/* $OpenBSD: if_iwi.c,v 1.74 2006/09/18 16:20:20 damien Exp $ */ /*- * Copyright (c) 2004-2006 * Damien Bergamini . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Driver for Intel PRO/Wireless 2200BG/2915ABG 802.11 network adapters. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include const struct pci_matchid iwi_devices[] = { { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2200BG }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2225BG }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_2915ABG_2 } }; static const struct ieee80211_rateset iwi_rateset_11a = { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; static const struct ieee80211_rateset iwi_rateset_11b = { 4, { 2, 4, 11, 22 } }; static const struct ieee80211_rateset iwi_rateset_11g = { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; int iwi_match(struct device *, void *, void *); void iwi_attach(struct device *, struct device *, void *); int iwi_detach(struct device *, int); void iwi_power(int, void *); int iwi_alloc_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); void iwi_reset_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); void iwi_free_cmd_ring(struct iwi_softc *, struct iwi_cmd_ring *); int iwi_alloc_tx_ring(struct iwi_softc *, struct iwi_tx_ring *, bus_size_t, bus_size_t); void iwi_reset_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); void iwi_free_tx_ring(struct iwi_softc *, struct iwi_tx_ring *); int iwi_alloc_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); void iwi_reset_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); void iwi_free_rx_ring(struct iwi_softc *, struct iwi_rx_ring *); int iwi_media_change(struct ifnet *); void iwi_media_status(struct ifnet *, struct ifmediareq *); uint16_t iwi_read_prom_word(struct iwi_softc *, uint8_t); int iwi_find_txnode(struct iwi_softc *, const uint8_t *); int iwi_newstate(struct ieee80211com *, enum ieee80211_state, int); uint8_t iwi_rate(int); void iwi_frame_intr(struct iwi_softc *, struct iwi_rx_data *, struct iwi_frame *); void iwi_notification_intr(struct iwi_softc *, struct iwi_rx_data *, struct iwi_notif *); void iwi_rx_intr(struct iwi_softc *); void iwi_tx_intr(struct iwi_softc *, struct iwi_tx_ring *); int iwi_intr(void *); int iwi_cmd(struct iwi_softc *, uint8_t, void *, uint8_t, int); int iwi_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *); void iwi_start(struct ifnet *); void iwi_watchdog(struct ifnet *); int iwi_ioctl(struct ifnet *, u_long, caddr_t); void iwi_stop_master(struct iwi_softc *); int iwi_reset(struct iwi_softc *); int iwi_load_ucode(struct iwi_softc *, const char *, int); int iwi_load_firmware(struct iwi_softc *, const char *, int); int iwi_config(struct iwi_softc *); int iwi_set_chan(struct iwi_softc *, struct ieee80211_channel *); int iwi_scan(struct iwi_softc *); int iwi_auth_and_assoc(struct iwi_softc *); int iwi_init(struct ifnet *); void iwi_stop(struct ifnet *, int); static __inline uint8_t MEM_READ_1(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_1(sc, IWI_CSR_INDIRECT_DATA); } static __inline uint32_t MEM_READ_4(struct iwi_softc *sc, uint32_t addr) { CSR_WRITE_4(sc, IWI_CSR_INDIRECT_ADDR, addr); return CSR_READ_4(sc, IWI_CSR_INDIRECT_DATA); } #ifdef IWI_DEBUG #define DPRINTF(x) do { if (iwi_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwi_debug >= (n)) printf x; } while (0) int iwi_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif struct cfattach iwi_ca = { sizeof (struct iwi_softc), iwi_match, iwi_attach, iwi_detach }; int iwi_match(struct device *parent, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, iwi_devices, sizeof (iwi_devices) / sizeof (iwi_devices[0])); } /* Base Address Register */ #define IWI_PCI_BAR0 0x10 void iwi_attach(struct device *parent, struct device *self, void *aux) { struct iwi_softc *sc = (struct iwi_softc *)self; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct pci_attach_args *pa = aux; const char *intrstr; bus_space_tag_t memt; bus_space_handle_t memh; pci_intr_handle_t ih; pcireg_t data; uint16_t val; int error, i; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); /* map the register window */ error = pci_mapreg_map(pa, IWI_PCI_BAR0, PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz, 0); if (error != 0) { printf(": could not map memory space\n"); return; } sc->sc_st = memt; sc->sc_sh = memh; sc->sc_dmat = pa->pa_dmat; if (pci_intr_map(pa, &ih) != 0) { printf(": could not map interrupt\n"); return; } intrstr = pci_intr_string(sc->sc_pct, ih); sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwi_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s", intrstr); if (iwi_reset(sc) != 0) { printf(": could not reset adapter\n"); return; } /* * Allocate rings. */ error = iwi_alloc_cmd_ring(sc, &sc->cmdq); if (error != 0) { printf(": could not allocate Cmd ring\n"); return; } error = iwi_alloc_tx_ring(sc, &sc->txq[0], IWI_CSR_TX1_RIDX, IWI_CSR_TX1_WIDX); if (error != 0) { printf(": could not allocate Tx ring 1\n"); goto fail1; } error = iwi_alloc_tx_ring(sc, &sc->txq[1], IWI_CSR_TX2_RIDX, IWI_CSR_TX2_WIDX); if (error != 0) { printf(": could not allocate Tx ring 2\n"); goto fail2; } error = iwi_alloc_tx_ring(sc, &sc->txq[2], IWI_CSR_TX3_RIDX, IWI_CSR_TX3_WIDX); if (error != 0) { printf(": could not allocate Tx ring 3\n"); goto fail3; } error = iwi_alloc_tx_ring(sc, &sc->txq[3], IWI_CSR_TX4_RIDX, IWI_CSR_TX4_WIDX); if (error != 0) { printf(": could not allocate Tx ring 4\n"); goto fail4; } error = iwi_alloc_rx_ring(sc, &sc->rxq); if (error != 0) { printf(": could not allocate Rx ring\n"); goto fail5; } ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_IBSS | /* IBSS mode supported */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_WEP | /* h/w WEP supported */ IEEE80211_C_SCANALL; /* h/w scanning */ /* read MAC address from EEPROM */ val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 0); ic->ic_myaddr[0] = val & 0xff; ic->ic_myaddr[1] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 1); ic->ic_myaddr[2] = val & 0xff; ic->ic_myaddr[3] = val >> 8; val = iwi_read_prom_word(sc, IWI_EEPROM_MAC + 2); ic->ic_myaddr[4] = val & 0xff; ic->ic_myaddr[5] = val >> 8; printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); if (PCI_PRODUCT(pa->pa_id) >= PCI_PRODUCT_INTEL_PRO_WL_2915ABG_1) { /* set supported .11a rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = iwi_rateset_11a; /* set supported .11a channels */ for (i = 36; i <= 64; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } for (i = 149; i <= 165; i += 4) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; } } /* set supported .