/* $OpenBSD: if_ipw.c,v 1.68 2007/08/28 18:34:38 deraadt Exp $ */ /*- * Copyright (c) 2004-2006 * Damien Bergamini . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Driver for Intel PRO/Wireless 2100 802.11 network adapters. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include int ipw_match(struct device *, void *, void *); void ipw_attach(struct device *, struct device *, void *); void ipw_power(int, void *); int ipw_dma_alloc(struct ipw_softc *); void ipw_release(struct ipw_softc *); int ipw_media_change(struct ifnet *); void ipw_media_status(struct ifnet *, struct ifmediareq *); int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int); uint16_t ipw_read_prom_word(struct ipw_softc *, uint8_t); void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *); void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *); void ipw_data_intr(struct ipw_softc *, struct ipw_status *, struct ipw_soft_bd *, struct ipw_soft_buf *); void ipw_notification_intr(struct ipw_softc *, struct ipw_soft_buf *); void ipw_rx_intr(struct ipw_softc *); void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *); void ipw_tx_intr(struct ipw_softc *); int ipw_intr(void *); int ipw_cmd(struct ipw_softc *, uint32_t, void *, uint32_t); int ipw_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *); void ipw_start(struct ifnet *); void ipw_watchdog(struct ifnet *); int ipw_ioctl(struct ifnet *, u_long, caddr_t); uint32_t ipw_read_table1(struct ipw_softc *, uint32_t); void ipw_write_table1(struct ipw_softc *, uint32_t, uint32_t); int ipw_read_table2(struct ipw_softc *, uint32_t, void *, uint32_t *); void ipw_stop_master(struct ipw_softc *); int ipw_reset(struct ipw_softc *); int ipw_load_ucode(struct ipw_softc *, u_char *, int); int ipw_load_firmware(struct ipw_softc *, u_char *, int); int ipw_read_firmware(struct ipw_softc *, struct ipw_firmware *); int ipw_config(struct ipw_softc *); int ipw_init(struct ifnet *); void ipw_stop(struct ifnet *, int); void ipw_read_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, bus_size_t); void ipw_write_mem_1(struct ipw_softc *, bus_size_t, uint8_t *, bus_size_t); static __inline uint8_t MEM_READ_1(struct ipw_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA); } static __inline uint32_t MEM_READ_4(struct ipw_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA); } #ifdef IPW_DEBUG #define DPRINTF(x) do { if (ipw_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (ipw_debug >= (n)) printf x; } while (0) int ipw_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif struct cfattach ipw_ca = { sizeof (struct ipw_softc), ipw_match, ipw_attach }; int ipw_match(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100) return 1; return 0; } /* Base Address Register */ #define IPW_PCI_BAR0 0x10 void ipw_attach(struct device *parent, struct device *self, void *aux) { struct ipw_softc *sc = (struct ipw_softc *)self; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct pci_attach_args *pa = aux; const char *intrstr; bus_space_tag_t memt; bus_space_handle_t memh; bus_addr_t base; pci_intr_handle_t ih; pcireg_t data; uint16_t val; int error, i; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag, /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); /* map the register window */ error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz, 0); if (error != 0) { printf(": could not map memory space\n"); return; } sc->sc_st = memt; sc->sc_sh = memh; sc->sc_dmat = pa->pa_dmat; /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); if (pci_intr_map(pa, &ih) != 0) { printf(": could not map interrupt\n"); return; } intrstr = pci_intr_string(sc->sc_pct, ih); sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s", intrstr); if (ipw_reset(sc) != 0) { printf(": could not reset adapter\n"); return; } if (ipw_dma_alloc(sc) != 0) { printf(": failed to allocate DMA resources\n"); return; } ic->ic_phytype = IEEE80211_T_DS; ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_WEP | /* s/w WEP */ IEEE80211_C_SCANALL; /* h/w scanning */ /* read MAC address from EEPROM */ val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 0); ic->ic_myaddr[0] = val >> 8; ic->ic_myaddr[1] = val & 0xff; val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 1); ic->ic_myaddr[2] = val >> 8; ic->ic_myaddr[3] = val & 0xff; val = ipw_read_prom_word(sc, IPW_EEPROM_MAC + 2); ic->ic_myaddr[4] = val >> 8; ic->ic_myaddr[5] = val & 0xff; printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); /* set supported .11b rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; /* set supported .11b channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_B); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B; } /* IBSS channel