/* $OpenBSD: if_cas.c,v 1.19 2008/05/31 22:49:03 kettenis Exp $ */ /* * * Copyright (C) 2007 Mark Kettenis. * Copyright (C) 2001 Eduardo Horvath. * All rights reserved. * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ /* * Driver for Sun Cassini ethernet controllers. * * There are basically two variants of this chip: Cassini and * Cassini+. We can distinguish between the two by revision: 0x10 and * up are Cassini+. The most important difference is that Cassini+ * has a second RX descriptor ring. Cassini+ will not work without * configuring that second ring. However, since we don't use it we * don't actually fill the descriptors, and only hand off the first * four to the chip. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #ifdef __sparc64__ #include #endif #define TRIES 10000 struct cfdriver cas_cd = { NULL, "cas", DV_IFNET }; int cas_match(struct device *, void *, void *); void cas_attach(struct device *, struct device *, void *); int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *); struct cfattach cas_ca = { sizeof(struct cas_softc), cas_match, cas_attach }; void cas_config(struct cas_softc *); void cas_start(struct ifnet *); void cas_stop(struct ifnet *, int); int cas_ioctl(struct ifnet *, u_long, caddr_t); void cas_tick(void *); void cas_watchdog(struct ifnet *); void cas_shutdown(void *); int cas_init(struct ifnet *); void cas_init_regs(struct cas_softc *); int cas_ringsize(int); int cas_cringsize(int); int cas_meminit(struct cas_softc *); void cas_mifinit(struct cas_softc *); int cas_bitwait(struct cas_softc *, bus_space_handle_t, int, u_int32_t, u_int32_t); void cas_reset(struct cas_softc *); int cas_reset_rx(struct cas_softc *); int cas_reset_tx(struct cas_softc *); int cas_disable_rx(struct cas_softc *); int cas_disable_tx(struct cas_softc *); void cas_rxdrain(struct cas_softc *); int cas_add_rxbuf(struct cas_softc *, int idx); void cas_setladrf(struct cas_softc *); int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *); /* MII methods & callbacks */ int cas_mii_readreg(struct device *, int, int); void cas_mii_writereg(struct device *, int, int, int); void cas_mii_statchg(struct device *); int cas_pcs_readreg(struct device *, int, int); void cas_pcs_writereg(struct device *, int, int, int); int cas_mediachange(struct ifnet *); void cas_mediastatus(struct ifnet *, struct ifmediareq *); int cas_eint(struct cas_softc *, u_int); int cas_rint(struct cas_softc *); int cas_tint(struct cas_softc *, u_int32_t); int cas_pint(struct cas_softc *); int cas_intr(void *); #ifdef CAS_DEBUG #define DPRINTF(sc, x) if ((sc)->sc_arpcom.ac_if.if_flags & IFF_DEBUG) \ printf x #else #define DPRINTF(sc, x) /* nothing */ #endif const struct pci_matchid cas_pci_devices[] = { { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_CASSINI }, { PCI_VENDOR_NS, PCI_PRODUCT_NS_SATURN } }; int cas_match(struct device *parent, void *cf, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, cas_pci_devices, sizeof(cas_pci_devices)/sizeof(cas_pci_devices[0]))); } #define PROMHDR_PTR_DATA 0x18 #define PROMDATA_PTR_VPD 0x08 #define PROMDATA_DATA2 0x0a static const u_int8_t cas_promhdr[] = { 0x55, 0xaa }; static const u_int8_t cas_promdat[] = { 'P', 'C', 'I', 'R', PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8, PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8 }; static const u_int8_t cas_promdat2[] = { 0x18, 0x00, /* structure length */ 0x00, /* structure revision */ 0x00, /* interface revision */ PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */ PCI_CLASS_NETWORK /* class code */ }; int cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa) { struct pci_vpd_largeres *res; struct pci_vpd *vpd; bus_space_handle_t romh; bus_space_tag_t romt; bus_size_t romsize; u_int8_t buf[32], *desc; pcireg_t address, mask; int dataoff, vpdoff, len; int rv = -1; address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_ROM_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_ROM_REG, 0xfffffffe); mask = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_ROM_REG); address |= PCI_ROM_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_ROM_REG, address); romt = pa->pa_memt; romsize = PCI_ROM_SIZE(mask); if (bus_space_map(romt, PCI_ROM_ADDR(address), romsize, 0, &romh)) { romsize = 0; goto fail; } bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf)); if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr))) goto fail; dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8); if (dataoff < 0x1c) goto fail; bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf)); if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) || bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2))) goto fail; vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8); if (vpdoff < 0x1c) goto fail; next: bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf)); if (!PCI_VPDRES_ISLARGE(buf[0])) goto fail; res = (struct pci_vpd_largeres *)buf; vpdoff += sizeof(*res); len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb); switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) { case PCI_VPDRES_TYPE_IDENTIFIER_STRING: /* Skip identifier string. */ vpdoff += len; goto next; case PCI_VPDRES_TYPE_VPD: while (len > 0) { bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf)); vpd = (struct pci_vpd *)buf; vpdoff += sizeof(*vpd) + vpd->vpd_len; len -= sizeof(*vpd) + vpd->vpd_len; /* * We're looking for an "Enhanced" VPD... */ if (vpd->vpd_key0 != 'Z') continue; desc = buf + sizeof(*vpd); /* * ...which is an instance property... */ if (desc[0] != 'I') continue; desc += 3; /* * ...that's a byte array with the proper * length for a MAC address... */ if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN) continue; desc += 2; /* * ...named "local-mac-address". */ if (strcmp(desc, "local-mac-address") != 0) continue; desc += strlen("local-mac-address") + 1; bcopy(desc, sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN); rv = 0; } break; default: goto fail; } fail: if (romsize != 0) bus_space_unmap(romt, romh, romsize); address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_ROM_REG); address &= ~PCI_ROM_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_ROM_REG, address); return (rv); } void cas_attach(struct device *parent, struct device *self, void *aux) { struct pci_attach_args *pa = aux; struct cas_softc *sc = (void *)self; pci_intr_handle_t ih; #ifdef __sparc64__ /* XXX the following declarations should be elsewhere */ extern void myetheraddr(u_char *); #endif const char *intrstr = NULL; bus_size_t size; int gotenaddr = 0; sc->sc_rev = PCI_REVISION(pa->pa_class); sc->sc_dmatag = pa->pa_dmat; #define PCI_CAS_BASEADDR 0x10 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_memt, &sc->sc_memh, NULL, &size, 0) != 0) { printf(": could not map registers\n"); return; } if (cas_pci_enaddr(sc, pa) == 0) gotenaddr = 1; #ifdef __sparc64__ if (!gotenaddr) { if (OF_getprop(PCITAG_NODE(pa->pa_tag), "local-mac-address", sc->sc_arpcom.ac_enaddr, ETHER_ADDR_LEN) <= 0) myetheraddr(sc->sc_arpcom.ac_enaddr); gotenaddr = 1; } #endif #ifdef __powerpc__ if (!gotenaddr) { pci_ether_hw_addr(pa->pa_pc, sc->sc_arpcom.ac_enaddr); gotenaddr = 1; } #endif sc->sc_burst = 16; /* XXX */ if (pci_intr_map(pa, &ih) != 0) { printf(": couldn't map interrupt\n"); bus_space_unmap(sc->sc_memt, sc->sc_memh, size); return; } intrstr = pci_intr_string(pa->pa_pc, ih); sc->sc_ih = pci_intr_establish(pa->pa_pc, ih, IPL_NET, cas_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); bus_space_unmap(sc->sc_memt, sc->sc_memh, size); return; } printf(": %s", intrstr); /* * call the main configure */ cas_config(sc); } /* * cas_config: * * Attach a Cassini interface to the system. */ void cas_config(struct cas_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct mii_data *mii = &sc->sc_mii; struct mii_softc *child; int i, error; /* Make sure the chip is stopped. */ ifp->if_softc = sc; cas_reset(sc); /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) { printf("\n%s: unable to allocate control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_0; } /* XXX should map this in with correct endianness */ if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg, sizeof(struct cas_control_data), (caddr_t *)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { printf("\n%s: unable to map control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_1; } if ((error = bus_dmamap_create(sc->sc_dmatag, sizeof(struct cas_control_data), 1, sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { printf("\n%s: unable to create control data DMA map, " "error = %d\n", sc->sc_dev.dv_xname, error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct cas_control_data), NULL, 0)) != 0) { printf("\n%s: unable to load control data DMA map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_3; } bzero(sc->sc_control_data, sizeof(struct cas_control_data)); /* * Create the receive buffer DMA maps. */ for (i = 0; i < CAS_NRXDESC; i++) { bus_dma_segment_t seg; caddr_t kva; int rseg; if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE, CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { printf("\n%s: unable to alloc rx DMA mem %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_5; } sc->sc_rxsoft[i].rxs_dmaseg = seg; if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg, CAS_PAGE_SIZE, &kva, BUS_DMA_NOWAIT)) != 0) { printf("\n%s: unable to alloc rx DMA mem %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_5; } sc->sc_rxsoft[i].rxs_kva = kva; if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { printf("\n%s: unable to create rx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_5; } if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL, BUS_DMA_NOWAIT)) != 0) { printf("\n%s: unable to load rx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_5; } } /* * Create the transmit buffer DMA maps. */ for (i = 0; i < CAS_NTXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_txd[i].sd_map)) != 0) { printf("\n%s: unable to create tx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_6; } sc->sc_txd[i].sd_mbuf = NULL; } /* * From this point forward, the attachment cannot fail. A failure * before this point releases all resources that may have been * allocated. */ /* Announce ourselves. */ printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); /* Get RX FIFO size */ sc->sc_rxfifosize = 16 * 1024; /* Initialize ifnet structure. */ strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST; ifp->if_start = cas_start; ifp->if_ioctl = cas_ioctl; ifp->if_watchdog = cas_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_VLAN_MTU; /* Initialize ifmedia structures and MII info */ mii->mii_ifp = ifp; mii->mii_readreg = cas_mii_readreg; mii->mii_writereg = cas_mii_writereg; mii->mii_statchg = cas_mii_statchg; ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus); bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0); cas_mifinit(sc); if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) { sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL; bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MIF_CONFIG, sc->sc_mif_config); } mii_attach(&sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); child = LIST_FIRST(&mii->mii_phys); if (child == NULL && sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) { /* * Try the external PCS SERDES if we didn't find any * MII devices. */ bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES); bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE); mii->mii_readreg = cas_pcs_readreg; mii->mii_writereg = cas_pcs_writereg; mii_attach(&sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_NOISOLATE); } child = LIST_FIRST(&mii->mii_phys); if (child == NULL) { /* No PHY attached */ ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL); } else { /* * Walk along the list of attached MII devices and * establish an `MII instance' to `phy number' * mapping. We'll use this mapping in media change * requests to determine which phy to use to program * the MIF configuration register. */ for (; child != NULL; child = LIST_NEXT(child, mii_list)) { /* * Note: we support just two PHYs: the built-in * internal device and an external on the MII * connector. */ if (child->mii_phy > 1 || child->mii_inst > 1) { printf("%s: cannot accommodate MII device %s" " at phy %d, instance %d\n", sc->sc_dev.dv_xname, child->mii_dev.dv_xname, child->mii_phy, child->mii_inst); continue; } sc->sc_phys[child->mii_inst] = child->mii_phy; } /* * XXX - we can really do the following ONLY if the * phy indeed has the auto negotiation capability!! */ ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO); } /* Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); sc->sc_sh = shutdownhook_establish(cas_shutdown, sc); if (sc->sc_sh == NULL) panic("cas_config: can't establish shutdownhook"); timeout_set(&sc->sc_tick_ch, cas_tick, sc); return; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_6: for (i = 0; i < CAS_NTXDESC; i++) { if (sc->sc_txd[i].sd_map != NULL) bus_dmamap_destroy(sc->sc_dmatag, sc->sc_txd[i].sd_map); } fail_5: for (i = 0; i < CAS_NRXDESC; i++) { if (sc->sc_rxsoft[i].rxs_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmatag, sc->sc_rxsoft[i].rxs_dmamap); } bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sc_control_data, sizeof(struct cas_control_data)); fail_1: bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg); fail_0: return; } void cas_tick(void *arg) { struct cas_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mac = sc->sc_memh; int s; u_int32_t v; /* unload collisions counters */ v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) + bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT); ifp->if_collisions += v + bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) + bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT); ifp->if_oerrors += v; /* read error counters */ ifp->if_ierrors += bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) + bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) + bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) + bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL); /* clear the hardware counters */ bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0); bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0); bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0); s = splnet(); mii_tick(&sc->sc_mii); splx(s); timeout_add(&sc->sc_tick_ch, hz); } int cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r, u_int32_t clr, u_int32_t set) { int i; u_int32_t reg; for (i = TRIES; i--; DELAY(100)) { reg = bus_space_read_4(sc->sc_memt, h, r); if ((reg & clr) == 0 && (reg & set) == set) return (1); } return (0); } void cas_reset(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; int s; s = splnet(); DPRINTF(sc, ("%s: cas_reset\n", sc->sc_dev.dv_xname)); cas_reset_rx(sc); cas_reset_tx(sc); /* Do a full reset */ bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS); if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0)) printf("%s: cannot reset device\n", sc->sc_dev.dv_xname); splx(s); } /* * cas_rxdrain: * * Drain the receive queue. */ void cas_rxdrain(struct cas_softc *sc) { /* Nothing to do yet. */ } /* * Reset the whole thing. */ void cas_stop(struct ifnet *ifp, int disable) { struct cas_softc *sc = (struct cas_softc *)ifp->if_softc; struct cas_sxd *sd; u_int32_t i; DPRINTF(sc, ("%s: cas_stop\n", sc->sc_dev.dv_xname)); timeout_del(&sc->sc_tick_ch); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; mii_down(&sc->sc_mii); cas_reset_rx(sc); cas_reset_tx(sc); /* * Release any queued transmit buffers. */ for (i = 0; i < CAS_NTXDESC; i++) { sd = &sc->sc_txd[i]; if (sd->sd_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, sd->sd_map); m_freem(sd->sd_mbuf); sd->sd_mbuf = NULL; } } sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0; if (disable) cas_rxdrain(sc); } /* * Reset the receiver */ int cas_reset_rx(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ cas_disable_rx(sc); bus_space_write_4(t, h, CAS_RX_CONFIG, 0); /* Wait till it finishes */ if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0)) printf("%s: cannot disable rx dma\n", sc->sc_dev.dv_xname); /* Wait 5ms extra. */ delay(5000); /* Finally, reset the ERX */ bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX); /* Wait