbuf_std(sc, sc->bge_std, m, dmamap); continue; } } ifp->if_ipackets++; #ifdef __STRICT_ALIGNMENT /* * The i386 allows unaligned accesses, but for other * platforms we must make sure the payload is aligned. */ if (sc->bge_flags & BGE_RX_ALIGNBUG) { bcopy(m->m_data, m->m_data + ETHER_ALIGN, cur_rx->bge_len); m->m_data += ETHER_ALIGN; } #endif m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN; m->m_pkthdr.rcvif = ifp; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif #ifdef BGE_CHECKSUM if ((cur_rx->bge_ip_csum ^ 0xffff) == 0) sumflags |= M_IPV4_CSUM_IN_OK; else sumflags |= M_IPV4_CSUM_IN_BAD; if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) { m->m_pkthdr.csum_data = cur_rx->bge_tcp_udp_csum; m->m_pkthdr.csum_flags |= CSUM_DATA_VALID; } m->m_pkthdr.csum_flags = sumflags; sumflags = 0; #endif ether_input_mbuf(ifp, m); } bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx); if (stdcnt) bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std); if (jumbocnt) bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo); } void bge_txeof(struct bge_softc *sc) { struct bge_tx_bd *cur_tx = NULL; struct ifnet *ifp; struct txdmamap_pool_entry *dma; bus_addr_t offset, toff; bus_size_t tlen; int tosync; struct mbuf *m; /* Nothing to do */ if (sc->bge_tx_saved_considx == sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) return; ifp = &sc->arpcom.ac_if; bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offsetof(struct bge_ring_data, bge_status_block), sizeof (struct bge_status_block), BUS_DMASYNC_POSTREAD); offset = offsetof(struct bge_ring_data, bge_tx_ring); tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx - sc->bge_tx_saved_considx; toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd)); if (tosync < 0) { tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) * sizeof (struct bge_tx_bd); bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); tosync = -tosync; } bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map, offset, tosync * sizeof (struct bge_tx_bd), BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ while (sc->bge_tx_saved_considx != sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) { u_int32_t idx = 0; idx = sc->bge_tx_saved_considx; cur_tx = &sc->bge_rdata->bge_tx_ring[idx]; if (cur_tx->bge_flags & BGE_TXBDFLAG_END) ifp->if_opackets++; m = sc->bge_cdata.bge_tx_chain[idx]; if (m != NULL) { sc->bge_cdata.bge_tx_chain[idx] = NULL; dma = sc->txdma[idx]; bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0, dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->bge_dmatag, dma->dmamap); SLIST_INSERT_HEAD(&sc->txdma_list, dma, link); sc->txdma[idx] = NULL; m_freem(m); } sc->bge_txcnt--; BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT); } if (sc->bge_txcnt < BGE_TX_RING_CNT - 16) ifp->if_flags &= ~IFF_OACTIVE; if (sc->bge_txcnt == 0) ifp->if_timer = 0; } int bge_intr(void *xsc) { struct bge_softc *sc; struct ifnet *ifp; u_int32_t statusword; sc = xsc; ifp = &sc->arpcom.ac_if; /* It is possible for the interrupt to arrive before * the status block is updated prior to the interrupt. * Reading the PCI State register will confirm whether the * interrupt is ours and will flush the status block. */ /* read status word from status block */ statusword = sc->bge_rdata->bge_status_block.bge_status; if ((statusword & BGE_STATFLAG_UPDATED) || (!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) { /* Ack interrupt and stop others from occurring. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); /* clear status word */ sc->bge_rdata->bge_status_block.bge_status = 0; if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 || statusword & BGE_STATFLAG_LINKSTATE_CHANGED || BGE_STS_BIT(sc, BGE_STS_LINK_EVT)) bge_link_upd(sc); if (ifp->if_flags & IFF_RUNNING) { /* Check RX return ring producer/consumer */ bge_rxeof(sc); /* Check TX ring producer/consumer */ bge_txeof(sc); } /* Re-enable interrupts. */ bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); bge_start(ifp); return (1); } else return (0); } void bge_tick(void *xsc) { struct bge_softc *sc = xsc; struct mii_data *mii = &sc->bge_mii; int s; s = splnet(); if (BGE_IS_5705_OR_BEYOND(sc)) bge_stats_update_regs(sc); else bge_stats_update(sc); if (sc->bge_flags & BGE_PHY_FIBER_TBI) { /* * Since in TBI mode auto-polling can't be used we should poll * link status manually. Here we register pending link event * and trigger interrupt. */ BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET); } else { /* * Do not touch PHY if we have link up. This could break * IPMI/ASF mode or produce extra input errors. * (extra input errors was reported for bcm5701 & bcm5704). */ if (!BGE_STS_BIT(sc, BGE_STS_LINK)) mii_tick(mii); } timeout_add(&sc->bge_timeout, hz); splx(s); } void bge_stats_update_regs(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS + offsetof(struct bge_mac_stats_regs, etherStatsCollisions)); ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS); ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS); ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS); } void bge_stats_update(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK; u_int32_t cnt; #define READ_STAT(sc, stats, stat) \ CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat)) cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo); ifp->if_collisions += (u_int32_t)(cnt - sc->bge_tx_collisions); sc->bge_tx_collisions = cnt; cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo); ifp->if_ierrors += (u_int32_t)(cnt - sc->bge_rx_discards); sc->bge_rx_discards = cnt; cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo); ifp->if_ierrors += (u_int32_t)(cnt - sc->bge_rx_inerrors); sc->bge_rx_inerrors = cnt; cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo); ifp->if_ierrors += (u_int32_t)(cnt - sc->bge_rx_overruns); sc->bge_rx_overruns = cnt; cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo); ifp->if_oerrors += (u_int32_t)(cnt - sc->bge_tx_discards); sc->bge_tx_discards = cnt; #undef READ_STAT } /* * Compact outbound packets to avoid bug with DMA segments less than 8 bytes. */ int bge_compact_dma_runt(struct mbuf *pkt) { struct mbuf *m, *prev, *n = NULL; int totlen, prevlen, newprevlen; prev = NULL; totlen = 0; prevlen = -1; for (m = pkt; m != NULL; prev = m,m = m->m_next) { int mlen = m->m_len; int shortfall = 8 - mlen ; totlen += mlen; if (mlen == 0) continue; if (mlen >= 8) continue; /* If we get here, mbuf data is too small for DMA engine. * Try to fix by shuffling data to prev or next in chain. * If that fails, do a compacting deep-copy of the whole chain. */ /* Internal frag. If fits in prev, copy it there. */ if (prev && M_TRAILINGSPACE(prev) >= m->m_len) { bcopy(m->m_data, prev->m_data+prev->m_len, mlen); prev->m_len += mlen; m->m_len = 0; /* XXX stitch chain */ prev->m_next = m_free(m); m = prev; continue; } else if (m->m_next != NULL && M_TRAILINGSPACE(m) >= shortfall && m->m_next->m_len >= (8 + shortfall)) { /* m is writable and have enough data in next, pull up. */ bcopy(m->m_next->m_data, m->m_data+m->m_len, shortfall); m->m_len += shortfall; m->m_next->m_len -= shortfall; m->m_next->m_data += shortfall; } else if (m->m_next == NULL || 1) { /* Got a runt at the very end of the packet. * borrow data from the tail of the preceding mbuf and * update its length in-place. (The original data is still * valid, so we can do this even if prev is not writable.) */ /* if we'd make prev a runt, just move all of its data. */ #ifdef DEBUG KASSERT(prev != NULL /*, ("runt but null PREV")*/); KASSERT(prev->m_len >= 8 /*, ("runt prev")*/); #endif if ((prev->m_len - shortfall) < 8) shortfall = prev->m_len; newprevlen = prev->m_len - shortfall; MGET(n, M_NOWAIT, MT_DATA); if (n == NULL) return (ENOBUFS); KASSERT(m->m_len + shortfall < MLEN /*, ("runt %d +prev %d too big\n", m->m_len, shortfall)*/); /* first copy the data we're stealing from prev */ bcopy(prev->m_data + newprevlen, n->m_data, shortfall); /* update prev->m_len accordingly */ prev->m_len -= shortfall; /* copy data from runt m */ bcopy(m->m_data, n->m_data + shortfall, m->m_len); /* n holds what we stole from prev, plus m */ n->m_len = shortfall + m->m_len; /* stitch n into chain and free m */ n->m_next = m->m_next; prev->m_next = n; /* KASSERT(m->m_next == NULL); */ m->m_next = NULL; m_free(m); m = n; /* for continuing loop */ } prevlen = m->m_len; } return (0); } /* * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data * pointers to descriptors. */ int bge_encap(struct bge_softc *sc, struct mbuf *m_head, u_int32_t *txidx) { struct bge_tx_bd *f = NULL; u_int32_t frag, cur; u_int16_t csum_flags = 0; struct txdmamap_pool_entry *dma; bus_dmamap_t dmamap; int i = 0; #if NVLAN > 0 struct ifvlan *ifv = NULL; if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && m_head->m_pkthdr.rcvif != NULL) ifv = m_head->m_pkthdr.rcvif->if_softc; #endif cur = frag = *txidx; #ifdef BGE_CHECKSUM if (m_head->m_pkthdr.csum_flags) { if (m_head->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) csum_flags |= BGE_TXBDFLAG_IP_CSUM; if (m_head->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM; #ifdef fake if (m_head->m_flags & M_LASTFRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG_END; else if (m_head->m_flags & M_FRAG) csum_flags |= BGE_TXBDFLAG_IP_FRAG; #endif } #endif if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)) goto doit; /* * bcm5700 Revision B silicon cannot handle DMA descriptors with * less than eight bytes. If we encounter a teeny mbuf * at the end of a chain, we can pad. Otherwise, copy. */ if (bge_compact_dma_runt(m_head) != 0) return (ENOBUFS); doit: dma = SLIST_FIRST(&sc->txdma_list); if (dma == NULL) return (ENOBUFS); dmamap = dma->dmamap; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head, BUS_DMA_NOWAIT)) return (ENOBUFS); /* * Sanity check: avoid coming within 16 descriptors * of the end of the ring. */ if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) goto fail_unload; for (i = 0; i < dmamap->dm_nsegs; i++) { f = &sc->bge_rdata->bge_tx_ring[frag]; if (sc->bge_cdata.bge_tx_chain[frag] != NULL) break; BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr); f->bge_len = dmamap->dm_segs[i].ds_len; f->bge_flags = csum_flags; #if NVLAN > 0 if (ifv != NULL) { f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG; f->bge_vlan_tag = ifv->ifv_tag; } else { f->bge_vlan_tag = 0; } #endif cur = frag; BGE_INC(frag, BGE_TX_RING_CNT); } if (i < dmamap->dm_nsegs) goto fail_unload; bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); if (frag == sc->bge_tx_saved_considx) goto fail_unload; sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END; sc->bge_cdata.bge_tx_chain[cur] = m_head; SLIST_REMOVE_HEAD(&sc->txdma_list, link); sc->txdma[cur] = dma; sc->bge_txcnt += dmamap->dm_nsegs; *txidx = frag; return (0); fail_unload: bus_dmamap_unload(sc->bge_dmatag, dmamap); return (ENOBUFS); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit descriptors. */ void bge_start(struct ifnet *ifp) { struct bge_softc *sc; struct mbuf *m_head = NULL; u_int32_t prodidx; int pkts = 0; sc = ifp->if_softc; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; if (!BGE_STS_BIT(sc, BGE_STS_LINK)) return; if (IFQ_IS_EMPTY(&ifp->if_snd)) return; prodidx = sc->bge_tx_prodidx; while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (bge_encap(sc, m_head, &prodidx)) { ifp->if_flags |= IFF_OACTIVE; break; } /* now we are committed to transmit the packet */ IFQ_DEQUEUE(&ifp->if_snd, m_head); pkts++; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif } if (pkts == 0) return; /* Transmit */ bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx); sc->bge_tx_prodidx = prodidx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void bge_init(void *xsc) { struct bge_softc *sc = xsc; struct ifnet *ifp; u_int16_t *m; int s; s = splnet(); ifp = &sc->arpcom.ac_if; /* Cancel pending I/O and flush buffers. */ bge_stop(sc); bge_reset(sc); bge_chipinit(sc); /* * Init the various state machines, ring * control blocks and firmware. */ if (bge_blockinit(sc)) { printf("%s: initialization failure\n", sc->bge_dev.dv_xname); splx(s); return; } ifp = &sc->arpcom.ac_if; /* Specify MRU. */ if (BGE_IS_JUMBO_CAPABLE(sc)) CSR_WRITE_4(sc, BGE_RX_MTU, BGE_JUMBO_FRAMELEN + ETHER_VLAN_ENCAP_LEN); else CSR_WRITE_4(sc, BGE_RX_MTU, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN); /* Load our MAC address. */ m = (u_int16_t *)&sc->arpcom.ac_enaddr[0]; CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0])); CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2])); /* Disable hardware decapsulation of vlan frames. */ BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG); /* Program promiscuous mode and multicast filters. */ bge_iff(sc); /* Init RX ring. */ bge_init_rx_ring_std(sc); /* * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's * memory to insure that the chip has in fact read the first * entry of the ring. */ if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) { u_int32_t v, i; for (i = 0; i < 10; i++) { DELAY(20); v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8); if (v == (MCLBYTES - ETHER_ALIGN)) break; } if (i == 10) printf("%s: 5705 A0 chip failed to load RX ring\n", sc->bge_dev.dv_xname); } /* Init Jumbo RX ring. */ if (BGE_IS_JUMBO_CAPABLE(sc)) bge_init_rx_ring_jumbo(sc); /* Init our RX return ring index */ sc->bge_rx_saved_considx = 0; /* Init our RX/TX stat counters. */ sc->bge_tx_collisions = 0; sc->bge_rx_discards = 0; sc->bge_rx_inerrors = 0; sc->bge_rx_overruns = 0; sc->bge_tx_discards = 0; /* Init TX ring. */ bge_init_tx_ring(sc); /* Turn on transmitter */ BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE); /* Turn on receiver */ BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2); /* Tell firmware we're alive. */ BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Enable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA); BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx(sc, BGE_MBX_IRQ0_LO, 0); bge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_add(&sc->bge_timeout, hz); } /* * Set media options. */ int bge_ifmedia_upd(struct ifnet *ifp) { struct bge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->bge_mii; struct ifmedia *ifm = &sc->bge_ifmedia; /* If this is a 1000baseX NIC, enable the TBI port. */ if (sc->bge_flags & BGE_PHY_FIBER_TBI) { if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); switch(IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: /* * The BCM5704 ASIC appears to have a special * mechanism for programming the autoneg * advertisement registers in TBI mode. */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) { u_int32_t sgdig; sgdig = CSR_READ_4(sc, BGE_SGDIG_STS); if (sgdig & BGE_SGDIGSTS_DONE) { CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0); sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG); sgdig |= BGE_SGDIGCFG_AUTO | BGE_SGDIGCFG_PAUSE_CAP | BGE_SGDIGCFG_ASYM_PAUSE; CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig | BGE_SGDIGCFG_SEND); DELAY(5); CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig); } } break; case IFM_1000_SX: if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) { BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } else { BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX); } break; default: return (EINVAL); } /* XXX 802.3x flow control for 1000BASE-SX */ return (0); } BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT); if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return (0); } /* * Report current media status. */ void bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct bge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->bge_mii; if (sc->bge_flags & BGE_PHY_FIBER_TBI) { ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_TBI_PCS_SYNCHED) { ifmr->ifm_status |= IFM_ACTIVE; } else { ifmr->ifm_active |= IFM_NONE; return; } ifmr->ifm_active |= IFM_1000_SX; if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX) ifmr->ifm_active |= IFM_HDX; else ifmr->ifm_active |= IFM_FDX; return; } mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) | sc->bge_flowflags; } int