undefined for now */ ic->ic_ibss_chan = &ic->ic_channels[0]; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = ipw_init; ifp->if_ioctl = ipw_ioctl; ifp->if_start = ipw_start; ifp->if_watchdog = ipw_watchdog; IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = ipw_newstate; ieee80211_media_init(ifp, ipw_media_change, ipw_media_status); sc->powerhook = powerhook_establish(ipw_power, sc); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT); #endif } void ipw_power(int why, void *arg) { struct ipw_softc *sc = arg; struct ifnet *ifp; pcireg_t data; if (why != PWR_RESUME) return; /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); ifp = &sc->sc_ic.ic_if; if (ifp->if_flags & IFF_UP) { ifp->if_init(ifp); if (ifp->if_flags & IFF_RUNNING) ifp->if_start(ifp); } } int ipw_dma_alloc(struct ipw_softc *sc) { struct ipw_soft_bd *sbd; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; int i, nsegs, error; /* * Allocate and map tx ring. */ error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0, BUS_DMA_NOWAIT, &sc->tbd_map); if (error != 0) { printf("%s: could not create tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0, &sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ, (caddr_t *)&sc->tbd_list, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list, IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* * Allocate and map rx ring. */ error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0, BUS_DMA_NOWAIT, &sc->rbd_map); if (error != 0) { printf("%s: could not create rx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0, &sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate rx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ, (caddr_t *)&sc->rbd_list, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map rx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list, IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* * Allocate and map status ring. */ error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map); if (error != 0) { printf("%s: could not create status ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0, &sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate status ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs, IPW_STATUS_SZ, (caddr_t *)&sc->status_list, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map status ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list, IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load status ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* * Allocate command DMA map. */ error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd), 1, sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map); if (error != 0) { printf("%s: could not create command DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* * Allocate headers DMA maps. */ SLIST_INIT(&sc->free_shdr); for (i = 0; i < IPW_NDATA; i++) { shdr = &sc->shdr_list[i]; error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_hdr), 1, sizeof (struct ipw_hdr), 0, BUS_DMA_NOWAIT, &shdr->map); if (error != 0) { printf("%s: could not create header DMA map\n", sc->sc_dev.dv_xname); goto fail; } SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); } /* * Allocate tx buffers DMA maps. */ SLIST_INIT(&sc->free_sbuf); for (i = 0; i < IPW_NDATA; i++) { sbuf = &sc->tx_sbuf_list[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IPW_MAX_NSEG, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map); if (error != 0) { printf("%s: could not create tx DMA map\n", sc->sc_dev.dv_xname); goto fail; } SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); } /* * Initialize tx ring. */ for (i = 0; i < IPW_NTBD; i++) { sbd = &sc->stbd_list[i]; sbd->bd = &sc->tbd_list[i]; sbd->type = IPW_SBD_TYPE_NOASSOC; } /* * Pre-allocate rx buffers and DMA maps. */ for (i = 0; i < IPW_NRBD; i++) { sbd = &sc->srbd_list[i]; sbuf = &sc->rx_sbuf_list[i]; sbd->bd = &sc->rbd_list[i]; MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA); if (sbuf->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGET(sbuf->m, M_DONTWAIT); if (!(sbuf->m->m_flags & M_EXT)) { m_freem(sbuf->m); printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map); if (error != 0) { printf("%s: could not create rx DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sbuf->map, mtod(sbuf->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map rx DMA memory\n", sc->sc_dev.dv_xname); goto fail; } sbd->type = IPW_SBD_TYPE_DATA; sbd->priv = sbuf; sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr); sbd->bd->len = htole32(MCLBYTES); } bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, 0, IPW_RBD_SZ, BUS_DMASYNC_PREWRITE); return 0; fail: ipw_release(sc); return error; } void ipw_release(struct ipw_softc *sc) { struct ipw_soft_buf *sbuf; int i; if (sc->tbd_map != NULL) { if (sc->tbd_list != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->tbd_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->tbd_list, IPW_TBD_SZ); bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map); } if (sc->rbd_map != NULL) { if (sc->rbd_list != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rbd_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rbd_list, IPW_RBD_SZ); bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map); } if (sc->status_map != NULL) { if (sc->status_list != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->status_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->status_list, IPW_RBD_SZ); bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->status_map); } if (sc->cmd_map != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map); for (i = 0; i < IPW_NDATA; i++) bus_dmamap_destroy(sc->sc_dmat, sc->shdr_list[i].map); for (i = 0; i < IPW_NDATA; i++) bus_dmamap_destroy(sc->sc_dmat, sc->tx_sbuf_list[i].map); for (i = 0; i < IPW_NRBD; i++) { sbuf = &sc->rx_sbuf_list[i]; if (sbuf->map != NULL) { if (sbuf->m != NULL) { bus_dmamap_unload(sc->sc_dmat, sbuf->map); m_freem(sbuf->m); } bus_dmamap_destroy(sc->sc_dmat, sbuf->map); } } } int ipw_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ipw_init(ifp); return 0; } void ipw_media_status(struct ifnet *ifp, struct ifmediareq *imr) { #define N(a) (sizeof (a) / sizeof (a[0])) struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; static const struct { uint32_t val; int rate; } rates[] = { { IPW_RATE_DS1, 2 }, { IPW_RATE_DS2, 4 }, { IPW_RATE_DS5, 11 }, { IPW_RATE_DS11, 22 }, }; uint32_t val; int rate, i; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; /* read current transmission rate from adapter */ val = ipw_read_table1(sc, IPW_INFO_CURRENT_TX_RATE); val &= 0xf; /* convert rate to 802.11 rate */ for (i = 0; i < N(rates) && rates[i].val != val; i++); rate = (i < N(rates)) ? rates[i].rate : 0; imr->ifm_active |= IFM_IEEE80211_11B; imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_IBSS; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: /* should not get there */ break; } #undef N } int ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ipw_softc *sc = ic->ic_softc; struct ieee80211_node *ni; uint8_t macaddr[IEEE80211_ADDR_LEN]; uint32_t len; switch (nstate) { case IEEE80211_S_RUN: DELAY(100); /* firmware needs a short delay here */ len = IEEE80211_ADDR_LEN; ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, macaddr, &len); ni = ieee80211_find_node(ic, macaddr); if (ni == NULL) break; (*ic->ic_node_copy)(ic, ic->ic_bss, ni); ieee80211_node_newstate(ni, IEEE80211_STA_BSS); break; case IEEE80211_S_INIT: case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: break; } ic->ic_state = nstate; return 0; } /* * Read 16 bits at address 'addr' from the Microwire EEPROM. * DON'T PLAY WITH THIS CODE UNLESS YOU KNOW *EXACTLY* WHAT YOU'RE DOING! */ uint16_t ipw_read_prom_word(struct ipw_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IPW_EEPROM_CTL(sc, 0); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); /* write start bit (1) */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); /* write READ opcode (10) */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_D | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IPW_EEPROM_CTL(sc, IPW_EEPROM_S | (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D)); IPW_EEPROM_CTL(sc, IPW_EEPROM_S | (((addr >> n) & 1) << IPW_EEPROM_SHIFT_D) | IPW_EEPROM_C); } IPW_EEPROM_CTL(sc, IPW_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IPW_EEPROM_CTL(sc, IPW_EEPROM_S | IPW_EEPROM_C); IPW_EEPROM_CTL(sc, IPW_EEPROM_S); tmp = MEM_READ_4(sc, IPW_MEM_EEPROM_CTL); val |= ((tmp & IPW_EEPROM_Q) >> IPW_EEPROM_SHIFT_Q) << n; } IPW_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IPW_EEPROM_CTL(sc, IPW_EEPROM_S); IPW_EEPROM_CTL(sc, 0); IPW_EEPROM_CTL(sc, IPW_EEPROM_C); return val; } void ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { struct ipw_cmd *cmd; bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd), BUS_DMASYNC_POSTREAD); cmd = mtod(sbuf->m, struct ipw_cmd *); DPRINTFN(2, ("RX!CMD!%u!%u!%u!%u!%u\n", letoh32(cmd->type), letoh32(cmd->subtype), letoh32(cmd->seq), letoh32(cmd->len), letoh32(cmd->status))); wakeup(sc); } void ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; uint32_t state; bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state, BUS_DMASYNC_POSTREAD); state = letoh32(*mtod(sbuf->m, uint32_t *)); DPRINTFN(2, ("RX!NEWSTATE!