till it finishes */ if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) { printf("%s: cannot reset receiver\n", sc->sc_dev.dv_xname); return (1); } return (0); } /* * Reset the transmitter */ int cas_reset_tx(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; /* * Resetting while DMA is in progress can cause a bus hang, so we * disable DMA first. */ cas_disable_tx(sc); bus_space_write_4(t, h, CAS_TX_CONFIG, 0); /* Wait till it finishes */ if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0)) printf("%s: cannot disable tx dma\n", sc->sc_dev.dv_xname); /* Wait 5ms extra. */ delay(5000); /* Finally, reset the ETX */ bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX); /* Wait till it finishes */ if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) { printf("%s: cannot reset transmitter\n", sc->sc_dev.dv_xname); return (1); } return (0); } /* * disable receiver. */ int cas_disable_rx(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; u_int32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG); cfg &= ~CAS_MAC_RX_ENABLE; bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg); /* Wait for it to finish */ return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0)); } /* * disable transmitter. */ int cas_disable_tx(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; u_int32_t cfg; /* Flip the enable bit */ cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG); cfg &= ~CAS_MAC_TX_ENABLE; bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg); /* Wait for it to finish */ return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0)); } /* * Initialize interface. */ int cas_meminit(struct cas_softc *sc) { struct cas_rxsoft *rxs; int i, error; rxs = (void *)&error; /* * Initialize the transmit descriptor ring. */ for (i = 0; i < CAS_NTXDESC; i++) { sc->sc_txdescs[i].cd_flags = 0; sc->sc_txdescs[i].cd_addr = 0; } CAS_CDTXSYNC(sc, 0, CAS_NTXDESC, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < CAS_NRXDESC; i++) CAS_INIT_RXDESC(sc, i, i); sc->sc_rxdptr = 0; sc->sc_rxptr = 0; /* * Initialize the receive completion ring. */ for (i = 0; i < CAS_NRXCOMP; i++) { sc->sc_rxcomps[i].cc_word[0] = 0; sc->sc_rxcomps[i].cc_word[1] = 0; sc->sc_rxcomps[i].cc_word[2] = 0; sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN); CAS_CDRXCSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); } return (0); } int cas_ringsize(int sz) { switch (sz) { case 32: return CAS_RING_SZ_32; case 64: return CAS_RING_SZ_64; case 128: return CAS_RING_SZ_128; case 256: return CAS_RING_SZ_256; case 512: return CAS_RING_SZ_512; case 1024: return CAS_RING_SZ_1024; case 2048: return CAS_RING_SZ_2048; case 4096: return CAS_RING_SZ_4096; case 8192: return CAS_RING_SZ_8192; default: printf("cas: invalid Receive Descriptor ring size %d\n", sz); return CAS_RING_SZ_32; } } int cas_cringsize(int sz) { int i; for (i = 0; i < 9; i++) if (sz == (128 << i)) return i; printf("cas: invalid completion ring size %d\n", sz); return 128; } /* * Initialization of interface; set up initialization block * and transmit/receive descriptor rings. */ int cas_init(struct ifnet *ifp) { struct cas_softc *sc = (struct cas_softc *)ifp->if_softc; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; int s; u_int max_frame_size; u_int32_t v; s = splnet(); DPRINTF(sc, ("%s: cas_init: calling stop\n", sc->sc_dev.dv_xname)); /* * Initialization sequence. The numbered steps below correspond * to the sequence outlined in section 6.3.5.1 in the Ethernet * Channel Engine manual (part of the PCIO manual). * See also the STP2002-STQ document from Sun Microsystems. */ /* step 1 & 2. Reset the Ethernet Channel */ cas_stop(ifp, 0); cas_reset(sc); DPRINTF(sc, ("%s: cas_init: restarting\n", sc->sc_dev.dv_xname)); /* Re-initialize the MIF */ cas_mifinit(sc); /* step 3. Setup data structures in host memory */ cas_meminit(sc); /* step 4. TX MAC registers & counters */ cas_init_regs(sc); max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN; v = (max_frame_size) | (0x2000 << 16) /* Burst size */; bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v); /* step 5. RX MAC registers & counters */ cas_setladrf(sc); /* step 6 & 7. Program Descriptor Ring Base Addresses */ KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0); bus_space_write_4(t, h, CAS_TX_RING_PTR_HI, (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32)); bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0)); KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0); bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI, (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32)); bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0)); KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0); bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI, (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32)); bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0)); if (CAS_PLUS(sc)) { KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0); bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2, (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32)); bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2, CAS_CDRXADDR2(sc, 0)); } /* step 8. Global Configuration & Interrupt Mask */ bus_space_write_4(t, h, CAS_INTMASK, ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY| CAS_INTR_TX_TAG_ERR| CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF| CAS_INTR_RX_TAG_ERR| CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS| CAS_INTR_MAC_CONTROL|CAS_INTR_MIF| CAS_INTR_BERR)); bus_space_write_4(t, h, CAS_MAC_RX_MASK, CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT); bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE); bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */ /* step 9. ETX Configuration: use mostly default values */ /* Enable DMA */ v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10; bus_space_write_4(t, h, CAS_TX_CONFIG, v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29)); bus_space_write_4(t, h, CAS_TX_KICK, 0); /* step 10. ERX Configuration */ /* Encode Receive Descriptor ring size */ v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT; if (CAS_PLUS(sc)) v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT; /* Encode Receive Completion ring size */ v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT; /* Enable DMA */ bus_space_write_4(t, h, CAS_RX_CONFIG, v|(2<sc_rxfifosize / 256) | ( (sc->sc_rxfifosize / 256) << 12)); bus_space_write_4(t, h, CAS_RX_BLANKING, (6<<12)|6); /* step 11. Configure Media */ mii_mediachg(&sc->sc_mii); /* step 12. RX_MAC Configuration Register */ v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG); v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC; bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v); /* step 14. Issue Transmit Pending command */ /* step 15. Give the receiver a swift kick */ bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4); if (CAS_PLUS(sc)) bus_space_write_4(t, h, CAS_RX_KICK2, 4); /* Start the one second timer. */ timeout_add(&sc->sc_tick_ch, hz); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; splx(s); return (0); } void cas_init_regs(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; u_int32_t v, r; /* These regs are not cleared on reset */ sc->sc_inited = 0; if (!sc->sc_inited) { /* Wooo. Magic values. */ bus_space_write_4(t, h, CAS_MAC_IPG0, 0); bus_space_write_4(t, h, CAS_MAC_IPG1, 8); bus_space_write_4(t, h, CAS_MAC_IPG2, 4); bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN); /* Max frame and max burst size */ v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */; bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v); bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x7); bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x4); bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10); /* Dunno.... */ bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088); bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED, ((sc->sc_arpcom.ac_enaddr[5]<<8)|sc->sc_arpcom.ac_enaddr[4])&0x3ff); /* Secondary MAC addresses set to 0:0:0:0:0:0 */ for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4) bus_space_write_4(t, h, r, 0); /* MAC control addr set to 0:1:c2:0:1:80 */ bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001); bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200); bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180); /* MAC filter addr set to 0:0:0:0:0:0 */ bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0); bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0); bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0); bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0); bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0); /* Hash table initialized to 0 */ for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4) bus_space_write_4(t, h, r, 0); sc->sc_inited = 1; } /* Counters need to be zeroed */ bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0); bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0); bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0); bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0); bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0); bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0); bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0); bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0); bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0); bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0); bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0); /* Un-pause stuff */ bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0); /* * Set the station address. */ bus_space_write_4(t, h, CAS_MAC_ADDR0, (sc->sc_arpcom.ac_enaddr[4]<<8) | sc->sc_arpcom.ac_enaddr[5]); bus_space_write_4(t, h, CAS_MAC_ADDR1, (sc->sc_arpcom.ac_enaddr[2]<<8) | sc->sc_arpcom.ac_enaddr[3]); bus_space_write_4(t, h, CAS_MAC_ADDR2, (sc->sc_arpcom.ac_enaddr[0]<<8) | sc->sc_arpcom.ac_enaddr[1]); } /* * Receive interrupt. */ int cas_rint(struct cas_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; struct cas_rxsoft *rxs; struct mbuf *m; u_int64_t word[4]; int len, off, idx; int i, skip; caddr_t cp; for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) { CAS_CDRXCSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]); word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]); word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]); word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]); /* Stop if the hardware still owns the descriptor. */ if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN) break; len = CAS_RC1_HDR_LEN(word[1]); if (len > 0) { off = CAS_RC1_HDR_OFF(word[1]); idx = CAS_RC1_HDR_IDX(word[1]); rxs = &sc->sc_rxsoft[idx]; DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n", idx, off, len)); bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); cp = rxs->rxs_kva + off * 256; m = m_devget(cp, len + ETHER_ALIGN, 0, ifp, NULL); if (word[0] & CAS_RC0_RELEASE_HDR) cas_add_rxbuf(sc, idx); if (m != NULL) { m_adj(m, ETHER_ALIGN); #if NBPFILTER > 0 /* * Pass this up to any BPF listeners, but only * pass it up the stack if its for us. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* NBPFILTER > 0 */ ifp->if_ipackets++; ether_input_mbuf(ifp, m); } else ifp->if_ierrors++; } len = CAS_RC0_DATA_LEN(word[0]); if (len > 0) { off = CAS_RC0_DATA_OFF(word[0]); idx = CAS_RC0_DATA_IDX(word[0]); rxs = &sc->sc_rxsoft[idx]; DPRINTF(sc, ("data at idx %d, off %d, len %d\n", idx, off, len)); bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0, rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); /* XXX We should not be copying the packet here. */ cp = rxs->rxs_kva + off; m = m_devget(cp, len + ETHER_ALIGN, 0, ifp, NULL); if (word[0] & CAS_RC0_RELEASE_DATA) cas_add_rxbuf(sc, idx); if (m != NULL) { m_adj(m, ETHER_ALIGN); #if NBPFILTER > 0 /* * Pass this up to any BPF listeners, but only * pass it up the stack if its for us. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* NBPFILTER > 0 */ ifp->if_ipackets++; ether_input_mbuf(ifp, m); } else ifp->if_ierrors++; } if (word[0] & CAS_RC0_SPLIT) printf("split packet\n"); skip = CAS_RC0_SKIP(word[0]); } while (sc->sc_rxptr != i) { sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0; sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0; sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0; sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN); CAS_CDRXCSYNC(sc, sc->sc_rxptr, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr); } bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr); DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION))); return (1); } /* * cas_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ int cas_add_rxbuf(struct cas_softc *sc, int idx) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx); if ((sc->sc_rxdptr % 4) == 0) bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr); if (++sc->sc_rxdptr == CAS_NRXDESC) sc->sc_rxdptr = 0; return (0); } int cas_eint(struct cas_softc *sc, u_int status) { if ((status & CAS_INTR_MIF) != 0) { #ifdef CAS_DEBUG printf("%s: link status changed\n", sc->sc_dev.dv_xname); #endif return (1); } printf("%s: status=%b\n", sc->sc_dev.dv_xname, status, CAS_INTR_BITS); return (1); } int cas_pint(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t seb = sc->sc_memh; u_int32_t status; status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS); status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS); #ifdef CAS_DEBUG if (status) printf("%s: link status changed\n", sc->sc_dev.dv_xname); #endif return (1); } int cas_intr(void *v) { struct cas_softc *sc = (struct cas_softc *)v; struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t seb = sc->sc_memh; u_int32_t status; int r = 0; status = bus_space_read_4(t, seb, CAS_STATUS); DPRINTF(sc, ("%s: cas_intr: cplt %xstatus %b\n", sc->sc_dev.dv_xname, (status>>19), status, CAS_INTR_BITS)); if ((status & CAS_INTR_PCS) != 0) r |= cas_pint(sc); if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR | CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0) r |= cas_eint(sc, status); if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0) r |= cas_tint(sc, status); if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0) r |= cas_rint(sc); /* We should eventually do more than just print out error stats. */ if (status & CAS_INTR_TX_MAC) { int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS); #ifdef CAS_DEBUG if (txstat & ~CAS_MAC_TX_XMIT_DONE) printf("%s: MAC tx fault, status %x\n", sc->sc_dev.dv_xname, txstat); #endif if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG)) cas_init(ifp); } if (status & CAS_INTR_RX_MAC) { int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS); #ifdef CAS_DEBUG if (rxstat & ~CAS_MAC_RX_DONE) printf("%s: MAC rx fault, status %x\n", sc->sc_dev.dv_xname, rxstat); #endif /* * On some chip revisions CAS_MAC_RX_OVERFLOW happen often * due to a silicon bug so handle them silently. */ if (rxstat & CAS_MAC_RX_OVERFLOW) { ifp->if_ierrors++; cas_init(ifp); } #ifdef CAS_DEBUG else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT)) printf("%s: MAC rx fault, status %x\n", sc->sc_dev.dv_xname, rxstat); #endif } return (r); } void cas_watchdog(struct ifnet *ifp) { struct cas_softc *sc = ifp->if_softc; DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x " "CAS_MAC_RX_CONFIG %x\n", bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG), bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS), bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG))); log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname); ++ifp->if_oerrors; /* Try to get more packets going. */ cas_init(ifp); } /* * Initialize the MII Management Interface */ void cas_mifinit(struct cas_softc *sc) { bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mif = sc->sc_memh; /* Configure the MIF in frame mode */ sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG); sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA; bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config); } /* * MII interface * * The Cassini MII interface supports at least three different operating modes: * * Bitbang mode is implemented using data, clock and output enable registers. * * Frame mode is implemented