/************************************************************************** Copyright (c) 2001-2002 Intel Corporation All rights reserved. Redistribution and use in source and binary forms of the Software, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code of the Software may retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form of the Software may reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the Intel Corporation nor the names of its contributors shall be used to endorse or promote products derived from this Software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ***************************************************************************/ /*$FreeBSD$*/ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include /********************************************************************* * Set this to one to display debug statistics *********************************************************************/ int em_display_debug_stats = 0; /********************************************************************* * Linked list of board private structures for all NICs found *********************************************************************/ #if 0 struct em_softc *em_em_softc_list = NULL; #endif /********************************************************************* * Driver version *********************************************************************/ char em_driver_version[] = "1.3.14"; /********************************************************************* * PCI Device ID Table *********************************************************************/ struct em_device { u_int16_t vendor_id; u_int16_t device_id; int match; }; struct em_device em_devs[] = { /* Intel(R) PRO/1000 Network Connection */ { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82542, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC_SC, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82543GC, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544EI_SC, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82544GC_LX, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82540EM, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_SC, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82546EB_SC, 2}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82545EM_LX, 2}, }; /********************************************************************* * Function prototypes *********************************************************************/ int em_probe(struct device *, void *, void *); void em_attach(struct device *, struct device *, void *); #if 0 int em_detach(void *); int em_shutdown(void *); #endif int em_intr(void *); void em_start(struct ifnet *); int em_ioctl(struct ifnet *, IOCTL_CMD_TYPE, caddr_t); void em_watchdog(struct ifnet *); void em_init(void *); void em_stop(void *); void em_media_status(struct ifnet *, struct ifmediareq *); int em_media_change(struct ifnet *); void em_identify_hardware(struct em_softc *); int em_allocate_pci_resources(struct em_softc *); void em_free_pci_resources(struct em_softc *); void em_local_timer(void *); int em_hardware_init(struct em_softc *); void em_setup_interface(struct em_softc *); int em_setup_transmit_structures(struct em_softc *); void em_initialize_transmit_unit(struct em_softc *); int em_setup_receive_structures(struct em_softc *); void em_initialize_receive_unit(struct em_softc *); void em_enable_intr(struct em_softc *); void em_disable_intr(struct em_softc *); void em_free_transmit_structures(struct em_softc *); void em_free_receive_structures(struct em_softc *); void em_update_stats_counters(struct em_softc *); void em_clean_transmit_interrupts(struct em_softc *); int em_allocate_receive_structures(struct em_softc *); int em_allocate_transmit_structures(struct em_softc *); void em_process_receive_interrupts(struct em_softc *); void em_receive_checksum(struct em_softc *, struct em_rx_desc * rx_desc, struct mbuf *); #if 0 void em_transmit_checksum_setup(struct em_softc *, struct mbuf *, struct em_tx_buffer *, u_int32_t *, u_int32_t *); #endif /* 0 */ void em_set_promisc(struct em_softc *); void em_disable_promisc(struct em_softc *); void em_set_multi(struct em_softc *); void em_print_hw_stats(struct em_softc *); void em_print_link_status(struct em_softc *); int em_get_buf(struct em_rx_buffer *, struct em_softc *, struct mbuf *); void em_enable_vlans(struct em_softc *em_softc); int em_malloc_dma(struct em_softc *sc, struct em_dmamap *emm, bus_size_t size); void em_free_dma(struct em_softc *sc, struct em_dmamap *emm); /********************************************************************* * FreeBSD Device Interface Entry Points *********************************************************************/ struct cfattach em_ca = { sizeof(struct em_softc), em_probe, em_attach }; struct cfdriver em_cd = { 0, "em", DV_IFNET }; /********************************************************************* * Device identification routine * * em_probe determines if the driver should be loaded on * adapter based on PCI vendor/device id of the adapter. * * return 0 on success, positive on failure *********************************************************************/ int em_probe(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = (struct pci_attach_args *)aux; int i; INIT_DEBUGOUT("em_probe: begin"); for (i = 0; i < sizeof(em_devs) / sizeof(em_devs[0]); i++) { if (PCI_VENDOR(pa->pa_id) == em_devs[i].vendor_id && PCI_PRODUCT(pa->pa_id) == em_devs[i].device_id) return (em_devs[i].match); } return (0); } /********************************************************************* * Device initialization routine * * The attach entry point is called when the driver is being loaded. * This routine identifies the type of hardware, allocates all resources * and initializes the hardware. * *********************************************************************/ void em_attach(struct device *parent, struct device *self, void *aux) { struct pci_attach_args *pa = aux; #if 0 pci_chipset_tag_t pc = pa->pa_pc; #endif struct em_softc *sc = (struct em_softc *)self; int s; int tsize, rsize; INIT_DEBUGOUT("em_attach: begin"); s = splimp(); sc->osdep.em_pa = *pa; timeout_set(&sc->em_timeout, em_local_timer, sc); /* Determine hardware revision */ em_identify_hardware(sc); /* Parameters (to be read from user) */ sc->num_tx_desc = MAX_TXD; sc->num_rx_desc = MAX_RXD; sc->tx_int_delay = TIDV; sc->rx_int_delay = RIDV; sc->hw.autoneg = DO_AUTO_NEG; sc->hw.wait_autoneg_complete = WAIT_FOR_AUTO_NEG_DEFAULT; sc->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; sc->hw.tbi_compatibility_en = TRUE; sc->rx_buffer_len = EM_RXBUFFER_2048; sc->hw.fc_high_water = FC_DEFAULT_HI_THRESH; sc->hw.fc_low_water = FC_DEFAULT_LO_THRESH; sc->hw.fc_pause_time = FC_DEFAULT_TX_TIMER; sc->hw.fc_send_xon = TRUE; sc->hw.fc = em_fc_full; /* Set the max frame size assuming standard ethernet sized frames */ sc->hw.max_frame_size = ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN; sc->hw.min_frame_size = MINIMUM_ETHERNET_PACKET_SIZE + ETHER_CRC_LEN; /* This controls when hardware reports transmit completion status. */ if ((EM_REPORT_TX_EARLY == 0) || (EM_REPORT_TX_EARLY == 1)) { sc->hw.report_tx_early = EM_REPORT_TX_EARLY; } else { if (sc->hw.mac_type < em_82543) { sc->hw.report_tx_early = 0; } else { sc->hw.report_tx_early = 1; } } if (em_allocate_pci_resources(sc)) { printf("%s: Allocation of PCI resources failed\n", sc->sc_dv.dv_xname); em_free_pci_resources(sc); splx(s); return; } tsize = EM_ROUNDUP(sc->num_tx_desc * sizeof(struct em_tx_desc), 4096); /* Allocate Transmit Descriptor ring */ if(em_malloc_dma(sc, &sc->osdep.em_tx, tsize)) { printf("%s: Unable to allocate TxDescriptor memory\n", sc->sc_dv.dv_xname); em_free_pci_resources(sc); splx(s); return; } sc->tx_desc_base = (struct em_tx_desc *)sc->osdep.em_tx.emm_kva; rsize = EM_ROUNDUP(sc->num_rx_desc * sizeof(struct em_rx_desc), 4096); /* Allocate Receive Descriptor ring */ if(em_malloc_dma(sc, &sc->osdep.em_rx, rsize)) { printf("%s: Unable to allocate rx_desc memory\n", sc->sc_dv.dv_xname); em_free_pci_resources(sc); em_free_dma(sc, &sc->osdep.em_tx); splx(s); return; } sc->rx_desc_base = (struct em_rx_desc *)sc->osdep.em_rx.emm_kva; /* Initialize the hardware */ if (em_hardware_init(sc)) { printf("%s: Unable to initialize the hardware\n", sc->sc_dv.dv_xname); em_free_pci_resources(sc); em_free_dma(sc, &sc->osdep.em_tx); em_free_dma(sc, &sc->osdep.em_rx); splx(s); return; } /* Copy the permanent MAC address out of the EEPROM */ if (em_read_mac_addr(&sc->hw) < 0) { printf("%s: EEPROM read error while reading mac address\n", sc->sc_dv.dv_xname); return; } memcpy((char *)&sc->arpcom.ac_enaddr, sc->hw.mac_addr, ETH_LENGTH_OF_ADDRESS); /* Setup OS specific network interface */ em_setup_interface(sc); /* Initialize statistics */ em_clear_hw_cntrs(&sc->hw); em_update_stats_counters(sc); sc->hw.get_link_status = 1; em_check_for_link(&sc->hw); /* Print the link status */ if (sc->link_active == 1) { em_get_speed_and_duplex(&sc->hw, &sc->link_speed, &sc->link_duplex); } INIT_DEBUGOUT("em_attach: end"); splx(s); } /********************************************************************* * Device removal routine * * The detach entry point is called when the driver is being removed. * This routine stops the em_softc and deallocates all the resources * that were allocated for driver operation. * * return 0 on success, positive on failure *********************************************************************/ #if 0 int em_detach(void* arg) { struct em_softc *sc = arg; struct ifnet *ifp = &sc->arpcom.ac_if; int s; INIT_DEBUGOUT("em_detach: begin"); s = splimp(); em_stop(sc); em_phy_hw_reset(&sc->hw); if_detach(ifp); ether_ifdetach(ifp); em_free_pci_resources(sc); /* Free Transmit Descriptor ring */ if (sc->tx_desc_base) { em_free_dma(sc, &sc->osdep.em_tx); sc->tx_desc_base = NULL; } /* Free Receive Descriptor ring */ if (sc->rx_desc_base) { em_free_dma(sc, &sc->osdep.em_rx); sc->rx_desc_base = NULL; } #if 0 /* Remove from the em_softc list */ if (em_em_softc_list == sc) em_em_softc_list = sc->next; if (sc->next != NULL) sc->next->prev = sc->prev; if (sc->prev != NULL) sc->prev->next = sc->next; #endif /* 0 */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ifp->if_timer = 0; splx(s); return(0); } int em_shutdown(void* arg) { struct em_softc *sc = arg; em_stop(sc); return(0); } #endif /* 0 */ /********************************************************************* * Transmit entry point * * em_start is called by the stack to initiate a transmit. * The driver will remain in this routine as long as there are * packets to transmit and transmit resources are available. * In case resources are not available stack is notified and * the packet is requeued. **********************************************************************/ void em_start(struct ifnet *ifp) { int i, s; struct mbuf *m_head; u_int32_t txd_upper; u_int32_t txd_lower; struct em_tx_buffer *tx_buffer; struct em_tx_desc *current_tx_desc = NULL; struct em_softc * sc = ifp->if_softc; if (!sc->link_active) return; s = splimp(); for(;;) { #if NVLAN > 0 struct ifvlan *ifv = NULL; #endif IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sc->num_tx_desc_avail <= TX_CLEANUP_THRESHOLD) em_clean_transmit_interrupts(sc); if (sc->num_tx_desc_avail <= TX_CLEANUP_THRESHOLD) { ifp->if_flags |= IFF_OACTIVE; sc->no_tx_desc_avail++; break; } tx_buffer = SIMPLEQ_FIRST(&sc->free_tx_buffer_list); if (!tx_buffer) { sc->no_tx_buffer_avail1++; /* * OK so we should not get here but I've seen * it so let us try to clean up and then try * to get a tx_buffer again and only break if * we still don't get one. */ em_clean_transmit_interrupts(sc); tx_buffer = SIMPLEQ_FIRST(&sc->free_tx_buffer_list); if (!tx_buffer) { ifp->if_flags |= IFF_OACTIVE; sc->no_tx_buffer_avail2++; break; } } IFQ_DEQUEUE(&ifp->if_snd, m_head); SIMPLEQ_REMOVE_HEAD(&sc->free_tx_buffer_list, tx_buffer, em_tx_entry); tx_buffer->num_tx_desc_used = 0; tx_buffer->m_head = m_head; #if 0 if (ifp->if_hwassist > 0) { em_transmit_checksum_setup(sc, m_head, tx_buffer, &txd_upper, &txd_lower); } else { #endif txd_upper = 0; txd_lower = 0; #if 0 } #endif #if NVLAN > 0 /* Find out if we are in vlan mode */ if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && m_head->m_pkthdr.rcvif != NULL && m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) ifv = m_head->m_pkthdr.rcvif->if_softc; #endif if (bus_dmamap_load_mbuf(sc->osdep.em_pa.pa_dmat, tx_buffer->dmamap, m_head, BUS_DMA_NOWAIT)) return; for (i = 0; i < tx_buffer->dmamap->dm_nsegs; i++) { bus_addr_t addr= tx_buffer->dmamap->dm_segs[i].ds_addr; bus_size_t len = tx_buffer->dmamap->dm_segs[i].ds_len; current_tx_desc = sc->next_avail_tx_desc; current_tx_desc->buffer_addr = htole64(addr); current_tx_desc->lower.data = htole32(txd_lower | len); current_tx_desc->upper.data = htole32(txd_upper); if (current_tx_desc == sc->last_tx_desc) sc->next_avail_tx_desc = sc->first_tx_desc; else sc->next_avail_tx_desc++; sc->num_tx_desc_avail--; tx_buffer->num_tx_desc_used++; } /* Put this tx_buffer at the end in the "in use" list */ SIMPLEQ_INSERT_TAIL(&sc->used_tx_buffer_list, tx_buffer, em_tx_entry); #if NVLAN > 0 if (ifv != NULL) { /* Tell hardware to add tag */ current_tx_desc->lower.data |= htole32(E1000_TXD_CMD_VLE); /* Set the vlan id */ current_tx_desc->upper.fields.special = htole16(ifv->ifv_tag); } #endif /* * Last Descriptor of Packet needs End Of Packet * (EOP), Report Status (RS) and append Ethernet CRC * (IFCS) bits set. */ current_tx_desc->lower.data |= htole32(sc->txd_cmd|E1000_TXD_CMD_EOP); #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif /* * Advance the Transmit Descriptor Tail (Tdt), this * tells the E1000 that this frame is available to * transmit. */ E1000_WRITE_REG(&sc->hw, TDT, (((_BSD_PTRDIFF_T_) sc->next_avail_tx_desc - (_BSD_PTRDIFF_T_) sc->first_tx_desc) >> 4)); } /* end of while loop */ splx(s); /* Set timeout in case chip has problems transmitting */ ifp->if_timer = EM_TX_TIMEOUT; return; } /********************************************************************* * Ioctl entry point * * em_ioctl is called when the user wants to configure the * interface. * * return 0 on success, positive on failure **********************************************************************/ int em_ioctl(struct ifnet *ifp, IOCTL_CMD_TYPE command, caddr_t data) { int s, error = 0; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; struct em_softc * sc = ifp->if_softc; s = splimp(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return (error); } switch (command) { case SIOCSIFADDR: IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFADDR (Set Interface " "Addr)"); ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: em_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: em_init(sc); break; } break; case SIOCSIFMTU: IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFMTU (Set Interface MTU)"); if (ifr->ifr_mtu > MAX_JUMBO_FRAME_SIZE - ETHER_HDR_LEN) { error = EINVAL; } else { ifp->if_mtu = ifr->ifr_mtu; sc->hw.max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN; em_init(sc); } break; case SIOCSIFFLAGS: IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFFLAGS (Set Interface " "Flags)"); if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC) { em_set_promisc(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC)) { em_disable_promisc(sc); } else em_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { em_stop(sc); } } break; case SIOCADDMULTI: case SIOCDELMULTI: IOCTL_DEBUGOUT("ioctl rcv'd: SIOC(ADD|DEL)MULTI"); #if 0 if (ifp->if_flags & IFF_RUNNING) { em_disable_intr(sc); em_set_multi(sc); if (sc->hw.mac_type == em_82542_rev2_0) em_initialize_receive_unit(sc); em_enable_intr(sc); } break; #endif /* 0 */ error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) { em_disable_intr(sc); em_set_multi(sc); if (sc->hw.mac_type == em_82542_rev2_0) em_initialize_receive_unit(sc); em_enable_intr(sc); } error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: IOCTL_DEBUGOUT("ioctl rcv'd: SIOCxIFMEDIA (Get/Set Interface " "Media)"); error = ifmedia_ioctl(ifp, ifr, &sc->media, command); break; #if 0 case SIOCSIFCAP: IOCTL_DEBUGOUT("ioctl rcv'd: SIOCSIFCAP (Set Capabilities)"); mask = ifr->ifr_reqcap ^ ifp->if_capenable; if (mask & IFCAP_HWCSUM) { if (IFCAP_HWCSUM & ifp->if_capenable) ifp->if_capenable &= ~IFCAP_HWCSUM; else ifp->if_capenable |= IFCAP_HWCSUM; if (ifp->if_flags & IFF_RUNNING) em_init(sc); } break; #endif /* 0 */ default: IOCTL_DEBUGOUT1("ioctl received: UNKNOWN (0x%d)\n", (int)command); error = EINVAL; } splx(s); return(error); } void em_set_promisc(struct em_softc * sc) { u_int32_t reg_rctl; struct ifnet *ifp = &sc->arpcom.ac_if; reg_rctl = E1000_READ_REG(&sc->hw, RCTL); if (ifp->if_flags & IFF_PROMISC) { reg_rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); } else if (ifp->if_flags & IFF_ALLMULTI) { reg_rctl |= E1000_RCTL_MPE; reg_rctl &= ~E1000_RCTL_UPE; E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); } return; } void em_disable_promisc(struct em_softc * sc) { u_int32_t reg_rctl; reg_rctl = E1000_READ_REG(&sc->hw, RCTL); reg_rctl &= (~E1000_RCTL_UPE); reg_rctl &= (~E1000_RCTL_MPE); E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); return; } /********************************************************************* * Multicast Update * * This routine is called whenever multicast address list is updated. * **********************************************************************/ void em_set_multi(struct em_softc * sc) { u_int32_t reg_rctl = 0; u_int8_t mta[MAX_NUM_MULTICAST_ADDRESSES * ETH_LENGTH_OF_ADDRESS]; u_int16_t pci_cmd_word; #if 0 struct ifmultiaddr *ifma; #endif int mcnt = 0; struct pci_attach_args *pa = &sc->osdep.em_pa; #if 0 struct ifnet *ifp = &sc->arpcom.ac_if; #endif IOCTL_DEBUGOUT("em_set_multi: begin"); if (sc->hw.mac_type == em_82542_rev2_0) { reg_rctl = E1000_READ_REG(&sc->hw, RCTL); if (sc->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) { pci_cmd_word = sc->hw.pci_cmd_word & ~CMD_MEM_WRT_INVALIDATE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, pci_cmd_word); } reg_rctl |= E1000_RCTL_RST; E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); msec_delay(5); } #if 0 #if __FreeBSD_version < 500000 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { #else TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { #endif if (ifma->ifma_addr->sa_family != AF_LINK) continue; bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr), &mta[mcnt*ETH_LENGTH_OF_ADDRESS], ETH_LENGTH_OF_ADDRESS); mcnt++; } #endif /* 0 */ if (mcnt > MAX_NUM_MULTICAST_ADDRESSES) { reg_rctl = E1000_READ_REG(&sc->hw, RCTL); reg_rctl |= E1000_RCTL_MPE; E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); } else em_mc_addr_list_update(&sc->hw, mta, mcnt, 0); if (sc->hw.mac_type == em_82542_rev2_0) { reg_rctl = E1000_READ_REG(&sc->hw, RCTL); reg_rctl &= ~E1000_RCTL_RST; E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); msec_delay(5); if (sc->hw.pci_cmd_word & CMD_MEM_WRT_INVALIDATE) { pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, sc->hw.pci_cmd_word); } } return; } /********************************************************************* * Watchdog entry point * * This routine is called whenever hardware quits transmitting. * **********************************************************************/ void em_watchdog(struct ifnet *ifp) { struct em_softc * sc; sc = ifp->if_softc; /* If we are in this routine because of pause frames, then * don't reset the hardware. */ if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_TXOFF) { ifp->if_timer = EM_TX_TIMEOUT; return; } printf("%s: watchdog timeout -- resetting\n", sc->sc_dv.dv_xname); ifp->if_flags &= ~IFF_RUNNING; em_stop(sc); em_init(sc); ifp->if_oerrors++; return; } /********************************************************************* * Timer routine * * This routine checks for link status and updates statistics. * **********************************************************************/ void em_local_timer(void *arg) { int s; struct ifnet *ifp; struct em_softc * sc = arg; ifp = &sc->arpcom.ac_if; s = splimp(); em_check_for_link(&sc->hw); em_print_link_status(sc); em_update_stats_counters(sc); if (em_display_debug_stats && ifp->if_flags & IFF_RUNNING) { em_print_hw_stats(sc); } timeout_add(&sc->em_timeout, 2*hz); splx(s); return; } void em_print_link_status(struct em_softc * sc) { if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) { if (sc->link_active == 0) { em_get_speed_and_duplex(&sc->hw, &sc->link_speed, &sc->link_duplex); printf("%s: Link is up %d Mbps %s\n", sc->sc_dv.dv_xname, sc->link_speed, ((sc->link_duplex == FULL_DUPLEX) ? "Full Duplex" : "Half Duplex")); sc->link_active = 1; } } else { if (sc->link_active == 1) { sc->link_speed = 0; sc->link_duplex = 0; printf("%s: Link is Down\n", sc->sc_dv.dv_xname); sc->link_active = 0; } } return; } /********************************************************************* * Init entry point * * This routine is used in two ways. It is used by the stack as * init entry point in network interface structure. It is also used * by the driver as a hw/sw initialization routine to get to a * consistent state. * * return 0 on success, positive on failure **********************************************************************/ void em_init(void *arg) { int s; struct ifnet *ifp; struct em_softc * sc= arg; INIT_DEBUGOUT("em_init: begin"); s = splimp(); em_stop(sc); /* Initialize the hardware */ if (em_hardware_init(sc)) { printf("%s: Unable to initialize the hardware\n", sc->sc_dv.dv_xname); splx(s); return; } em_enable_vlans(sc); /* Prepare transmit descriptors and buffers */ if (em_setup_transmit_structures(sc)) { printf("%s: Could not setup transmit structures\n", sc->sc_dv.dv_xname); em_stop(sc); splx(s); return; } em_initialize_transmit_unit(sc); /* Setup Multicast table */ em_set_multi(sc); /* Prepare receive descriptors and buffers */ if (em_setup_receive_structures(sc)) { printf("%s: Could not setup receive structures\n", sc->sc_dv.dv_xname); em_stop(sc); splx(s); return; } em_initialize_receive_unit(sc); ifp = &sc->arpcom.ac_if; ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; #if 0 if (sc->hw.mac_type >= em_82543) { if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist = EM_CHECKSUM_FEATURES; else ifp->if_hwassist = 0; } #endif /* 0 */ timeout_add(&sc->em_timeout, 2*hz); em_clear_hw_cntrs(&sc->hw); em_enable_intr(sc); splx(s); return; } /********************************************************************* * * This routine disables all traffic on the em_softc by issuing a * global reset on the MAC and deallocates TX/RX buffers. * **********************************************************************/ void em_stop(void *arg) { struct ifnet *ifp; struct em_softc * sc = arg; ifp = &sc->arpcom.ac_if; INIT_DEBUGOUT("em_stop: begin\n"); em_disable_intr(sc); em_reset_hw(&sc->hw); timeout_del(&sc->em_timeout); em_free_transmit_structures(sc); em_free_receive_structures(sc); /* Tell the stack that the interface is no longer active */ ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /********************************************************************* * * Interrupt Service routine * **********************************************************************/ int em_intr(void *arg) { u_int32_t loop_cnt = EM_MAX_INTR; u_int32_t reg_icr; struct ifnet *ifp; struct em_softc *sc= arg; ifp = &sc->arpcom.ac_if; em_disable_intr(sc); while (loop_cnt > 0 && (reg_icr = E1000_READ_REG(&sc->hw, ICR)) != 0) { /* Link status change */ if (reg_icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { timeout_del(&sc->em_timeout); sc->hw.get_link_status = 1; em_check_for_link(&sc->hw); em_print_link_status(sc); timeout_add(&sc->em_timeout, 2*hz); } if (ifp->if_flags & IFF_RUNNING) { em_process_receive_interrupts(sc); em_clean_transmit_interrupts(sc); } loop_cnt--; } em_enable_intr(sc); if (ifp->if_flags & IFF_RUNNING && IFQ_IS_EMPTY(&ifp->if_snd) == 0) em_start(ifp); return (EM_MAX_INTR != loop_cnt); } /********************************************************************* * * Media Ioctl callback * * This routine is called whenever the user queries the status of * the interface using ifconfig. * **********************************************************************/ void em_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) { struct em_softc * sc= ifp->if_softc; INIT_DEBUGOUT("em_media_status: begin"); em_check_for_link(&sc->hw); if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) { if (sc->link_active == 0) { em_get_speed_and_duplex(&sc->hw, &sc->link_speed, &sc->link_duplex); sc->link_active = 1; } } else { if (sc->link_active == 1) { sc->link_speed = 0; sc->link_duplex = 0; sc->link_active = 0; } } ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (!sc->link_active) return; ifmr->ifm_status |= IFM_ACTIVE; if (sc->hw.media_type == em_media_type_fiber) { ifmr->ifm_active |= IFM_1000_SX | IFM_FDX; } else { switch (sc->link_speed) { case 10: ifmr->ifm_active |= IFM_10_T; break; case 100: ifmr->ifm_active |= IFM_100_TX; break; case 1000: #if __FreeBSD_version < 500000 ifmr->ifm_active |= IFM_1000_TX; #else ifmr->ifm_active |= IFM_1000_T; #endif break; } if (sc->link_duplex == FULL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } return; } /********************************************************************* * * Media Ioctl callback * * This routine is called when the user changes speed/duplex using * media/mediopt option with ifconfig. * **********************************************************************/ int em_media_change(struct ifnet *ifp) { struct em_softc * sc = ifp->if_softc; struct ifmedia *ifm = &sc->media; INIT_DEBUGOUT("em_media_change: begin"); if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); switch (IFM_SUBTYPE(ifm->ifm_media)) { case IFM_AUTO: sc->hw.autoneg = DO_AUTO_NEG; sc->hw.autoneg_advertised = AUTONEG_ADV_DEFAULT; break; case IFM_1000_SX: #if __FreeBSD_version < 500000 case IFM_1000_TX: #else case IFM_1000_T: #endif sc->hw.autoneg = DO_AUTO_NEG; sc->hw.autoneg_advertised = ADVERTISE_1000_FULL; break; case IFM_100_TX: sc->hw.autoneg = FALSE; sc->hw.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) sc->hw.forced_speed_duplex = em_100_full; else sc->hw.forced_speed_duplex = em_100_half; break; case IFM_10_T: sc->hw.autoneg = FALSE; sc->hw.autoneg_advertised = 0; if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) sc->hw.forced_speed_duplex = em_10_full; else sc->hw.forced_speed_duplex = em_10_half; break; default: printf("%s: Unsupported media type\n", sc->sc_dv.dv_xname); } em_init(sc); return(0); } /* Section end: Other registered entry points */ /********************************************************************* * * Determine hardware revision. * **********************************************************************/ void em_identify_hardware(struct em_softc * sc) { u_int32_t reg; struct pci_attach_args *pa = &sc->osdep.em_pa; /* Make sure our PCI config space has the necessary stuff set */ sc->hw.pci_cmd_word = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (!((sc->hw.pci_cmd_word & PCI_COMMAND_MASTER_ENABLE) && (sc->hw.pci_cmd_word & PCI_COMMAND_MEM_ENABLE))) { printf("%s: Memory Access and/or Bus Master bits not set!\n", sc->sc_dv.dv_xname); sc->hw.pci_cmd_word |= (PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_MEM_ENABLE); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, sc->hw.pci_cmd_word); } /* Save off the information about this board */ sc->hw.vendor_id = PCI_VENDOR(pa->pa_id); sc->hw.device_id = PCI_PRODUCT(pa->pa_id); reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG); sc->hw.revision_id = PCI_REVISION(reg); reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); sc->hw.subsystem_vendor_id = PCI_VENDOR(reg); sc->hw.subsystem_id = PCI_PRODUCT(reg); /* Set MacType, etc. based on this PCI info */ switch (sc->hw.device_id) { case E1000_DEV_ID_82542: sc->hw.mac_type = (sc->hw.revision_id == 3) ? em_82542_rev2_1 : em_82542_rev2_0; break; case E1000_DEV_ID_82543GC_FIBER: case E1000_DEV_ID_82543GC_COPPER: sc->hw.mac_type = em_82543; break; case E1000_DEV_ID_82544EI_FIBER: case E1000_DEV_ID_82544EI_COPPER: case E1000_DEV_ID_82544GC_COPPER: case E1000_DEV_ID_82544GC_LOM: sc->hw.mac_type = em_82544; break; case E1000_DEV_ID_82540EM: sc->hw.mac_type = em_82540; break; case E1000_DEV_ID_82545EM_FIBER: case E1000_DEV_ID_82545EM_COPPER: sc->hw.mac_type = em_82545; break; case E1000_DEV_ID_82546EB_FIBER: case E1000_DEV_ID_82546EB_COPPER: sc->hw.mac_type = em_82546; break; default: INIT_DEBUGOUT1("Unknown device id 0x%x", sc->hw.device_id); } return; } int em_allocate_pci_resources(struct em_softc * sc) { int i, val, rid; pci_intr_handle_t ih; const char *intrstr = NULL; struct pci_attach_args *pa = &sc->osdep.em_pa; pci_chipset_tag_t pc = pa->pa_pc; val = pci_conf_read(pa->pa_pc, pa->pa_tag, EM_MMBA); if (PCI_MAPREG_TYPE(val) != PCI_MAPREG_TYPE_MEM) { printf(": mmba isn't memory"); return (ENXIO); } if (pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE(val), 0, &sc->osdep.em_btag, &sc->osdep.em_bhandle, &sc->osdep.em_membase, &sc->osdep.em_memsize, 0)) { printf(": can't find mem space"); return (ENXIO); } #if 0 if (pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE_32BIT, 0, &sc->osdep.em_btag, &sc->osdep.em_bhandle, &sc->osdep.em_membase, &sc->osdep.em_memsize, 0) && pci_mapreg_map(pa, EM_MMBA, PCI_MAPREG_MEM_TYPE_64BIT, 0, &sc->osdep.em_btag, &sc->osdep.em_bhandle, &sc->osdep.em_membase, &sc->osdep.em_memsize, 0)) { printf(": can't find mem space"); return (ENXIO); } #endif /* 0 */ if (sc->hw.mac_type > em_82543) { /* Figure our where our IO BAR is ? */ rid = EM_MMBA; for (i = 0; i < 5; i++) { val = pci_conf_read(pa->pa_pc, pa->pa_tag, rid); if (val & 0x00000001) { sc->io_rid = rid; break; } rid += 4; } if (pci_mapreg_map(pa, rid, PCI_MAPREG_TYPE_IO, 0, &sc->osdep.em_iobtag, &sc->osdep.em_iobhandle, &sc->osdep.em_iobase, &sc->osdep.em_iosize, 0)) { printf(": can't find io space"); return (ENXIO); } } if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); return (ENXIO); } intrstr = pci_intr_string(pc, ih); sc->sc_intrhand = pci_intr_establish(pc, ih, IPL_NET, em_intr, sc, sc->sc_dv.dv_xname); if (sc->sc_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return (ENXIO); } printf(": %s\n", intrstr); sc->hw.back = &sc->osdep; return(0); } void em_free_pci_resources(struct em_softc* sc) { struct pci_attach_args *pa = &sc->osdep.em_pa; pci_chipset_tag_t pc = pa->pa_pc; if(sc->sc_intrhand) pci_intr_disestablish(pc, sc->sc_intrhand); sc->sc_intrhand = 0; if(sc->osdep.em_iobase) bus_space_unmap(sc->osdep.em_iobtag, sc->osdep.em_iobhandle, sc->osdep.em_iosize); sc->osdep.em_iobase = 0; if(sc->osdep.em_membase) bus_space_unmap(sc->osdep.em_btag, sc->osdep.em_bhandle, sc->osdep.em_memsize); sc->osdep.em_membase = 0; } /********************************************************************* * * Initialize the hardware to a configuration as specified by the * em_softc structure. The controller is reset, the EEPROM is * verified, the MAC address is set, then the shared initialization * routines are called. * **********************************************************************/ int em_hardware_init(struct em_softc * sc) { /* Issue a global reset */ em_reset_hw(&sc->hw); /* Make sure we have a good EEPROM before we read from it */ if (em_validate_eeprom_checksum(&sc->hw) < 0) { printf("%s: The EEPROM Checksum Is Not Valid\n", sc->sc_dv.dv_xname); return(EIO); } if (em_read_part_num(&sc->hw, &(sc->part_num)) < 0) { printf("%s: EEPROM read error while reading part number\n", sc->sc_dv.dv_xname); return(EIO); } if (em_init_hw(&sc->hw) < 0) { printf("%s: Hardware Initialization Failed", sc->sc_dv.dv_xname); return(EIO); } em_check_for_link(&sc->hw); if (E1000_READ_REG(&sc->hw, STATUS) & E1000_STATUS_LU) sc->link_active = 1; else sc->link_active = 0; if (sc->link_active) { em_get_speed_and_duplex(&sc->hw, &sc->link_speed, &sc->link_duplex); } else { sc->link_speed = 0; sc->link_duplex = 0; } return(0); } /********************************************************************* * * Setup networking device structure and register an interface. * **********************************************************************/ void em_setup_interface(struct em_softc * sc) { struct ifnet *ifp; INIT_DEBUGOUT("em_setup_interface: begin"); ifp = &sc->arpcom.ac_if; ifp->if_mtu = ETHERMTU; ifp->if_output = ether_output; ifp->if_baudrate = 1000000000; #if 0 ifp->if_init = em_init; #endif ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = em_ioctl; ifp->if_start = em_start; ifp->if_watchdog = em_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, sc->num_tx_desc - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ); #if 0 if (sc->hw.mac_type >= em_82543) { ifp->if_capabilities = IFCAP_HWCSUM; ifp->if_capenable = ifp->if_capabilities; } #endif /* 0 */ /* * Specify the media types supported by this em_softc and register * callbacks to update media and link information */ ifmedia_init(&sc->media, IFM_IMASK, em_media_change, em_media_status); if (sc->hw.media_type == em_media_type_fiber) { ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL); ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_SX, 0, NULL); } else { ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T, 0, NULL); ifmedia_add(&sc->media, IFM_ETHER | IFM_10_T | IFM_FDX, 0, NULL); ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX, 0, NULL); ifmedia_add(&sc->media, IFM_ETHER | IFM_100_TX | IFM_FDX, 0, NULL); #if __FreeBSD_version < 500000 ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_TX | IFM_FDX, 0, NULL); ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_TX, 0, NULL); #else ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T | IFM_FDX, 0, NULL); ifmedia_add(&sc->media, IFM_ETHER | IFM_1000_T, 0, NULL); #endif } ifmedia_add(&sc->media, IFM_ETHER | IFM_AUTO, 0, NULL); ifmedia_set(&sc->media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp); return; } /********************************************************************* * * Allocate memory for tx_buffer structures. The tx_buffer stores all * the information needed to transmit a packet on the wire. * **********************************************************************/ int em_allocate_transmit_structures(struct em_softc * sc) { if (!(sc->tx_buffer_area = (struct em_tx_buffer *) malloc(sizeof(struct em_tx_buffer) * sc->num_tx_desc, M_DEVBUF, M_NOWAIT))) { printf("%s: Unable to allocate tx_buffer memory\n", sc->sc_dv.dv_xname); return ENOMEM; } bzero(sc->tx_buffer_area, sizeof(struct em_tx_buffer) * sc->num_tx_desc); return 0; } /********************************************************************* * * Allocate and initialize transmit structures. * **********************************************************************/ int em_setup_transmit_structures(struct em_softc* sc) { struct em_tx_buffer *tx_buffer; int i; if (em_allocate_transmit_structures(sc)) return ENOMEM; sc->first_tx_desc = sc->tx_desc_base; sc->last_tx_desc = sc->first_tx_desc + (sc->num_tx_desc - 1); SIMPLEQ_INIT(&sc->free_tx_buffer_list); SIMPLEQ_INIT(&sc->used_tx_buffer_list); tx_buffer = sc->tx_buffer_area; /* Setup the linked list of the tx_buffer's */ for (i = 0; i < sc->num_tx_desc; i++, tx_buffer++) { bzero((void *) tx_buffer, sizeof(struct em_tx_buffer)); if (bus_dmamap_create(sc->osdep.em_pa.pa_dmat, MCLBYTES, 32, MCLBYTES, 0, BUS_DMA_NOWAIT, &tx_buffer->dmamap)) return ENOBUFS; SIMPLEQ_INSERT_TAIL(&sc->free_tx_buffer_list, tx_buffer, em_tx_entry); } bzero((void *) sc->first_tx_desc, (sizeof(struct em_tx_desc)) * sc->num_tx_desc); /* Setup TX descriptor pointers */ sc->next_avail_tx_desc = sc->first_tx_desc; sc->oldest_used_tx_desc = sc->first_tx_desc; /* Set number of descriptors available */ sc->num_tx_desc_avail = sc->num_tx_desc; /* Set checksum context */ sc->active_checksum_context = OFFLOAD_NONE; return 0; } /********************************************************************* * * Enable transmit unit. * **********************************************************************/ void em_initialize_transmit_unit(struct em_softc * sc) { u_int32_t reg_tctl; u_int32_t reg_tipg = 0; /* Setup the Base and Length of the Tx Descriptor Ring */ E1000_WRITE_REG(&sc->hw, TDBAL, sc->osdep.em_tx.emm_dmamap->dm_segs[0].ds_addr); E1000_WRITE_REG(&sc->hw, TDBAH, 0); E1000_WRITE_REG(&sc->hw, TDLEN, sc->num_tx_desc * sizeof(struct em_tx_desc)); /* Setup the HW Tx Head and Tail descriptor pointers */ E1000_WRITE_REG(&sc->hw, TDH, 0); E1000_WRITE_REG(&sc->hw, TDT, 0); HW_DEBUGOUT2("Base = %x, Length = %x\n", E1000_READ_REG(&sc->hw, TDBAL), E1000_READ_REG(&sc->hw, TDLEN)); /* Set the default values for the Tx Inter Packet Gap timer */ switch (sc->hw.mac_type) { case em_82543: case em_82544: case em_82540: case em_82545: case em_82546: if (sc->hw.media_type == em_media_type_fiber) reg_tipg = DEFAULT_82543_TIPG_IPGT_FIBER; else reg_tipg = DEFAULT_82543_TIPG_IPGT_COPPER; reg_tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; reg_tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; break; case em_82542_rev2_0: case em_82542_rev2_1: reg_tipg = DEFAULT_82542_TIPG_IPGT; reg_tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; reg_tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; break; default: printf("%s: Invalid mac type detected\n", sc->sc_dv.dv_xname); } E1000_WRITE_REG(&sc->hw, TIPG, reg_tipg); E1000_WRITE_REG(&sc->hw, TIDV, sc->tx_int_delay); /* Program the Transmit Control Register */ reg_tctl = E1000_TCTL_PSP | E1000_TCTL_EN | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); if (sc->link_duplex == 1) { reg_tctl |= E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT; } else { reg_tctl |= E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT; } E1000_WRITE_REG(&sc->hw, TCTL, reg_tctl); /* Setup Transmit Descriptor Settings for this adapter */ sc->txd_cmd = E1000_TXD_CMD_IFCS; if (sc->tx_int_delay > 0) sc->txd_cmd |= E1000_TXD_CMD_IDE; if (sc->hw.report_tx_early == 1) sc->txd_cmd |= E1000_TXD_CMD_RS; else sc->txd_cmd |= E1000_TXD_CMD_RPS; return; } /********************************************************************* * * Free all transmit related data structures. * **********************************************************************/ void em_free_transmit_structures(struct em_softc* sc) { struct em_tx_buffer *tx_buffer; int i; INIT_DEBUGOUT("free_transmit_structures: begin"); if (sc->tx_buffer_area != NULL) { tx_buffer = sc->tx_buffer_area; for (i = 0; i < sc->num_tx_desc; i++, tx_buffer++) { if (tx_buffer->m_head != NULL) m_freem(tx_buffer->m_head); tx_buffer->m_head = NULL; } } if (sc->tx_buffer_area != NULL) { free(sc->tx_buffer_area, M_DEVBUF); sc->tx_buffer_area = NULL; } return; } /********************************************************************* * * The offload context needs to be set when we transfer the first * packet of a particular protocol (TCP/UDP). We change the * context only if the protocol type changes. * **********************************************************************/ #if 0 void em_transmit_checksum_setup(struct em_softc * sc, struct mbuf *mp, struct em_tx_buffer *tx_buffer, u_int32_t *txd_upper, u_int32_t *txd_lower) { struct em_context_desc *TXD; struct em_tx_desc * current_tx_desc; if (mp->m_pkthdr.csum_flags) { if (mp->m_pkthdr.csum_flags & CSUM_TCP) { *txd_upper = E1000_TXD_POPTS_TXSM << 8; *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; if (sc->active_checksum_context == OFFLOAD_TCP_IP) return; else sc->active_checksum_context = OFFLOAD_TCP_IP; } else if (mp->m_pkthdr.csum_flags & CSUM_UDP) { *txd_upper = E1000_TXD_POPTS_TXSM << 8; *txd_lower = E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; if (sc->active_checksum_context == OFFLOAD_UDP_IP) return; else sc->active_checksum_context = OFFLOAD_UDP_IP; } else { *txd_upper = 0; *txd_lower = 0; return; } } else { *txd_upper = 0; *txd_lower = 0; return; } /* If we reach this point, the checksum offload context * needs to be reset. */ current_tx_desc = sc->next_avail_tx_desc; TXD = (struct em_context_desc *)current_tx_desc; TXD->lower_setup.ip_fields.ipcss = ETHER_HDR_LEN; TXD->lower_setup.ip_fields.ipcso = ETHER_HDR_LEN + offsetof(struct ip, ip_sum); TXD->lower_setup.ip_fields.ipcse = ETHER_HDR_LEN + sizeof(struct ip) - 1; TXD->upper_setup.tcp_fields.tucss = ETHER_HDR_LEN + sizeof(struct ip); TXD->upper_setup.tcp_fields.tucse = 0; if (sc->active_checksum_context == OFFLOAD_TCP_IP) { TXD->upper_setup.tcp_fields.tucso = ETHER_HDR_LEN + sizeof(struct ip) + offsetof(struct tcphdr, th_sum); } else if (sc->active_checksum_context == OFFLOAD_UDP_IP) { TXD->upper_setup.tcp_fields.tucso = ETHER_HDR_LEN + sizeof(struct ip) + offsetof(struct udphdr, uh_sum); } TXD->tcp_seg_setup.data = 0; TXD->cmd_and_length = E1000_TXD_CMD_DEXT; if (current_tx_desc == sc->last_tx_desc) sc->next_avail_tx_desc = sc->first_tx_desc; else sc->next_avail_tx_desc++; sc->num_tx_desc_avail--; tx_buffer->num_tx_desc_used++; return; } #endif /* 0 */ /********************************************************************* * * Get a buffer from system mbuf buffer pool. * **********************************************************************/ int em_get_buf(struct em_rx_buffer *rx_buffer, struct em_softc *sc, struct mbuf *mp) { struct mbuf *nmp; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; if (mp == NULL) { MGETHDR(nmp, M_DONTWAIT, MT_DATA); if (nmp == NULL) { sc->mbuf_alloc_failed++; return(ENOBUFS); } MCLGET(nmp, M_DONTWAIT); if ((nmp->m_flags & M_EXT) == 0) { m_freem(nmp); sc->mbuf_cluster_failed++; return(ENOBUFS); } nmp->m_len = nmp->m_pkthdr.len = MCLBYTES; } else { nmp = mp; nmp->m_len = nmp->m_pkthdr.len = MCLBYTES; nmp->m_data = nmp->m_ext.ext_buf; nmp->m_next = NULL; } if (bus_dmamap_load_mbuf(sc->osdep.em_pa.pa_dmat, rx_buffer->dmamap, nmp, BUS_DMA_NOWAIT)) return(ENOBUFS); if (ifp->if_mtu <= ETHERMTU) m_adj(nmp, ETHER_ALIGN); rx_buffer->m_head = nmp; rx_buffer->buffer_addr = rx_buffer->dmamap->dm_segs[0].ds_addr + ETHER_ALIGN; return(0); } /********************************************************************* * * Allocate memory for rx_buffer structures. Since we use one * rx_buffer per received packet, the maximum number of rx_buffer's * that we'll need is equal to the number of receive descriptors * that we've allocated. * **********************************************************************/ int em_allocate_receive_structures(struct em_softc* sc) { int i; struct em_rx_buffer *rx_buffer; if (!(sc->rx_buffer_area = (struct em_rx_buffer *) malloc(sizeof(struct em_rx_buffer) * sc->num_rx_desc, M_DEVBUF, M_NOWAIT))) { printf("%s: Unable to allocate rx_buffer memory\n", sc->sc_dv.dv_xname); return(ENOMEM); } bzero(sc->rx_buffer_area, sizeof(struct em_rx_buffer) * sc->num_rx_desc); for (i = 0, rx_buffer = sc->rx_buffer_area; i < sc->num_rx_desc; i++, rx_buffer++) { if (bus_dmamap_create(sc->osdep.em_pa.pa_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &rx_buffer->dmamap)) return ENOBUFS; if (em_get_buf(rx_buffer, sc, NULL) == ENOBUFS) { rx_buffer->m_head = NULL; return(ENOBUFS); } } return(0); } /********************************************************************* * * Allocate and initialize receive structures. * **********************************************************************/ int em_setup_receive_structures(struct em_softc * sc) { struct em_rx_buffer *rx_buffer; struct em_rx_desc *rx_desc; int i; if (em_allocate_receive_structures(sc)) return ENOMEM; SIMPLEQ_INIT(&sc->rx_buffer_list); sc->first_rx_desc = (struct em_rx_desc *) sc->rx_desc_base; sc->last_rx_desc = sc->first_rx_desc + (sc->num_rx_desc - 1); rx_buffer = (struct em_rx_buffer *) sc->rx_buffer_area; bzero((void *) sc->first_rx_desc, (sizeof(struct em_rx_desc)) * sc->num_rx_desc); /* Build a linked list of rx_buffer's */ for (i = 0, rx_desc = sc->first_rx_desc; i < sc->num_rx_desc; i++, rx_buffer++, rx_desc++) { if (rx_buffer->m_head == NULL) printf("%s: Receive buffer memory not allocated", sc->sc_dv.dv_xname); else { rx_desc->buffer_addr = htole64(rx_buffer->buffer_addr); SIMPLEQ_INSERT_TAIL(&sc->rx_buffer_list, rx_buffer, em_rx_entry); } } /* Setup our descriptor pointers */ sc->next_rx_desc_to_check = sc->first_rx_desc; return(0); } /********************************************************************* * * Enable receive unit. * **********************************************************************/ void em_initialize_receive_unit(struct em_softc * sc) { u_int32_t reg_rctl; #if 0 u_int32_t reg_rxcsum; #endif struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* * Make sure receives are disabled while setting up the * descriptor ring */ E1000_WRITE_REG(&sc->hw, RCTL, 0); /* Set the Receive Delay Timer Register */ E1000_WRITE_REG(&sc->hw, RDTR, sc->rx_int_delay | E1000_RDT_FPDB); /* Setup the Base and Length of the Rx Descriptor Ring */ E1000_WRITE_REG(&sc->hw, RDBAL, sc->osdep.em_rx.emm_dmamap->dm_segs[0].ds_addr); E1000_WRITE_REG(&sc->hw, RDBAH, 0); E1000_WRITE_REG(&sc->hw, RDLEN, sc->num_rx_desc * sizeof(struct em_rx_desc)); /* Setup the HW Rx Head and Tail Descriptor Pointers */ E1000_WRITE_REG(&sc->hw, RDH, 0); E1000_WRITE_REG(&sc->hw, RDT, (((_BSD_PTRDIFF_T_) sc->last_rx_desc - (_BSD_PTRDIFF_T_) sc->first_rx_desc) >> 4)); /* Setup the Receive Control Register */ reg_rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | (sc->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); if (sc->hw.tbi_compatibility_on == TRUE) reg_rctl |= E1000_RCTL_SBP; switch (sc->rx_buffer_len) { default: case EM_RXBUFFER_2048: reg_rctl |= E1000_RCTL_SZ_2048; break; case EM_RXBUFFER_4096: reg_rctl |= E1000_RCTL_SZ_4096|E1000_RCTL_BSEX|E1000_RCTL_LPE; break; case EM_RXBUFFER_8192: reg_rctl |= E1000_RCTL_SZ_8192|E1000_RCTL_BSEX|E1000_RCTL_LPE; break; case EM_RXBUFFER_16384: reg_rctl |= E1000_RCTL_SZ_16384|E1000_RCTL_BSEX|E1000_RCTL_LPE; break; } if (ifp->if_mtu > ETHERMTU) reg_rctl |= E1000_RCTL_LPE; #if 0 /* Enable 82543 Receive Checksum Offload for TCP and UDP */ if ((sc->hw.mac_type >= em_82543) && (ifp->if_capenable & IFCAP_RXCSUM)) { reg_rxcsum = E1000_READ_REG(&sc->hw, RXCSUM); reg_rxcsum |= (E1000_RXCSUM_IPOFL | E1000_RXCSUM_TUOFL); E1000_WRITE_REG(&sc->hw, RXCSUM, reg_rxcsum); } #endif /* 0 */ /* Enable Receives */ E1000_WRITE_REG(&sc->hw, RCTL, reg_rctl); return; } /********************************************************************* * * Free receive related data structures. * **********************************************************************/ void em_free_receive_structures(struct em_softc * sc) { struct em_rx_buffer *rx_buffer; int i; INIT_DEBUGOUT("free_receive_structures: begin"); if (sc->rx_buffer_area != NULL) { rx_buffer = sc->rx_buffer_area; for (i = 0; i < sc->num_rx_desc; i++, rx_buffer++) { if (rx_buffer->m_head != NULL) m_freem(rx_buffer->m_head); rx_buffer->m_head = NULL; } } if (sc->rx_buffer_area != NULL) { free(sc->rx_buffer_area, M_DEVBUF); sc->rx_buffer_area = NULL; } return; } /********************************************************************* * * This routine executes in interrupt context. It replenishes * the mbufs in the descriptor and sends data which has been * dma'ed into host memory to upper layer. * *********************************************************************/ void em_process_receive_interrupts(struct em_softc* sc) { struct mbuf *mp; struct ifnet *ifp; struct ether_header *eh; u_int16_t len; u_int8_t last_byte; u_int8_t accept_frame = 0; u_int8_t eop = 0; u_int32_t pkt_len = 0; /* Pointer to the receive descriptor being examined. */ struct em_rx_desc *current_desc; struct em_rx_desc *last_desc_processed; struct em_rx_buffer *rx_buffer; ifp = &sc->arpcom.ac_if; current_desc = sc->next_rx_desc_to_check; if (!