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11B] = iwi_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = iwi_rateset_11g; /* set supported .11b and .11g channels (1 through 14) */ for (i = 1; i <= 14; i++) { ic->ic_channels[i].ic_freq = ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); ic->ic_channels[i].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } /* IBSS channel undefined for now */ ic->ic_ibss_chan = &ic->ic_channels[0]; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwi_init; ifp->if_ioctl = iwi_ioctl; ifp->if_start = iwi_start; ifp->if_watchdog = iwi_watchdog; IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwi_newstate; ieee80211_media_init(ifp, iwi_media_change, iwi_media_status); sc->powerhook = powerhook_establish(iwi_power, sc); #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWI_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWI_TX_RADIOTAP_PRESENT); #endif return; fail5: iwi_free_tx_ring(sc, &sc->txq[3]); fail4: iwi_free_tx_ring(sc, &sc->txq[2]); fail3: iwi_free_tx_ring(sc, &sc->txq[1]); fail2: iwi_free_tx_ring(sc, &sc->txq[0]); fail1: iwi_free_cmd_ring(sc, &sc->cmdq); } int iwi_detach(struct device *self, int flags) { struct iwi_softc *sc = (struct iwi_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int i; iwi_stop(ifp, 1); ieee80211_ifdetach(ifp); if_detach(ifp); iwi_free_cmd_ring(sc, &sc->cmdq); for (i = 0; i < 4; i++) iwi_free_tx_ring(sc, &sc->txq[i]); iwi_free_rx_ring(sc, &sc->rxq); if (sc->sc_ih != NULL) { pci_intr_disestablish(sc->sc_pct, sc->sc_ih); sc->sc_ih = NULL; } bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz); return 0; } void iwi_power(int why, void *arg) { struct iwi_softc *sc = arg; struct ifnet *ifp; pcireg_t data; if (why != PWR_RESUME) return; /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); ifp = &sc->sc_ic.ic_if; if (ifp->if_flags & IFF_UP) { ifp->if_init(ifp); if (ifp->if_flags & IFF_RUNNING) ifp->if_start(ifp); } } int iwi_alloc_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { int nsegs, error; ring->queued = 0; ring->cur = ring->next = 0; error = bus_dmamap_create(sc->sc_dmat, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, 1, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create cmd ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate cmd ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, (caddr_t *)&ring->desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map cmd ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load cmd ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } bzero(ring->desc, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT); return 0; fail: iwi_free_cmd_ring(sc, ring); return error; } void iwi_reset_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { ring->queued = 0; ring->cur = ring->next = 0; } void iwi_free_cmd_ring(struct iwi_softc *sc, struct iwi_cmd_ring *ring) { if (ring->map != NULL) { if (ring->desc != NULL) { bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc, sizeof (struct iwi_cmd_desc) * IWI_CMD_RING_COUNT); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } bus_dmamap_destroy(sc->sc_dmat, ring->map); } } int iwi_alloc_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring, bus_size_t csr_ridx, bus_size_t csr_widx) { struct iwi_tx_data *data; int i, nsegs, error; ring->queued = 0; ring->cur = ring->next = 0; ring->csr_ridx = csr_ridx; ring->csr_widx = csr_widx; error = bus_dmamap_create(sc->sc_dmat, sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, 1, sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, (caddr_t *)&ring->desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc, sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load tx ring DMA map\n", sc->sc_dev.dv_xname); goto fail; } bzero(ring->desc, sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT); for (i = 0; i < IWI_TX_RING_COUNT; i++) { data = &ring->data[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IWI_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create tx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: iwi_free_tx_ring(sc, ring); return error; } void iwi_reset_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; for (i = 0; i < IWI_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } } ring->queued = 0; ring->cur = ring->next = 0; } void iwi_free_tx_ring(struct iwi_softc *sc, struct iwi_tx_ring *ring) { struct iwi_tx_data *data; int i; if (ring->map != NULL) { if (ring->desc != NULL) { bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)ring->desc, sizeof (struct iwi_tx_desc) * IWI_TX_RING_COUNT); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } bus_dmamap_destroy(sc->sc_dmat, ring->map); } for (i = 0; i < IWI_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } bus_dmamap_destroy(sc->sc_dmat, data->map); } } int iwi_alloc_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { struct iwi_rx_data *data; int i, error; ring->cur = 0; for (i = 0; i < IWI_RX_RING_COUNT; i++) { data = &sc->rxq.data[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create