%u\n", state)); switch (state) { case IPW_STATE_ASSOCIATED: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case IPW_STATE_SCANNING: /* don't leave run state on background scan */ if (ic->ic_state != IEEE80211_S_RUN) ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); ic->ic_flags |= IEEE80211_F_ASCAN; break; case IPW_STATE_SCAN_COMPLETE: ic->ic_flags &= ~IEEE80211_F_ASCAN; break; case IPW_STATE_ASSOCIATION_LOST: ieee80211_new_state(ic, IEEE80211_S_INIT, -1); break; case IPW_STATE_RADIO_DISABLED: ifp->if_flags &= ~IFF_UP; ipw_stop(&ic->ic_if, 1); break; } } void ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status, struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct mbuf *mnew, *m; struct ieee80211_frame *wh; struct ieee80211_node *ni; int error; DPRINTFN(5, ("RX!DATA!%u!%u\n", letoh32(status->len), status->rssi)); /* * Try to allocate a new mbuf for this ring element and load it before * processing the current mbuf. If the ring element cannot be loaded, * drop the received packet and reuse the old mbuf. In the unlikely * case that the old mbuf can't be reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ifp->if_ierrors++; return; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); ifp->if_ierrors++; return; } bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, letoh32(status->len), BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, sbuf->map); error = bus_dmamap_load(sc->sc_dmat, sbuf->map, mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->sc_dmat, sbuf->map, mtod(sbuf->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", sc->sc_dev.dv_xname); } ifp->if_ierrors++; return; } m = sbuf->m; sbuf->m = mnew; sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = letoh32(status->len); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_antsignal = status->rssi; tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the upper layer */ ieee80211_input(ifp, m, ni, status->rssi, 0); ieee80211_release_node(ic, ni); } void ipw_notification_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf) { DPRINTFN(2, ("RX!NOTIFICATION\n")); } void ipw_rx_intr(struct ipw_softc *sc) { struct ipw_status *status; struct ipw_soft_bd *sbd; struct ipw_soft_buf *sbuf; uint32_t r, i; r = CSR_READ_4(sc, IPW_CSR_RX_READ_INDEX); for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) { bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, i * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->sc_dmat, sc->status_map, i * sizeof (struct ipw_status), sizeof (struct ipw_status), BUS_DMASYNC_POSTREAD); status = &sc->status_list[i]; sbd = &sc->srbd_list[i]; sbuf = sbd->priv; switch (letoh16(status->code) & 0xf) { case IPW_STATUS_CODE_COMMAND: ipw_command_intr(sc, sbuf); break; case IPW_STATUS_CODE_NEWSTATE: ipw_newstate_intr(sc, sbuf); break; case IPW_STATUS_CODE_DATA_802_3: case IPW_STATUS_CODE_DATA_802_11: ipw_data_intr(sc, status, sbd, sbuf); break; case IPW_STATUS_CODE_NOTIFICATION: ipw_notification_intr(sc, sbuf); break; default: printf("%s: unknown status code %u\n", sc->sc_dev.dv_xname, letoh16(status->code)); } sbd->bd->flags = 0; bus_dmamap_sync(sc->sc_dmat, sc->rbd_map, i * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); } /* tell the firmware what we have processed */ sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1; CSR_WRITE_4(sc, IPW_CSR_RX_WRITE_INDEX, sc->rxcur); } void ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd) { struct ieee80211com *ic = &sc->sc_ic; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; switch (sbd->type) { case IPW_SBD_TYPE_COMMAND: bus_dmamap_unload(sc->sc_dmat, sc->cmd_map); break; case IPW_SBD_TYPE_HEADER: shdr = sbd->priv; bus_dmamap_unload(sc->sc_dmat, shdr->map); SLIST_INSERT_HEAD(&sc->free_shdr, shdr, next); break; case IPW_SBD_TYPE_DATA: sbuf = sbd->priv; bus_dmamap_unload(sc->sc_dmat, sbuf->map); SLIST_INSERT_HEAD(&sc->free_sbuf, sbuf, next); m_freem(sbuf->m); if (sbuf->ni != NULL) ieee80211_release_node(ic, sbuf->ni); /* kill watchdog timer */ sc->sc_tx_timer = 0; break; } sbd->type = IPW_SBD_TYPE_NOASSOC; } void ipw_tx_intr(struct ipw_softc *sc) { struct ifnet *ifp = &sc->sc_ic.ic_if; struct ipw_soft_bd *sbd; uint32_t r, i; r = CSR_READ_4(sc, IPW_CSR_TX_READ_INDEX); for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD) { sbd = &sc->stbd_list[i]; if (sbd->type == IPW_SBD_TYPE_DATA) ifp->if_opackets++; ipw_release_sbd(sc, sbd); sc->txfree++; } /* remember what the firmware has processed */ sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1; /* call start() since some buffer descriptors have been released */ ifp->if_flags &= ~IFF_OACTIVE; (*ifp->if_start)(ifp); } int ipw_intr(void *arg) { struct ipw_softc *sc = arg; struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t r; if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0 || r == 