/* $OpenBSD: if_iwi.c,v 1.36 2005/04/17 13:49:09 damien Exp $ */ /*- * Copyright (c) 2004, 2005 * Damien Bergamini . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /*- * Intel(R) PRO/Wireless 2200BG/2225BG/2915ABG driver * http://www.intel.com/network/connectivity/products/wireless/prowireless_mobile.htm */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const struct pci_matchid iwi_devices[] = { { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2200BG }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2225BG }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2 } }; static const struct ieee80211_rateset iwi_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset iwi_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset iwi_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; int iwi_match(struct device *, void *, void *); void iwi_attach(struct device *, struct device *, void *); int iwi_detach(struct device *, int); void iwi_power(int, void *); int iwi_dma_alloc(struct iwi_softc *); void iwi_release(struct iwi_softc *); int iwi_media_change(struct ifnet *); void iwi_media_status(struct ifnet *, struct ifmediareq *); u_int16_t iwi_read_prom_word(struct iwi_softc *, u_int8_t); int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int); void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_buf *, int, struct iwi_frame *); void iwi_notification_intr(struct iwi_softc *, struct iwi_rx_buf *, struct iwi_notif *); void iwi_rx_intr(struct iwi_softc *); void iwi_tx_intr(struct iwi_softc *); int iwi_intr(void *); int iwi_cmd(struct iwi_softc *, u_int8_t, void *, u_int8_t, int); int iwi_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *); void iwi_start(struct ifnet *); void iwi_watchdog(struct ifnet *); int iwi_get_table0(struct iwi_softc *, u_int32_t *); int iwi_get_radio(struct iwi_softc *, int *); int iwi_ioctl(struct ifnet *, u_long, caddr_t); void iwi_stop_master(struct iwi_softc *); int iwi_reset(struct iwi_softc *); int iwi_load_ucode(struct iwi_softc *, const char *); int iwi_load_firmware(struct iwi_softc *, const char *); int iwi_config(struct iwi_softc *); int iwi_scan(struct iwi_softc *); int iwi_auth_and_assoc(struct iwi_softc *); int iwi_init(struct ifnet *); void iwi_stop(struct ifnet *, int); static __inline u_int8_t MEM_READ_1(struct iwi_softc *sc, u_int32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); } static __inline u_int32_t MEM_READ_4(struct iwi_softc *sc, u_int32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); } #ifdef IWI_DEBUG #define DPRINTF(x) if (iwi_debug > 0) printf x #define DPRINTFN(n, x) if (iwi_debug >= (n)) printf x int iwi_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif struct cfattach iwi_ca = { sizeof (struct iwi_softc), iwi_match, iwi_attach, iwi_detach }; int iwi_match(struct device *parent, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, iwi_devices, sizeof (iwi_devices) / sizeof (iwi_devices[0])); } /* Base Address Register */ #define IWI_PCI_BAR0 0x10 void iwi_attach(struct device *parent, struct device *self, void *aux) { struct iwi_softc *sc = (struct iwi_softc *)self; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct pci_attach_args *pa = aux; const char *intrstr; bus_space_tag_t memt; bus_space_handle_t memh; bus_addr_t base; pci_intr_handle_t ih; pcireg_t data; u_int16_t val; int error, i; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); /* enable bus-mastering */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); data |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data); /* map the register window */ error = pci_mapreg_map(pa, IWI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz, 0); if (error != 0) { printf(": could not map memory space\n"); return; } sc->sc_st = memt; sc->sc_sh = memh; sc->sc_dmat = pa->pa_dmat; /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); if (pci_intr_map(pa, &ih) != 0) { printf(": could not map interrupt\n"); return; } intrstr = pci_intr_string(sc->sc_pct, ih); sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwi_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s", intrstr); if (iwi_reset(sc) != 0) { printf(": could not reset adapter\n"); return; } if (iwi_dma_alloc(sc) != 0) { printf(": could not allocate DMA resources\n"); return; } ic->ic_phytype = IEEE80211_T_OFDM; ic->ic_opmode = IEEE80211_M_STA; ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_PMGT | IEEE80211_C_WEP | IEEE80211_C_TXPMGT | IEEE80211_C_SHPREAMBLE | IEEE80211_C_SCANALL; /* read MAC address from EEPROM */ val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); ic->ic_myaddr[0] = val >> 8; ic->ic_myaddr[1] = val & 0xff; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); ic->ic_myaddr[2] = val >> 8; ic->ic_myaddr[3] = val & 0xff; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); ic->ic_myaddr[4] = val >> 8; ic->ic_myaddr[5] = val & 0xff; printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); #if 0 if (PCI_PRODUCT(pa->pa_id) >= PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 161; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } #endif /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } /* default to authmode OPEN */ sc->authmode = IEEE80211_AUTH_OPEN; /* IBSS channel undefined for now */ ic->ic_ibss_chan = &ic->ic_channels[0]; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwi_init; ifp->if_ioctl = iwi_ioctl; ifp->if_start = iwi_start; ifp->if_watchdog = iwi_watchdog; IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwi_newstate; ieee80211_media_init(ifp, iwi_media_change, iwi_media_status); sc->powerhook = powerhook_establish(iwi_power, sc); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + 64); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); #endif } int iwi_detach(struct device* self, int flags) { struct iwi_softc *sc = (struct iwi_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; iwi_stop(ifp, 1); #if NBPFILTER > 0 bpfdetach(ifp); #endif ieee80211_ifdetach(ifp); if_detach(ifp); iwi_release(sc); if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pct, sc->sc_ih); sc->sc_ih = NULL; } bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); return 0; } void iwi_power(int why, void *arg) { struct iwi_softc *sc = arg; struct ifnet *ifp; pcireg_t data; if (why != PWR_RESUME) return; /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); ifp = &sc->sc_ic.ic_if; if (ifp->if_flags & IFF_UP) { ifp->if_init(ifp); if (ifp->if_flags & IFF_RUNNING) ifp->if_start(ifp); } } int iwi_dma_alloc(struct iwi_softc *sc) { int i, nsegs, error; /* * Allocate and map Tx ring */ error = bus_dmamap_create(sc->sc_dmat, sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, 1, sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, 0, BUS_DMA_NOWAIT, &sc->tx_ring_map); if (error != 0) { printf("%s: could not create tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, PAGE_SIZE, 0, &sc->tx_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->tx_ring_seg, nsegs, sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, (caddr_t *)&sc->tx_desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->tx_ring_map, sc->tx_desc, sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } bzero(sc->tx_desc, sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE); /* * Allocate and map command ring */ error = bus_dmamap_create(sc->sc_dmat, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, 1, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, 0, BUS_DMA_NOWAIT, &sc->cmd_ring_map); if (error != 0) { printf("%s: could not create command ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, PAGE_SIZE, 0, &sc->cmd_ring_seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate command ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_ring_seg, nsegs, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, (caddr_t *)&sc->cmd_desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map command ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->cmd_ring_map, sc->cmd_desc, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load command ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } bzero(sc->cmd_desc, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE); /* * Allocate Tx buffers DMA maps */ for (i = 0; i < IWI_TX_RING_SIZE; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->tx_buf[i].map); if (error != 0) { printf("%s: could not create tx buf DMA map", sc->sc_dev.dv_xname); goto fail; } } /* * Allocate and map Rx buffers */ for (i = 0; i < IWI_RX_RING_SIZE; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->rx_buf[i].map); if (error != 0) { printf("%s: could not create rx buf DMA map", sc->sc_dev.dv_xname); goto fail; } MGETHDR(sc->rx_buf[i].m, M_DONTWAIT, MT_DATA); if (sc->rx_buf[i].m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGET(sc->rx_buf[i].m, M_DONTWAIT); if (!(sc->rx_buf[i].m->m_flags & M_EXT)) { m_freem(sc->rx_buf[i].m); printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } error = bus_dmamap_load(sc->sc_dmat, sc->rx_buf[i].map, mtod(sc->rx_buf[i].m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load rx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: iwi_release(sc); return error; } void iwi_release(struct iwi_softc *sc) { int i; if (sc->tx_ring_map != NULL) { if (sc->tx_desc != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->tx_ring_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->tx_desc, sizeof (struct iwi_tx_desc) * IWI_TX_RING_SIZE); bus_dmamem_free(sc->sc_dmat, &sc->tx_ring_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->tx_ring_map); } if (sc->cmd_ring_map != NULL) { if (sc->cmd_desc != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->cmd_ring_map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->cmd_desc, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_SIZE); bus_dmamem_free(sc->sc_dmat, &sc->cmd_ring_seg, 1); } bus_dmamap_destroy(sc->sc_dmat, sc->cmd_ring_map); } for (i = 0; i < IWI_TX_RING_SIZE; i++) { if (sc->tx_buf[i].m != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->tx_buf[i].map); m_freem(sc->tx_buf[i].m); } bus_dmamap_destroy(sc->sc_dmat, sc->tx_buf[i].map); } for (i = 0; i < IWI_RX_RING_SIZE; i++) { if (sc->rx_buf[i].m != NULL) { bus_dmamap_unload(sc->sc_dmat, sc->rx_buf[i].map); m_freem(sc->rx_buf[i].m); } bus_dmamap_destroy(sc->sc_dmat, sc->rx_buf[i].map); } } int iwi_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) iwi_init(ifp); return 0; } void iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; #define N(a) (sizeof (a) / sizeof (a[0])) static const struct { u_int32_t val; int rate; } rates[] = { { IWI_RATE_DS1, 2 }, { IWI_RATE_DS2, 4 }, { IWI_RATE_DS5, 11 }, { IWI_RATE_DS11, 22 }, { IWI_RATE_OFDM6, 12 }, { IWI_RATE_OFDM9, 18 }, { IWI_RATE_OFDM12, 24 }, { IWI_RATE_OFDM18, 36 }, { IWI_RATE_OFDM24, 48 }, { IWI_RATE_OFDM36, 72 }, { IWI_RATE_OFDM48, 96 }, { IWI_RATE_OFDM54, 108 }, }; u_int32_t val; int rate, i; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; /* read current transmission rate from adapter */ val = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); /* convert rate to 802.11 rate */ for (i = 0; i < N(rates) && rates[i].val != val; i++); rate = (i < N(rates)) ? rates[i].rate : 0; imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: /* should not get there */ break; } #undef N } int iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct iwi_softc *sc = ic->ic_softc; switch (nstate) { case IEEE80211_S_SCAN: iwi_scan(sc); break; case IEEE80211_S_AUTH: iwi_auth_and_assoc(sc); break; case IEEE80211_S_RUN: if (ic->ic_opmode == IEEE80211_M_IBSS) ieee80211_new_state(ic, IEEE80211_S_AUTH, -1); break; case IEEE80211_S_ASSOC: case IEEE80211_S_INIT: break; } ic->ic_state = nstate; return 0; } /* * Read 16 bits at address 'addr' from the serial EEPROM. * DON'T PLAY WITH THIS CODE UNLESS YOU KNOW *EXACTLY* WHAT YOU'RE DOING! */ u_int16_t iwi_read_prom_word(struct iwi_softc *sc, u_int8_t addr) { u_int32_t tmp; u_int16_t val; int n; /* Clock C once before the first command */ IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* Write start bit (1) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); /* Write READ opcode (10) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); /* Write address A7-A0 */ for (n = 7; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); } IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* Read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; } IWI_EEPROM_CTL(sc, 0); /* Clear Chip Select and clock C */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_C); return betoh16(val); } void iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_buf *buf, int i, struct iwi_frame *frame) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct mbuf *m; struct ieee80211_frame *wh; struct ieee80211_node *ni; int error; DPRINTFN(5, ("RX!DATA!%u!%u!%u\n", letoh16(frame->len), frame->chan, frame->rssi_dbm)); bus_dmamap_sync(sc->sc_dmat, buf->map, sizeof (struct iwi_hdr), sizeof (struct iwi_frame) + letoh16(frame->len), BUS_DMASYNC_POSTREAD); if (letoh16(frame->len) < sizeof (struct ieee80211_frame_min) || letoh16(frame->len) > MCLBYTES) { printf("%s: bad frame length\n", sc->sc_dev.dv_xname); ifp->if_ierrors++; return; } bus_dmamap_unload(sc->sc_dmat, buf->map); /* Finalize mbuf */ m = buf->m; m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + sizeof (struct iwi_frame) + letoh16(frame->len); m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { /* * Hardware decrypts the frame itself but leaves the WEP bit * set in the 802.11 header and don't remove the iv and crc * fields */ wh->i_fc[1] &= ~IEEE80211_FC1_WEP; bcopy(wh, (char *)wh + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN, sizeof (struct ieee80211_frame)); m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN); m_adj(m, -IEEE80211_WEP_CRCLEN); wh = mtod(m, struct ieee80211_frame *); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = frame->rate; tap->wr_chan_freq = htole16(ic->ic_channels[frame->chan].ic_freq); tap->wr_chan_flags = htole16(ic->ic_channels[frame->chan].ic_flags); tap->wr_antsignal = frame->signal; tap->wr_antenna = frame->antenna; M_DUP_PKTHDR(&mb, m); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb); } #endif ni = ieee80211_find_rxnode(ic, wh); /* Send the frame to the upper layer */ ieee80211_input(ifp, m, ni, IWI_RSSIDBM2RAW(frame->rssi_dbm), 0); ieee80211_release_node(ic, ni); MGETHDR(buf->m, M_DONTWAIT, MT_DATA); if (buf->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); return; } MCLGET(buf->m, M_DONTWAIT); if (!