by loading a complete frame into the frame * register and polling the valid bit for completion. * * Polling mode uses the frame register but completion is indicated by * an interrupt. * */ int cas_mii_readreg(struct device *self, int phy, int reg) { struct cas_softc *sc = (void *)self; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mif = sc->sc_memh; int n; u_int32_t v; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_mii_readreg: phy %d reg %d\n", phy, reg); #endif /* Construct the frame command */ v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) | CAS_MIF_FRAME_READ; bus_space_write_4(t, mif, CAS_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, CAS_MIF_FRAME); if (v & CAS_MIF_FRAME_TA0) return (v & CAS_MIF_FRAME_DATA); } printf("%s: mii_read timeout\n", sc->sc_dev.dv_xname); return (0); } void cas_mii_writereg(struct device *self, int phy, int reg, int val) { struct cas_softc *sc = (void *)self; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mif = sc->sc_memh; int n; u_int32_t v; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_mii_writereg: phy %d reg %d val %x\n", phy, reg, val); #endif /* Construct the frame command */ v = CAS_MIF_FRAME_WRITE | (phy << CAS_MIF_PHY_SHIFT) | (reg << CAS_MIF_REG_SHIFT) | (val & CAS_MIF_FRAME_DATA); bus_space_write_4(t, mif, CAS_MIF_FRAME, v); for (n = 0; n < 100; n++) { DELAY(1); v = bus_space_read_4(t, mif, CAS_MIF_FRAME); if (v & CAS_MIF_FRAME_TA0) return; } printf("%s: mii_write timeout\n", sc->sc_dev.dv_xname); } void cas_mii_statchg(struct device *dev) { struct cas_softc *sc = (void *)dev; #ifdef CAS_DEBUG int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media); #endif bus_space_tag_t t = sc->sc_memt; bus_space_handle_t mac = sc->sc_memh; u_int32_t v; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_mii_statchg: status change: phy = %d\n", sc->sc_phys[instance]); #endif /* Set tx full duplex options */ bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0); delay(10000); /* reg must be cleared and delay before changing. */ v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT| CAS_MAC_TX_ENABLE; if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) { v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS; } bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v); /* XIF Configuration */ v = CAS_MAC_XIF_TX_MII_ENA; v |= CAS_MAC_XIF_LINK_LED; /* MII needs echo disable if half duplex. */ if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) /* turn on full duplex LED */ v |= CAS_MAC_XIF_FDPLX_LED; else /* half duplex -- disable echo */ v |= CAS_MAC_XIF_ECHO_DISABL; switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) { case IFM_1000_T: /* Gigabit using GMII interface */ case IFM_1000_SX: v |= CAS_MAC_XIF_GMII_MODE; break; default: v &= ~CAS_MAC_XIF_GMII_MODE; } bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v); } int cas_pcs_readreg(struct device *self, int phy, int reg) { struct cas_softc *sc = (void *)self; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t pcs = sc->sc_memh; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg); #endif if (phy != CAS_PHYAD_EXTERNAL) return (0); switch (reg) { case MII_BMCR: reg = CAS_MII_CONTROL; break; case MII_BMSR: reg = CAS_MII_STATUS; break; case MII_ANAR: reg = CAS_MII_ANAR; break; case MII_ANLPAR: reg = CAS_MII_ANLPAR; break; case MII_EXTSR: return (EXTSR_1000XFDX|EXTSR_1000XHDX); default: return (0); } return bus_space_read_4(t, pcs, reg); } void cas_pcs_writereg(struct device *self, int phy, int reg, int val) { struct cas_softc *sc = (void *)self; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t pcs = sc->sc_memh; int reset = 0; #ifdef CAS_DEBUG if (sc->sc_debug) printf("cas_pcs_writereg: phy %d reg %d val %x\n", phy, reg, val); #endif if (phy != CAS_PHYAD_EXTERNAL) return; if (reg == MII_ANAR) bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0); switch (reg) { case MII_BMCR: reset = (val & CAS_MII_CONTROL_RESET); reg = CAS_MII_CONTROL; break; case MII_BMSR: reg = CAS_MII_STATUS; break; case MII_ANAR: reg = CAS_MII_ANAR; break; case MII_ANLPAR: reg = CAS_MII_ANLPAR; break; default: return; } bus_space_write_4(t, pcs, reg, val); if (reset) cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0); if (reg == CAS_MII_ANAR || reset) bus_space_write_4(t, pcs, CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE); } int cas_mediachange(struct ifnet *ifp) { struct cas_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } return (mii_mediachg(&sc->sc_mii)); } void cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct cas_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_active = sc->sc_mii.mii_media_active; ifmr->ifm_status = sc->sc_mii.mii_media_status; } /* * Process an ioctl request. */ int cas_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct cas_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *)data; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data)) > 0) { splx(s); return (error); } switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if ((ifp->if_flags & IFF_RUNNING) == 0) cas_init(ifp); #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc->sc_arpcom, ifa); #endif break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if ((ifp->if_flags & IFF_RUNNING) && ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) cas_setladrf(sc); else { if ((ifp->if_flags & IFF_RUNNING) == 0) cas_init(ifp); } } else { if (ifp->if_flags & IFF_RUNNING) cas_stop(ifp, 1); } sc->sc_if_flags = ifp->if_flags; #ifdef CAS_DEBUG sc->sc_debug = (ifp->if_flags & IFF_DEBUG) != 0 ? 