/* $OpenBSD: if_iwm.c,v 1.34 2015/03/03 20:14:34 kettenis Exp $ */ /* * Copyright (c) 2014 genua mbh * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * * Driver version we are currently based off of is * Linux 3.14.3 (tag id a2df521e42b1d9a23f620ac79dbfe8655a8391dd) * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2007 - 2013 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * * BSD LICENSE * * Copyright(c) 2005 - 2013 Intel Corporation. All rights reserved. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #define DEVNAME(_s) ((_s)->sc_dev.dv_xname) #define IC2IFP(_ic_) (&(_ic_)->ic_if) #define le16_to_cpup(_a_) (le16toh(*(const uint16_t *)(_a_))) #define le32_to_cpup(_a_) (le32toh(*(const uint32_t *)(_a_))) #ifdef IWM_DEBUG #define DPRINTF(x) do { if (iwm_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwm_debug >= (n)) printf x; } while (0) int iwm_debug = 1; #else #define DPRINTF(x) do { ; } while (0) #define DPRINTFN(n, x) do { ; } while (0) #endif #include #include const uint8_t iwm_nvm_channels[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44 , 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165 }; #define IWM_NUM_2GHZ_CHANNELS 14 const struct iwm_rate { uint8_t rate; uint8_t plcp; } iwm_rates[] = { { 2, IWM_RATE_1M_PLCP }, { 4, IWM_RATE_2M_PLCP }, { 11, IWM_RATE_5M_PLCP }, { 22, IWM_RATE_11M_PLCP }, { 12, IWM_RATE_6M_PLCP }, { 18, IWM_RATE_9M_PLCP }, { 24, IWM_RATE_12M_PLCP }, { 36, IWM_RATE_18M_PLCP }, { 48, IWM_RATE_24M_PLCP }, { 72, IWM_RATE_36M_PLCP }, { 96, IWM_RATE_48M_PLCP }, { 108, IWM_RATE_54M_PLCP }, }; #define IWM_RIDX_CCK 0 #define IWM_RIDX_OFDM 4 #define IWM_RIDX_MAX (nitems(iwm_rates)-1) #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM) #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM) struct iwm_newstate_state { struct task ns_wk; struct ieee80211com *ns_ic; enum ieee80211_state ns_nstate; int ns_arg; int ns_generation; }; int iwm_store_cscheme(struct iwm_softc *, uint8_t *, size_t); int iwm_firmware_store_section(struct iwm_softc *, enum iwm_ucode_type, uint8_t *, size_t); int iwm_set_default_calib(struct iwm_softc *, const void *); void iwm_fw_info_free(struct iwm_fw_info *); int iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type); uint32_t iwm_read_prph(struct iwm_softc *, uint32_t); void iwm_write_prph(struct iwm_softc *, uint32_t, uint32_t); int iwm_read_mem(struct iwm_softc *, uint32_t, void *, int); int iwm_write_mem(struct iwm_softc *, uint32_t, const void *, int); int iwm_write_mem32(struct iwm_softc *, uint32_t, uint32_t); int iwm_poll_bit(struct iwm_softc *, int, uint32_t, uint32_t, int); int iwm_nic_lock(struct iwm_softc *); void iwm_nic_unlock(struct iwm_softc *); void iwm_set_bits_mask_prph(struct iwm_softc *, uint32_t, uint32_t, uint32_t); void iwm_set_bits_prph(struct iwm_softc *, uint32_t, uint32_t); void iwm_clear_bits_prph(struct iwm_softc *, uint32_t, uint32_t); int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *, bus_size_t, bus_size_t); void iwm_dma_contig_free(struct iwm_dma_info *); int iwm_alloc_fwmem(struct iwm_softc *); void iwm_free_fwmem(struct iwm_softc *); int iwm_alloc_sched(struct iwm_softc *); void iwm_free_sched(struct iwm_softc *); int iwm_alloc_kw(struct iwm_softc *); void iwm_free_kw(struct iwm_softc *); int iwm_alloc_ict(struct iwm_softc *); void iwm_free_ict(struct iwm_softc *); int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, int); void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); void iwm_enable_rfkill_int(struct iwm_softc *); int iwm_check_rfkill(struct iwm_softc *); void iwm_enable_interrupts(struct iwm_softc *); void iwm_restore_interrupts(struct iwm_softc *); void iwm_disable_interrupts(struct iwm_softc *); void iwm_ict_reset(struct iwm_softc *); int iwm_set_hw_ready(struct iwm_softc *); int iwm_prepare_card_hw(struct iwm_softc *); void iwm_apm_config(struct iwm_softc *); int iwm_apm_init(struct iwm_softc *); void iwm_apm_stop(struct iwm_softc *); int iwm_allow_mcast(struct iwm_softc *); int iwm_start_hw(struct iwm_softc *); void iwm_stop_device(struct iwm_softc *); void iwm_set_pwr(struct iwm_softc *); void iwm_mvm_nic_config(struct iwm_softc *); int iwm_nic_rx_init(struct iwm_softc *); int iwm_nic_tx_init(struct iwm_softc *); int iwm_nic_init(struct iwm_softc *); void iwm_enable_txq(struct iwm_softc *, int, int); int iwm_post_alive(struct iwm_softc *); #ifdef notyet struct iwm_phy_db_entry *iwm_phy_db_get_section(struct iwm_softc *, enum iwm_phy_db_section_type, uint16_t); int iwm_phy_db_set_section(struct iwm_softc *, struct iwm_calib_res_notif_phy_db *); #endif int iwm_is_valid_channel(uint16_t); uint8_t iwm_ch_id_to_ch_index(uint16_t); uint16_t iwm_channel_id_to_papd(uint16_t); uint16_t iwm_channel_id_to_txp(struct iwm_softc *, uint16_t); int iwm_phy_db_get_section_data(struct iwm_softc *, uint32_t, uint8_t **, uint16_t *, uint16_t); int iwm_send_phy_db_cmd(struct iwm_softc *, uint16_t, uint16_t, void *); #ifdef notyet int iwm_phy_db_send_all_channel_groups(struct iwm_softc *, enum iwm_phy_db_section_type, uint8_t); #endif int iwm_send_phy_db_data(struct iwm_softc *); int iwm_send_phy_db_data(struct iwm_softc *); void iwm_mvm_te_v2_to_v1(const struct iwm_time_event_cmd_v2 *, struct iwm_time_event_cmd_v1 *); int iwm_mvm_send_time_event_cmd(struct iwm_softc *, const struct iwm_time_event_cmd_v2 *); int iwm_mvm_time_event_send_add(struct iwm_softc *, struct iwm_node *, void *, struct iwm_time_event_cmd_v2 *); void iwm_mvm_protect_session(struct iwm_softc *, struct iwm_node *, uint32_t, uint32_t, uint32_t); int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, uint16_t, uint8_t *, uint16_t *); int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, uint16_t *); void iwm_init_channel_map(struct iwm_softc *, const uint16_t * const); int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, const uint16_t *, const uint16_t *, uint8_t, uint8_t); #ifdef notyet int iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *); #endif int iwm_nvm_init(struct iwm_softc *); int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t, const uint8_t *, uint32_t); int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type); int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type); int iwm_fw_alive(struct iwm_softc *, uint32_t); int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); int iwm_send_phy_cfg_cmd(struct iwm_softc *); int iwm_mvm_load_ucode_wait_alive(struct iwm_softc *, enum iwm_ucode_type); int iwm_run_init_mvm_ucode(struct iwm_softc *, int); int iwm_rx_addbuf(struct iwm_softc *, int, int); int iwm_mvm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *); int iwm_mvm_get_signal_strength(struct iwm_softc *, struct iwm_rx_phy_info *); void iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_rx_data *); int iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *); void iwm_mvm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_rx_data *); void iwm_mvm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_node *); void iwm_mvm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_rx_data *); int iwm_mvm_binding_cmd(struct iwm_softc *, struct iwm_node *, uint32_t); int iwm_mvm_binding_update(struct iwm_softc *, struct iwm_node *, int); int iwm_mvm_binding_add_vif(struct iwm_softc *, struct iwm_node *); void iwm_mvm_phy_ctxt_cmd_hdr(struct iwm_softc *, struct iwm_mvm_phy_ctxt *, struct iwm_phy_context_cmd *, uint32_t, uint32_t); void iwm_mvm_phy_ctxt_cmd_data(struct iwm_softc *, struct iwm_phy_context_cmd *, struct ieee80211_channel *, uint8_t, uint8_t); int iwm_mvm_phy_ctxt_apply(struct iwm_softc *, struct iwm_mvm_phy_ctxt *, uint8_t, uint8_t, uint32_t, uint32_t); int iwm_mvm_phy_ctxt_add(struct iwm_softc *, struct iwm_mvm_phy_ctxt *, struct ieee80211_channel *, uint8_t, uint8_t); int iwm_mvm_phy_ctxt_changed(struct iwm_softc *, struct iwm_mvm_phy_ctxt *, struct ieee80211_channel *, uint8_t, uint8_t); int iwm_send_cmd(struct iwm_softc *, struct iwm_host_cmd *); int iwm_mvm_send_cmd_pdu(struct iwm_softc *, uint8_t, uint32_t, uint16_t, const void *); int iwm_mvm_send_cmd_status(struct iwm_softc *, struct iwm_host_cmd *, uint32_t *); int iwm_mvm_send_cmd_pdu_status(struct iwm_softc *, uint8_t, uint16_t, const void *, uint32_t *); void iwm_free_resp(struct iwm_softc *, struct iwm_host_cmd *); void iwm_cmd_done(struct iwm_softc *, struct iwm_rx_packet *); void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, uint16_t); const struct iwm_rate *iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, struct ieee80211_frame *, struct iwm_tx_cmd *); int iwm_tx(struct iwm_softc *, struct mbuf *, struct ieee80211_node *, int); int iwm_mvm_beacon_filter_send_cmd(struct iwm_softc *, struct iwm_beacon_filter_cmd *); void iwm_mvm_beacon_filter_set_cqm_params(struct iwm_softc *, struct iwm_node *, struct iwm_beacon_filter_cmd *); int iwm_mvm_update_beacon_abort(struct iwm_softc *, struct iwm_node *, int); void iwm_mvm_power_log(struct iwm_softc *, struct iwm_mac_power_cmd *); void iwm_mvm_power_build_cmd(struct iwm_softc *, struct iwm_node *, struct iwm_mac_power_cmd *); int iwm_mvm_power_mac_update_mode(struct iwm_softc *, struct iwm_node *); int iwm_mvm_power_update_device(struct iwm_softc *); int iwm_mvm_enable_beacon_filter(struct iwm_softc *, struct iwm_node *); int iwm_mvm_disable_beacon_filter(struct iwm_softc *, struct iwm_node *); void iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *, struct iwm_mvm_add_sta_cmd_v5 *); int iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *, struct iwm_mvm_add_sta_cmd_v6 *, int *); int iwm_mvm_sta_send_to_fw(struct iwm_softc *, struct iwm_node *, int); int iwm_mvm_add_sta(struct iwm_softc *, struct iwm_node *); int iwm_mvm_update_sta(struct iwm_softc *, struct iwm_node *); int iwm_mvm_add_int_sta_common(struct iwm_softc *, struct iwm_int_sta *, const uint8_t *, uint16_t, uint16_t); int iwm_mvm_add_aux_sta(struct iwm_softc *); uint16_t iwm_mvm_scan_rx_chain(struct iwm_softc *); uint32_t iwm_mvm_scan_max_out_time(struct iwm_softc *, uint32_t, int); uint32_t iwm_mvm_scan_suspend_time(struct iwm_softc *, int); uint32_t iwm_mvm_scan_rxon_flags(struct iwm_softc *, int); uint32_t iwm_mvm_scan_rate_n_flags(struct iwm_softc *, int, int); uint16_t iwm_mvm_get_active_dwell(struct iwm_softc *, int, int); uint16_t iwm_mvm_get_passive_dwell(struct iwm_softc *, int); int iwm_mvm_scan_fill_channels(struct iwm_softc *, struct iwm_scan_cmd *, int, int, int); uint16_t iwm_mvm_fill_probe_req(struct iwm_softc *, struct ieee80211_frame *, const uint8_t *, int, const uint8_t *, int, const uint8_t *, int, int); int iwm_mvm_scan_request(struct iwm_softc *, int, int, uint8_t *, int); void iwm_mvm_ack_rates(struct iwm_softc *, struct iwm_node *, int *, int *); void iwm_mvm_mac_ctxt_cmd_common(struct iwm_softc *, struct iwm_node *, struct iwm_mac_ctx_cmd *, uint32_t); int iwm_mvm_mac_ctxt_send_cmd(struct iwm_softc *, struct iwm_mac_ctx_cmd *); void iwm_mvm_mac_ctxt_cmd_fill_sta(struct iwm_softc *, struct iwm_node *, struct iwm_mac_data_sta *, int); int iwm_mvm_mac_ctxt_cmd_station(struct iwm_softc *, struct iwm_node *, uint32_t); int iwm_mvm_mac_ctx_send(struct iwm_softc *, struct iwm_node *, uint32_t); int iwm_mvm_mac_ctxt_add(struct iwm_softc *, struct iwm_node *); int iwm_mvm_mac_ctxt_changed(struct iwm_softc *, struct iwm_node *); int iwm_mvm_update_quotas(struct iwm_softc *, struct iwm_node *); int iwm_auth(struct iwm_softc *); int iwm_assoc(struct iwm_softc *); int iwm_release(struct iwm_softc *, struct iwm_node *); struct ieee80211_node *iwm_node_alloc(struct ieee80211com *); void iwm_calib_timeout(void *); void iwm_setrates(struct iwm_node *); int iwm_media_change(struct ifnet *); void iwm_newstate_cb(void *); int iwm_newstate(struct ieee80211com *, enum ieee80211_state, int); void iwm_endscan_cb(void *); int iwm_init_hw(struct iwm_softc *); int iwm_init(struct ifnet *); void iwm_start(struct ifnet *); void iwm_stop(struct ifnet *, int); void iwm_watchdog(struct ifnet *); int iwm_ioctl(struct ifnet *, u_long, iwm_caddr_t); const char *iwm_desc_lookup(uint32_t); #ifdef IWM_DEBUG void iwm_nic_error(struct iwm_softc *); #endif void iwm_notif_intr(struct iwm_softc *); int iwm_intr(void *); int iwm_match(struct device *, void *, void *); int iwm_preinit(struct iwm_softc *); void iwm_attach_hook(iwm_hookarg_t); void iwm_attach(struct device *, struct device *, void *); void iwm_init_task(void *); int iwm_activate(struct device *, int); void iwm_wakeup(struct iwm_softc *); #if NBPFILTER > 0 void iwm_radiotap_attach(struct iwm_softc *); #endif /* * Firmware parser. */ int iwm_store_cscheme(struct iwm_softc *sc, uint8_t *data, size_t dlen) { struct iwm_fw_cscheme_list *l = (void *)data; if (dlen < sizeof(*l) || dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) return EINVAL; /* we don't actually store anything for now, always use s/w crypto */ return 0; } int iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type, uint8_t *data, size_t dlen) { struct iwm_fw_sects *fws; struct iwm_fw_onesect *fwone; if (type >= IWM_UCODE_TYPE_MAX) return EINVAL; if (dlen < sizeof(uint32_t)) return EINVAL; fws = &sc->sc_fw.fw_sects[type]; if (fws->fw_count >= IWM_UCODE_SECT_MAX) return EINVAL; fwone = &fws->fw_sect[fws->fw_count]; /* first 32bit are device load offset */ memcpy(&fwone->fws_devoff, data, sizeof(uint32_t)); /* rest is data */ fwone->fws_data = data + sizeof(uint32_t); fwone->fws_len = dlen - sizeof(uint32_t); fws->fw_count++; fws->fw_totlen += fwone->fws_len; return 0; } /* iwlwifi: iwl-drv.c */ struct iwm_tlv_calib_data { uint32_t ucode_type; struct iwm_tlv_calib_ctrl calib; } __packed; int iwm_set_default_calib(struct iwm_softc *sc, const void *data) { const struct iwm_tlv_calib_data *def_calib = data; uint32_t ucode_type = le32toh(def_calib->ucode_type); if (ucode_type >= IWM_UCODE_TYPE_MAX) { DPRINTF(("%s: Wrong ucode_type %u for default " "calibration.