bge_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct bge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; struct mii_data *mii; s = splnet(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return (error); } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) bge_init(sc); #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc->arpcom, ifa); #endif /* INET */ break; case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) bge_iff(sc); else bge_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) bge_stop(sc); } sc->bge_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) bge_iff(sc); error = 0; } break; case SIOCSIFMEDIA: /* XXX Flow control is not supported for 1000BASE-SX */ if (sc->bge_flags & BGE_PHY_FIBER_TBI) { ifr->ifr_media &= ~IFM_ETH_FMASK; sc->bge_flowflags = 0; } /* Flow control requires full-duplex mode. */ if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO || (ifr->ifr_media & IFM_FDX) == 0) { ifr->ifr_media &= ~IFM_ETH_FMASK; } if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) { if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) { /* We can do both TXPAUSE and RXPAUSE. */ ifr->ifr_media |= IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE; } sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK; } /* FALLTHROUGH */ case SIOCGIFMEDIA: if (sc->bge_flags & BGE_PHY_FIBER_TBI) { error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia, command); } else { mii = &sc->bge_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; default: error = ENOTTY; break; } splx(s); return (error); } void bge_watchdog(struct ifnet *ifp) { struct bge_softc *sc; sc = ifp->if_softc; printf("%s: watchdog timeout -- resetting\n", sc->bge_dev.dv_xname); bge_init(sc); ifp->if_oerrors++; } void bge_stop_block(struct bge_softc *sc, bus_size_t reg, u_int32_t bit) { int i; BGE_CLRBIT(sc, reg, bit); for (i = 0; i < BGE_TIMEOUT; i++) { if ((CSR_READ_4(sc, reg) & bit) == 0) return; delay(100); } DPRINTFN(5, ("%s: block failed to stop: reg 0x%lx, bit 0x%08x\n", sc->bge_dev.dv_xname, (u_long) reg, bit)); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void bge_stop(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct ifmedia_entry *ifm; struct mii_data *mii; int mtmp, itmp; timeout_del(&sc->bge_timeout); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* * Disable all of the receiver blocks */ bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE); bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE); bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE); if (!(BGE_IS_5705_OR_BEYOND(sc))) bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE); bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE); bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE); bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE); /* * Disable all of the transmit blocks */ bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE); bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE); bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE); bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE); bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE); if (!(BGE_IS_5705_OR_BEYOND(sc))) bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE); bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE); /* * Shut down all of the memory managers and related * state machines. */ bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE); bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE); if (!(BGE_IS_5705_OR_BEYOND(sc))) bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF); CSR_WRITE_4(sc, BGE_FTQ_RESET, 0); if (!(BGE_IS_5705_OR_BEYOND(sc))) { bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE); bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE); } /* Disable host interrupts. */ BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR); bge_writembx(sc, BGE_MBX_IRQ0_LO, 1); /* * Tell firmware we're shutting down. */ BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP); /* Free the RX lists. */ bge_free_rx_ring_std(sc); /* Free jumbo RX list. */ if (BGE_IS_JUMBO_CAPABLE(sc)) bge_free_rx_ring_jumbo(sc); /* Free TX buffers. */ bge_free_tx_ring(sc); /* * Isolate/power down the PHY, but leave the media selection * unchanged so that things will be put back to normal when * we bring the interface back up. */ if (!