rx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { m_freem(data->m); data->m = NULL; printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load rx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } data->reg = IWI_CSR_RX_BASE + i * 4; } return 0; fail: iwi_free_rx_ring(sc, ring); return error; } void iwi_reset_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { ring->cur = 0; } void iwi_free_rx_ring(struct iwi_softc *sc, struct iwi_rx_ring *ring) { struct iwi_rx_data *data; int i; for (i = 0; i < IWI_RX_RING_COUNT; i++) { data = &sc->rxq.data[i]; if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } bus_dmamap_destroy(sc->sc_dmat, data->map); } } int iwi_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) iwi_init(ifp); return 0; } void iwi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t val; int rate; imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN) imr->ifm_status |= IFM_ACTIVE; /* read current transmission rate from adapter */ val = CSR_READ_4(sc, IWI_CSR_CURRENT_TX_RATE); /* convert PLCP signal to 802.11 rate */ rate = iwi_rate(val); imr->ifm_active |= ieee80211_rate2media(ic, rate, ic->ic_curmode); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; case IEEE80211_M_AHDEMO: case IEEE80211_M_HOSTAP: /* should not get there */ break; } } /* * This is only used for IBSS mode where the firmware expect an index to an * internal node table instead of a destination address. */ int iwi_find_txnode(struct iwi_softc *sc, const uint8_t *macaddr) { struct iwi_node node; int i; for (i = 0; i < sc->nsta; i++) if (IEEE80211_ADDR_EQ(sc->sta[i], macaddr)) return i; /* already existing node */ if (i == IWI_MAX_NODE) return -1; /* no place left in neighbor table */ /* save this new node in our softc table */ IEEE80211_ADDR_COPY(sc->sta[i], macaddr); sc->nsta = i; /* write node information into NIC memory */ bzero(&node, sizeof node); IEEE80211_ADDR_COPY(node.bssid, macaddr); CSR_WRITE_REGION_1(sc, IWI_CSR_NODE_BASE + i * sizeof node, (uint8_t *)&node, sizeof node); return i; } int iwi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct iwi_softc *sc = ic->ic_softc; enum ieee80211_state ostate; uint32_t tmp; ostate = ic->ic_state; switch (nstate) { case IEEE80211_S_SCAN: iwi_scan(sc); break; case IEEE80211_S_AUTH: iwi_auth_and_assoc(sc); break; case IEEE80211_S_RUN: if (ic->ic_opmode == IEEE80211_M_IBSS) { sc->nsta = 0; /* flush IBSS nodes */ ieee80211_new_state(ic, IEEE80211_S_AUTH, -1); } else if (ic->ic_opmode == IEEE80211_M_MONITOR) iwi_set_chan(sc, ic->ic_ibss_chan); /* assoc led on */ tmp = MEM_READ_4(sc, IWI_MEM_EVENT_CTL) & IWI_LED_MASK; MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, tmp | IWI_LED_ASSOC); break; case IEEE80211_S_INIT: if (ostate != IEEE80211_S_RUN) break; /* assoc led off */ tmp = MEM_READ_4(sc, IWI_MEM_EVENT_CTL) & IWI_LED_MASK; MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, tmp & ~IWI_LED_ASSOC); break; case IEEE80211_S_ASSOC: break; } ic->ic_state = nstate; return 0; } /* * Read 16 bits at address 'addr' from the serial EEPROM. * DON'T PLAY WITH THIS CODE UNLESS YOU KNOW *EXACTLY* WHAT YOU'RE DOING! */ uint16_t iwi_read_prom_word(struct iwi_softc *sc, uint8_t addr) { uint32_t tmp; uint16_t val; int n; /* clock C once before the first command */ IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* write start bit (1) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); /* write READ opcode (10) */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_D | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); /* write address A7-A0 */ for (n = 7; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D)); IWI_EEPROM_CTL(sc, IWI_EEPROM_S | (((addr >> n) & 1) << IWI_EEPROM_SHIFT_D) | IWI_EEPROM_C); } IWI_EEPROM_CTL(sc, IWI_EEPROM_S); /* read data Q15-Q0 */ val = 0; for (n = 15; n >= 0; n--) { IWI_EEPROM_CTL(sc, IWI_EEPROM_S | IWI_EEPROM_C); IWI_EEPROM_CTL(sc, IWI_EEPROM_S); tmp = MEM_READ_4(sc, IWI_MEM_EEPROM_CTL); val |= ((tmp & IWI_EEPROM_Q) >> IWI_EEPROM_SHIFT_Q) << n; } IWI_EEPROM_CTL(sc, 0); /* clear Chip Select and clock C */ IWI_EEPROM_CTL(sc, IWI_EEPROM_S); IWI_EEPROM_CTL(sc, 0); IWI_EEPROM_CTL(sc, IWI_EEPROM_C); return val; } uint8_t iwi_rate(int plcp) { switch (plcp) { /* CCK rates (values are device-dependent) */ case 10: return 2; case 20: return 4; case 55: return 11; case 110: return 22; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ case 0xd: return 12; case 0xf: return 18; case 0x5: return 24; case 0x7: return 36; case 0x9: return 48; case 0xb: return 72; case 0x1: return 96; case 0x3: return 108; /* unknown rate: should not happen */ default: return 0; } } void iwi_frame_intr(struct iwi_softc *sc, struct iwi_rx_data *data, struct iwi_frame *frame) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct mbuf *mnew, *m; struct ieee80211_frame *wh; struct ieee80211_node *ni; int error; DPRINTFN(5, ("received frame len=%u chan=%u rssi=%u\n", letoh16(frame->len), frame->chan, frame->rssi_dbm)); if (letoh16(frame->len) < sizeof (struct ieee80211_frame_min) || letoh16(frame->len) > MCLBYTES) { DPRINTF(("%s: bad frame length\n", sc->sc_dev.dv_xname)); ifp->if_ierrors++; return; } /* * Try to allocate a new mbuf for this ring element and load it before * processing the current mbuf. If the ring element cannot be loaded, * drop the received packet and reuse the old mbuf. In the unlikely * case that the old mbuf can't be reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ifp->if_ierrors++; return; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); ifp->if_ierrors++; return; } bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", sc->sc_dev.dv_xname); } ifp->if_ierrors++; return; } m = data->m; data->m = mnew; CSR_WRITE_4(sc, data->reg, data->map->dm_segs[0].ds_addr); /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = sizeof (struct