(buf->m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); m_freem(buf->m); buf->m = NULL; return; } error = bus_dmamap_load(sc->sc_dmat, buf->map, mtod(buf->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load rx buf DMA map\n", sc->sc_dev.dv_xname); m_freem(buf->m); buf->m = NULL; return; } CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4, buf->map->dm_segs[0].ds_addr); } void iwi_notification_intr(struct iwi_softc *sc, struct iwi_rx_buf *buf, struct iwi_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwi_notif_scan_channel *chan; struct iwi_notif_scan_complete *scan; struct iwi_notif_authentication *auth; struct iwi_notif_association *assoc; bus_dmamap_sync(sc->sc_dmat, buf->map, sizeof (struct iwi_hdr), sizeof (struct iwi_notif) + letoh16(notif->len), BUS_DMASYNC_POSTREAD); switch (notif->type) { case IWI_NOTIF_TYPE_SCAN_CHANNEL: chan = (struct iwi_notif_scan_channel *)(notif + 1); DPRINTFN(2, ("Scan channel (%u)\n", chan->nchan)); break; case IWI_NOTIF_TYPE_SCAN_COMPLETE: scan = (struct iwi_notif_scan_complete *)(notif + 1); DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, scan->status)); ieee80211_end_scan(ifp); break; case IWI_NOTIF_TYPE_AUTHENTICATION: auth = (struct iwi_notif_authentication *)(notif + 1); DPRINTFN(2, ("Authentication (%u)\n", auth->state)); switch (auth->state) { case IWI_AUTHENTICATED: ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); break; case IWI_DEAUTHENTICATED: break; default: printf("%s: unknown authentication state %u\n", sc->sc_dev.dv_xname, auth->state); } break; case IWI_NOTIF_TYPE_ASSOCIATION: assoc = (struct iwi_notif_association *)(notif + 1); DPRINTFN(2, ("Association (%u, %u)\n", assoc->state, assoc->status)); switch (assoc->state) { case IWI_AUTHENTICATED: /* re-association, do nothing */ break; case IWI_ASSOCIATED: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case IWI_DEASSOCIATED: ieee80211_begin_scan(ifp); break; default: printf("%s: unknown association state %u\n", sc->sc_dev.dv_xname, assoc->state); } break; case IWI_NOTIF_TYPE_CALIBRATION: case IWI_NOTIF_TYPE_BEACON: case IWI_NOTIF_TYPE_NOISE: DPRINTFN(5, ("Notification (%u)\n", notif->type)); break; default: printf("%s: unknown notification type %u\n", sc->sc_dev.dv_xname, notif->type); } } void iwi_rx_intr(struct iwi_softc *sc) { struct iwi_rx_buf *buf; struct iwi_hdr *hdr; u_int32_t r, i; r = CSR_READ_4(sc, IWI_CSR_RX_READ_INDEX); for (i = (sc->rx_cur + 1) % IWI_RX_RING_SIZE; i != r; i = (i + 1) % IWI_RX_RING_SIZE) { buf = &sc->rx_buf[i]; bus_dmamap_sync(sc->sc_dmat, buf->map, 0, sizeof (struct iwi_hdr), BUS_DMASYNC_POSTREAD); hdr = mtod(buf->m, struct iwi_hdr *); switch (hdr->type) { case IWI_HDR_TYPE_FRAME: iwi_frame_intr(sc, buf, i, (struct iwi_frame *)(hdr + 1)); break; case IWI_HDR_TYPE_NOTIF: iwi_notification_intr(sc, buf, (struct iwi_notif *)(hdr + 1)); break; default: printf("%s: unknown hdr type %u\n", sc->sc_dev.dv_xname, hdr->type); } } /* Tell the firmware what we have processed */ sc->rx_cur = (r == 0) ? IWI_RX_RING_SIZE - 1 : r - 1; CSR_WRITE_4(sc, IWI_CSR_RX_WRITE_INDEX, sc->rx_cur); } void iwi_tx_intr(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwi_tx_buf *buf; u_int32_t r, i; r = CSR_READ_4(sc, IWI_CSR_TX1_READ_INDEX); for (i = (sc->tx_old + 1) % IWI_TX_RING_SIZE; i != r; i = (i + 1) % IWI_TX_RING_SIZE) { buf = &sc->tx_buf[i]; bus_dmamap_unload(sc->sc_dmat, buf->map); m_freem(buf->m); buf->m = NULL; ieee80211_release_node(ic, buf->ni); buf->ni = NULL; ifp->if_opackets++; sc->tx_queued--; /* kill watchdog timer */ sc->sc_tx_timer = 0; } /* Remember what the firmware has processed */ sc->tx_old = (r == 0) ? IWI_TX_RING_SIZE - 1 : r - 1; /* Call start() since some buffer descriptors have been released */ ifp->if_flags &= ~IFF_OACTIVE; (*ifp->if_start)(ifp); } int iwi_intr(void *arg) { struct iwi_softc *sc = arg; u_int32_t r; if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) return 0; /* Disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); DPRINTFN(8, ("INTR!0x%08x\n", r)); if (r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR)) { printf("%s: fatal error\n", sc->sc_dev.dv_xname); iwi_stop(&sc->sc_ic.ic_if, 1); } if (r & IWI_INTR_FW_INITED) { if (!