(sc->bge_flags & BGE_PHY_FIBER_TBI)) { mii = &sc->bge_mii; itmp = ifp->if_flags; ifp->if_flags |= IFF_UP; ifm = mii->mii_media.ifm_cur; mtmp = ifm->ifm_media; ifm->ifm_media = IFM_ETHER|IFM_NONE; mii_mediachg(mii); ifm->ifm_media = mtmp; ifp->if_flags = itmp; } sc->bge_tx_saved_considx = BGE_TXCONS_UNSET; /* Clear MAC's link state (PHY may still have link UP). */ BGE_STS_CLRBIT(sc, BGE_STS_LINK); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ void bge_shutdown(void *xsc) { struct bge_softc *sc = (struct bge_softc *)xsc; bge_stop(sc); bge_reset(sc); } void bge_link_upd(struct bge_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = &sc->bge_mii; u_int32_t status; int link; /* Clear 'pending link event' flag */ BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT); /* * Process link state changes. * Grrr. The link status word in the status block does * not work correctly on the BCM5700 rev AX and BX chips, * according to all available information. Hence, we have * to enable MII interrupts in order to properly obtain * async link changes. Unfortunately, this also means that * we have to read the MAC status register to detect link * changes, thereby adding an additional register access to * the interrupt handler. * */ if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_MI_INTERRUPT) { mii_pollstat(mii); if (!BGE_STS_BIT(sc, BGE_STS_LINK) && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) BGE_STS_SETBIT(sc, BGE_STS_LINK); else if (BGE_STS_BIT(sc, BGE_STS_LINK) && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) BGE_STS_CLRBIT(sc, BGE_STS_LINK); /* Clear the interrupt */ CSR_WRITE_4(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_MI_INTERRUPT); bge_miibus_readreg(&sc->bge_dev, 1, BRGPHY_MII_ISR); bge_miibus_writereg(&sc->bge_dev, 1, BRGPHY_MII_IMR, BRGPHY_INTRS); } return; } if (sc->bge_flags & BGE_PHY_FIBER_TBI) { status = CSR_READ_4(sc, BGE_MAC_STS); if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) { if (!BGE_STS_BIT(sc, BGE_STS_LINK)) { BGE_STS_SETBIT(sc, BGE_STS_LINK); if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_TBI_SEND_CFGS); CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF); status = CSR_READ_4(sc, BGE_MAC_MODE); ifp->if_link_state = (status & BGE_MACMODE_HALF_DUPLEX) ? LINK_STATE_HALF_DUPLEX : LINK_STATE_FULL_DUPLEX; if_link_state_change(ifp); } } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) { BGE_STS_CLRBIT(sc, BGE_STS_LINK); ifp->if_link_state = LINK_STATE_DOWN; if_link_state_change(ifp); } /* * Discard link events for MII/GMII cards if MI auto-polling disabled. * This should not happen since mii callouts are locked now, but * we keep this check for debug. */ } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) { /* * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit * in status word always set. Workaround this bug by reading * PHY link status directly. */ link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)? BGE_STS_LINK : 0; if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) { mii_pollstat(mii); if (!BGE_STS_BIT(sc, BGE_STS_LINK) && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) BGE_STS_SETBIT(sc, BGE_STS_LINK); else if (BGE_STS_BIT(sc, BGE_STS_LINK) && (!(mii->mii_media_status & IFM_ACTIVE) || IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) BGE_STS_CLRBIT(sc, BGE_STS_LINK); } } /* Clear the attention */ CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED| BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE| BGE_MACSTAT_LINK_CHANGED); } void bge_power(int why, void *xsc) { struct bge_softc *sc = (struct bge_softc *)xsc; struct ifnet *ifp; if (why == PWR_RESUME) { ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_UP) { bge_init(xsc); bge_start(ifp); } } }