\n", DEVNAME(sc), ucode_type)); return EINVAL; } sc->sc_default_calib[ucode_type].flow_trigger = def_calib->calib.flow_trigger; sc->sc_default_calib[ucode_type].event_trigger = def_calib->calib.event_trigger; return 0; } void iwm_fw_info_free(struct iwm_fw_info *fw) { free(fw->fw_rawdata, M_DEVBUF, fw->fw_rawsize); fw->fw_rawdata = NULL; fw->fw_rawsize = 0; /* don't touch fw->fw_status */ memset(fw->fw_sects, 0, sizeof(fw->fw_sects)); } int iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { struct iwm_fw_info *fw = &sc->sc_fw; struct iwm_tlv_ucode_header *uhdr; struct iwm_ucode_tlv tlv; enum iwm_ucode_tlv_type tlv_type; uint8_t *data; int error; size_t len; if (fw->fw_status == IWM_FW_STATUS_DONE && ucode_type != IWM_UCODE_TYPE_INIT) return 0; while (fw->fw_status == IWM_FW_STATUS_INPROGRESS) tsleep(&sc->sc_fw, 0, "iwmfwp", 0); fw->fw_status = IWM_FW_STATUS_INPROGRESS; if (fw->fw_rawdata != NULL) iwm_fw_info_free(fw); /* * Load firmware into driver memory. * fw_rawdata and fw_rawsize will be set. */ error = loadfirmware(sc->sc_fwname, (u_char **)&fw->fw_rawdata, &fw->fw_rawsize); if (error != 0) { printf("%s: could not read firmware %s (error %d)\n", DEVNAME(sc), sc->sc_fwname, error); goto out; } /* * Parse firmware contents */ uhdr = (void *)fw->fw_rawdata; if (*(uint32_t *)fw->fw_rawdata != 0 || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) { printf("%s: invalid firmware %s\n", DEVNAME(sc), sc->sc_fwname); error = EINVAL; goto out; } sc->sc_fwver = le32toh(uhdr->ver); data = uhdr->data; len = fw->fw_rawsize - sizeof(*uhdr); while (len >= sizeof(tlv)) { size_t tlv_len; void *tlv_data; memcpy(&tlv, data, sizeof(tlv)); tlv_len = le32toh(tlv.length); tlv_type = le32toh(tlv.type); len -= sizeof(tlv); data += sizeof(tlv); tlv_data = data; if (len < tlv_len) { printf("%s: firmware too short: %zu bytes\n", DEVNAME(sc), len); error = EINVAL; goto parse_out; } switch ((int)tlv_type) { case IWM_UCODE_TLV_PROBE_MAX_LEN: if (tlv_len < sizeof(uint32_t)) { error = EINVAL; goto parse_out; } sc->sc_capa_max_probe_len = le32toh(*(uint32_t *)tlv_data); /* limit it to something sensible */ if (sc->sc_capa_max_probe_len > (1<<16)) { DPRINTF(("%s: IWM_UCODE_TLV_PROBE_MAX_LEN " "ridiculous\n", DEVNAME(sc))); error = EINVAL; goto parse_out; } break; case IWM_UCODE_TLV_PAN: if (tlv_len) { error = EINVAL; goto parse_out; } sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN; break; case IWM_UCODE_TLV_FLAGS: if (tlv_len < sizeof(uint32_t)) { error = EINVAL; goto parse_out; } /* * Apparently there can be many flags, but Linux driver * parses only the first one, and so do we. * * XXX: why does this override IWM_UCODE_TLV_PAN? * Intentional or a bug? Observations from * current firmware file: * 1) TLV_PAN is parsed first * 2) TLV_FLAGS contains TLV_FLAGS_PAN * ==> this resets TLV_PAN to itself... hnnnk */ sc->sc_capaflags = le32toh(*(uint32_t *)tlv_data); break; case IWM_UCODE_TLV_CSCHEME: if ((error = iwm_store_cscheme(sc, tlv_data, tlv_len)) != 0) goto parse_out; break; case IWM_UCODE_TLV_NUM_OF_CPU: if (tlv_len != sizeof(uint32_t)) { error = EINVAL; goto parse_out; } if (le32toh(*(uint32_t*)tlv_data) != 1) { DPRINTF(("%s: driver supports " "only TLV_NUM_OF_CPU == 1", DEVNAME(sc))); error = EINVAL; goto parse_out; } break; case IWM_UCODE_TLV_SEC_RT: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len)) != 0) goto parse_out; break; case IWM_UCODE_TLV_SEC_INIT: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_TYPE_INIT, tlv_data, tlv_len)) != 0) goto parse_out; break; case IWM_UCODE_TLV_SEC_WOWLAN: if ((error = iwm_firmware_store_section(sc, IWM_UCODE_TYPE_WOW, tlv_data, tlv_len)) != 0) goto parse_out; break; case IWM_UCODE_TLV_DEF_CALIB: if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { error = EINVAL; goto parse_out; } if ((error = iwm_set_default_calib(sc, tlv_data)) != 0) goto parse_out; break; case IWM_UCODE_TLV_PHY_SKU: if (tlv_len != sizeof(uint32_t)) { error = EINVAL; goto parse_out; } sc->sc_fw_phy_config = le32toh(*(uint32_t *)tlv_data); break; case IWM_UCODE_TLV_API_CHANGES_SET: case IWM_UCODE_TLV_ENABLED_CAPABILITIES: /* ignore, not used by current driver */ break; default: DPRINTF(("%s: unknown firmware section %d, abort\n", DEVNAME(sc), tlv_type)); error = EINVAL; goto parse_out; } len -= roundup(tlv_len, 4); data += roundup(tlv_len, 4); } KASSERT(error == 0); parse_out: if (error) { printf("%s: firmware parse error %d, " "section type %d\n", DEVNAME(sc), error, tlv_type); } if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) { printf("%s: device uses unsupported power ops\n", DEVNAME(sc)); error = ENOTSUP; } out: if (error) { fw->fw_status = IWM_FW_STATUS_NONE; if (fw->fw_rawdata != NULL) iwm_fw_info_free(fw); } else fw->fw_status = IWM_FW_STATUS_DONE; wakeup(&sc->sc_fw); return error; } /* * basic device access */ uint32_t iwm_read_prph(struct iwm_softc *sc, uint32_t addr) { IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_RADDR, ((addr & 0x000fffff) | (3 << 24))); IWM_BARRIER_READ_WRITE(sc); return IWM_READ(sc, IWM_HBUS_TARG_PRPH_RDAT); } void iwm_write_prph(struct iwm_softc *sc, uint32_t addr, uint32_t val) { IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WADDR, ((addr & 0x000fffff) | (3 << 24))); IWM_BARRIER_WRITE(sc); IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WDAT, val); } /* iwlwifi: pcie/trans.c */ int iwm_read_mem(struct iwm_softc *sc, uint32_t addr, void *buf, int dwords) { int offs, ret = 0; uint32_t *vals = buf; if (iwm_nic_lock(sc)) { IWM_WRITE(sc, IWM_HBUS_TARG_MEM_RADDR, addr); for (offs = 0; offs < dwords; offs++) vals[offs] = IWM_READ(sc, IWM_HBUS_TARG_MEM_RDAT); iwm_nic_unlock(sc); } else { ret = EBUSY; } return ret; } /* iwlwifi: pcie/trans.c */ int iwm_write_mem(struct iwm_softc *sc, uint32_t addr, const void *buf, int dwords) { int offs; const uint32_t *vals = buf; if (iwm_nic_lock(sc)) { IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WADDR, addr); /* WADDR auto-increments */ for (offs = 0; offs < dwords; offs++) { uint32_t val = vals ? vals[offs] : 0; IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WDAT, val); } iwm_nic_unlock(sc); } else { DPRINTF(("%s: write_mem failed\n", DEVNAME(sc))); return EBUSY; } return 0; } int iwm_write_mem32(struct iwm_softc *sc, uint32_t addr, uint32_t val) { return iwm_write_mem(sc, addr, &val, 1); } int iwm_poll_bit(struct iwm_softc *sc, int reg, uint32_t bits, uint32_t mask, int timo) { for (;;) { if ((IWM_READ(sc, reg) & mask) == (bits & mask)) { return 1; } if (timo < 10) { return 0; } timo -= 10; DELAY(10); } } int iwm_nic_lock(struct iwm_softc *sc) { int rv = 0; IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); if (iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP, 15000)) { rv = 1; } else { /* jolt */ IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_FORCE_NMI); } return rv; } void iwm_nic_unlock(struct iwm_softc *sc) { IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); } void iwm_set_bits_mask_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits, uint32_t mask) { uint32_t val; /* XXX: no error path? */ if (iwm_nic_lock(sc)) { val = iwm_read_prph(sc, reg) & mask; val |= bits; iwm_write_prph(sc, reg, val); iwm_nic_unlock(sc); } } void iwm_set_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits) { iwm_set_bits_mask_prph(sc, reg, bits, ~0); } void iwm_clear_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits) { iwm_set_bits_mask_prph(sc, reg, 0, ~bits); } /* * DMA resource routines */ int iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma, bus_size_t size, bus_size_t alignment) { int nsegs, error; caddr_t va; dma->tag = tag; dma->size = size; error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->map); if (error != 0) goto fail; error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) goto fail; error = bus_dmamem_map(tag, &dma->seg, 1, size, &va, BUS_DMA_NOWAIT); if (error != 0) goto fail; dma->vaddr = va; error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, BUS_DMA_NOWAIT); if (error != 0) goto fail; memset(dma->vaddr, 0, size); bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); dma->paddr = dma->map->dm_segs[0].ds_addr; return 0; fail: iwm_dma_contig_free(dma); return error; } void iwm_dma_contig_free(struct iwm_dma_info *dma) { if (dma->map != NULL) { if (dma->vaddr != NULL) { bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); bus_dmamem_free(dma->tag, &dma->seg, 1); dma->vaddr = NULL; } bus_dmamap_destroy(dma->tag, dma->map); dma->map = NULL; } } /* fwmem is used to load firmware onto the card */ int iwm_alloc_fwmem(struct iwm_softc *sc) { /* Must be aligned on a 16-byte boundary. */ return iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, sc->sc_fwdmasegsz, 16); } void iwm_free_fwmem(struct iwm_softc *sc) { iwm_dma_contig_free(&sc->fw_dma); } /* tx scheduler rings. not used? */ int iwm_alloc_sched(struct iwm_softc *sc) { int rv; /* TX scheduler rings must be aligned on a 1KB boundary. */ rv = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, nitems(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); return rv; } void iwm_free_sched(struct iwm_softc *sc) { iwm_dma_contig_free(&sc->sched_dma); } /* keep-warm page is used internally by the card. see iwl-fh.h for more info */ int iwm_alloc_kw(struct iwm_softc *sc) { return iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); } void iwm_free_kw(struct iwm_softc *sc) { iwm_dma_contig_free(&sc->kw_dma); } /* interrupt cause table */ int iwm_alloc_ict(struct iwm_softc *sc) { return iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, IWM_ICT_SIZE, 1<ict_dma); } int iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { bus_size_t size; int i, error; ring->cur = 0; /* Allocate RX descriptors (256-byte aligned). */ size = IWM_RX_RING_COUNT * sizeof(uint32_t); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); if (error != 0) { printf("%s: could not allocate RX ring DMA memory\n", DEVNAME(sc)); goto fail; } ring->desc = ring->desc_dma.vaddr; /* Allocate RX status area (16-byte aligned). */ error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, sizeof(*ring->stat), 16); if (error != 0) { printf("%s: could not allocate RX status DMA memory\n", DEVNAME(sc)); goto fail; } ring->stat = ring->stat_dma.vaddr; /* * Allocate and map RX buffers. */ for (i = 0; i < IWM_RX_RING_COUNT; i++) { struct iwm_rx_data *data = &ring->data[i]; memset(data, 0, sizeof(*data)); error = bus_dmamap_create(sc->sc_dmat, IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &data->map); if (error != 0) { printf("%s: could not create RX buf DMA map\n", DEVNAME(sc)); goto fail; } if ((error = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i)) != 0) { goto fail; } } return 0; fail: iwm_free_rx_ring(sc, ring); return error; } void iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { int ntries; if (iwm_nic_lock(sc)) { IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); for (ntries = 0; ntries < 1000; ntries++) { if (IWM_READ(sc, IWM_FH_MEM_RSSR_RX_STATUS_REG) & IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE) break; DELAY(10); } iwm_nic_unlock(sc); } ring->cur = 0; } void iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { int i; iwm_dma_contig_free(&ring->desc_dma); iwm_dma_contig_free(&ring->stat_dma); for (i = 0; i < IWM_RX_RING_COUNT; i++) { struct iwm_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } int iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) { bus_addr_t paddr; bus_size_t size; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; /* Allocate TX descriptors (256-byte aligned). */ size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); if (error != 0) { printf("%s: could not allocate TX ring DMA memory\n", DEVNAME(sc)); goto fail; } ring->desc = ring->desc_dma.vaddr; /* * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need * to allocate commands space for other rings. */ if (qid > IWM_MVM_CMD_QUEUE) return 0; size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd); error = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); if (error != 0) { printf("%s: could not allocate TX cmd DMA memory\n", DEVNAME(sc)); goto fail; } ring->cmd = ring->cmd_dma.vaddr; paddr = ring->cmd_dma.paddr; for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; data->cmd_paddr = paddr; data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) + offsetof(struct iwm_tx_cmd, scratch); paddr += sizeof(struct iwm_device_cmd); error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IWM_NUM_OF_TBS, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create TX buf DMA map\n", DEVNAME(sc)); goto fail; } } KASSERT(paddr == ring->cmd_dma.paddr + size); return 0; fail: iwm_free_tx_ring(sc, ring); return error; } void iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) { int i; for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } } /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, ring->desc_dma.size, BUS_DMASYNC_PREWRITE); sc->qfullmsk &= ~(1 << ring->qid); ring->queued = 0; ring->cur = 0; } void iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) { int i; iwm_dma_contig_free(&ring->desc_dma); iwm_dma_contig_free(&ring->cmd_dma); for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } /* * High-level hardware frobbing routines */ void iwm_enable_rfkill_int(struct iwm_softc *sc) { sc->sc_intmask = IWM_CSR_INT_BIT_RF_KILL; IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } int iwm_check_rfkill(struct iwm_softc *sc) { uint32_t v; int s; int rv; s = splnet(); /* * "documentation" is not really helpful here: * 27: HW_RF_KILL_SW * Indicates state of (platform's) hardware RF-Kill switch * * But apparently when it's off, it's on ... */ v = IWM_READ(sc, IWM_CSR_GP_CNTRL); rv = (v & IWM_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) == 0; if (rv) { sc->sc_flags |= IWM_FLAG_RFKILL; } else { sc->sc_flags &= ~IWM_FLAG_RFKILL; } splx(s); return rv; } void iwm_enable_interrupts(struct iwm_softc *sc) { sc->sc_intmask = IWM_CSR_INI_SET_MASK; IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } void iwm_restore_interrupts(struct iwm_softc *sc) { IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } void iwm_disable_interrupts(struct iwm_softc *sc) { int s = splnet(); /* disable interrupts */ IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); /* acknowledge all interrupts */ IWM_WRITE(sc, IWM_CSR_INT, ~0); IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0); splx(s); } void iwm_ict_reset(struct iwm_softc *sc) { iwm_disable_interrupts(sc); /* Reset ICT table. */ memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE); sc->ict_cur = 0; /* Set physical address of ICT table (4KB aligned). */ IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG, IWM_CSR_DRAM_INT_TBL_ENABLE | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT); /* Switch to ICT interrupt mode in driver. */ sc->sc_flags |= IWM_FLAG_USE_ICT; /* Re-enable interrupts. */ IWM_WRITE(sc, IWM_CSR_INT, ~0); iwm_enable_interrupts(sc); } #define IWM_HW_READY_TIMEOUT 50 int iwm_set_hw_ready(struct iwm_softc *sc) { IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); return iwm_poll_bit(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, IWM_HW_READY_TIMEOUT); } #undef IWM_HW_READY_TIMEOUT int iwm_prepare_card_hw(struct iwm_softc *sc) { int rv = 0; int t = 0; if (iwm_set_hw_ready(sc)) goto out; /* If HW is not ready, prepare the conditions to check again */ IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_PREPARE); do { if (iwm_set_hw_ready(sc)) goto out; DELAY(200); t += 200; } while (t < 150000); rv = ETIMEDOUT; out: return rv; } void iwm_apm_config(struct iwm_softc *sc) { pcireg_t reg; reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, sc->sc_cap_off + PCI_PCIE_LCSR); if (reg & PCI_PCIE_LCSR_ASPM_L1) { /* Um the Linux driver prints "Disabling L0S for this one ... */ IWM_SETBITS(sc, IWM_CSR_GIO_REG, IWM_CSR_GIO_REG_VAL_L0S_ENABLED); } else { /* ... and "Enabling" here */ IWM_CLRBITS(sc, IWM_CSR_GIO_REG, IWM_CSR_GIO_REG_VAL_L0S_ENABLED); } } /* * Start up NIC's basic functionality after it has been reset * (e.g. after platform boot, or shutdown via iwm_pcie_apm_stop()) * NOTE: This does not load uCode nor start the embedded processor */ int iwm_apm_init(struct iwm_softc *sc) { int error = 0; DPRINTF(("iwm apm start\n")); /* Disable L0S exit timer (platform NMI Work/Around) */ IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS, IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); /* * Disable L0s without affecting L1; * don't wait for ICH L0s (ICH bug W/A) */ IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS, IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* Set FH wait threshold to maximum (HW error during stress W/A) */ IWM_SETBITS(sc, IWM_CSR_DBG_HPET_MEM_REG, IWM_CSR_DBG_HPET_MEM_REG_VAL); /* * Enable HAP INTA (interrupt from management bus) to * wake device's PCI Express link L1a -> L0s */ IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); iwm_apm_config(sc); #if 0 /* not for 7k */ /* Configure analog phase-lock-loop before activating to D0A */ if (trans->cfg->base_params->pll_cfg_val) IWM_SETBITS(trans, IWM_CSR_ANA_PLL_CFG, trans->cfg->base_params->pll_cfg_val); #endif /* * Set "initialization complete" bit to move adapter from * D0U* --> D0A* (powered-up active) state. */ IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * Wait for clock stabilization; once stabilized, access to * device-internal resources is supported, e.g. iwm_write_prph() * and accesses to uCode SRAM. */ if (!iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000)) { printf("%s: timeout waiting for clock stabilization\n", DEVNAME(sc)); goto out; } if (sc->host_interrupt_operation_mode) { /* * This is a bit of an abuse - This is needed for 7260 / 3160 * only check host_interrupt_operation_mode even if this is * not related to host_interrupt_operation_mode. * * Enable the oscillator to count wake up time for L1 exit. This * consumes slightly more power (100uA) - but allows to be sure * that we wake up from L1 on time. * * This looks weird: read twice the same register, discard the * value, set a bit, and yet again, read that same register * just to discard the value. But that's the way the hardware * seems to like it. */ iwm_read_prph(sc, IWM_OSC_CLK); iwm_read_prph(sc, IWM_OSC_CLK); iwm_set_bits_prph(sc, IWM_OSC_CLK, IWM_OSC_CLK_FORCE_CONTROL); iwm_read_prph(sc, IWM_OSC_CLK); iwm_read_prph(sc, IWM_OSC_CLK); } /* * Enable DMA clock and wait for it to stabilize. * * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits * do not disable clocks. This preserves any hardware bits already * set by default in "CLK_CTRL_REG" after reset. */ iwm_write_prph(sc, IWM_APMG_CLK_EN_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT); //kpause("iwmapm", 0, mstohz(20), NULL); DELAY(20); /* Disable L1-Active */ iwm_set_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); /* Clear the interrupt in APMG if the NIC is in RFKILL */ iwm_write_prph(sc, IWM_APMG_RTC_INT_STT_REG, IWM_APMG_RTC_INT_STT_RFKILL); out: if (error) printf("%s: apm init error %d\n", DEVNAME(sc), error); return error; } /* iwlwifi/pcie/trans.c */ void iwm_apm_stop(struct iwm_softc *sc) { /* stop device's busmaster DMA activity */ IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_STOP_MASTER); if (!iwm_poll_bit(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED, IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED, 100)) printf("%s: timeout waiting for master\n", DEVNAME(sc)); DPRINTF(("iwm apm stop\n")); } /* iwlwifi pcie/trans.c */ int iwm_start_hw(struct iwm_softc *sc) { int error; if ((error = iwm_prepare_card_hw(sc)) != 0) return error; /* Reset the entire device */ IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET | IWM_CSR_RESET_REG_FLAG_NEVO_RESET); DELAY(10); if ((error = iwm_apm_init(sc)) != 0) return error; iwm_enable_rfkill_int(sc); iwm_check_rfkill(sc); return 0; } /* iwlwifi pcie/trans.c */ void iwm_stop_device(struct iwm_softc *sc) { int chnl, ntries; int qid; /* tell the device to stop sending interrupts */ iwm_disable_interrupts(sc); /* device going down, Stop using ICT table */ sc->sc_flags &= ~IWM_FLAG_USE_ICT; /* stop tx and rx. tx and rx bits, as usual, are from if_iwn */ iwm_write_prph(sc, IWM_SCD_TXFACT, 0); /* Stop all DMA channels. */ if (iwm_nic_lock(sc)) { for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0); for (ntries = 0; ntries < 200; ntries++) { uint32_t r; r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG); if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE( chnl)) break; DELAY(20); } } iwm_nic_unlock(sc); } /* Stop RX ring. */ iwm_reset_rx_ring(sc, &sc->rxq); /* Reset all TX rings. */ for (qid = 0; qid < nitems(sc->txq); qid++) iwm_reset_tx_ring(sc, &sc->txq[qid]); /* * Power-down device's busmaster DMA clocks */ iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT); DELAY(5); /* Make sure (redundant) we've released our request to stay awake */ IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* Stop the device, and put it in low power state */ iwm_apm_stop(sc); /* Upon stop, the APM issues an interrupt if HW RF kill is set. * Clean again the interrupt here */ iwm_disable_interrupts(sc); /* stop and reset the on-board processor */ IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_NEVO_RESET); /* * Even if we stop the HW, we still want the RF kill * interrupt */ iwm_enable_rfkill_int(sc); iwm_check_rfkill(sc); } /* iwlwifi pcie/trans.c (always main power) */ void iwm_set_pwr(struct iwm_softc *sc) { iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, IWM_APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, ~IWM_APMG_PS_CTRL_MSK_PWR_SRC); } /* iwlwifi: mvm/ops.c */ void iwm_mvm_nic_config(struct iwm_softc *sc) { uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; uint32_t reg_val = 0; radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >> IWM_FW_PHY_CFG_RADIO_TYPE_POS; radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >> IWM_FW_PHY_CFG_RADIO_STEP_POS; radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >> IWM_FW_PHY_CFG_RADIO_DASH_POS; /* SKU control */ reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) << IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) << IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; /* radio configuration */ reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val); DPRINTF(("Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type, radio_cfg_step, radio_cfg_dash)); /* * W/A : NIC is stuck in a reset state after Early PCIe power off * (PCIe power is lost before PERST# is asserted), causing ME FW * to lose ownership and not being able to obtain it back. */ iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); } int iwm_nic_rx_init(struct iwm_softc *sc) { if (!iwm_nic_lock(sc)) return EBUSY; /* * Initialize RX ring. This is from the iwn driver. */ memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); /* stop DMA */ IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); /* Set physical address of RX ring (256-byte aligned). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8); /* Set physical address of RX status (16-byte aligned). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4); /* Enable RX. */ /* * Note: Linux driver also sets this: * (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | * * It causes weird behavior. YMMV. */ IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */ IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K | IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS); IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); /* W/A for interrupt coalescing bug in 7260 and 3160 */ if (sc->host_interrupt_operation_mode) IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE); /* * Thus sayeth el jefe (iwlwifi) via a comment: * * This value should initially be 0 (before preparing any * RBs), should be 8 after preparing the first 8 RBs (for example) */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8); iwm_nic_unlock(sc); return 0; } int iwm_nic_tx_init(struct iwm_softc *sc) { int qid; if (!iwm_nic_lock(sc)) return EBUSY; /* Deactivate TX scheduler. */ iwm_write_prph(sc, IWM_SCD_TXFACT, 0); /* Set physical address of "keep warm" page (16-byte aligned). */ IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4); /* Initialize TX rings. */ for (qid = 0; qid < nitems(sc->txq); qid++) { struct iwm_tx_ring *txq = &sc->txq[qid]; /* Set physical address of TX ring (256-byte aligned). */ IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid), txq->desc_dma.paddr >> 8); DPRINTF(("loading ring %d descriptors (%p) at %lx\n", qid, txq->desc, txq->desc_dma.paddr >> 8)); } iwm_nic_unlock(sc); return 0; } int iwm_nic_init(struct iwm_softc *sc) { int error; iwm_apm_init(sc); iwm_set_pwr(sc); iwm_mvm_nic_config(sc); if ((error = iwm_nic_rx_init(sc)) != 0) return error; /* * Ditto for TX, from iwn */ if ((error = iwm_nic_tx_init(sc)) != 0) return error; DPRINTF(("shadow registers enabled\n")); IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); return 0; } enum iwm_mvm_tx_fifo { IWM_MVM_TX_FIFO_BK = 0, IWM_MVM_TX_FIFO_BE, IWM_MVM_TX_FIFO_VI, IWM_MVM_TX_FIFO_VO, IWM_MVM_TX_FIFO_MCAST = 5, }; const uint8_t iwm_mvm_ac_to_tx_fifo[] = { IWM_MVM_TX_FIFO_VO, IWM_MVM_TX_FIFO_VI, IWM_MVM_TX_FIFO_BE, IWM_MVM_TX_FIFO_BK, }; void iwm_enable_txq(struct iwm_softc *sc, int qid, int fifo) { if (!iwm_nic_lock(sc)) { DPRINTF(("%s: cannot enable txq %d\n", DEVNAME(sc), qid)); return; /* XXX return EBUSY */ } /* unactivate before configuration */ iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); if (qid != IWM_MVM_CMD_QUEUE) { iwm_set_bits_prph(sc, IWM_SCD_QUEUECHAIN_SEL, (1 << qid)); } iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid)); IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0); iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0); /* Set scheduler window size and frame limit. */ iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) + sizeof(uint32_t), ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) | (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) | IWM_SCD_QUEUE_STTS_REG_MSK); iwm_nic_unlock(sc); DPRINTF(("enabled txq %d FIFO %d\n", qid, fifo)); } int iwm_post_alive(struct iwm_softc *sc) { int nwords; int error, chnl; if (!iwm_nic_lock(sc)) return EBUSY; if (sc->sched_base != iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR)) { DPRINTF(("%s: sched addr mismatch", DEVNAME(sc))); error = EINVAL; goto out; } iwm_ict_reset(sc); /* Clear TX scheduler state in SRAM. */ nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND - IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t); error = iwm_write_mem(sc, sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, NULL, nwords); if (error) goto out; /* Set physical address of TX scheduler rings (1KB aligned). */ iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10); iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0); /* enable command channel */ iwm_enable_txq(sc, IWM_MVM_CMD_QUEUE, 7); iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff); /* Enable DMA channels. */ for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); } IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG, IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); /* Enable L1-Active */ iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); out: iwm_nic_unlock(sc); return error; } /* * PHY db * iwlwifi/iwl-phy-db.c */ /* * BEGIN iwl-phy-db.c */ enum iwm_phy_db_section_type { IWM_PHY_DB_CFG = 1, IWM_PHY_DB_CALIB_NCH, IWM_PHY_DB_UNUSED, IWM_PHY_DB_CALIB_CHG_PAPD, IWM_PHY_DB_CALIB_CHG_TXP, IWM_PHY_DB_MAX }; #define IWM_PHY_DB_CMD 0x6c /* TEMP API - The actual is 0x8c */ /* * phy db - configure operational ucode */ struct iwm_phy_db_cmd { uint16_t type; uint16_t length; uint8_t data[]; } __packed; /* for parsing of tx power channel group data that comes from the firmware*/ struct iwm_phy_db_chg_txp { uint32_t space; uint16_t max_channel_idx; } __packed; /* * phy db - Receive phy db chunk after calibrations */ struct iwm_calib_res_notif_phy_db { uint16_t type; uint16_t length; uint8_t data[]; } __packed; /* * get phy db section: returns a pointer to a phy db section specified by * type and channel group id. */ struct iwm_phy_db_entry * iwm_phy_db_get_section(struct iwm_softc *sc, enum iwm_phy_db_section_type type, uint16_t chg_id) { struct iwm_phy_db *phy_db = &sc->sc_phy_db; if (type >= IWM_PHY_DB_MAX) return NULL; switch (type) { case IWM_PHY_DB_CFG: return &phy_db->cfg; case IWM_PHY_DB_CALIB_NCH: return &phy_db->calib_nch; case IWM_PHY_DB_CALIB_CHG_PAPD: if (chg_id >= IWM_NUM_PAPD_CH_GROUPS) return NULL; return &phy_db->calib_ch_group_papd[chg_id]; case IWM_PHY_DB_CALIB_CHG_TXP: if (chg_id >= IWM_NUM_TXP_CH_GROUPS) return NULL; return &phy_db->calib_ch_group_txp[chg_id]; default: return NULL; } return NULL; } int iwm_phy_db_set_section(struct iwm_softc *sc, struct iwm_calib_res_notif_phy_db *phy_db_notif) { enum iwm_phy_db_section_type type = le16toh(phy_db_notif->type); uint16_t size = le16toh(phy_db_notif->length); struct iwm_phy_db_entry *entry; uint16_t chg_id = 0; if (type == IWM_PHY_DB_CALIB_CHG_PAPD || type == IWM_PHY_DB_CALIB_CHG_TXP) chg_id = le16toh(*(uint16_t *)phy_db_notif->data); entry = iwm_phy_db_get_section(sc, type, chg_id); if (!entry) return EINVAL; if (entry->data) free(entry->data, M_DEVBUF, entry->size); entry->data = malloc(size, M_DEVBUF, M_NOWAIT); if (!entry->data) { entry->size = 0; return ENOMEM; } memcpy(entry->data, phy_db_notif->data, size); entry->size = size; DPRINTFN(10, ("%s(%d): [PHYDB]SET: Type %d , Size: %d, data: %p\n", __func__, __LINE__, type, size, entry->data)); return 0; } int iwm_is_valid_channel(uint16_t ch_id) { if (ch_id <= 14 || (36 <= ch_id && ch_id <= 64 && ch_id % 4 == 0) || (100 <= ch_id && ch_id <= 140 && ch_id % 4 == 0) || (145 <= ch_id && ch_id <= 165 && ch_id % 4 == 1)) return 1; return 0; } uint8_t iwm_ch_id_to_ch_index(uint16_t ch_id) { if (!iwm_is_valid_channel(ch_id)) return 0xff; if (ch_id <= 14) return ch_id - 1; if (ch_id <= 64) return (ch_id + 20) / 4; if (ch_id <= 140) return (ch_id - 12) / 4; return (ch_id - 13) / 4; } uint16_t iwm_channel_id_to_papd(uint16_t ch_id) { if (!iwm_is_valid_channel(ch_id)) return 0xff; if (1 <= ch_id && ch_id <= 14) return 0; if (36 <= ch_id && ch_id <= 64) return 1; if (100 <= ch_id && ch_id <= 140) return 2; return 3; } uint16_t iwm_channel_id_to_txp(struct iwm_softc *sc, uint16_t ch_id) { struct iwm_phy_db *phy_db = &sc->sc_phy_db; struct iwm_phy_db_chg_txp *txp_chg; int i; uint8_t ch_index = iwm_ch_id_to_ch_index(ch_id); if (ch_index == 0xff) return 0xff; for (i = 0; i < IWM_NUM_TXP_CH_GROUPS; i++) { txp_chg = (void *)phy_db->calib_ch_group_txp[i].data; if (!txp_chg) return 0xff; /* * Looking for the first channel group that its max channel is * higher then wanted channel. */ if (le16toh(txp_chg->max_channel_idx) >= ch_index) return i; } return 0xff; } int iwm_phy_db_get_section_data(struct iwm_softc *sc, uint32_t type, uint8_t **data, uint16_t *size, uint16_t ch_id) { struct iwm_phy_db_entry *entry; uint16_t ch_group_id = 0; /* find wanted channel group */ if (type == IWM_PHY_DB_CALIB_CHG_PAPD) ch_group_id = iwm_channel_id_to_papd(ch_id); else if (type == IWM_PHY_DB_CALIB_CHG_TXP) ch_group_id = iwm_channel_id_to_txp(sc, ch_id); entry = iwm_phy_db_get_section(sc, type, ch_group_id); if (!entry) return EINVAL; *data = entry->data; *size = entry->size; DPRINTFN(10, ("%s(%d): [PHYDB] GET: Type %d , Size: %d\n", __func__, __LINE__, type, *size)); return 0; } int iwm_send_phy_db_cmd(struct iwm_softc *sc, uint16_t type, uint16_t length, void *data) { struct iwm_phy_db_cmd phy_db_cmd; struct iwm_host_cmd cmd = { .id = IWM_PHY_DB_CMD, .flags = IWM_CMD_SYNC, }; DPRINTFN(10, ("Sending PHY-DB hcmd of type %d, of length %d\n", type, length)); /* Set phy db cmd variables */ phy_db_cmd.type = le16toh(type); phy_db_cmd.length = le16toh(length); /* Set hcmd variables */ cmd.data[0] = &phy_db_cmd; cmd.len[0] = sizeof(struct iwm_phy_db_cmd); cmd.data[1] = data; cmd.len[1] = length; cmd.dataflags[1] = IWM_HCMD_DFL_NOCOPY; return iwm_send_cmd(sc, &cmd); } int iwm_phy_db_send_all_channel_groups(struct iwm_softc *sc, enum iwm_phy_db_section_type type, uint8_t max_ch_groups) { uint16_t i; int err; struct iwm_phy_db_entry *entry; /* Send all the channel-specific groups to operational fw */ for (i = 0; i < max_ch_groups; i++) { entry = iwm_phy_db_get_section(sc, type, i); if (!entry) return EINVAL; if (!entry->size) continue; /* Send the requested PHY DB section */ err = iwm_send_phy_db_cmd(sc, type, entry->size, entry->data); if (err) { DPRINTF(("%s: Can't SEND phy_db section %d (%d), " "err %d\n", DEVNAME(sc), type, i, err)); return err; } DPRINTFN(10, ("Sent PHY_DB HCMD, type = %d num = %d\n", type, i)); } return 0; } int iwm_send_phy_db_data(struct iwm_softc *sc) { uint8_t *data = NULL; uint16_t size = 0; int err; DPRINTF(("Sending phy db data and configuration to runtime image\n")); /* Send PHY DB CFG section */ err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CFG, &data, &size, 0); if (err) { DPRINTF(("%s: Cannot get Phy DB cfg section, %d\n", DEVNAME(sc), err)); return err; } err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CFG, size, data); if (err) { DPRINTF(("%s: Cannot send HCMD of Phy DB cfg section, %d\n", DEVNAME(sc), err)); return err; } err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CALIB_NCH, &data, &size, 0); if (err) { DPRINTF(("%s: Cannot get Phy DB non specific channel section, " "%d\n", DEVNAME(sc), err)); return err; } err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CALIB_NCH, size, data); if (err) { DPRINTF(("%s: Cannot send HCMD of Phy DB non specific channel " "sect, %d\n", DEVNAME(sc), err)); return err; } /* Send all the TXP channel specific data */ err = iwm_phy_db_send_all_channel_groups(sc, IWM_PHY_DB_CALIB_CHG_PAPD, IWM_NUM_PAPD_CH_GROUPS); if (err) { DPRINTF(("%s: Cannot send channel specific PAPD groups, %d\n", DEVNAME(sc), err)); return err; } /* Send all the TXP channel specific data */ err = iwm_phy_db_send_all_channel_groups(sc, IWM_PHY_DB_CALIB_CHG_TXP, IWM_NUM_TXP_CH_GROUPS); if (err) { DPRINTF(("%s: Cannot send channel specific TX power groups, " "%d\n", DEVNAME(sc), err)); return err; } DPRINTF(("Finished sending phy db non channel data\n")); return 0; } /* * END iwl-phy-db.c */ /* * BEGIN iwlwifi/mvm/time-event.c */ /* * For the high priority TE use a time event type that has similar priority to * the FW's action scan priority. */ #define IWM_MVM_ROC_TE_TYPE_NORMAL IWM_TE_P2P_DEVICE_DISCOVERABLE #define IWM_MVM_ROC_TE_TYPE_MGMT_TX IWM_TE_P2P_CLIENT_ASSOC /* used to convert from time event API v2 to v1 */ #define IWM_TE_V2_DEP_POLICY_MSK (IWM_TE_V2_DEP_OTHER | IWM_TE_V2_DEP_TSF |\ IWM_TE_V2_EVENT_SOCIOPATHIC) static inline uint16_t iwm_te_v2_get_notify(uint16_t policy) { return le16toh(policy) & IWM_TE_V2_NOTIF_MSK; } static inline uint16_t iwm_te_v2_get_dep_policy(uint16_t policy) { return (le16toh(policy) & IWM_TE_V2_DEP_POLICY_MSK) >> IWM_TE_V2_PLACEMENT_POS; } static inline uint16_t iwm_te_v2_get_absence(uint16_t policy) { return (le16toh(policy) & IWM_TE_V2_ABSENCE) >> IWM_TE_V2_ABSENCE_POS; } void iwm_mvm_te_v2_to_v1(const struct iwm_time_event_cmd_v2 *cmd_v2, struct iwm_time_event_cmd_v1 *cmd_v1) { cmd_v1->id_and_color = cmd_v2->id_and_color; cmd_v1->action = cmd_v2->action; cmd_v1->id = cmd_v2->id; cmd_v1->apply_time = cmd_v2->apply_time; cmd_v1->max_delay = cmd_v2->max_delay; cmd_v1->depends_on = cmd_v2->depends_on; cmd_v1->interval = cmd_v2->interval; cmd_v1->duration = cmd_v2->duration; if (cmd_v2->repeat == IWM_TE_V2_REPEAT_ENDLESS) cmd_v1->repeat = htole32(IWM_TE_V1_REPEAT_ENDLESS); else cmd_v1->repeat = htole32(cmd_v2->repeat); cmd_v1->max_frags = htole32(cmd_v2->max_frags); cmd_v1->interval_reciprocal = 0; /* unused */ cmd_v1->dep_policy = htole32(iwm_te_v2_get_dep_policy(cmd_v2->policy)); cmd_v1->is_present = htole32(!iwm_te_v2_get_absence(cmd_v2->policy)); cmd_v1->notify = htole32(iwm_te_v2_get_notify(cmd_v2->policy)); } int iwm_mvm_send_time_event_cmd(struct iwm_softc *sc, const struct iwm_time_event_cmd_v2 *cmd) { struct iwm_time_event_cmd_v1 cmd_v1; if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_TIME_EVENT_API_V2) return iwm_mvm_send_cmd_pdu(sc, IWM_TIME_EVENT_CMD, IWM_CMD_SYNC, sizeof(*cmd), cmd); iwm_mvm_te_v2_to_v1(cmd, &cmd_v1); return iwm_mvm_send_cmd_pdu(sc, IWM_TIME_EVENT_CMD, IWM_CMD_SYNC, sizeof(cmd_v1), &cmd_v1); } int iwm_mvm_time_event_send_add(struct iwm_softc *sc, struct iwm_node *in, void *te_data, struct iwm_time_event_cmd_v2 *te_cmd) { int ret; DPRINTF(("Add new TE, duration %d TU\n", le32toh(te_cmd->duration))); ret = iwm_mvm_send_time_event_cmd(sc, te_cmd); if (ret) { DPRINTF(("%s: Couldn't send IWM_TIME_EVENT_CMD: %d\n", DEVNAME(sc), ret)); } return ret; } void iwm_mvm_protect_session(struct iwm_softc *sc, struct iwm_node *in, uint32_t duration, uint32_t min_duration, uint32_t max_delay) { struct iwm_time_event_cmd_v2 time_cmd; memset(&time_cmd, 0, sizeof(time_cmd)); time_cmd.action = htole32(IWM_FW_CTXT_ACTION_ADD); time_cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); time_cmd.id = htole32(IWM_TE_BSS_STA_AGGRESSIVE_ASSOC); time_cmd.apply_time = htole32(iwm_read_prph(sc, IWM_DEVICE_SYSTEM_TIME_REG)); time_cmd.max_frags = IWM_TE_V2_FRAG_NONE; time_cmd.max_delay = htole32(max_delay); /* TODO: why do we need to interval = bi if it is not periodic? */ time_cmd.interval = htole32(1); time_cmd.duration = htole32(duration); time_cmd.repeat = 1; time_cmd.policy = htole32(IWM_TE_V2_NOTIF_HOST_EVENT_START | IWM_TE_V2_NOTIF_HOST_EVENT_END); iwm_mvm_time_event_send_add(sc, in, /*te_data*/NULL, &time_cmd); } /* * END iwlwifi/mvm/time-event.c */ /* * NVM read access and content parsing. We do not support * external NVM or writing NVM. * iwlwifi/mvm/nvm.c */ /* list of NVM sections we are allowed/need to read */ const int nvm_to_read[] = { IWM_NVM_SECTION_TYPE_HW, IWM_NVM_SECTION_TYPE_SW, IWM_NVM_SECTION_TYPE_CALIBRATION, IWM_NVM_SECTION_TYPE_PRODUCTION, }; /* Default NVM size to read */ #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024) #define IWM_MAX_NVM_SECTION_SIZE 7000 #define IWM_NVM_WRITE_OPCODE 1 #define IWM_NVM_READ_OPCODE 0 int iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len) { offset = 0; struct iwm_nvm_access_cmd nvm_access_cmd = { .offset = htole16(offset), .length = htole16(length), .type = htole16(section), .op_code = IWM_NVM_READ_OPCODE, }; struct iwm_nvm_access_resp *nvm_resp; struct iwm_rx_packet *pkt; struct iwm_host_cmd cmd = { .id = IWM_NVM_ACCESS_CMD, .flags = IWM_CMD_SYNC | IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL, .data = { &nvm_access_cmd, }, }; int ret, bytes_read, offset_read; uint8_t *resp_data; cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); ret = iwm_send_cmd(sc, &cmd); if (ret) return ret; pkt = cmd.resp_pkt; if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) { DPRINTF(("%s: Bad return from IWM_NVM_ACCES_COMMAND (0x%08X)\n", DEVNAME(sc), pkt->hdr.flags)); ret = EIO; goto exit; } /* Extract NVM response */ nvm_resp = (void *)pkt->data; ret = le16toh(nvm_resp->status); bytes_read = le16toh(nvm_resp->length); offset_read = le16toh(nvm_resp->offset); resp_data = nvm_resp->data; if (ret) { DPRINTF(("%s: NVM access command failed with status %d\n", DEVNAME(sc), ret)); ret = EINVAL; goto exit; } if (offset_read != offset) { DPRINTF(("%s: NVM ACCESS response with invalid offset %d\n", DEVNAME(sc), offset_read)); ret = EINVAL; goto exit; } memcpy(data + offset, resp_data, bytes_read); *len = bytes_read; exit: iwm_free_resp(sc, &cmd); return ret; } /* * Reads an NVM section completely. * NICs prior to 7000 family doesn't have a real NVM, but just read * section 0 which is the EEPROM. Because the EEPROM reading is unlimited * by uCode, we need to manually check in this case that we don't * overflow and try to read more than the EEPROM size. * For 7000 family NICs, we supply the maximal size we can read, and * the uCode fills the response with as much data as we can, * without overflowing, so no check is needed. */ int iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data, uint16_t *len) { uint16_t length, seglen; int error; /* Set nvm section read length */ length = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE; *len = 0; /* Read the NVM until exhausted (reading less than requested) */ while (seglen == length) { error = iwm_nvm_read_chunk(sc, section, *len, length, data, &seglen); if (error) { printf("%s: Cannot read NVM from section " "%d offset %d, length %d\n", DEVNAME(sc), section, *len, length); return error; } *len += seglen; } DPRINTFN(4, ("NVM section %d read completed\n", section)); return 0; } /* * BEGIN IWM_NVM_PARSE */ /* iwlwifi/iwl-nvm-parse.c */ /* NVM offsets (in words) definitions */ enum wkp_nvm_offsets { /* NVM HW-Section offset (in words) definitions */ IWM_HW_ADDR = 0x15, /* NVM SW-Section offset (in words) definitions */ IWM_NVM_SW_SECTION = 0x1C0, IWM_NVM_VERSION = 0, IWM_RADIO_CFG = 1, IWM_SKU = 2, IWM_N_HW_ADDRS = 3, IWM_NVM_CHANNELS = 0x1E0 - IWM_NVM_SW_SECTION, /* NVM calibration section offset (in words) definitions */ IWM_NVM_CALIB_SECTION = 0x2B8, IWM_XTAL_CALIB = 0x316 - IWM_NVM_CALIB_SECTION }; /* SKU Capabilities (actual values from NVM definition) */ enum nvm_sku_bits { IWM_NVM_SKU_CAP_BAND_24GHZ = (1 << 0), IWM_NVM_SKU_CAP_BAND_52GHZ = (1 << 1), IWM_NVM_SKU_CAP_11N_ENABLE = (1 << 2), IWM_NVM_SKU_CAP_11AC_ENABLE = (1 << 3), }; /* radio config bits (actual values from NVM definition) */ #define IWM_NVM_RF_CFG_DASH_MSK(x) (x & 0x3) /* bits 0-1 */ #define IWM_NVM_RF_CFG_STEP_MSK(x) ((x >> 2) & 0x3) /* bits 2-3 */ #define IWM_NVM_RF_CFG_TYPE_MSK(x) ((x >> 4) & 0x3) /* bits 4-5 */ #define IWM_NVM_RF_CFG_PNUM_MSK(x) ((x >> 6) & 0x3) /* bits 6-7 */ #define IWM_NVM_RF_CFG_TX_ANT_MSK(x) ((x >> 8) & 0xF) /* bits 8-11 */ #define IWM_NVM_RF_CFG_RX_ANT_MSK(x) ((x >> 12) & 0xF) /* bits 12-15 */ #define DEFAULT_MAX_TX_POWER 16 /** * enum iwm_nvm_channel_flags - channel flags in NVM * @IWM_NVM_CHANNEL_VALID: channel is usable for this SKU/geo * @IWM_NVM_CHANNEL_IBSS: usable as an IBSS channel * @IWM_NVM_CHANNEL_ACTIVE: active scanning allowed * @IWM_NVM_CHANNEL_RADAR: radar detection required * @IWM_NVM_CHANNEL_DFS: dynamic freq selection candidate * @IWM_NVM_CHANNEL_WIDE: 20 MHz channel okay (?) * @IWM_NVM_CHANNEL_40MHZ: 40 MHz channel okay (?) * @IWM_NVM_CHANNEL_80MHZ: 80 MHz channel okay (?) * @IWM_NVM_CHANNEL_160MHZ: 160 MHz channel okay (?) */ enum iwm_nvm_channel_flags { IWM_NVM_CHANNEL_VALID = (1 << 0), IWM_NVM_CHANNEL_IBSS = (1 << 1), IWM_NVM_CHANNEL_ACTIVE = (1 << 3), IWM_NVM_CHANNEL_RADAR = (1 << 4), IWM_NVM_CHANNEL_DFS = (1 << 7), IWM_NVM_CHANNEL_WIDE = (1 << 8), IWM_NVM_CHANNEL_40MHZ = (1 << 9), IWM_NVM_CHANNEL_80MHZ = (1 << 10), IWM_NVM_CHANNEL_160MHZ = (1 << 11), }; void iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_nvm_data *data = &sc->sc_nvm; int ch_idx; struct ieee80211_channel *channel; uint16_t ch_flags; int is_5ghz; int flags, hw_value; for (ch_idx = 0; ch_idx < nitems(iwm_nvm_channels); ch_idx++) { ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx); if (ch_idx >= IWM_NUM_2GHZ_CHANNELS && !data->sku_cap_band_52GHz_enable) ch_flags &= ~IWM_NVM_CHANNEL_VALID; if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) { DPRINTF(("Ch. %d Flags %x [%sGHz] - No traffic\n", iwm_nvm_channels[ch_idx], ch_flags, (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? "5.2" : "2.4")); continue; } hw_value = iwm_nvm_channels[ch_idx]; channel = &ic->ic_channels[hw_value]; is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS; if (!is_5ghz) { flags = IEEE80211_CHAN_2GHZ; channel->ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } else { flags = IEEE80211_CHAN_5GHZ; channel->ic_flags = IEEE80211_CHAN_A; } channel->ic_freq = ieee80211_ieee2mhz(hw_value, flags); if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE)) channel->ic_flags |= IEEE80211_CHAN_PASSIVE; } } int iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw, const uint16_t *nvm_sw, const uint16_t *nvm_calib, uint8_t tx_chains, uint8_t rx_chains) { struct iwm_nvm_data *data = &sc->sc_nvm; uint8_t hw_addr[ETHER_ADDR_LEN]; uint16_t radio_cfg, sku; data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION); radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG); data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg); data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg); data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg); data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg); data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK(radio_cfg); data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK(radio_cfg); sku = le16_to_cpup(nvm_sw + IWM_SKU); data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ; data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ; data->sku_cap_11n_enable = 0; if (!data->valid_tx_ant || !data->valid_rx_ant) { DPRINTF(("%s: invalid antennas (0x%x, 0x%x)\n", DEVNAME(sc), data->valid_tx_ant, data->valid_rx_ant)); return EINVAL; } data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS); data->xtal_calib[0] = *(nvm_calib + IWM_XTAL_CALIB); data->xtal_calib[1] = *(nvm_calib + IWM_XTAL_CALIB + 1); /* The byte order is little endian 16 bit, meaning 214365 */ memcpy(hw_addr, nvm_hw + IWM_HW_ADDR, ETHER_ADDR_LEN); data->hw_addr[0] = hw_addr[1]; data->hw_addr[1] = hw_addr[0]; data->hw_addr[2] = hw_addr[3]; data->hw_addr[3] = hw_addr[2]; data->hw_addr[4] = hw_addr[5]; data->hw_addr[5] = hw_addr[4]; iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS]); data->calib_version = 255; /* TODO: this value will prevent some checks from failing, we need to check if this field is still needed, and if it does, where is it in the NVM */ return 0; } /* * END NVM PARSE */ struct iwm_nvm_section { uint16_t length; const uint8_t *data; }; #define IWM_FW_VALID_TX_ANT(sc) \ ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN) \ >> IWM_FW_PHY_CFG_TX_CHAIN_POS) #define IWM_FW_VALID_RX_ANT(sc) \ ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RX_CHAIN) \ >> IWM_FW_PHY_CFG_RX_CHAIN_POS) int iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) { const uint16_t *hw, *sw, *calib; /* Checking for required sections */ if (!sections[IWM_NVM_SECTION_TYPE_SW].data || !sections[IWM_NVM_SECTION_TYPE_HW].data) { DPRINTF(("%s: Can't parse empty NVM sections\n", DEVNAME(sc))); return ENOENT; } hw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_HW].data; sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data; calib = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data; return iwm_parse_nvm_data(sc, hw, sw, calib, IWM_FW_VALID_TX_ANT(sc), IWM_FW_VALID_RX_ANT(sc)); } int iwm_nvm_init(struct iwm_softc *sc) { struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS]; int i, section, error; uint16_t