((current_desc->status) & E1000_RXD_STAT_DD)) { #ifdef DBG_STATS sc->no_pkts_avail++; #endif return; } while (current_desc->status & E1000_RXD_STAT_DD) { /* Get a pointer to the actual receive buffer */ rx_buffer = SIMPLEQ_FIRST(&sc->rx_buffer_list); if (rx_buffer == NULL) { printf("%s: Found null rx_buffer\n", sc->sc_dv.dv_xname); return; } mp = rx_buffer->m_head; accept_frame = 1; if (current_desc->status & E1000_RXD_STAT_EOP) { eop = 1; len = letoh16(current_desc->length) - ETHER_CRC_LEN; } else { eop = 0; len = letoh16(current_desc->length); } if (current_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) { /* Compute packet length for tbi_accept macro */ pkt_len = letoh16(current_desc->length); if (sc->fmp != NULL) { pkt_len += sc->fmp->m_pkthdr.len; } last_byte = *(mtod(rx_buffer->m_head,caddr_t) + letoh16(current_desc->length) - 1); if (TBI_ACCEPT(&sc->hw, current_desc->status, current_desc->errors, pkt_len, last_byte)) { em_tbi_adjust_stats(&sc->hw, &sc->stats, pkt_len, sc->hw.mac_addr); len--; } else { accept_frame = 0; } } if (accept_frame) { if (em_get_buf(rx_buffer, sc, NULL) == ENOBUFS) { sc->dropped_pkts++; em_get_buf(rx_buffer, sc, mp); if (sc->fmp != NULL) m_freem(sc->fmp); sc->fmp = NULL; sc->lmp = NULL; break; } /* Assign correct length to the current fragment */ mp->m_len = len; if (sc->fmp == NULL) { mp->m_pkthdr.len = len; sc->fmp = mp; /* Store the first mbuf */ sc->lmp = mp; } else { /* Chain mbuf's together */ mp->m_flags &= ~M_PKTHDR; sc->lmp->m_next = mp; sc->lmp = sc->lmp->m_next; sc->fmp->m_pkthdr.len += len; } if (eop) { sc->fmp->m_pkthdr.rcvif = ifp; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF * user see the packet. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, sc->fmp); #endif eh = mtod(sc->fmp, struct ether_header *); /* Remove ethernet header from mbuf */ m_adj(sc->fmp, sizeof(struct ether_header)); em_receive_checksum(sc, current_desc, sc->fmp); #if 0 if (current_desc->status & E1000_RXD_STAT_VP) VLAN_INPUT_TAG(eh, sc->fmp, letoh16(current_desc->special)); else #endif /* 0 */ ether_input(ifp, eh, sc->fmp); sc->fmp = NULL; sc->lmp = NULL; } } else { sc->dropped_pkts++; em_get_buf(rx_buffer, sc, mp); if (sc->fmp != NULL) m_freem(sc->fmp); sc->fmp = NULL; sc->lmp = NULL; } /* Zero out the receive descriptors status */ current_desc->status = 0; if (rx_buffer->m_head != NULL) { current_desc->buffer_addr = htole64(rx_buffer->buffer_addr); } /* Advance our pointers to the next descriptor * (checking for wrap). */ if (current_desc == sc->last_rx_desc) sc->next_rx_desc_to_check = sc->first_rx_desc; else ((sc)->next_rx_desc_to_check)++; last_desc_processed = current_desc; current_desc = sc->next_rx_desc_to_check; /* * Put the buffer that we just indicated back at the * end of our list */ SIMPLEQ_REMOVE_HEAD(&sc->rx_buffer_list, rx_buffer, em_rx_entry); SIMPLEQ_INSERT_TAIL(&sc->rx_buffer_list, rx_buffer, em_rx_entry); /* Advance the E1000's Receive Queue #0 "Tail Pointer". */ E1000_WRITE_REG(&sc->hw, RDT, (((u_long) last_desc_processed - (u_long) sc->first_rx_desc) >> 4)); } return; } /********************************************************************* * * Verify that the hardware indicated that the checksum is valid. * Inform the stack about the status of checksum so that stack * doesn't spend time verifying the checksum. * *********************************************************************/ void em_receive_checksum(struct em_softc *sc, struct em_rx_desc *rx_desc, struct mbuf *mp) { #if 0 /* 82543 or newer only */ if ((sc->hw.mac_type < em_82543) || /* Ignore Checksum bit is set */ (rx_desc->status & E1000_RXD_STAT_IXSM)) { mp->m_pkthdr.csum_flags = 0; return; } if (rx_desc->status & E1000_RXD_STAT_IPCS) { /* Did it pass? */ if (!(rx_desc->errors & E1000_RXD_ERR_IPE)) { /* IP Checksum Good */ mp->m_pkthdr.csum_flags = CSUM_IP_CHECKED; mp->m_pkthdr.csum_flags |= CSUM_IP_VALID; } else { mp->m_pkthdr.csum_flags = 0; } } if (rx_desc->status & E1000_RXD_STAT_TCPCS) { /* Did it pass? */ if (!(rx_desc->errors & E1000_RXD_ERR_TCPE)) { mp->m_pkthdr.csum_flags |= (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); mp->m_pkthdr.csum_data = htons(0xffff); } } return; #endif /* 0 */ } void em_enable_vlans(struct em_softc * sc) { uint32_t ctrl; E1000_WRITE_REG(&sc->hw, VET, QTAG_TYPE); ctrl = E1000_READ_REG(&sc->hw, CTRL); ctrl |= E1000_CTRL_VME; E1000_WRITE_REG(&sc->hw, CTRL, ctrl); return; } void em_enable_intr(struct em_softc* sc) { E1000_WRITE_REG(&sc->hw, IMS, (IMS_ENABLE_MASK)); return; } void em_disable_intr(struct em_softc *sc) { E1000_WRITE_REG(&sc->hw, IMC, (0xffffffff & ~E1000_IMC_RXSEQ)); return; } void em_write_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value) { struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa; pci_chipset_tag_t pc = pa->pa_pc; pci_conf_write(pc, pa->pa_tag, reg, *value); } void em_read_pci_cfg(struct em_hw *hw, uint32_t reg, uint16_t *value) { struct pci_attach_args *pa = &((struct em_osdep *)hw->back)->em_pa; pci_chipset_tag_t pc = pa->pa_pc; *value = pci_conf_read(pc, pa->pa_tag, reg); return; } uint32_t em_io_read(struct em_hw *hw, uint32_t port) { #if 0 return(inl(port)); #endif return bus_space_read_4( ((struct em_osdep *)(hw)->back)->em_iobtag, ((struct em_osdep *)(hw)->back)->em_iobhandle, port); } void em_io_write(struct em_hw *hw, uint32_t port, uint32_t value) { #if 0 outl(port, value); #endif bus_space_write_4( ((struct em_osdep *)(hw)->back)->em_iobtag, ((struct em_osdep *)(hw)->back)->em_iobhandle, port, value); return; } /********************************************************************** * * Update the board statistics counters. * **********************************************************************/ void em_update_stats_counters(struct em_softc *sc) { struct ifnet *ifp; sc->stats.crcerrs += E1000_READ_REG(&sc->hw, CRCERRS); sc->stats.symerrs += E1000_READ_REG(&sc->hw, SYMERRS); sc->stats.mpc += E1000_READ_REG(&sc->hw, MPC); sc->stats.scc += E1000_READ_REG(&sc->hw, SCC); sc->stats.ecol += E1000_READ_REG(&sc->hw, ECOL); sc->stats.mcc += E1000_READ_REG(&sc->hw, MCC); sc->stats.latecol += E1000_READ_REG(&sc->hw, LATECOL); sc->stats.colc += E1000_READ_REG(&sc->hw, COLC); sc->stats.dc += E1000_READ_REG(&sc->hw, DC); sc->stats.sec += E1000_READ_REG(&sc->hw, SEC); sc->stats.rlec += E1000_READ_REG(&sc->hw, RLEC); sc->stats.xonrxc += E1000_READ_REG(&sc->hw, XONRXC); sc->stats.xontxc += E1000_READ_REG(&sc->hw, XONTXC); sc->stats.xoffrxc += E1000_READ_REG(&sc->hw, XOFFRXC); sc->stats.xofftxc += E1000_READ_REG(&sc->hw, XOFFTXC); sc->stats.fcruc += E1000_READ_REG(&sc->hw, FCRUC); sc->stats.prc64 += E1000_READ_REG(&sc->hw, PRC64); sc->stats.prc127 += E1000_READ_REG(&sc->hw, PRC127); sc->stats.prc255 += E1000_READ_REG(&sc->hw, PRC255); sc->stats.prc511 += E1000_READ_REG(&sc->hw, PRC511); sc->stats.prc1023 += E1000_READ_REG(&sc->hw, PRC1023); sc->stats.prc1522 += E1000_READ_REG(&sc->hw, PRC1522); sc->stats.gprc += E1000_READ_REG(&sc->hw, GPRC); sc->stats.bprc += E1000_READ_REG(&sc->hw, BPRC); sc->stats.mprc += E1000_READ_REG(&sc->hw, MPRC); sc->stats.gptc += E1000_READ_REG(&sc->hw, GPTC); /* For the 64-bit byte counters the low dword must be read first. */ /* Both registers clear on the read of the high dword */ sc->stats.gorcl += E1000_READ_REG(&sc->hw, GORCL); sc->stats.gorch += E1000_READ_REG(&sc->hw, GORCH); sc->stats.gotcl += E1000_READ_REG(&sc->hw, GOTCL); sc->stats.gotch += E1000_READ_REG(&sc->hw, GOTCH); sc->stats.rnbc += E1000_READ_REG(&sc->hw, RNBC); sc->stats.ruc += E1000_READ_REG(&sc->hw, RUC); sc->stats.rfc += E1000_READ_REG(&sc->hw, RFC); sc->stats.roc += E1000_READ_REG(&sc->hw, ROC); sc->stats.rjc += E1000_READ_REG(&sc->hw, RJC); sc->stats.torl += E1000_READ_REG(&sc->hw, TORL); sc->stats.torh += E1000_READ_REG(&sc->hw, TORH); sc->stats.totl += E1000_READ_REG(&sc->hw, TOTL); sc->stats.toth += E1000_READ_REG(&sc->hw, TOTH); sc->stats.tpr += E1000_READ_REG(&sc->hw, TPR); sc->stats.tpt += E1000_READ_REG(&sc->hw, TPT); sc->stats.ptc64 += E1000_READ_REG(&sc->hw, PTC64); sc->stats.ptc127 += E1000_READ_REG(&sc->hw, PTC127); sc->stats.ptc255 += E1000_READ_REG(&sc->hw, PTC255); sc->stats.ptc511 += E1000_READ_REG(&sc->hw, PTC511); sc->stats.ptc1023 += E1000_READ_REG(&sc->hw, PTC1023); sc->stats.ptc1522 += E1000_READ_REG(&sc->hw, PTC1522); sc->stats.mptc += E1000_READ_REG(&sc->hw, MPTC); sc->stats.bptc += E1000_READ_REG(&sc->hw, BPTC); if (sc->hw.mac_type >= em_82543) { sc->stats.algnerrc += E1000_READ_REG(&sc->hw, ALGNERRC); sc->stats.rxerrc += E1000_READ_REG(&sc->hw, RXERRC); sc->stats.tncrs += E1000_READ_REG(&sc->hw, TNCRS); sc->stats.cexterr += E1000_READ_REG(&sc->hw, CEXTERR); sc->stats.tsctc += E1000_READ_REG(&sc->hw, TSCTC); sc->stats.tsctfc += E1000_READ_REG(&sc->hw, TSCTFC); } ifp = &sc->arpcom.ac_if; /* Fill out the OS statistics structure */ ifp->if_ipackets = sc->stats.gprc; ifp->if_opackets = sc->stats.gptc; ifp->if_ibytes = sc->stats.gorcl; ifp->if_obytes = sc->stats.gotcl; ifp->if_imcasts = sc->stats.mprc; ifp->if_collisions = sc->stats.colc; /* Rx Errors */ ifp->if_ierrors = sc->dropped_pkts + sc->stats.rxerrc + sc->stats.crcerrs + sc->stats.algnerrc + sc->stats.rlec + sc->stats.rnbc + sc->stats.mpc + sc->stats.cexterr; /* Tx Errors */ ifp->if_oerrors = sc->stats.ecol + sc->stats.latecol; } /********************************************************************** * * This routine is called only when em_display_debug_stats is enabled. * This routine provides a way to take a look at important statistics * maintained by the driver and hardware. * **********************************************************************/ void em_print_hw_stats(struct em_softc *sc) { #ifdef DBG_STATS printf("%s: Packets not Avail = %ld\n", sc->sc_dv.dv_xname, sc->no_pkts_avail); printf("%s: CleanTxInterrupts = %ld\n", sc->sc_dv.dv_xname, sc->clean_tx_interrupts); #endif printf("%s: Tx Descriptors not Avail = %ld\n", sc->sc_dv.dv_xname, sc->no_tx_desc_avail); printf("%s: Tx Buffer not avail1 = %ld\n", sc->sc_dv.dv_xname, sc->no_tx_buffer_avail1); printf("%s: Tx Buffer not avail2 = %ld\n", sc->sc_dv.dv_xname, sc->no_tx_buffer_avail2); printf("%s: Std Mbuf Failed = %ld\n",sc->sc_dv.dv_xname, sc->mbuf_alloc_failed); printf("%s: Std Cluster Failed = %ld\n",sc->sc_dv.dv_xname, sc->mbuf_cluster_failed); printf("%s: Symbol errors = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.symerrs); printf("%s: Sequence errors = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.sec); printf("%s: Defer count = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.dc); printf("%s: Missed Packets = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.mpc); printf("%s: Receive No Buffers = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.rnbc); printf("%s: Receive length errors = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.rlec); printf("%s: Receive errors = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.rxerrc); printf("%s: Crc errors = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.crcerrs); printf("%s: Alignment errors = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.algnerrc); printf("%s: Carrier extension errors = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.cexterr); printf("%s: Driver dropped packets = %ld\n", sc->sc_dv.dv_xname, sc->dropped_pkts); printf("%s: XON Rcvd = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.xonrxc); printf("%s: XON Xmtd = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.xontxc); printf("%s: XOFF Rcvd = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.xoffrxc); printf("%s: XOFF Xmtd = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.xofftxc); printf("%s: Good Packets Rcvd = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.gprc); printf("%s: Good Packets Xmtd = %lld\n", sc->sc_dv.dv_xname, (long long)sc->stats.gptc); } /********************************************************************** * * Examine each tx_buffer in the used queue. If the hardware is done * processing the packet then free associated resources. The * tx_buffer is put back on the free queue. * **********************************************************************/ void em_clean_transmit_interrupts(struct em_softc* sc) { struct em_tx_buffer *tx_buffer; struct em_tx_desc *tx_desc; int s; struct ifnet *ifp; s = splimp(); #ifdef DBG_STATS sc->clean_tx_interrupts++; #endif for (tx_buffer = SIMPLEQ_FIRST(&sc->used_tx_buffer_list); tx_buffer; tx_buffer = SIMPLEQ_FIRST(&sc->used_tx_buffer_list)) { /* * Get hold of the next descriptor that the em will * report status back to (this will be the last * descriptor of a given tx_buffer). We only want to * free the tx_buffer (and it resources) if the driver * is done with ALL of the descriptors. If the driver * is done with the last one then it is done with all * of them. */ tx_desc = sc->oldest_used_tx_desc + (tx_buffer->num_tx_desc_used - 1); /* Check for wrap case */ if (tx_desc > sc->last_tx_desc) tx_desc -= sc->num_tx_desc; /* * If the descriptor done bit is set free tx_buffer * and associated resources */ if (tx_desc->upper.fields.status & E1000_TXD_STAT_DD) { SIMPLEQ_REMOVE_HEAD(&sc->used_tx_buffer_list, tx_buffer, em_tx_entry); if ((tx_desc == sc->last_tx_desc)) sc->oldest_used_tx_desc = sc->first_tx_desc; else sc->oldest_used_tx_desc = (tx_desc + 1); /* Make available the descriptors that were * previously used */ sc->num_tx_desc_avail += tx_buffer->num_tx_desc_used; tx_buffer->num_tx_desc_used = 0; if (tx_buffer->m_head) { m_freem(tx_buffer->m_head); tx_buffer->m_head = NULL; } /* Return this "Software packet" back to the * "free" list */ SIMPLEQ_INSERT_TAIL(&sc->free_tx_buffer_list, tx_buffer, em_tx_entry); } else { /* * Found a tx_buffer that the em is not done * with then there is no reason to check the * rest of the queue. */ break; } } /* end for each tx_buffer */ ifp = &sc->arpcom.ac_if; /* Tell the stack that it is OK to send packets */ if (sc->num_tx_desc_avail > TX_CLEANUP_THRESHOLD) { ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; } splx(s); return; } int em_malloc_dma(struct em_softc *sc, struct em_dmamap *emm, bus_size_t size) { bus_dma_tag_t dma_tag = sc->osdep.em_pa.pa_dmat; emm->emm_size = size; if (bus_dmamem_alloc(dma_tag, size, PAGE_SIZE, 0, &emm->emm_seg, 1, &emm->emm_rseg, BUS_DMA_NOWAIT)) { goto fail0; } if (bus_dmamem_map(dma_tag, &emm->emm_seg, emm->emm_rseg, size, &emm->emm_kva, BUS_DMA_NOWAIT)) { goto fail1; } if (bus_dmamap_create(dma_tag, size, 1, size, 0, BUS_DMA_NOWAIT, &emm->emm_dmamap)) { goto fail2; } if (bus_dmamap_load(dma_tag, emm->emm_dmamap, emm->emm_kva, size, NULL, BUS_DMA_NOWAIT)) { goto fail3; } return 0; fail3: bus_dmamap_destroy(dma_tag, emm->emm_dmamap); fail2: bus_dmamem_unmap(dma_tag, emm->emm_kva, size); fail1: bus_dmamem_free(dma_tag, &emm->emm_seg, emm->emm_rseg); fail0: return (ENOBUFS); } void em_free_dma(struct em_softc *sc, struct em_dmamap *emm) { bus_dmamap_unload(sc->osdep.em_pa.pa_dmat, emm->emm_dmamap); bus_dmamap_destroy(sc->osdep.em_pa.pa_dmat, emm->emm_dmamap); bus_dmamem_unmap(sc->osdep.em_pa.pa_dmat, emm->emm_kva, emm->emm_size); bus_dmamem_free(sc->osdep.em_pa.pa_dmat, &emm->emm_seg, emm->emm_rseg); }