1 : 0; #endif break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) { error = EINVAL; } else if (ifp->if_mtu != ifr->ifr_mtu) { ifp->if_mtu = ifr->ifr_mtu; } break; case SIOCADDMULTI: case SIOCDELMULTI: error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware filter * accordingly. */ if (ifp->if_flags & IFF_RUNNING) cas_setladrf(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd); break; default: error = ENOTTY; break; } splx(s); return (error); } void cas_shutdown(void *arg) { struct cas_softc *sc = (struct cas_softc *)arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; cas_stop(ifp, 1); } /* * Set up the logical address filter. */ void cas_setladrf(struct cas_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ether_multi *enm; struct ether_multistep step; struct arpcom *ac = &sc->sc_arpcom; bus_space_tag_t t = sc->sc_memt; bus_space_handle_t h = sc->sc_memh; u_int32_t crc, hash[16], v; int i; /* Get current RX configuration */ v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG); /* * Turn off promiscuous mode, promiscuous group mode (all multicast), * and hash filter. Depending on the case, the right bit will be * enabled. */ v &= ~(CAS_MAC_RX_PROMISCUOUS|CAS_MAC_RX_HASH_FILTER| CAS_MAC_RX_PROMISC_GRP); if ((ifp->if_flags & IFF_PROMISC) != 0) { /* Turn on promiscuous mode */ v |= CAS_MAC_RX_PROMISCUOUS; ifp->if_flags |= IFF_ALLMULTI; goto chipit; } /* * Set up multicast address filter by passing all multicast addresses * through a crc generator, and then using the high order 8 bits as an * index into the 256 bit logical address filter. The high order 4 * bits selects the word, while the other 4 bits select the bit within * the word (where bit 0 is the MSB). */ /* Clear hash table */ for (i = 0; i < 16; i++) hash[i] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast addresses. * For now, just accept all multicasts, rather than * trying to set only those filter bits needed to match * the range. (At this time, the only use of address * ranges is for IP multicast routing, for which the * range is big enough to require all bits set.) * XXX use the addr filter for this */ ifp->if_flags |= IFF_ALLMULTI; v |= CAS_MAC_RX_PROMISC_GRP; goto chipit; } crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 8 most significant bits. */ crc >>= 24; /* Set the corresponding bit in the filter. */ hash[crc >> 4] |= 1 << (15 - (crc & 15)); ETHER_NEXT_MULTI(step, enm); } v |= CAS_MAC_RX_HASH_FILTER; ifp->if_flags &= ~IFF_ALLMULTI; /* Now load the hash table into the chip (if we are using it) */ for (i = 0; i < 16; i++) { bus_space_write_4(t, h, CAS_MAC_HASH0 + i * (CAS_MAC_HASH1-CAS_MAC_HASH0), hash[i]); } chipit: bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v); } int cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp) { u_int64_t flags; u_int32_t cur, frag, i; bus_dmamap_t map; cur = frag = *bixp; map = sc->sc_txd[cur].sd_map; if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead, BUS_DMA_NOWAIT) != 0) { return (ENOBUFS); } if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) { bus_dmamap_unload(sc->sc_dmatag, map); return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); for (i = 0; i < map->dm_nsegs; i++) { sc->sc_txdescs[frag].cd_addr = CAS_DMA_WRITE(map->dm_segs[i].ds_addr); flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) | (i == 0 ? CAS_TD_START_OF_PACKET : 0) | ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0); sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags); bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap, CAS_CDTXOFF(frag), sizeof(struct cas_desc), BUS_DMASYNC_PREWRITE); cur = frag; if (++frag == CAS_NTXDESC) frag = 0; } sc->sc_tx_cnt += map->dm_nsegs; sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map; sc->sc_txd[cur].sd_map = map; sc->sc_txd[cur].sd_mbuf = mhead; bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag); *bixp = frag; /* sync descriptors */ return (0); } /* * Transmit interrupt. */ int cas_tint(struct cas_softc *sc, u_int32_t status) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct cas_sxd *sd; u_int32_t cons, comp; comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION); cons = sc->sc_tx_cons; while (cons != comp) { sd = &sc->sc_txd[cons]; if (sd->sd_mbuf != NULL) { bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0, sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, sd->sd_map); m_freem(sd->sd_mbuf); sd->sd_mbuf = NULL; } sc->sc_tx_cnt--; ifp->if_opackets++; if (++cons == CAS_NTXDESC) cons = 0; } sc->sc_tx_cons = cons; if (sc->sc_tx_cnt < CAS_NTXDESC - 2) ifp->if_flags &= ~IFF_OACTIVE; if (sc->sc_tx_cnt == 0) ifp->if_timer = 0; cas_start(ifp); return (1); } void cas_start(struct ifnet *ifp) { struct cas_softc *sc = ifp->if_softc; struct mbuf *m; u_int32_t bix; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; bix = sc->sc_tx_prod; while (sc->sc_txd[bix].sd_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; #if NBPFILTER > 0 /* * If BPF is listening on this interface, let it see the * packet before we commit it to the wire. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif /* * Encapsulate this packet and start it going... * or fail... */ if (cas_encap(sc, m, &bix)) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m); ifp->if_timer = 5; } sc->sc_tx_prod = bix; }