(r & (IWI_INTR_FATAL_ERROR | IWI_INTR_PARITY_ERROR))) wakeup(sc); } if (r & IWI_INTR_RADIO_OFF) { DPRINTF(("radio transmitter off\n")); iwi_stop(&sc->sc_ic.ic_if, 1); } if (r & IWI_INTR_RX_TRANSFER) iwi_rx_intr(sc); if (r & IWI_INTR_CMD_TRANSFER) wakeup(sc); if (r & IWI_INTR_TX1_TRANSFER) iwi_tx_intr(sc); /* Acknowledge interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR, r); /* Re-enable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); return 1; } int iwi_cmd(struct iwi_softc *sc, u_int8_t type, void *data, u_int8_t len, int async) { struct iwi_cmd_desc *desc; DPRINTFN(2, ("TX!CMD!%u!%u\n", type, len)); desc = &sc->cmd_desc[sc->cmd_cur]; desc->hdr.type = IWI_HDR_TYPE_COMMAND; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->type = type; desc->len = len; bcopy(data, desc->data, len); bus_dmamap_sync(sc->sc_dmat, sc->cmd_ring_map, sc->cmd_cur * sizeof (struct iwi_cmd_desc), sizeof (struct iwi_cmd_desc), BUS_DMASYNC_PREWRITE); sc->cmd_cur = (sc->cmd_cur + 1) % IWI_CMD_RING_SIZE; CSR_WRITE_4(sc, IWI_CSR_CMD_WRITE_INDEX, sc->cmd_cur); return async ? 0 : tsleep(sc, 0, "iwicmd", hz); } int iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct iwi_tx_buf *buf; struct iwi_tx_desc *desc; struct mbuf *mnew; int error, i; #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); M_DUP_PKTHDR(&mb, m0); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb); } #endif buf = &sc->tx_buf[sc->tx_cur]; desc = &sc->tx_desc[sc->tx_cur]; wh = mtod(m0, struct ieee80211_frame *); /* trim IEEE802.11 header */ m_adj(m0, sizeof (struct ieee80211_frame)); error = bus_dmamap_load_mbuf(sc->sc_dmat, buf->map, m0, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m0); return ENOMEM; } M_DUP_PKTHDR(mnew, m0); MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(m0); m_freem(mnew); return ENOMEM; } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t)); m_freem(m0); mnew->m_len = mnew->m_pkthdr.len; m0 = mnew; error = bus_dmamap_load_mbuf(sc->sc_dmat, buf->map, m0, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } } buf->m = m0; buf->ni = ni; desc->hdr.type = IWI_HDR_TYPE_DATA; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->cmd = IWI_DATA_CMD_TX; desc->len = htole16(m0->m_pkthdr.len); desc->flags = 0; if (ic->ic_opmode == IEEE80211_M_IBSS) { if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) desc->flags |= IWI_DATA_FLAG_NEED_ACK; } else if (!IEEE80211_IS_MULTICAST(wh->i_addr3)) desc->flags |= IWI_DATA_FLAG_NEED_ACK; if (ic->ic_flags & IEEE80211_F_WEPON) { wh->i_fc[1] |= IEEE80211_FC1_WEP; desc->wep_txkey = ic->ic_wep_txkey; } else desc->flags |= IWI_DATA_FLAG_NO_WEP; if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) desc->flags |= IWI_DATA_FLAG_SHPREAMBLE; bcopy(wh, &desc->wh, sizeof (struct ieee80211_frame)); desc->nseg = htole32(buf->map->dm_nsegs); for (i = 0; i < buf->map->dm_nsegs; i++) { desc->seg_addr[i] = htole32(buf->map->dm_segs[i].ds_addr); desc->seg_len[i] = htole32(buf->map->dm_segs[i].ds_len); } bus_dmamap_sync(sc->sc_dmat, sc->tx_ring_map, sc->tx_cur * sizeof (struct iwi_tx_desc), sizeof (struct iwi_tx_desc), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, buf->map, 0, MCLBYTES, BUS_DMASYNC_PREWRITE); DPRINTFN(5, ("TX!DATA!%u!%u\n", desc->len, desc->nseg)); /* Inform firmware about this new packet */ sc->tx_queued++; sc->tx_cur = (sc->tx_cur + 1) % IWI_TX_RING_SIZE; CSR_WRITE_4(sc, IWI_CSR_TX1_WRITE_INDEX, sc->tx_cur); return 0; } void iwi_start(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ieee80211_node *ni; if (ic->ic_state != IEEE80211_S_RUN) return; for (;;) { IF_DEQUEUE(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->tx_queued >= IWI_TX_RING_SIZE - 4) { IF_PREPEND(&ifp->if_snd, m0); ifp->if_flags |= IFF_OACTIVE; break; } #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0); #endif m0 = ieee80211_encap(ifp, m0, &ni); if (m0 == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0); #endif if (iwi_tx_start(ifp, m0, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } /* start watchdog timer */ sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void iwi_watchdog(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); iwi_stop(ifp, 1); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) iwi_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) iwi_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCG80211TXPOWER: /* * If the hardware radio transmitter switch is off, report a * tx power of IEEE80211_TXPOWER_MIN to indicate that radio * transmitter is killed. */ ((struct ieee80211_txpower *)data)->i_val = (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) ? sc->sc_ic.ic_txpower : IEEE80211_TXPOWER_MIN; break; case SIOCG80211AUTH: ((struct ieee80211_auth *)data)->i_authtype = sc->authmode; break; case SIOCS80211AUTH: /* only super-user can do that! */ if ((error = suser(curproc, 0)) != 0) break; sc->authmode = ((struct ieee80211_auth *)data)->i_authtype; break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) iwi_init(ifp); error = 0; } splx(s); return error; } void iwi_stop_master(struct