iwi_hdr) + sizeof (struct iwi_frame) + letoh16(frame->len); m_adj(m, sizeof (struct iwi_hdr) + sizeof (struct iwi_frame)); wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[1] & IEEE80211_FC1_WEP) && ic->ic_opmode != IEEE80211_M_MONITOR) { /* * Hardware decrypts the frame itself but leaves the WEP bit * set in the 802.11 header and doesn't remove the IV and CRC * fields. */ wh->i_fc[1] &= ~IEEE80211_FC1_WEP; ovbcopy(wh, (char *)wh + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN, sizeof (struct ieee80211_frame)); m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN); m_adj(m, -IEEE80211_WEP_CRCLEN); wh = mtod(m, struct ieee80211_frame *); } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_rate = iwi_rate(frame->rate); tap->wr_chan_freq = htole16(ic->ic_channels[frame->chan].ic_freq); tap->wr_chan_flags = htole16(ic->ic_channels[frame->chan].ic_flags); tap->wr_antsignal = frame->signal; tap->wr_antenna = frame->antenna & 0x3; if (frame->antenna & 0x40) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; M_DUP_PKTHDR(&mb, m); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the upper layer */ ieee80211_input(ifp, m, ni, frame->rssi_dbm, 0); /* node is no longer needed */ ieee80211_release_node(ic, ni); } void iwi_notification_intr(struct iwi_softc *sc, struct iwi_rx_data *data, struct iwi_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; switch (notif->type) { case IWI_NOTIF_TYPE_SCAN_CHANNEL: { #ifdef IWI_DEBUG struct iwi_notif_scan_channel *chan = (struct iwi_notif_scan_channel *)(notif + 1); #endif DPRINTFN(2, ("Scanning channel (%u)\n", chan->nchan)); break; } case IWI_NOTIF_TYPE_SCAN_COMPLETE: { #ifdef IWI_DEBUG struct iwi_notif_scan_complete *scan = (struct iwi_notif_scan_complete *)(notif + 1); #endif DPRINTFN(2, ("Scan completed (%u, %u)\n", scan->nchan, scan->status)); /* monitor mode uses scan to set the channel ... */ if (ic->ic_opmode != IEEE80211_M_MONITOR) ieee80211_end_scan(ifp); else iwi_set_chan(sc, ic->ic_ibss_chan); break; } case IWI_NOTIF_TYPE_AUTHENTICATION: { struct iwi_notif_authentication *auth = (struct iwi_notif_authentication *)(notif + 1); DPRINTFN(2, ("Authentication (%u)\n", auth->state)); switch (auth->state) { case IWI_AUTHENTICATED: ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1); break; case IWI_DEAUTHENTICATED: break; default: printf("%s: unknown authentication state %u\n", sc->sc_dev.dv_xname, auth->state); } break; } case IWI_NOTIF_TYPE_ASSOCIATION: { struct iwi_notif_association *assoc = (struct iwi_notif_association *)(notif + 1); DPRINTFN(2, ("Association (%u, %u)\n", assoc->state, assoc->status)); switch (assoc->state) { case IWI_AUTHENTICATED: /* re-association, do nothing */ break; case IWI_ASSOCIATED: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case IWI_DEASSOCIATED: ieee80211_begin_scan(ifp); break; default: printf("%s: unknown association state %u\n", sc->sc_dev.dv_xname, assoc->state); } break; } case IWI_NOTIF_TYPE_BEACON: { struct iwi_notif_beacon *beacon = (struct iwi_notif_beacon *)(notif + 1); if (letoh32(beacon->status) == IWI_BEACON_MISSED) { /* XXX should roam when too many beacons missed */ DPRINTFN(2, ("%u beacon(s) missed\n", sc->sc_dev.dv_xname, letoh32(beacon->count))); } break; } case IWI_NOTIF_TYPE_BAD_LINK: DPRINTFN(2, ("link deterioration detected\n")); break; case IWI_NOTIF_TYPE_NOISE: DPRINTFN(5, ("Measured noise %u\n", letoh32(*(uint32_t *)(notif + 1)) & 0xff)); break; default: DPRINTFN(5, ("Notification (%u)\n", notif->type)); } } void iwi_rx_intr(struct iwi_softc *sc) { struct iwi_rx_data *data; struct iwi_hdr *hdr; uint32_t hw; hw = CSR_READ_4(sc, IWI_CSR_RX_RIDX); for (; sc->rxq.cur != hw;) { data = &sc->rxq.data[sc->rxq.cur]; bus_dmamap_sync(sc->sc_dmat, data->map, 0, MCLBYTES, BUS_DMASYNC_POSTREAD); hdr = mtod(data->m, struct iwi_hdr *); switch (hdr->type) { case IWI_HDR_TYPE_FRAME: iwi_frame_intr(sc, data, (struct iwi_frame *)(hdr + 1)); break; case IWI_HDR_TYPE_NOTIF: iwi_notification_intr(sc, data, (struct iwi_notif *)(hdr + 1)); break; default: printf("%s: unknown hdr type %u\n", sc->sc_dev.dv_xname, hdr->type); } sc->rxq.cur = (sc->rxq.cur + 1) % IWI_RX_RING_COUNT; } /* tell the firmware what we have processed */ hw = (hw == 0) ? IWI_RX_RING_COUNT - 1 : hw - 1; CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, hw); } void iwi_tx_intr(struct iwi_softc *sc, struct iwi_tx_ring *txq) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwi_tx_data *data; uint32_t hw; hw = CSR_READ_4(sc, txq->csr_ridx); for (; txq->next != hw;) { data = &txq->data[txq->next]; bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_release_node(ic, data->ni); data->ni = NULL; ifp->if_opackets++; txq->queued--; txq->next = (txq->next + 1) % IWI_TX_RING_COUNT; } sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; (*ifp->if_start)(ifp); } int iwi_intr(void *arg) { struct iwi_softc *sc = arg; struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t r; if ((r = CSR_READ_4(sc, IWI_CSR_INTR)) == 0 || r == 0xffffffff) return 0; /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); /* acknowledge interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR, r); if (r & IWI_INTR_FATAL_ERROR) { printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); ifp->if_flags &= ~IFF_UP; iwi_stop(ifp, 1); return 1; } if (r & IWI_INTR_FW_INITED) wakeup(sc); if (r & IWI_INTR_RADIO_OFF) { DPRINTF(("radio transmitter off\n")); ifp->if_flags &= ~IFF_UP; iwi_stop(ifp, 1); return 1; } if (r & IWI_INTR_CMD_DONE) { /* kick next pending command if any */ sc->cmdq.next = (sc->cmdq.next + 1) % IWI_CMD_RING_COUNT; if (--sc->cmdq.queued > 0) CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.next); wakeup(sc); } if (r & IWI_INTR_TX1_DONE) iwi_tx_intr(sc, &sc->txq[0]); if (r & IWI_INTR_TX2_DONE) iwi_tx_intr(sc, &sc->txq[1]); if (r & IWI_INTR_TX3_DONE) iwi_tx_intr(sc, &sc->txq[2]); if (r & IWI_INTR_TX4_DONE) iwi_tx_intr(sc, &sc->txq[3]); if (r & IWI_INTR_RX_DONE) iwi_rx_intr(sc); /* re-enable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); return 1; } int iwi_cmd(struct iwi_softc *sc, uint8_t type, void *data, uint8_t len, int async) { struct iwi_cmd_desc *desc; desc = &sc->cmdq.desc[sc->cmdq.cur]; desc->hdr.type = IWI_HDR_TYPE_COMMAND; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->type = type; desc->len = len; bcopy(data, desc->data, len); bus_dmamap_sync(sc->sc_dmat, sc->cmdq.map, sc->cmdq.cur * sizeof (struct iwi_cmd_desc), sizeof (struct iwi_cmd_desc), BUS_DMASYNC_PREWRITE); DPRINTFN(2, ("sending command idx=%u type=%u len=%u\n", sc->cmdq.cur, type, len)); sc->cmdq.cur = (sc->cmdq.cur + 1) % IWI_CMD_RING_COUNT; /* don't kick cmd immediately if another async command is pending */ if (++sc->cmdq.queued == 1) { sc->cmdq.next = sc->cmdq.cur; CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.next); } return async ? 0 : tsleep(sc, 0, "iwicmd", hz); } int iwi_tx_start(struct ifnet *ifp, struct mbuf *m0, struct ieee80211_node *ni) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct iwi_tx_data *data; struct iwi_tx_desc *desc; struct iwi_tx_ring *txq = &sc->txq[0]; struct mbuf *mnew; int error, i, station = 0; #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); M_DUP_PKTHDR(&mb, m0); mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_pkthdr.len += mb.m_len; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif data = &txq->data[txq->cur]; desc = &txq->desc[txq->cur]; /* save and trim IEEE802.11 header */ m_copydata(m0, 0, sizeof (struct ieee80211_frame), (caddr_t)&desc->wh); m_adj(m0, sizeof (struct ieee80211_frame)); if (ic->ic_opmode == IEEE80211_M_IBSS) { station = iwi_find_txnode(sc, desc->wh.i_addr1); if (station == -1) { m_freem(m0); ieee80211_release_node(ic, ni); ifp->if_oerrors++; return 0; } } error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m0); return ENOMEM; } M_DUP_PKTHDR(mnew, m0); if (m0->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(m0); m_freem(mnew); return ENOMEM; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t)); m_freem(m0); mnew->m_len = mnew->m_pkthdr.len; m0 = mnew; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; desc->hdr.type = IWI_HDR_TYPE_DATA; desc->hdr.flags = IWI_HDR_FLAG_IRQ; desc->cmd = IWI_DATA_CMD_TX; desc->len = htole16(m0->m_pkthdr.len); desc->station = station; desc->flags = 0; desc->xflags = 0; if (!IEEE80211_IS_MULTICAST(desc->wh.i_addr1)) desc->flags |= IWI_DATA_FLAG_NEED_ACK; if (desc->wh.i_fc[1] & IEEE80211_FC1_WEP) { desc->wep_txkey = ic->ic_wep_txkey | (ic->ic_nw_keys[ic->ic_wep_txkey].wk_len <= 5) ? IWI_DATA_KEY_WEP40 : IWI_DATA_KEY_WEP104; } else { desc->flags |= IWI_DATA_FLAG_NO_WEP; desc->wep_txkey = 0; } if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) desc->flags |= IWI_DATA_FLAG_SHPREAMBLE; if (ic->ic_curmode == IEEE80211_MODE_11B) desc->xflags |= IWI_DATA_XFLAG_CCK; desc->nseg = htole32(data->map->dm_nsegs); for (i = 0; i < data->map->dm_nsegs; i++) { desc->seg_addr[i] = htole32(data->map->dm_segs[i].ds_addr); desc->seg_len[i] = htole16(data->map->dm_segs[i].ds_len); } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, txq->map, txq->cur * sizeof (struct iwi_tx_desc), sizeof (struct iwi_tx_desc), BUS_DMASYNC_PREWRITE); DPRINTFN(5, ("sending data frame idx=%u len=%u nseg=%u\n", txq->cur, letoh16(desc->len), data->map->dm_nsegs)); txq->queued++; txq->cur = (txq->cur + 1) % IWI_TX_RING_COUNT; CSR_WRITE_4(sc, txq->csr_widx, txq->cur); return 0; } void iwi_start(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct mbuf *m0; struct ieee80211_node *ni; if (ic->ic_state != IEEE80211_S_RUN) return; for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->txq[0].queued >= IWI_TX_RING_COUNT - 8) { ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif m0 = ieee80211_encap(ifp, m0, &ni); if (m0 == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (iwi_tx_start(ifp, m0, ni) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } /* start watchdog timer */ sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void iwi_watchdog(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_flags &= ~IFF_UP; iwi_stop(ifp, 1); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int iwi_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) iwi_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) iwi_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCG80211TXPOWER: /* * If the hardware radio transmitter switch is off, report a * tx power of IEEE80211_TXPOWER_MIN to indicate that radio * transmitter is killed. */ ((struct ieee80211_txpower *)data)->i_val = (CSR_READ_4(sc, IWI_CSR_IO) & IWI_IO_RADIO_ENABLED) ? sc->sc_ic.ic_txpower : IEEE80211_TXPOWER_MIN; break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) iwi_init(ifp); error = 0; } splx(s); return error; } void iwi_stop_master(struct iwi_softc *sc) { int ntries; /* disable interrupts */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, 0); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) { printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); } CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_PRINCETON_RESET); sc->flags &= ~IWI_FLAG_FW_INITED; } int iwi_reset(struct iwi_softc *sc) { int i, ntries; iwi_stop_master(sc); /* move adapter to D0 state */ CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_INIT); CSR_WRITE_4(sc, IWI_CSR_READ_INT, IWI_READ_INT_INIT_HOST); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (CSR_READ_4(sc, IWI_CSR_CTL) & IWI_CTL_CLOCK_READY) break; DELAY(200); } if (ntries == 1000) { printf("%s: timeout waiting for clock stabilization\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_SW_RESET); DELAY(10); CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_INIT); /* clear