0xffffffff) return 0; /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); DPRINTFN(8, ("INTR!0x%08x\n", r)); if (r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)) { printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); ifp->if_flags &= ~IFF_UP; ipw_stop(ifp, 1); return 1; } if (r & IPW_INTR_FW_INIT_DONE) wakeup(sc); if (r & IPW_INTR_RX_TRANSFER) ipw_rx_intr(sc); if (r & IPW_INTR_TX_TRANSFER) ipw_tx_intr(sc); /* acknowledge interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR, r); /* re-enable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); return 1; } int ipw_cmd(struct ipw_softc *sc, uint32_t type, void *data, uint32_t len) { struct ipw_soft_bd *sbd; int error; sbd = &sc->stbd_list[sc->txcur]; error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, &sc->cmd, sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map command DMA memory\n", sc->sc_dev.dv_xname); return error; } sc->cmd.type = htole32(type); sc->cmd.subtype = htole32(0); sc->cmd.len = htole32(len); sc->cmd.seq = htole32(0); if (data != NULL) bcopy(data, sc->cmd.data, len); sbd->type = IPW_SBD_TYPE_COMMAND; sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr); sbd->bd->len = htole32(sizeof (struct ipw_cmd)); sbd->bd->nfrag = 1; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND | IPW_BD_FLAG_TX_LAST_FRAGMENT; bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); sc->txcur = (sc->txcur + 1) % IPW_NTBD; sc->txfree--; CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, sc->txcur); DPRINTFN(2, ("TX!CMD!%u!%u!%u!%u\n", type, 0, 0, len)); /* wait at most one second for command to complete */ return tsleep(sc, 0, "ipwcmd", hz); } int ipw_tx_start(struct ifnet *ifp, struct mbuf *m, struct ieee80211_node *ni) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ipw_soft_bd *sbd; struct ipw_soft_hdr *shdr; struct ipw_soft_buf *sbuf; struct mbuf *mnew; int error, i; wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { m = ieee80211_wep_crypt(ifp, m, 1); if (m == NULL) return ENOBUFS; /* packet header may have moved, reset our local pointer */ wh = mtod(m, struct ieee80211_frame *); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct ipw_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_ibss_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_ibss_chan->ic_flags); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif shdr = SLIST_FIRST(&sc->free_shdr); sbuf = SLIST_FIRST(&sc->free_sbuf); shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND); shdr->hdr.subtype = htole32(0); shdr->hdr.encrypted = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0; shdr->hdr.encrypt = 0; shdr->hdr.keyidx = 0; shdr->hdr.keysz = 0; shdr->hdr.fragmentsz = htole16(0); IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2); if (ic->ic_opmode == IEEE80211_M_STA) IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3); else IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1); /* trim IEEE802.11 header */ m_adj(m, sizeof (struct ieee80211_frame)); error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m); return ENOMEM; } M_DUP_PKTHDR(mnew, m); if (m->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(m); m_freem(mnew); return ENOMEM; } } m_copydata(m, 0, m->m_pkthdr.len, mtod(mnew, caddr_t)); m_freem(m); mnew->m_len = mnew->m_pkthdr.len; m = mnew; error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return error; } } error = bus_dmamap_load(sc->sc_dmat, shdr->map, &shdr->hdr, sizeof (struct ipw_hdr), NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map header DMA memory (error %d)\n", sc->sc_dev.dv_xname, error); bus_dmamap_unload(sc->sc_dmat, sbuf->map); m_freem(m); return error; } SLIST_REMOVE_HEAD(&sc->free_sbuf, next); SLIST_REMOVE_HEAD(&sc->free_shdr, next); sbd = &sc->stbd_list[sc->txcur]; sbd->type = IPW_SBD_TYPE_HEADER; sbd->priv = shdr; sbd->bd->physaddr = htole32(shdr->map->dm_segs[0].ds_addr); sbd->bd->len = htole32(sizeof (struct ipw_hdr)); sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs; sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 | IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; DPRINTFN(5, ("TX!HDR!%u!%u!%u!%u", shdr->hdr.type, shdr->hdr.subtype, shdr->hdr.encrypted, shdr->hdr.encrypt)); DPRINTFN(5, ("!%s", ether_sprintf(shdr->hdr.src_addr))); DPRINTFN(5, ("!%s\n", ether_sprintf(shdr->hdr.dst_addr))); bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); sc->txcur = (sc->txcur + 1) % IPW_NTBD; sc->txfree--; sbuf->m = m; sbuf->ni = ni; for (i = 0; i < sbuf->map->dm_nsegs; i++) { sbd = &sc->stbd_list[sc->txcur]; sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr); sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len); sbd->bd->nfrag = 0; /* used only in first bd */ sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3; if (i == sbuf->map->dm_nsegs - 1) { sbd->type = IPW_SBD_TYPE_DATA; sbd->priv = sbuf; sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT; } else { sbd->type = IPW_SBD_TYPE_NOASSOC; sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT; } DPRINTFN(5, ("TX!FRAG!