iwi_softc *sc) { int ntries; /* Disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_PRINCETON_RESET); sc->flags &= ~IWI_FLAG_FW_INITED; } int iwi_reset(struct iwi_softc *sc) { int i, ntries; iwi_stop_master(sc); /* Move adapter to D0 state */ CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_INIT); /* Initialize Phase-Locked Level (PLL) */ CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); /* Wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) return EIO; CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_SW_RESET); DELAY(10); CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_INIT); /* Clear NIC memory */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); for (i = 0; i < 0xc000; i++) CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); return 0; } int iwi_load_ucode(struct iwi_softc *sc, const char *name) { u_char *uc, *data; size_t size; u_int16_t *w; int error, ntries, i; if ((error = loadfirmware(name, &data, &size)) != 0) { printf("%s: could not read ucode %s, error %d\n", sc->sc_dev.dv_xname, name, error); goto fail1; } if (size < sizeof (struct iwi_firmware_hdr)) { error = EINVAL; goto fail2; } uc = data; uc += sizeof (struct iwi_firmware_hdr); size -= sizeof (struct iwi_firmware_hdr); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) { printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); error = EIO; goto fail2; } MEM_WRITE_4(sc, 0x3000e0, 0x80000000); DELAY(5000); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) & ~IWI_RST_PRINCETON_RESET); DELAY(5000); MEM_WRITE_4(sc, 0x3000e0, 0); DELAY(1000); MEM_WRITE_4(sc, 0x300004, 1); DELAY(1000); MEM_WRITE_4(sc, 0x300004, 0); DELAY(1000); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x40); /* Adapter is buggy, we must set the address for each word */ for (w = (u_int16_t *)uc; size > 0; w++, size -= 2) MEM_WRITE_2(sc, 0x200010, *w); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x80); /* Wait until we get a response in the uc queue */ for (ntries = 0; ntries < 100; ntries++) { if (MEM_READ_1(sc, 0x200000) & 1) break; DELAY(100); } if (ntries == 100) { printf("%s: timeout waiting for ucode to initialize\n", sc->sc_dev.dv_xname); error = EIO; goto fail2; } /* Empty the uc queue or the firmware will not initialize properly */ for (i = 0; i < 7; i++) MEM_READ_4(sc, 0x200004); MEM_WRITE_1(sc, 0x200000, 0x00); fail2: free(data, M_DEVBUF); fail1: return error; } /* macro to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) int iwi_load_firmware(struct iwi_softc *sc, const char *name) { u_char *fw, *data; size_t size; bus_dmamap_t map; bus_dma_segment_t seg; caddr_t virtaddr; u_char *p, *end; u_int32_t sentinel, ctl, src, dst, sum, len, mlen; int ntries, nsegs, error; if ((error = loadfirmware(name, &data, &size)) != 0) { printf("%s: could not read firmware %s, error %d\n", sc->sc_dev.dv_xname, name, error); goto fail1; } if (size < sizeof (struct iwi_firmware_hdr)) { error = EINVAL; goto fail2; } fw = data; fw += sizeof (struct iwi_firmware_hdr); size -= sizeof (struct iwi_firmware_hdr); /* Allocate DMA memory for storing firmware image */ error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &map); if (error != 0) { printf("%s: could not create firmware DMA map\n", sc->sc_dev.dv_xname); goto fail2; } /* * We cannot map fw directly because of some hardware constraints on * the mapping address. */ error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could allocate firmware DMA memory\n", sc->sc_dev.dv_xname); goto fail3; } error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map firmware DMA memory\n", sc->sc_dev.dv_xname); goto fail4; } error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load firmware DMA map\n", sc->sc_dev.dv_xname); goto fail5; } /* Copy firmware image to DMA memory */ bcopy(fw, virtaddr, size); /* Make sure the adapter will get up-to-date values */ bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE); /* Tell the adapter where the command blocks are stored */ MEM_WRITE_4(sc, 0x3000a0, 0x27000); /* * Store command blocks into adapter's internal memory using register * indirections. The adapter will read the firmware image through DMA * using information stored in command blocks. */ src = map->dm_segs[0].ds_addr; p = virtaddr; end = p + size; CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); while (p < end) { dst = GETLE32(p); p += 4; src += 4; len = GETLE32(p); p += 4; src += 4; p += len; while (len > 0) { mlen = min(len, IWI_CB_MAXDATALEN); ctl = IWI_CB_DEFAULT_CTL | mlen; sum = ctl ^ src ^ dst; /* Write a command block */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); src += mlen; dst += mlen; len -= mlen; } } /* Write a fictive final command block (sentinel) */ sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) & ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER)); /* Tell the adapter to start processing command blocks */ MEM_WRITE_4(sc, 0x3000a4, 0x540100); /* Wait until the adapter has processed all command blocks */ for (ntries = 0; ntries < 400; ntries++) { if (MEM_READ_4(sc, 0x3000d0) >= sentinel) break; DELAY(100); } if (ntries == 400) { printf("%s: timeout processing cb\n", sc->sc_dev.dv_xname); error = EIO; goto fail6; } /* We're done with command blocks processing */ MEM_WRITE_4(sc, 0x3000a4, 0x540c00); /* Allow interrupts so we know when the firmware is inited */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); /* Tell the adapter to initialize the firmware */ CSR_WRITE_4(sc, IWI_CSR_RST, 0); CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_ALLOW_STANDBY); /* Wait at most one second for firmware initialization to complete */ if ((error = tsleep(sc, 0, "iwiinit", hz)) != 0) { printf("%s: timeout waiting for firmware initialization to " "complete\n", sc->sc_dev.dv_xname); goto fail6; } fail6: bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); fail5: bus_dmamem_unmap(sc->sc_dmat, virtaddr, size); fail4: bus_dmamem_free(sc->sc_dmat, &seg, 1); fail3: bus_dmamap_destroy(sc->sc_dmat, map); fail2: free(data, M_DEVBUF); fail1: return error; } int iwi_config(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwi_configuration config; struct iwi_rateset rs; struct iwi_txpower power; struct ieee80211_wepkey *k; struct iwi_wep_key wepkey; u_int32_t data; int error, i; IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN, 0); if (error != 0) return error; bzero(&config, sizeof config); config.bluetooth_coexistence = 1; config.multicast_enabled = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config, sizeof config, 0); if (error != 0) return error; data = htole32(IWI_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", letoh32(data))); error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0); if (error != 0) return error; data = htole32(ic->ic_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", letoh32(data))); error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0); if (error != 0) return error; if (ic->ic_opmode == IEEE80211_M_IBSS) { power.mode = IWI_MODE_11B; power.nchan = 11; for (i = 0; i < 11; i++) { power.chan[i].chan = i + 1; power.chan[i].power = IWI_TXPOWER_MAX; } DPRINTF(("Setting .11b channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; power.mode = IWI_MODE_11G; DPRINTF(("Setting .11g channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; } rs.mode = IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; bcopy(ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, rs.rates, rs.nrates); DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0); if (error != 0) return error; rs.mode = IWI_MODE_11A; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; bcopy(ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, rs.rates, rs.nrates); DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0); if (error != 0) return error; data = htole32(arc4random()); DPRINTF(("Setting initialization vector to %u\n", letoh32(data))); error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data, 0); if (error != 0) return error; if (ic->ic_flags & IEEE80211_F_WEPON) { k = ic->ic_nw_keys; for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) { wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; wepkey.idx = i; wepkey.len = k->wk_len; bzero(wepkey.key, sizeof wepkey.key); bcopy(k->wk_key, wepkey.key, k->wk_len); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey, 0); if (error != 0) return error; } } /* Enable adapter */ DPRINTF(("Enabling adapter\n")); return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0); } int iwi_scan(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_scan scan; u_int8_t *p; int i, count; bzero(&scan, sizeof scan); scan.type = IWI_SCAN_TYPE_BROADCAST; scan.intval = htole16(40); p = scan.channels; count = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i]) && isset(ic->ic_chan_active, i)) { *++p = i; count++; } } *(p - count) = IWI_CHAN_5GHZ | count; count = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i]) && isset(ic->ic_chan_active, i)) { *++p = i; count++; } } *(p - count) = IWI_CHAN_2GHZ | count; DPRINTF(("Start scanning\n")); return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1); } int iwi_auth_and_assoc(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct iwi_configuration config; struct iwi_associate assoc; struct iwi_rateset rs; u_int32_t data; int error; if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { /* enable b/g autodection */ bzero(&config, sizeof config); config.bluetooth_coexistence = 1; config.multicast_enabled = 