NIC memory */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0); for (i = 0; i < 0xc000; i++) CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); return 0; } int iwi_load_ucode(struct iwi_softc *sc, const char *data, int size) { const uint16_t *w; int ntries, i; CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) | IWI_RST_STOP_MASTER); for (ntries = 0; ntries < 5; ntries++) { if (CSR_READ_4(sc, IWI_CSR_RST) & IWI_RST_MASTER_DISABLED) break; DELAY(10); } if (ntries == 5) { printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } MEM_WRITE_4(sc, 0x3000e0, 0x80000000); DELAY(5000); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) & ~IWI_RST_PRINCETON_RESET); DELAY(5000); MEM_WRITE_4(sc, 0x3000e0, 0); DELAY(1000); MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, 1); DELAY(1000); MEM_WRITE_4(sc, IWI_MEM_EVENT_CTL, 0); DELAY(1000); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x40); DELAY(1000); /* adapter is buggy, we must set the address for each word */ for (w = (const uint16_t *)data; size > 0; w++, size -= 2) MEM_WRITE_2(sc, 0x200010, htole16(*w)); MEM_WRITE_1(sc, 0x200000, 0x00); MEM_WRITE_1(sc, 0x200000, 0x80); /* wait until we get an answer */ for (ntries = 0; ntries < 100; ntries++) { if (MEM_READ_1(sc, 0x200000) & 1) break; DELAY(100); } if (ntries == 100) { printf("%s: timeout waiting for ucode to initialize\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } /* read the answer or the firmware will not initialize properly */ for (i = 0; i < 7; i++) MEM_READ_4(sc, 0x200004); MEM_WRITE_1(sc, 0x200000, 0x00); return 0; } /* macro to handle unaligned little endian data in firmware image */ #define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24) int iwi_load_firmware(struct iwi_softc *sc, const char *data, int size) { bus_dmamap_t map; bus_dma_segment_t seg; caddr_t virtaddr; u_char *p, *end; uint32_t sentinel, ctl, src, dst, sum, len, mlen; int ntries, nsegs, error; /* allocate DMA memory to store firmware image */ error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &map); if (error != 0) { printf("%s: could not create firmware DMA map\n", sc->sc_dev.dv_xname); goto fail1; } error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could allocate firmware DMA memory\n", sc->sc_dev.dv_xname); goto fail2; } error = bus_dmamem_map(sc->sc_dmat, &seg, nsegs, size, &virtaddr, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map firmware DMA memory\n", sc->sc_dev.dv_xname); goto fail3; } error = bus_dmamap_load(sc->sc_dmat, map, virtaddr, size, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load firmware DMA map\n", sc->sc_dev.dv_xname); goto fail4; } /* copy firmware image to DMA memory */ bcopy(data, virtaddr, size); /* make sure the adapter will get up-to-date values */ bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_PREWRITE); /* tell the adapter where the command blocks are stored */ MEM_WRITE_4(sc, 0x3000a0, 0x27000); /* * Store command blocks into adapter's internal memory using register * indirections. The adapter will read the firmware image through DMA * using information stored in command blocks. */ src = map->dm_segs[0].ds_addr; p = virtaddr; end = p + size; CSR_WRITE_4(sc, IWI_CSR_AUTOINC_ADDR, 0x27000); while (p < end) { dst = GETLE32(p); p += 4; src += 4; len = GETLE32(p); p += 4; src += 4; p += len; while (len > 0) { mlen = min(len, IWI_CB_MAXDATALEN); ctl = IWI_CB_DEFAULT_CTL | mlen; sum = ctl ^ src ^ dst; /* write a command block */ CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, ctl); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, src); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, dst); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, sum); src += mlen; dst += mlen; len -= mlen; } } /* write a fictive final command block (sentinel) */ sentinel = CSR_READ_4(sc, IWI_CSR_AUTOINC_ADDR); CSR_WRITE_4(sc, IWI_CSR_AUTOINC_DATA, 0); CSR_WRITE_4(sc, IWI_CSR_RST, CSR_READ_4(sc, IWI_CSR_RST) & ~(IWI_RST_MASTER_DISABLED | IWI_RST_STOP_MASTER)); /* tell the adapter to start processing command blocks */ MEM_WRITE_4(sc, 0x3000a4, 0x540100); /* wait until the adapter has processed all command blocks */ for (ntries = 0; ntries < 400; ntries++) { if (MEM_READ_4(sc, 0x3000d0) >= sentinel) break; DELAY(100); } if (ntries == 400) { printf("%s: timeout processing cb\n", sc->sc_dev.dv_xname); error = ETIMEDOUT; goto fail5; } /* we're done with command blocks processing */ MEM_WRITE_4(sc, 0x3000a4, 0x540c00); /* allow interrupts so we know when the firmware is inited */ CSR_WRITE_4(sc, IWI_CSR_INTR_MASK, IWI_INTR_MASK); /* tell the adapter to initialize the firmware */ CSR_WRITE_4(sc, IWI_CSR_RST, 0); CSR_WRITE_4(sc, IWI_CSR_CTL, CSR_READ_4(sc, IWI_CSR_CTL) | IWI_CTL_ALLOW_STANDBY); /* wait at most one second for firmware initialization to complete */ if ((error = tsleep(sc, 0, "iwiinit", hz)) != 0) { printf("%s: timeout waiting for firmware initialization to " "complete\n", sc->sc_dev.dv_xname); goto fail5; } fail5: bus_dmamap_sync(sc->sc_dmat, map, 0, size, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); fail4: bus_dmamem_unmap(sc->sc_dmat, virtaddr, size); fail3: bus_dmamem_free(sc->sc_dmat, &seg, 1); fail2: bus_dmamap_destroy(sc->sc_dmat, map); fail1: return error; } int iwi_config(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwi_configuration config; struct iwi_rateset rs; struct iwi_txpower power; struct ieee80211_wepkey *k; struct iwi_wep_key wepkey; uint32_t data; int error, nchan, i; IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); DPRINTF(("Setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); error = iwi_cmd(sc, IWI_CMD_SET_MAC_ADDRESS, ic->ic_myaddr, IEEE80211_ADDR_LEN, 0); if (error != 0) return error; bzero(&config, sizeof config); config.multicast_enabled = 1; config.silence_threshold = 30; config.report_noise = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config, 0); if (error != 0) return error; data = htole32(IWI_POWER_MODE_CAM); DPRINTF(("Setting power mode to %u\n", letoh32(data))); error = iwi_cmd(sc, IWI_CMD_SET_POWER_MODE, &data, sizeof data, 0); if (error != 0) return error; data = htole32(ic->ic_rtsthreshold); DPRINTF(("Setting RTS threshold to %u\n", letoh32(data))); error = iwi_cmd(sc, IWI_CMD_SET_RTS_THRESHOLD, &data, sizeof data, 0); if (error != 0) return error; data = htole32(ic->ic_fragthreshold); DPRINTF(("Setting fragmentation threshold to %u\n", letoh32(data))); error = iwi_cmd(sc, IWI_CMD_SET_FRAG_THRESHOLD, &data, sizeof data, 0); if (error != 0) return error; /* * Set default Tx power for 802.11b/g and 802.11a channels. */ nchan = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (!IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i])) continue; power.chan[nchan].chan = i; power.chan[nchan].power = IWI_TXPOWER_MAX; nchan++; } power.nchan = nchan; power.mode = IWI_MODE_11G; DPRINTF(("Setting .11g channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; power.mode = IWI_MODE_11B; DPRINTF(("Setting .11b channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; nchan = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (!IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i])) continue; power.chan[nchan].chan = i; power.chan[nchan].power = IWI_TXPOWER_MAX; nchan++; } power.nchan = nchan; if (nchan > 0) { /* 2915ABG only */ power.mode = IWI_MODE_11A; DPRINTF(("Setting .11a channels tx power\n")); error = iwi_cmd(sc, IWI_CMD_SET_TX_POWER, &power, sizeof power, 0); if (error != 0) return error; } rs.mode = IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11G].rs_nrates; bcopy(ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates, rs.rates, rs.nrates); DPRINTF(("Setting .11bg supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0); if (error != 0) return error; rs.mode = IWI_MODE_11A; rs.type = IWI_RATESET_TYPE_SUPPORTED; rs.nrates = ic->ic_sup_rates[IEEE80211_MODE_11A].rs_nrates; bcopy(ic->ic_sup_rates[IEEE80211_MODE_11A].rs_rates, rs.rates, rs.nrates); DPRINTF(("Setting .11a supported rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 0); if (error != 0) return error; /* if we have a desired ESSID, set it now */ if (ic->ic_des_esslen != 0) { #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting desired ESSID to "); ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ic->ic_des_essid, ic->ic_des_esslen, 0); if (error != 0) return error; } data = htole32(arc4random()); DPRINTF(("Setting initialization vector to %u\n", letoh32(data))); error = iwi_cmd(sc, IWI_CMD_SET_IV, &data, sizeof data, 0); if (error != 0) return error; if (ic->ic_flags & IEEE80211_F_WEPON) { k = ic->ic_nw_keys; for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) { wepkey.cmd = IWI_WEP_KEY_CMD_SETKEY; wepkey.idx = i; wepkey.len = k->wk_len; bzero(wepkey.key, sizeof wepkey.key); bcopy(k->wk_key, wepkey.key, k->wk_len); DPRINTF(("Setting wep key index %u len %u\n", wepkey.idx, wepkey.len)); error = iwi_cmd(sc, IWI_CMD_SET_WEP_KEY, &wepkey, sizeof wepkey, 0); if (error != 0) return error; } } /* enable adapter */ DPRINTF(("Enabling adapter\n")); return iwi_cmd(sc, IWI_CMD_ENABLE, NULL, 0, 0); } int iwi_set_chan(struct iwi_softc *sc, struct ieee80211_channel *chan) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_scan scan; bzero(&scan, sizeof scan); memset(scan.type, IWI_SCAN_TYPE_PASSIVE, sizeof scan.type); scan.passive = htole16(2000); scan.channels[0] = 1 | (IEEE80211_IS_CHAN_5GHZ(chan) ? IWI_CHAN_5GHZ : IWI_CHAN_2GHZ); scan.channels[1] = ieee80211_chan2ieee(ic, chan); DPRINTF(("Setting channel to %u\n", ieee80211_chan2ieee(ic, chan))); return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1); } int iwi_scan(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwi_scan scan; uint8_t *p; int i, count; bzero(&scan, sizeof scan); if (ic->ic_des_esslen != 0) { scan.bdirected = htole16(40); memset(scan.type, IWI_SCAN_TYPE_BDIRECTED, sizeof scan.type); } else { scan.broadcast = htole16(40); memset(scan.type, IWI_SCAN_TYPE_BROADCAST, sizeof scan.type); } p = scan.channels; count = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (IEEE80211_IS_CHAN_5GHZ(&ic->ic_channels[i])) { *++p = i; count++; } } *(p - count) = IWI_CHAN_5GHZ | count; p = (count > 0) ? p + 1 : scan.channels; count = 0; for (i = 0; i <= IEEE80211_CHAN_MAX; i++) { if (IEEE80211_IS_CHAN_2GHZ(&ic->ic_channels[i])) { *++p = i; count++; } } *(p - count) = IWI_CHAN_2GHZ | count; DPRINTF(("Start scanning\n")); return iwi_cmd(sc, IWI_CMD_SCAN, &scan, sizeof scan, 1); } int iwi_auth_and_assoc(struct iwi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct iwi_configuration config; struct iwi_associate assoc; struct iwi_rateset rs; uint16_t capinfo; uint32_t data; int error; /* update adapter configuration */ bzero(&config, sizeof config); config.multicast_enabled = 1; config.silence_threshold = 30; config.report_noise = 1; config.answer_pbreq = (ic->ic_opmode == IEEE80211_M_IBSS) ? 