%d!%d\n", i, sbuf->map->dm_segs[i].ds_len)); bus_dmamap_sync(sc->sc_dmat, sc->tbd_map, sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE); sc->txcur = (sc->txcur + 1) % IPW_NTBD; sc->txfree--; } bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sbuf->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, shdr->map, 0, sizeof (struct ipw_hdr), BUS_DMASYNC_PREWRITE); /* inform firmware about this new packet */ CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, sc->txcur); return 0; } void ipw_start(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m; struct ieee80211_node *ni; if (ic->ic_state != IEEE80211_S_RUN) return; for (;;) { IFQ_POLL(&ifp->if_snd, m); if (m == NULL) break; if (sc->txfree < 1 + IPW_MAX_NSEG) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif m = ieee80211_encap(ifp, m, &ni); if (m == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (ipw_tx_start(ifp, m, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } /* start watchdog timer */ sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void ipw_watchdog(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_flags &= ~IFF_UP; ipw_stop(ifp, 1); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) ipw_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) ipw_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCG80211TXPOWER: /* * If the hardware radio transmitter switch is off, report a * tx power of IEEE80211_TXPOWER_MIN to indicate that radio * transmitter is killed. */ ((struct ieee80211_txpower *)data)->i_val = (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED) ? IEEE80211_TXPOWER_MIN : sc->sc_ic.ic_txpower; break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) ipw_init(ifp); error = 0; } splx(s); return error; } uint32_t ipw_read_table1(struct ipw_softc *sc, uint32_t off) { return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off)); } void ipw_write_table1(struct ipw_softc *sc, uint32_t off, uint32_t info) { MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info); } int ipw_read_table2(struct ipw_softc *sc, uint32_t off, void *buf, uint32_t *len) { uint32_t addr, info; uint16_t count, size; uint32_t total; /* addr[4] + count[2] + size[2] */ addr = MEM_READ_4(sc, sc->table2_base + off); info = MEM_READ_4(sc, sc->table2_base + off + 4); count = info >> 16; size = info & 0xffff; total = count * size; if (total > *len) { *len = total; return EINVAL; } *len = total; ipw_read_mem_1(sc, addr, buf, total); return 0; } void ipw_stop_master(struct ipw_softc *sc) { int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER); for (ntries = 0; ntries < 50; ntries++) { if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 50) printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) | IPW_RST_PRINCETON_RESET); sc->flags &= ~IPW_FLAG_FW_INITED; } int ipw_reset(struct ipw_softc *sc) { int ntries; ipw_stop_master(sc); /* move adapter to D0 state */ CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_INIT); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IPW_CSR_CTL) & IPW_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) return EIO; CSR_WRITE_4(sc, IPW_CSR_RST, CSR_READ_4(sc, IPW_CSR_RST) | IPW_RST_SW_RESET); DELAY(10); CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_INIT); return 0; } int ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size) { int ntries; MEM_WRITE_4(sc, 0x3000e0, 0x80000000); CSR_WRITE_4(sc, IPW_CSR_RST, 0); MEM_WRITE_2(sc, 0x220000, 0x0703); MEM_WRITE_2(sc, 0x220000, 0x0707); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210000, 0x40); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x40); MEM_WRITE_MULTI_1(sc, 0x210010, uc, size); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x80); MEM_WRITE_2(sc, 0x220000, 0x0703); MEM_WRITE_2(sc, 0x220000, 0x0707); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210014, 0x72); MEM_WRITE_1(sc, 0x210000, 0x00); MEM_WRITE_1(sc, 0x210000, 0x80); for (ntries = 0; ntries < 100; ntries++) { if (MEM_READ_1(sc, 0x210000) & 1) break; DELAY(1000); } if (ntries == 100) { printf("%s: timeout waiting for ucode to initialize\n", sc->sc_dev.dv_xname); return EIO; } MEM_WRITE_4(sc, 0x3000e0, 0); return 0; } /* set of macros to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) #define GETLE16(p) ((p)[0] | (p)[1] << 8) int ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size) { u_char *p, *end; uint32_t dst; uint16_t len; int error; p = fw; end = fw + size; while (p < end) { if (p + 6 > end) return EINVAL; dst = GETLE32(p); p += 4; len = GETLE16(p); p += 2; if (p + len > end) return EINVAL; ipw_write_mem_1(sc, dst, p, len); p += len; } CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK | IPW_IO_LED_OFF); /* allow interrupts so we know when the firmware is inited */ CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK); /* tell the adapter to initialize the firmware */ CSR_WRITE_4(sc, IPW_CSR_RST, 0); CSR_WRITE_4(sc, IPW_CSR_CTL, CSR_READ_4(sc, IPW_CSR_CTL) | IPW_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = tsleep(sc, 0, "ipwinit", hz)) != 0) { printf("%s: timeout waiting for firmware initialization to " "complete\n", sc->sc_dev.dv_xname); return error; } CSR_WRITE_4(sc, IPW_CSR_IO, CSR_READ_4(sc, IPW_CSR_IO) | IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK); return 0; } int ipw_read_firmware(struct ipw_softc *sc, struct ipw_firmware *fw) { struct ipw_firmware_hdr *hdr; const char *name; u_char *p; size_t size; int error; switch (sc->sc_ic.ic_opmode) { case IEEE80211_M_STA: case IEEE80211_M_HOSTAP: name = "ipw-bss"; break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: name = "ipw-ibss"; break; case IEEE80211_M_MONITOR: name = "ipw-monitor"; break; } if ((error = loadfirmware(name, &fw->data, &size)) != 0) return error; if (size < sizeof (struct ipw_firmware_hdr)) { error = EINVAL; goto fail; } p = fw->data; hdr = (struct ipw_firmware_hdr *)p; fw->main_size = letoh32(hdr->main_size); fw->ucode_size = letoh32(hdr->ucode_size); p += sizeof (struct ipw_firmware_hdr); size -= sizeof (struct ipw_firmware_hdr); if (size < fw->main_size + fw->ucode_size) { error = EINVAL; goto fail; } fw->main = p; fw->ucode = p + fw->main_size; return 0; fail: free(fw->data, M_DEVBUF); return error; } int ipw_config(struct ipw_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct ipw_security security; struct ieee80211_key *k; struct ipw_wep_key wepkey; struct ipw_scan_options options; struct ipw_configuration config; uint32_t data; int error, i; switch (ic->ic_opmode) { case IEEE80211_M_STA: case IEEE80211_M_HOSTAP: data = htole32(IPW_MODE_BSS); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: data = htole32(IPW_MODE_IBSS); break; case IEEE80211_M_MONITOR: data = htole32(IPW_MODE_MONITOR); break; } DPRINTF(("Setting mode to %u\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_MONITOR) { data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); DPRINTF(("Setting channel to %u\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data); if (error != 0) return error; } if (ic->ic_opmode == IEEE80211_M_MONITOR) { DPRINTF(("Enabling adapter\n")); return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); } IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN); if (error != 0) return error; config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK | IPW_CFG_PREAMBLE_AUTO | IPW_CFG_802_1x_ENABLE); if (ic->ic_opmode == IEEE80211_M_IBSS) config.flags |= htole32(IPW_CFG_IBSS_AUTO_START); if (ifp->if_flags & IFF_PROMISC) config.flags |= htole32(IPW_CFG_PROMISCUOUS); config.bss_chan = htole32(0x3fff); /* channels 1-14 */ config.ibss_chan = htole32(0x7ff); /* channels 1-11 */ DPRINTF(("Setting configuration 0x%x\n", config.flags)); error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config); if (error != 0) return error; data = htole32(0x3); /* 1, 2 */ DPRINTF(("Setting basic tx rates to 0x%x\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data); if (error != 0) return error; data = htole32(0xf); /* 1, 2, 5.5, 11 */ DPRINTF(("Setting tx rates to 0x%x\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data); if (error != 0) return error; data = htole32(IPW_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { data = htole32(32); /* default value */ DPRINTF(("Setting tx power index to %u\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data, sizeof data); if (error != 0) return error; } data = htole32(ic->ic_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data); if (error != 0) return error; data = htole32(ic->ic_fragthreshold); DPRINTF(("Setting frag threshold to %u\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data); if (error != 0) return error; #ifdef IPW_DEBUG if (ipw_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen); printf("\n"); } #endif error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid, ic->ic_des_esslen); if (error != 0) return error; /* no mandatory BSSID */ DPRINTF(("Setting mandatory BSSID to null\n")); error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0); if (error != 0) return error; if (ic->ic_flags & IEEE80211_F_DESBSSID) { DPRINTF(("Setting