1; config.bg_autodetection = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIGURATION, &config, sizeof config, 1); if (error != 0) return error; } #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1); if (error != 0) return error; /* the rate set has already been "negociated" */ rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_NEGOCIATED; rs.nrates = ni->ni_rates.rs_nrates; bcopy(ni->ni_rates.rs_rates, rs.rates, rs.nrates); DPRINTF(("Setting negociated rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1); if (error != 0) return error; data = htole32(ni->ni_rssi); DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi)); error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1); if (error != 0) return error; bzero(&assoc, sizeof assoc); assoc.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : IWI_MODE_11G; assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan); if (sc->authmode == IEEE80211_AUTH_SHARED) assoc.auth = (ic->ic_wep_txkey << 4) | IWI_AUTH_SHARED; bcopy(ni->ni_tstamp, assoc.tstamp, 8); assoc.capinfo = htole16(ni->ni_capinfo); assoc.lintval = htole16(ic->ic_lintval); assoc.intval = htole16(ni->ni_intval); IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid); IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid); DPRINTF(("Trying to associate to %s channel %u auth %u\n", ether_sprintf(assoc.bssid), assoc.chan, assoc.auth)); return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1); } int iwi_init(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; const char *ucode, *main; int i, error; if ((error = iwi_reset(sc)) != 0) { printf("%s: could not reset adapter\n", sc->sc_dev.dv_xname); goto fail; } if ((error = iwi_load_firmware(sc, "iwi-boot")) != 0) { printf("%s: could not load boot firmware\n", sc->sc_dev.dv_xname); goto fail; } switch (sc->sc_ic.ic_opmode) { case IEEE80211_M_STA: case IEEE80211_M_HOSTAP: ucode = "iwi-ucode-bss"; main = "iwi-bss"; break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: ucode = "iwi-ucode-ibss"; main = "iwi-ibss"; break; case IEEE80211_M_MONITOR: ucode = "iwi-ucode-monitor"; main = "iwi-monitor"; break; } if ((error = iwi_load_ucode(sc, ucode)) != 0) { printf("%s: could not load microcode\n", sc->sc_dev.dv_xname); goto fail; } iwi_stop_master(sc); sc->tx_cur = 0; sc->tx_queued = 0; sc->tx_old = IWI_TX_RING_SIZE - 1; sc->cmd_cur = 0; sc->rx_cur = IWI_RX_RING_SIZE - 1; CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmd_ring_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, IWI_CMD_RING_SIZE); CSR_WRITE_4(sc, IWI_CSR_CMD_READ_INDEX, 0); CSR_WRITE_4(sc, IWI_CSR_CMD_WRITE_INDEX, sc->cmd_cur); CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->tx_ring_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, IWI_TX_RING_SIZE); CSR_WRITE_4(sc, IWI_CSR_TX1_READ_INDEX, 0); CSR_WRITE_4(sc, IWI_CSR_TX1_WRITE_INDEX, sc->tx_cur); CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->tx_ring_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, IWI_TX_RING_SIZE); CSR_WRITE_4(sc, IWI_CSR_TX2_READ_INDEX, 0); CSR_WRITE_4(sc, IWI_CSR_TX2_WRITE_INDEX, 0); CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->tx_ring_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, IWI_TX_RING_SIZE); CSR_WRITE_4(sc, IWI_CSR_TX3_READ_INDEX, 0); CSR_WRITE_4(sc, IWI_CSR_TX3_WRITE_INDEX, 0); CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->tx_ring_map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, IWI_TX_RING_SIZE); CSR_WRITE_4(sc, IWI_CSR_TX4_READ_INDEX, 0); CSR_WRITE_4(sc, IWI_CSR_TX4_WRITE_INDEX, 0); for (i = 0; i < IWI_RX_RING_SIZE; i++) CSR_WRITE_4(sc, IWI_CSR_RX_BASE + i * 4, sc->rx_buf[i].map->dm_segs[0].ds_addr); /* * Kick Rx */ CSR_WRITE_4(sc, IWI_CSR_RX_WRITE_INDEX, sc->rx_cur); CSR_WRITE_4(sc, IWI_CSR_RX_READ_INDEX, 0); if ((error = iwi_load_firmware(sc, main)) != 0) { printf("%s: could not load main firmware\n", sc->sc_dev.dv_xname); goto fail; } sc->flags |= IWI_FLAG_FW_INITED; if ((error = iwi_config(sc)) != 0) { printf("%s: device configuration failed\n", sc->sc_dev.dv_xname); goto fail; } ieee80211_begin_scan(ifp); ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; return 0; fail: iwi_stop(ifp, 0); return error; } void iwi_stop(struct ifnet *ifp, int disable) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct iwi_tx_buf *buf; int i; iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SW_RESET); /* * Release Tx buffers */ for (i = 0; i < IWI_TX_RING_SIZE; i++) { buf = &sc->tx_buf[i]; if (buf->m != NULL) { bus_dmamap_unload(sc->sc_dmat, buf->map); m_freem(buf->m); buf->m = NULL; if (buf->ni != NULL) { ieee80211_release_node(ic, buf->ni); buf->ni = NULL; } } } ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); } struct cfdriver iwi_cd = { 0, "iwi", DV_IFNET };