1 : 0; if (ic->ic_curmode == IEEE80211_MODE_11G) config.bg_autodetection = 1; DPRINTF(("Configuring adapter\n")); error = iwi_cmd(sc, IWI_CMD_SET_CONFIG, &config, sizeof config, 1); if (error != 0) return error; #ifdef IWI_DEBUG if (iwi_debug > 0) { printf("Setting ESSID to "); ieee80211_print_essid(ni->ni_essid, ni->ni_esslen); printf("\n"); } #endif error = iwi_cmd(sc, IWI_CMD_SET_ESSID, ni->ni_essid, ni->ni_esslen, 1); if (error != 0) return error; /* the rate set has already been "negotiated" */ rs.mode = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? IWI_MODE_11A : IWI_MODE_11G; rs.type = IWI_RATESET_TYPE_NEGOTIATED; rs.nrates = ni->ni_rates.rs_nrates; bcopy(ni->ni_rates.rs_rates, rs.rates, rs.nrates); DPRINTF(("Setting negotiated rates (%u)\n", rs.nrates)); error = iwi_cmd(sc, IWI_CMD_SET_RATES, &rs, sizeof rs, 1); if (error != 0) return error; data = htole32(ni->ni_rssi); DPRINTF(("Setting sensitivity to %d\n", (int8_t)ni->ni_rssi)); error = iwi_cmd(sc, IWI_CMD_SET_SENSITIVITY, &data, sizeof data, 1); if (error != 0) return error; bzero(&assoc, sizeof assoc); if (ic->ic_flags & IEEE80211_F_SIBSS) assoc.type = IWI_ASSOC_SIBSS; else assoc.type = IWI_ASSOC_ASSOCIATE; if (ic->ic_curmode == IEEE80211_MODE_11A) assoc.mode = IWI_MODE_11A; else if (ic->ic_curmode == IEEE80211_MODE_11B) assoc.mode = IWI_MODE_11B; else /* assume 802.11b/g */ assoc.mode = IWI_MODE_11G; assoc.chan = ieee80211_chan2ieee(ic, ni->ni_chan); #if 0 if (ni->ni_challenge != NULL) /* XXX */ assoc.auth = (ic->ic_wep_txkey << 4) | IWI_AUTH_SHARED; #endif if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) assoc.plen = IWI_ASSOC_SHPREAMBLE; bcopy(ni->ni_tstamp, assoc.tstamp, 8); if (ic->ic_opmode == IEEE80211_M_IBSS) capinfo = IEEE80211_CAPINFO_IBSS; else capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_WEPON) capinfo |= IEEE80211_CAPINFO_PRIVACY; if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; if (ic->ic_flags & IEEE80211_F_SHSLOT) capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; assoc.capinfo = htole16(capinfo); assoc.lintval = htole16(ic->ic_lintval); assoc.intval = htole16(ni->ni_intval); IEEE80211_ADDR_COPY(assoc.bssid, ni->ni_bssid); if (ic->ic_opmode == IEEE80211_M_IBSS) IEEE80211_ADDR_COPY(assoc.dst, etherbroadcastaddr); else IEEE80211_ADDR_COPY(assoc.dst, ni->ni_bssid); DPRINTF(("Trying to associate to %s channel %u auth %u\n", ether_sprintf(assoc.bssid), assoc.chan, assoc.auth)); return iwi_cmd(sc, IWI_CMD_ASSOCIATE, &assoc, sizeof assoc, 1); } int iwi_init(struct ifnet *ifp) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct iwi_firmware_hdr *hdr; const char *name, *fw; u_char *data; size_t size; int i, error; iwi_stop(ifp, 0); if ((error = iwi_reset(sc)) != 0) { printf("%s: could not reset adapter\n", sc->sc_dev.dv_xname); goto fail1; } switch (sc->sc_ic.ic_opmode) { case IEEE80211_M_STA: case IEEE80211_M_HOSTAP: name = "iwi-bss"; break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: name = "iwi-ibss"; break; case IEEE80211_M_MONITOR: name = "iwi-monitor"; break; default: name = NULL; /* should not get there */ } if ((error = loadfirmware(name, &data, &size)) != 0) { printf("%s: could not read firmware %s\n", sc->sc_dev.dv_xname, name); goto fail1; } if (size < sizeof (struct iwi_firmware_hdr)) { printf("%s: firmware image too short: %u bytes\n", sc->sc_dev.dv_xname, size); error = EINVAL; goto fail2; } hdr = (struct iwi_firmware_hdr *)data; if (hdr->vermaj < 3 || hdr->bootsz == 0 || hdr->ucodesz == 0 || hdr->mainsz == 0) { printf("%s: firmware image too old (need at least 3.0)\n", sc->sc_dev.dv_xname); error = EINVAL; goto fail2; } if (size < sizeof (struct iwi_firmware_hdr) + letoh32(hdr->bootsz) + letoh32(hdr->ucodesz) + letoh32(hdr->mainsz)) { printf("%s: firmware image too short: %u bytes\n", sc->sc_dev.dv_xname, size); error = EINVAL; goto fail2; } fw = (const char *)data + sizeof (struct iwi_firmware_hdr); if ((error = iwi_load_firmware(sc, fw, letoh32(hdr->bootsz))) != 0) { printf("%s: could not load boot firmware\n", sc->sc_dev.dv_xname); goto fail2; } fw = (const char *)data + sizeof (struct iwi_firmware_hdr) + letoh32(hdr->bootsz); if ((error = iwi_load_ucode(sc, fw, letoh32(hdr->ucodesz))) != 0) { printf("%s: could not load microcode\n", sc->sc_dev.dv_xname); goto fail2; } iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_CMD_BASE, sc->cmdq.map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_CMD_SIZE, IWI_CMD_RING_COUNT); CSR_WRITE_4(sc, IWI_CSR_CMD_WIDX, sc->cmdq.cur); CSR_WRITE_4(sc, IWI_CSR_TX1_BASE, sc->txq[0].map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX1_SIZE, IWI_TX_RING_COUNT); CSR_WRITE_4(sc, IWI_CSR_TX1_WIDX, sc->txq[0].cur); CSR_WRITE_4(sc, IWI_CSR_TX2_BASE, sc->txq[1].map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX2_SIZE, IWI_TX_RING_COUNT); CSR_WRITE_4(sc, IWI_CSR_TX2_WIDX, sc->txq[1].cur); CSR_WRITE_4(sc, IWI_CSR_TX3_BASE, sc->txq[2].map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX3_SIZE, IWI_TX_RING_COUNT); CSR_WRITE_4(sc, IWI_CSR_TX3_WIDX, sc->txq[2].cur); CSR_WRITE_4(sc, IWI_CSR_TX4_BASE, sc->txq[3].map->dm_segs[0].ds_addr); CSR_WRITE_4(sc, IWI_CSR_TX4_SIZE, IWI_TX_RING_COUNT); CSR_WRITE_4(sc, IWI_CSR_TX4_WIDX, sc->txq[3].cur); for (i = 0; i < IWI_RX_RING_COUNT; i++) { struct iwi_rx_data *data = &sc->rxq.data[i]; CSR_WRITE_4(sc, data->reg, data->map->dm_segs[0].ds_addr); } CSR_WRITE_4(sc, IWI_CSR_RX_WIDX, IWI_RX_RING_COUNT - 1); fw = (const char *)data + sizeof (struct iwi_firmware_hdr) + letoh32(hdr->bootsz) + letoh32(hdr->ucodesz); if ((error = iwi_load_firmware(sc, fw, letoh32(hdr->mainsz))) != 0) { printf("%s: could not load main firmware\n", sc->sc_dev.dv_xname); goto fail2; } free(data, M_DEVBUF); sc->flags |= IWI_FLAG_FW_INITED; if ((error = iwi_config(sc)) != 0) { printf("%s: device configuration failed\n", sc->sc_dev.dv_xname); goto fail1; } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode != IEEE80211_M_MONITOR) ieee80211_begin_scan(ifp); else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); return 0; fail2: free(data, M_DEVBUF); fail1: iwi_stop(ifp, 0); return error; } void iwi_stop(struct ifnet *ifp, int disable) { struct iwi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int i; sc->sc_tx_timer = 0; ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); iwi_stop_master(sc); CSR_WRITE_4(sc, IWI_CSR_RST, IWI_RST_SW_RESET); /* reset rings */ iwi_reset_cmd_ring(sc, &sc->cmdq); for (i = 0; i < 4; i++) iwi_reset_tx_ring(sc, &sc->txq[i]); iwi_reset_rx_ring(sc, &sc->rxq); } struct cfdriver iwi_cd = { NULL, "iwi", DV_IFNET };