adapter BSSID to %s\n", ether_sprintf(ic->ic_des_bssid))); error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID, ic->ic_des_bssid, IEEE80211_ADDR_LEN); if (error != 0) return error; } bzero(&security, sizeof security); security.authmode = IPW_AUTH_OPEN; /* XXX shared mode */ security.ciphers = htole32(IPW_CIPHER_NONE); DPRINTF(("Setting authmode to %u\n", security.authmode)); error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security, sizeof security); if (error != 0) return error; if (ic->ic_flags & IEEE80211_F_WEPON) { k = ic->ic_nw_keys; for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) { if (k->k_len == 0) continue; wepkey.idx = i; wepkey.len = k->k_len; bzero(wepkey.key, sizeof wepkey.key); bcopy(k->k_key, wepkey.key, k->k_len); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey); if (error != 0) return error; } data = htole32(ic->ic_wep_txkey); DPRINTF(("Setting wep tx key index to %u\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data, sizeof data); if (error != 0) return error; } data = htole32((ic->ic_flags & IEEE80211_F_WEPON) ? IPW_WEPON : 0); DPRINTF(("Setting wep flags to 0x%x\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_HOSTAP) { data = htole32(ic->ic_lintval); DPRINTF(("Setting beacon interval to %u\n", letoh32(data))); error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data, sizeof data); if (error != 0) return error; } options.flags = htole32(0); options.channels = htole32(0x3fff); /* scan channels 1-14 */ DPRINTF(("Setting scan options to 0x%x\n", letoh32(options.flags))); error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options); if (error != 0) return error; /* finally, enable adapter (start scanning for an access point) */ DPRINTF(("Enabling adapter\n")); return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0); } int ipw_init(struct ifnet *ifp) { struct ipw_softc *sc = ifp->if_softc; struct ipw_firmware fw; int error; ipw_stop(ifp, 0); if ((error = ipw_reset(sc)) != 0) { printf("%s: could not reset adapter\n", sc->sc_dev.dv_xname); goto fail1; } if ((error = ipw_read_firmware(sc, &fw)) != NULL) { printf("%s: error %d, could not read firmware\n", sc->sc_dev.dv_xname, error); goto fail1; } if ((error = ipw_load_ucode(sc, fw.ucode, fw.ucode_size)) != 0) { printf("%s: could not load microcode\n", sc->sc_dev.dv_xname); goto fail2; } ipw_stop_master(sc); /* * Setup tx, rx and status rings. */ CSR_WRITE_4(sc, IPW_CSR_TX_BD_BASE, sc->tbd_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IPW_CSR_TX_BD_SIZE, IPW_NTBD); CSR_WRITE_4(sc, IPW_CSR_TX_READ_INDEX, 0); CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, 0); sc->txold = IPW_NTBD - 1; /* latest bd index ack by firmware */ sc->txcur = 0; /* bd index to write to */ sc->txfree = IPW_NTBD - 2; CSR_WRITE_4(sc, IPW_CSR_RX_BD_BASE, sc->rbd_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IPW_CSR_RX_BD_SIZE, IPW_NRBD); CSR_WRITE_4(sc, IPW_CSR_RX_READ_INDEX, 0); CSR_WRITE_4(sc, IPW_CSR_RX_WRITE_INDEX, IPW_NRBD - 1); sc->rxcur = IPW_NRBD - 1; /* latest bd index I've read */ CSR_WRITE_4(sc, IPW_CSR_RX_STATUS_BASE, sc->status_map->dm_segs[0].ds_addr); if ((error = ipw_load_firmware(sc, fw.main, fw.main_size)) != 0) { printf("%s: could not load firmware\n", sc->sc_dev.dv_xname); goto fail2; } sc->flags |= IPW_FLAG_FW_INITED; /* retrieve information tables base addresses */ sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE); sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE); ipw_write_table1(sc, IPW_INFO_LOCK, 0); if ((error = ipw_config(sc)) != 0) { printf("%s: device configuration failed\n", sc->sc_dev.dv_xname); goto fail2; } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; return 0; fail2: free(fw.data, M_DEVBUF); fail1: ipw_stop(ifp, 0); return error; } void ipw_stop(struct ifnet *ifp, int disable) { struct ipw_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int i; ipw_stop_master(sc); CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* * Release tx buffers. */ for (i = 0; i < IPW_NTBD; i++) ipw_release_sbd(sc, &sc->stbd_list[i]); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); } void ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, bus_size_t count) { for (; count > 0; offset++, datap++, count--) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); *datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3)); } } void ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, uint8_t *datap, bus_size_t count) { for (; count > 0; offset++, datap++, count--) { CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3); CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap); } } struct cfdriver ipw_cd = { NULL, "ipw", DV_IFNET };