len; uint8_t *nvm_buffer, *temp; /* Read From FW NVM */ DPRINTF(("Read NVM\n")); /* TODO: find correct NVM max size for a section */ nvm_buffer = malloc(IWM_OTP_LOW_IMAGE_SIZE, M_DEVBUF, M_WAIT); for (i = 0; i < nitems(nvm_to_read); i++) { section = nvm_to_read[i]; KASSERT(section <= nitems(nvm_sections)); error = iwm_nvm_read_section(sc, section, nvm_buffer, &len); if (error) break; temp = malloc(len, M_DEVBUF, M_WAIT); memcpy(temp, nvm_buffer, len); nvm_sections[section].data = temp; nvm_sections[section].length = len; } free(nvm_buffer, M_DEVBUF, IWM_OTP_LOW_IMAGE_SIZE); if (error) return error; return iwm_parse_nvm_sections(sc, nvm_sections); } /* * Firmware loading gunk. This is kind of a weird hybrid between the * iwn driver and the Linux iwlwifi driver. */ int iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr, const uint8_t *section, uint32_t byte_cnt) { struct iwm_dma_info *dma = &sc->fw_dma; int error; /* Copy firmware section into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, section, byte_cnt); bus_dmamap_sync(sc->sc_dmat, dma->map, 0, byte_cnt, BUS_DMASYNC_PREWRITE); if (!iwm_nic_lock(sc)) return EBUSY; sc->sc_fw_chunk_done = 0; IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL), dst_addr); IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL), dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL), (iwm_get_dma_hi_addr(dma->paddr) << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL), 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); iwm_nic_unlock(sc); /* wait 1s for this segment to load */ while (!sc->sc_fw_chunk_done) if ((error = tsleep(&sc->sc_fw, 0, "iwmfw", hz)) != 0) break; return error; } int iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { struct iwm_fw_sects *fws; int error, i, w; void *data; uint32_t dlen; uint32_t offset; sc->sc_uc.uc_intr = 0; fws = &sc->sc_fw.fw_sects[ucode_type]; for (i = 0; i < fws->fw_count; i++) { data = fws->fw_sect[i].fws_data; dlen = fws->fw_sect[i].fws_len; offset = fws->fw_sect[i].fws_devoff; DPRINTF(("LOAD FIRMWARE type %d offset %u len %d\n", ucode_type, offset, dlen)); error = iwm_firmware_load_chunk(sc, offset, data, dlen); if (error) { DPRINTF(("iwm_firmware_load_chunk() chunk %u of %u returned error %02d\n", i, fws->fw_count, error)); return error; } } /* wait for the firmware to load */ IWM_WRITE(sc, IWM_CSR_RESET, 0); for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) { error = tsleep(&sc->sc_uc, 0, "iwmuc", hz/10); } return error; } /* iwlwifi: pcie/trans.c */ int iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { int error; IWM_WRITE(sc, IWM_CSR_INT, ~0); if ((error = iwm_nic_init(sc)) != 0) { printf("%s: unable to init nic\n", DEVNAME(sc)); return error; } /* make sure rfkill handshake bits are cleared */ IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable host interrupts */ IWM_WRITE(sc, IWM_CSR_INT, ~0); iwm_enable_interrupts(sc); /* really make sure rfkill handshake bits are cleared */ /* maybe we should write a few times more? just to make sure */ IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); /* Load the given image to the HW */ return iwm_load_firmware(sc, ucode_type); } int iwm_fw_alive(struct iwm_softc *sc, uint32_t sched_base) { return iwm_post_alive(sc); } int iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) { struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { .valid = htole32(valid_tx_ant), }; return iwm_mvm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, IWM_CMD_SYNC, sizeof(tx_ant_cmd), &tx_ant_cmd); } /* iwlwifi: mvm/fw.c */ int iwm_send_phy_cfg_cmd(struct iwm_softc *sc) { struct iwm_phy_cfg_cmd phy_cfg_cmd; enum iwm_ucode_type ucode_type = sc->sc_uc_current; /* Set parameters */ phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config); phy_cfg_cmd.calib_control.event_trigger = sc->sc_default_calib[ucode_type].event_trigger; phy_cfg_cmd.calib_control.flow_trigger = sc->sc_default_calib[ucode_type].flow_trigger; DPRINTFN(10, ("Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg)); return iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, IWM_CMD_SYNC, sizeof(phy_cfg_cmd), &phy_cfg_cmd); } int iwm_mvm_load_ucode_wait_alive(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { enum iwm_ucode_type old_type = sc->sc_uc_current; int error; if ((error = iwm_read_firmware(sc, ucode_type)) != 0) return error; sc->sc_uc_current = ucode_type; error = iwm_start_fw(sc, ucode_type); if (error) { sc->sc_uc_current = old_type; return error; } return iwm_fw_alive(sc, sc->sched_base); } /* * mvm misc bits */ /* * follows iwlwifi/fw.c */ int iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm) { int error; /* do not operate with rfkill switch turned on */ if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) { printf("%s: radio is disabled by hardware switch\n", DEVNAME(sc)); return EPERM; } sc->sc_init_complete = 0; if ((error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_INIT)) != 0) return error; if (justnvm) { if ((error = iwm_nvm_init(sc)) != 0) { printf("%s: failed to read nvm\n", DEVNAME(sc)); return error; } memcpy(&sc->sc_ic.ic_myaddr, &sc->sc_nvm.hw_addr, ETHER_ADDR_LEN); sc->sc_scan_cmd_len = sizeof(struct iwm_scan_cmd) + sc->sc_capa_max_probe_len + IWM_MAX_NUM_SCAN_CHANNELS * sizeof(struct iwm_scan_channel); sc->sc_scan_cmd = malloc(sc->sc_scan_cmd_len, M_DEVBUF, M_WAIT); return 0; } /* Send TX valid antennas before triggering calibrations */ if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0) return error; /* * Send phy configurations command to init uCode * to start the 16.0 uCode init image internal calibrations. */ if ((error = iwm_send_phy_cfg_cmd(sc)) != 0 ) { DPRINTF(("%s: failed to run internal calibration: %d\n", DEVNAME(sc), error)); return error; } /* * Nothing to do but wait for the init complete notification * from the firmware */ while (!sc->sc_init_complete) if ((error = tsleep(&sc->sc_init_complete, 0, "iwminit", 2*hz)) != 0) break; return error; } /* * receive side */ /* (re)stock rx ring, called at init-time and at runtime */ int iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) { struct iwm_rx_ring *ring = &sc->rxq; struct iwm_rx_data *data = &ring->data[idx]; struct mbuf *m; int error; int fatal = 0; m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; if (size <= MCLBYTES) { MCLGET(m, M_DONTWAIT); } else { MCLGETI(m, M_DONTWAIT, NULL, IWM_RBUF_SIZE); } if ((m->m_flags & M_EXT) == 0) { m_freem(m); return ENOBUFS; } if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); fatal = 1; } m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; if ((error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) { /* XXX */ if (fatal) panic("iwm: could not load RX mbuf"); m_freem(m); return error; } data->m = m; bus_dmamap_sync(sc->sc_dmat, data->map, 0, size, BUS_DMASYNC_PREREAD); /* Update RX descriptor. */ ring->desc[idx] = htole32(data->map->dm_segs[0].ds_addr >> 8); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, idx * sizeof(uint32_t), sizeof(uint32_t), BUS_DMASYNC_PREWRITE); return 0; } /* iwlwifi: mvm/rx.c */ #define IWM_RSSI_OFFSET 50 int iwm_mvm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) { int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm; uint32_t agc_a, agc_b; uint32_t val; val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]); agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS; agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS; val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]); rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS; rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS; /* * dBm = rssi dB - agc dB - constant. * Higher AGC (higher radio gain) means lower signal. */ rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a; rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b; max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm); DPRINTF(("Rssi In A %d B %d Max %d AGCA %d AGCB %d\n", rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b)); return max_rssi_dbm; } /* iwlwifi: mvm/rx.c */ /* * iwm_mvm_get_signal_strength - use new rx PHY INFO API * values are reported by the fw as positive values - need to negate * to obtain their dBM. Account for missing antennas by replacing 0 * values by -256dBm: practically 0 power and a non-feasible 8 bit value. */ int iwm_mvm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) { int energy_a, energy_b, energy_c, max_energy; uint32_t val; val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]); energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >> IWM_RX_INFO_ENERGY_ANT_A_POS; energy_a = energy_a ? -energy_a : -256; energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >> IWM_RX_INFO_ENERGY_ANT_B_POS; energy_b = energy_b ? -energy_b : -256; energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >> IWM_RX_INFO_ENERGY_ANT_C_POS; energy_c = energy_c ? -energy_c : -256; max_energy = MAX(energy_a, energy_b); max_energy = MAX(max_energy, energy_c); DPRINTFN(12, ("energy In A %d B %d C %d , and max %d\n", energy_a, energy_b, energy_c, max_energy)); return max_energy; } void iwm_mvm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_rx_data *data) { struct iwm_rx_phy_info *phy_info = (void *)pkt->data; DPRINTFN(20, ("received PHY stats\n")); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt), sizeof(*phy_info), BUS_DMASYNC_POSTREAD); memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); } /* * Retrieve the average noise (in dBm) among receivers. */ int iwm_get_noise(const struct iwm_mvm_statistics_rx_non_phy *stats) { int i, total, nbant, noise; total = nbant = noise = 0; for (i = 0; i < 3; i++) { noise = letoh32(stats->beacon_silence_rssi[i]) & 0xff; if (noise) { total += noise; nbant++; } } /* There should be at least one antenna but check anyway. */ return (nbant == 0) ? -127 : (total / nbant) - 107; } /* * iwm_mvm_rx_rx_mpdu - IWM_REPLY_RX_MPDU_CMD handler * * Handles the actual data of the Rx packet from the fw */ void iwm_mvm_rx_rx_mpdu(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_rx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct ieee80211_channel *c = NULL; struct ieee80211_rxinfo rxi; struct mbuf *m; struct iwm_rx_phy_info *phy_info; struct iwm_rx_mpdu_res_start *rx_res; int device_timestamp; uint32_t len; uint32_t rx_pkt_status; int rssi; bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE, BUS_DMASYNC_POSTREAD); phy_info = &sc->sc_last_phy_info; rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data; wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res)); len = le16toh(rx_res->byte_count); rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len)); m = data->m; m->m_data = pkt->data + sizeof(*rx_res); m->m_pkthdr.len = m->m_len = len; if (__predict_false(phy_info->cfg_phy_cnt > 20)) { DPRINTF(("dsp size out of range [0,20]: %d\n", phy_info->cfg_phy_cnt)); return; } if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) || !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) { DPRINTF(("Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status)); return; /* drop */ } device_timestamp = le32toh(phy_info->system_timestamp); if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) { rssi = iwm_mvm_get_signal_strength(sc, phy_info); } else { rssi = iwm_mvm_calc_rssi(sc, phy_info); } rssi = (0 - IWM_MIN_DBM) + rssi; /* normalize */ rssi = MIN(rssi, ic->ic_max_rssi); /* clip to max. 100% */ /* replenish ring for the buffer we're going to feed to the sharks */ if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) return; if (sc->sc_scanband == IEEE80211_CHAN_5GHZ) { if (le32toh(phy_info->channel) < nitems(ic->ic_channels)) c = &ic->ic_channels[le32toh(phy_info->channel)]; } memset(&rxi, 0, sizeof(rxi)); rxi.rxi_rssi = rssi; rxi.rxi_tstamp = device_timestamp; ni = ieee80211_find_rxnode(ic, wh); if (c) ni->ni_chan = c; #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_chan_freq = htole16(ic->ic_channels[phy_info->channel].ic_freq); tap->wr_chan_flags = htole16(ic->ic_channels[phy_info->channel].ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; tap->wr_tsft = phy_info->system_timestamp; switch (phy_info->rate) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif ieee80211_input(IC2IFP(ic), m, ni, &rxi); ieee80211_release_node(ic, ni); } void iwm_mvm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_node *in) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); struct iwm_mvm_tx_resp *tx_resp = (void *)pkt->data; int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK; int failack = tx_resp->failure_frame; KASSERT(tx_resp->frame_count == 1); /* Update rate control statistics. */ in->in_amn.amn_txcnt++; if (failack > 0) { in->in_amn.amn_retrycnt++; } if (status != IWM_TX_STATUS_SUCCESS && status != IWM_TX_STATUS_DIRECT_DONE) ifp->if_oerrors++; else ifp->if_opackets++; } void iwm_mvm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_rx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); struct iwm_cmd_header *cmd_hdr = &pkt->hdr; int idx = cmd_hdr->idx; int qid = cmd_hdr->qid; struct iwm_tx_ring *ring = &sc->txq[qid]; struct iwm_tx_data *txd = &ring->data[idx]; struct iwm_node *in = txd->in; if (txd->done) { DPRINTF(("%s: got tx interrupt that's already been handled!\n", DEVNAME(sc))); return; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE, BUS_DMASYNC_POSTREAD); sc->sc_tx_timer = 0; iwm_mvm_rx_tx_cmd_single(sc, pkt, in); /* Unmap and free mbuf. */ bus_dmamap_sync(sc->sc_dmat, txd->map, 0, txd->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txd->map); m_freem(txd->m); DPRINTFN(8, ("free txd %p, in %p\n", txd, txd->in)); KASSERT(txd->done == 0); txd->done = 1; KASSERT(txd->in); txd->m = NULL; txd->in = NULL; ieee80211_release_node(ic, &in->in_ni); if (--ring->queued < IWM_TX_RING_LOMARK) { sc->qfullmsk &= ~(1 << ring->qid); if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { ifp->if_flags &= ~IFF_OACTIVE; /* * Well, we're in interrupt context, but then again * I guess net80211 does all sorts of stunts in * interrupt context, so maybe this is no biggie. */ (*ifp->if_start)(ifp); } } } /* * BEGIN iwlwifi/mvm/binding.c */ int iwm_mvm_binding_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action) { struct iwm_binding_cmd cmd; struct iwm_mvm_phy_ctxt *phyctxt = in->in_phyctxt; int i, ret; uint32_t status; memset(&cmd, 0, sizeof(cmd)); cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color)); cmd.action = htole32(action); cmd.phy = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color)); cmd.macs[0] = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); for (i = 1; i < IWM_MAX_MACS_IN_BINDING; i++) cmd.macs[i] = htole32(IWM_FW_CTXT_INVALID); status = 0; ret = iwm_mvm_send_cmd_pdu_status(sc, IWM_BINDING_CONTEXT_CMD, sizeof(cmd), &cmd, &status); if (ret) { DPRINTF(("%s: Failed to send binding (action:%d): %d\n", DEVNAME(sc), action, ret)); return ret; } if (status) { DPRINTF(("%s: Binding command failed: %u\n", DEVNAME(sc), status)); ret = EIO; } return ret; } int iwm_mvm_binding_update(struct iwm_softc *sc, struct iwm_node *in, int add) { return iwm_mvm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD); } int iwm_mvm_binding_add_vif(struct iwm_softc *sc, struct iwm_node *in) { return iwm_mvm_binding_update(sc, in, IWM_FW_CTXT_ACTION_ADD); } /* * END iwlwifi/mvm/binding.c */ /* * BEGIN iwlwifi/mvm/phy-ctxt.c */ /* * Construct the generic fields of the PHY context command */ void iwm_mvm_phy_ctxt_cmd_hdr(struct iwm_softc *sc, struct iwm_mvm_phy_ctxt *ctxt, struct iwm_phy_context_cmd *cmd, uint32_t action, uint32_t apply_time) { memset(cmd, 0, sizeof(struct iwm_phy_context_cmd)); cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id, ctxt->color)); cmd->action = htole32(action); cmd->apply_time = htole32(apply_time); } /* * Add the phy configuration to the PHY context command */ void iwm_mvm_phy_ctxt_cmd_data(struct iwm_softc *sc, struct iwm_phy_context_cmd *cmd, struct ieee80211_channel *chan, uint8_t chains_static, uint8_t chains_dynamic) { struct ieee80211com *ic = &sc->sc_ic; uint8_t active_cnt, idle_cnt; cmd->ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ? IWM_PHY_BAND_24 : IWM_PHY_BAND_5; cmd->ci.channel = ieee80211_chan2ieee(ic, chan); cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20; cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW; /* Set rx the chains */ idle_cnt = chains_static; active_cnt = chains_dynamic; cmd->rxchain_info = htole32(IWM_FW_VALID_RX_ANT(sc) << IWM_PHY_RX_CHAIN_VALID_POS); cmd->rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS); cmd->rxchain_info |= htole32(active_cnt << IWM_PHY_RX_CHAIN_MIMO_CNT_POS); cmd->txchain_info = htole32(IWM_FW_VALID_TX_ANT(sc)); } /* * Send a command * only if something in the configuration changed: in case that this is the * first time that the phy configuration is applied or in case that the phy * configuration changed from the previous apply. */ int iwm_mvm_phy_ctxt_apply(struct iwm_softc *sc, struct iwm_mvm_phy_ctxt *ctxt, uint8_t chains_static, uint8_t chains_dynamic, uint32_t action, uint32_t apply_time) { struct iwm_phy_context_cmd cmd; int ret; /* Set the command header fields */ iwm_mvm_phy_ctxt_cmd_hdr(sc, ctxt, &cmd, action, apply_time); /* Set the command data */ iwm_mvm_phy_ctxt_cmd_data(sc, &cmd, ctxt->channel, chains_static, chains_dynamic); ret = iwm_mvm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD, IWM_CMD_SYNC, sizeof(struct iwm_phy_context_cmd), &cmd); if (ret) { DPRINTF(("PHY ctxt cmd error. ret=%d\n", ret)); } return ret; } /* * Send a command to add a PHY context based on the current HW configuration. */ int iwm_mvm_phy_ctxt_add(struct iwm_softc *sc, struct iwm_mvm_phy_ctxt *ctxt, struct ieee80211_channel *chan, uint8_t chains_static, uint8_t chains_dynamic) { ctxt->channel = chan; return iwm_mvm_phy_ctxt_apply(sc, ctxt, chains_static, chains_dynamic, IWM_FW_CTXT_ACTION_ADD, 0); } /* * Send a command to modify the PHY context based on the current HW * configuration. Note that the function does not check that the configuration * changed. */ int iwm_mvm_phy_ctxt_changed(struct iwm_softc *sc, struct iwm_mvm_phy_ctxt *ctxt, struct ieee80211_channel *chan, uint8_t chains_static, uint8_t chains_dynamic) { ctxt->channel = chan; return iwm_mvm_phy_ctxt_apply(sc, ctxt, chains_static, chains_dynamic, IWM_FW_CTXT_ACTION_MODIFY, 0); } /* * END iwlwifi/mvm/phy-ctxt.c */ /* * transmit side */ /* * Send a command to the firmware. We try to implement the Linux * driver interface for the routine. * mostly from if_iwn (iwn_cmd()). * * For now, we always copy the first part and map the second one (if it exists). */ int iwm_send_cmd(struct iwm_softc *sc, struct iwm_host_cmd *hcmd) { struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE]; struct iwm_tfd *desc; struct iwm_tx_data *data; struct iwm_device_cmd *cmd; struct mbuf *m; bus_addr_t paddr; uint32_t addr_lo; int error = 0, i, paylen, off, s; int code; int async, wantresp; code = hcmd->id; async = hcmd->flags & IWM_CMD_ASYNC; wantresp = hcmd->flags & IWM_CMD_WANT_SKB; for (i = 0, paylen = 0; i < nitems(hcmd->len); i++) { paylen += hcmd->len[i]; } /* if the command wants an answer, busy sc_cmd_resp */ if (wantresp) { KASSERT(!async); while (sc->sc_wantresp != -1) tsleep(&sc->sc_wantresp, 0, "iwmcmdsl", 0); sc->sc_wantresp = ring->qid << 16 | ring->cur; DPRINTFN(12, ("wantresp is %x\n", sc->sc_wantresp)); } /* * Is the hardware still available? (after e.g. above wait). */ s = splnet(); if (sc->sc_flags & IWM_FLAG_STOPPED) { error = ENXIO; goto out; } desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; if (paylen > sizeof(cmd->data)) { /* Command is too large */ if (sizeof(cmd->hdr) + paylen > IWM_RBUF_SIZE) { error = EINVAL; goto out; } m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) { error = ENOMEM; goto out; } MCLGETI(m, M_DONTWAIT, NULL, IWM_RBUF_SIZE); if (!(m->m_flags & M_EXT)) { m_freem(m); error = ENOMEM; goto out; } cmd = mtod(m, struct iwm_device_cmd *); error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, hcmd->len[0], NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (error != 0) { m_freem(m); goto out; } data->m = m; paddr = data->map->dm_segs[0].ds_addr; } else { cmd = &ring->cmd[ring->cur]; paddr = data->cmd_paddr; } cmd->hdr.code = code; cmd->hdr.flags = 0; cmd->hdr.qid = ring->qid; cmd->hdr.idx = ring->cur; for (i = 0, off = 0; i < nitems(hcmd->data); i++) { if (hcmd->len[i] == 0) continue; memcpy(cmd->data + off, hcmd->data[i], hcmd->len[i]); off += hcmd->len[i]; } KASSERT(off == paylen); /* lo field is not aligned */ addr_lo = htole32((uint32_t)paddr); memcpy(&desc->tbs[0].lo, &addr_lo, sizeof(uint32_t)); desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(paddr) | ((sizeof(cmd->hdr) + paylen) << 4)); desc->num_tbs = 1; DPRINTFN(8, ("iwm_send_cmd 0x%x size=%lu %s\n", code, hcmd->len[0] + hcmd->len[1] + sizeof(cmd->hdr), async ? " (async)" : "")); if (hcmd->len[0] > sizeof(cmd->data)) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, hcmd->len[0], BUS_DMASYNC_PREWRITE); } else { bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, hcmd->len[0] + 4, BUS_DMASYNC_PREWRITE); } bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, sizeof (*desc), BUS_DMASYNC_PREWRITE); IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); if (!iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, (IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000)) { DPRINTF(("%s: acquiring device failed\n", DEVNAME(sc))); error = EBUSY; goto out; } #if 0 iwm_update_sched(sc, ring->qid, ring->cur, 0, 0); #endif DPRINTF(("sending command 0x%x qid %d, idx %d\n", code, ring->qid, ring->cur)); /* Kick command ring. */ ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); if (!async) { /* m..m-mmyy-mmyyyy-mym-ym m-my generation */ int generation = sc->sc_generation; error = tsleep(desc, PCATCH, "iwmcmd", hz); if (error == 0) { /* if hardware is no longer up, return error */ if (generation != sc->sc_generation) { error = ENXIO; } else { hcmd->resp_pkt = (void *)sc->sc_cmd_resp; } } } out: if (wantresp && error != 0) { iwm_free_resp(sc, hcmd); } splx(s); return error; } /* iwlwifi: mvm/utils.c */ int iwm_mvm_send_cmd_pdu(struct iwm_softc *sc, uint8_t id, uint32_t flags, uint16_t len, const void *data) { struct iwm_host_cmd cmd = { .id = id, .len = { len, }, .data = { data, }, .flags = flags, }; return iwm_send_cmd(sc, &cmd); } /* iwlwifi: mvm/utils.c */ int iwm_mvm_send_cmd_status(struct iwm_softc *sc, struct iwm_host_cmd *cmd, uint32_t *status) { struct iwm_rx_packet *pkt; struct iwm_cmd_response *resp; int error, resp_len; //lockdep_assert_held(&mvm->mutex); KASSERT((cmd->flags & IWM_CMD_WANT_SKB) == 0); cmd->flags |= IWM_CMD_SYNC | IWM_CMD_WANT_SKB; if ((error = iwm_send_cmd(sc, cmd)) != 0) return error; pkt = cmd->resp_pkt; /* Can happen if RFKILL is asserted */ if (!pkt) { error = 0; goto out_free_resp; } if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) { error = EIO; goto out_free_resp; } resp_len = iwm_rx_packet_payload_len(pkt); if (resp_len != sizeof(*resp)) { error = EIO; goto out_free_resp; } resp = (void *)pkt->data; *status = le32toh(resp->status); out_free_resp: iwm_free_resp(sc, cmd); return error; } /* iwlwifi/mvm/utils.c */ int iwm_mvm_send_cmd_pdu_status(struct iwm_softc *sc, uint8_t id, uint16_t len, const void *data, uint32_t *status) { struct iwm_host_cmd cmd = { .id = id, .len = { len, }, .data = { data, }, }; return iwm_mvm_send_cmd_status(sc, &cmd, status); } void iwm_free_resp(struct iwm_softc *sc, struct iwm_host_cmd *hcmd) { KASSERT(sc->sc_wantresp != -1); KASSERT((hcmd->flags & (IWM_CMD_WANT_SKB|IWM_CMD_SYNC)) == (IWM_CMD_WANT_SKB|IWM_CMD_SYNC)); sc->sc_wantresp = -1; wakeup(&sc->sc_wantresp); } /* * Process a "command done" firmware notification. This is where we wakeup * processes waiting for a synchronous command completion. * from if_iwn */ void iwm_cmd_done(struct iwm_softc *sc, struct iwm_rx_packet *pkt) { struct iwm_tx_ring *ring = &sc->txq[IWM_MVM_CMD_QUEUE]; struct iwm_tx_data *data; if (pkt->hdr.qid != IWM_MVM_CMD_QUEUE) { return; /* Not a command ack. */ } data = &ring->data[pkt->hdr.idx]; /* If the command was mapped in an mbuf, free it. */ if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->desc[pkt->hdr.idx]); } #if 0 /* * necessary only for block ack mode */ void iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, uint16_t len) { struct iwm_agn_scd_bc_tbl *scd_bc_tbl; uint16_t w_val; scd_bc_tbl = sc->sched_dma.vaddr; len += 8; /* magic numbers came naturally from paris */ if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE) len = roundup(len, 4) / 4; w_val = htole16(sta_id << 12 | len); /* Update TX scheduler. */ scd_bc_tbl[qid].tfd_offset[idx] = w_val; bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, sizeof(uint16_t), BUS_DMASYNC_PREWRITE); /* I really wonder what this is ?!? */ if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) { scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val; bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (char *)(void *)(w + IWM_TFD_QUEUE_SIZE_MAX) - (char *)(void *)sc->sched_dma.vaddr, sizeof (uint16_t), BUS_DMASYNC_PREWRITE); } } #endif /* * Fill in various bit for management frames, and leave them * unfilled for data frames (firmware takes care of that). * Return the selected TX rate. */ const struct iwm_rate * iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, struct ieee80211_frame *wh, struct iwm_tx_cmd *tx) { struct ieee80211com *ic = &sc->sc_ic; const struct iwm_rate *rinfo; int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; int ridx, rate_flags; int nrates = in->in_ni.ni_rates.rs_nrates; tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT; tx->data_retry_limit = IWM_DEFAULT_TX_RETRY; /* for data frames, use RS table */ if (type == IEEE80211_FC0_TYPE_DATA) { if (ic->ic_fixed_rate != -1) { tx->initial_rate_index = sc->sc_fixed_ridx; } else { tx->initial_rate_index = (nrates-1) - in->in_ni.ni_txrate; } tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE); DPRINTFN(12, ("start with txrate %d\n", tx->initial_rate_index)); return &iwm_rates[tx->initial_rate_index]; } /* for non-data, use the lowest supported rate */ ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? IWM_RIDX_OFDM : IWM_RIDX_CCK; rinfo = &iwm_rates[ridx]; rate_flags = 1 << IWM_RATE_MCS_ANT_POS; if (IWM_RIDX_IS_CCK(ridx)) rate_flags |= IWM_RATE_MCS_CCK_MSK; tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); return rinfo; } #define TB0_SIZE 16 int iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (void *)ni; struct iwm_tx_ring *ring; struct iwm_tx_data *data; struct iwm_tfd *desc; struct iwm_device_cmd *cmd; struct iwm_tx_cmd *tx; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct mbuf *m1; const struct iwm_rate *rinfo; uint32_t flags; u_int hdrlen; bus_dma_segment_t *seg; uint8_t tid, type; int i, totlen, error, pad; int hdrlen2; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; hdrlen2 = (ieee80211_has_qos(wh)) ? sizeof (struct ieee80211_qosframe) : sizeof (struct ieee80211_frame); if (hdrlen != hdrlen2) DPRINTF(("%s: hdrlen error (%d != %d)\n", DEVNAME(sc), hdrlen, hdrlen2)); tid = 0; ring = &sc->txq[ac]; desc = &ring->desc[ring->cur]; memset(desc, 0, sizeof(*desc)); data = &ring->data[ring->cur]; /* Fill out iwm_tx_cmd to send to the firmware */ cmd = &ring->cmd[ring->cur]; cmd->hdr.code = IWM_TX_CMD; cmd->hdr.flags = 0; cmd->hdr.qid = ring->qid; cmd->hdr.idx = ring->cur; tx = (void *)cmd->data; memset(tx, 0, sizeof(*tx)); rinfo = iwm_tx_fill_cmd(sc, in, wh, tx); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwm_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); tap->wt_rate = rinfo->rate; tap->wt_hwqueue = ac; if ((ic->ic_flags & IEEE80211_F_WEPON) && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { /* Retrieve key for TX && do software encryption. */ k = ieee80211_get_txkey(ic, wh, ni); if ((m = ieee80211_encrypt(ic, m, k)) == NULL) return ENOBUFS; /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); } totlen = m->m_pkthdr.len; flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= IWM_TX_CMD_FLG_ACK; } if (type != IEEE80211_FC0_TYPE_DATA && (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= IWM_TX_CMD_FLG_PROT_REQUIRE; } if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) tx->sta_id = sc->sc_aux_sta.sta_id; else tx->sta_id = IWM_STATION_ID; if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->pm_frame_timeout = htole16(3); else tx->pm_frame_timeout = htole16(2); } else { tx->pm_frame_timeout = htole16(0); } if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ flags |= IWM_TX_CMD_FLG_MH_PAD; pad = 4 - (hdrlen & 3); } else pad = 0; tx->driver_txop = 0; tx->next_frame_len = 0; tx->len = htole16(totlen); tx->tid_tspec = tid; tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); /* Set physical address of "scratch area". */ tx->dram_lsb_ptr = htole32(data->scratch_paddr); tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); /* Copy 802.11 header in TX command. */ memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL; tx->sec_ctl = 0; tx->tx_flags |= htole32(flags); /* Trim 802.11 header. */ m_adj(m, hdrlen); error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (error != 0) { if (error != EFBIG) { printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc), error); m_freem(m); return error; } /* Too many DMA segments, linearize mbuf. */ MGETHDR(m1, M_DONTWAIT, MT_DATA); if (m1 == NULL) { m_freem(m); return ENOBUFS; } if (m->m_pkthdr.len > MHLEN) { MCLGET(m1, M_DONTWAIT); if (!(m1->m_flags & M_EXT)) { m_freem(m); m_freem(m1); return ENOBUFS; } } m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; m_freem(m); m = m1; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (error != 0) { printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc), error); m_freem(m); return error; } } data->m = m; data->in = in; data->done = 0; DPRINTFN(8, ("sending txd %p, in %p\n", data, data->in)); KASSERT(data->in != NULL); DPRINTFN(8, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", ring->qid, ring->cur, totlen, data->map->dm_nsegs)); /* Fill TX descriptor. */ desc->num_tbs = 2 + data->map->dm_nsegs; desc->tbs[0].lo = htole32(data->cmd_paddr); desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) | (TB0_SIZE << 4); desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE); desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) | ((sizeof(struct iwm_cmd_header) + sizeof(*tx) + hdrlen + pad - TB0_SIZE) << 4); /* Other DMA segments are for data payload. */ seg = data->map->dm_segs; for (i = 0; i < data->map->dm_nsegs; i++, seg++) { desc->tbs[i+2].lo = htole32(seg->ds_addr); desc->tbs[i+2].hi_n_len = \ htole16(iwm_get_dma_hi_addr(seg->ds_addr)) | ((seg->ds_len) << 4); } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, sizeof (*cmd), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, sizeof (*desc), BUS_DMASYNC_PREWRITE); #if 0 iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len)); #endif /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWM_TX_RING_HIMARK) { sc->qfullmsk |= 1 << ring->qid; } return 0; } #if 0 /* not necessary? */ int iwm_mvm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync) { struct iwm_tx_path_flush_cmd flush_cmd = { .queues_ctl = htole32(tfd_msk), .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH), }; int ret; ret = iwm_mvm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, sync ? IWM_CMD_SYNC : IWM_CMD_ASYNC, sizeof(flush_cmd), &flush_cmd); if (ret) printf("%s: Flushing tx queue failed: %d\n", DEVNAME(sc), ret); return ret; } #endif /* * BEGIN mvm/power.c */ #define IWM_POWER_KEEP_ALIVE_PERIOD_SEC 25 int iwm_mvm_beacon_filter_send_cmd(struct iwm_softc *sc, struct iwm_beacon_filter_cmd *cmd) { int ret; ret = iwm_mvm_send_cmd_pdu(sc, IWM_REPLY_BEACON_FILTERING_CMD, IWM_CMD_SYNC, sizeof(struct iwm_beacon_filter_cmd), cmd); if (!ret) { DPRINTF(("ba_enable_beacon_abort is: %d\n", le32toh(cmd->ba_enable_beacon_abort))); DPRINTF(("ba_escape_timer is: %d\n", le32toh(cmd->ba_escape_timer))); DPRINTF(("bf_debug_flag is: %d\n", le32toh(cmd->bf_debug_flag))); DPRINTF(("bf_enable_beacon_filter is: %d\n", le32toh(cmd->bf_enable_beacon_filter))); DPRINTF(("bf_energy_delta is: %d\n", le32toh(cmd->bf_energy_delta))); DPRINTF(("bf_escape_timer is: %d\n", le32toh(cmd->bf_escape_timer))); DPRINTF(("bf_roaming_energy_delta is: %d\n", le32toh(cmd->bf_roaming_energy_delta))); DPRINTF(("bf_roaming_state is: %d\n", le32toh(cmd->bf_roaming_state))); DPRINTF(("bf_temp_threshold is: %d\n", le32toh(cmd->bf_temp_threshold))); DPRINTF(("bf_temp_fast_filter is: %d\n", le32toh(cmd->bf_temp_fast_filter))); DPRINTF(("bf_temp_slow_filter is: %d\n", le32toh(cmd->bf_temp_slow_filter))); } return ret; } void iwm_mvm_beacon_filter_set_cqm_params(struct iwm_softc *sc, struct iwm_node *in, struct iwm_beacon_filter_cmd *cmd) { cmd->ba_enable_beacon_abort = htole32(sc->sc_bf.ba_enabled); } int iwm_mvm_update_beacon_abort(struct iwm_softc *sc, struct iwm_node *in, int enable) { struct iwm_beacon_filter_cmd cmd = { IWM_BF_CMD_CONFIG_DEFAULTS, .bf_enable_beacon_filter = htole32(1), .ba_enable_beacon_abort = htole32(enable), }; if (!sc->sc_bf.bf_enabled) return 0; sc->sc_bf.ba_enabled = enable; iwm_mvm_beacon_filter_set_cqm_params(sc, in, &cmd); return iwm_mvm_beacon_filter_send_cmd(sc, &cmd); } void iwm_mvm_power_log(struct iwm_softc *sc, struct iwm_mac_power_cmd *cmd) { DPRINTF(("Sending power table command on mac id 0x%X for " "power level %d, flags = 0x%X\n", cmd->id_and_color, IWM_POWER_SCHEME_CAM, le16toh(cmd->flags))); DPRINTF(("Keep alive = %u sec\n", le16toh(cmd->keep_alive_seconds))); if (!(cmd->flags & htole16(IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK))) { DPRINTF(("Disable power management\n")); return; } KASSERT(0); #if 0 DPRINTF(mvm, "Rx timeout = %u usec\n", le32_to_cpu(cmd->rx_data_timeout)); DPRINTF(mvm, "Tx timeout = %u usec\n", le32_to_cpu(cmd->tx_data_timeout)); if (cmd->flags & cpu_to_le16(IWM_POWER_FLAGS_SKIP_OVER_DTIM_MSK)) DPRINTF(mvm, "DTIM periods to skip = %u\n", cmd->skip_dtim_periods); if (cmd->flags & cpu_to_le16(IWM_POWER_FLAGS_LPRX_ENA_MSK)) DPRINTF(mvm, "LP RX RSSI threshold = %u\n", cmd->lprx_rssi_threshold); if (cmd->flags & cpu_to_le16(IWM_POWER_FLAGS_ADVANCE_PM_ENA_MSK)) { DPRINTF(mvm, "uAPSD enabled\n"); DPRINTF(mvm, "Rx timeout (uAPSD) = %u usec\n", le32_to_cpu(cmd->rx_data_timeout_uapsd)); DPRINTF(mvm, "Tx timeout (uAPSD) = %u usec\n", le32_to_cpu(cmd->tx_data_timeout_uapsd)); DPRINTF(mvm, "QNDP TID = %d\n", cmd->qndp_tid); DPRINTF(mvm, "ACs flags = 0x%x\n", cmd->uapsd_ac_flags); DPRINTF(mvm, "Max SP = %d\n", cmd->uapsd_max_sp); } #endif } void iwm_mvm_power_build_cmd(struct iwm_softc *sc, struct iwm_node *in, struct iwm_mac_power_cmd *cmd) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = &in->in_ni; int dtimper, dtimper_msec; int keep_alive; cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); dtimper = ic->ic_dtim_period ?: 1; /* * Regardless of power management state the driver must set * keep alive period. FW will use it for sending keep alive NDPs * immediately after association. Check that keep alive period * is at least 3 * DTIM */ dtimper_msec = dtimper * ni->ni_intval; keep_alive = MAX(3 * dtimper_msec, 1000 * IWM_POWER_KEEP_ALIVE_PERIOD_SEC); keep_alive = roundup(keep_alive, 1000) / 1000; cmd->keep_alive_seconds = htole16(keep_alive); } int iwm_mvm_power_mac_update_mode(struct iwm_softc *sc, struct iwm_node *in) { int ret; int ba_enable; struct iwm_mac_power_cmd cmd; memset(&cmd, 0, sizeof(cmd)); iwm_mvm_power_build_cmd(sc, in, &cmd); iwm_mvm_power_log(sc, &cmd); if ((ret = iwm_mvm_send_cmd_pdu(sc, IWM_MAC_PM_POWER_TABLE, IWM_CMD_SYNC, sizeof(cmd), &cmd)) != 0) return ret; ba_enable = !!(cmd.flags & htole16(IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK)); return iwm_mvm_update_beacon_abort(sc, in, ba_enable); } int iwm_mvm_power_update_device(struct iwm_softc *sc) { struct iwm_device_power_cmd cmd = { .flags = htole16(IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK), }; if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DEVICE_PS_CMD)) return 0; cmd.flags |= htole16(IWM_DEVICE_POWER_FLAGS_CAM_MSK); DPRINTF(("Sending device power command with flags = 0x%X\n", cmd.flags)); return iwm_mvm_send_cmd_pdu(sc, IWM_POWER_TABLE_CMD, IWM_CMD_SYNC, sizeof(cmd), &cmd); } int iwm_mvm_enable_beacon_filter(struct iwm_softc *sc, struct iwm_node *in) { struct iwm_beacon_filter_cmd cmd = { IWM_BF_CMD_CONFIG_DEFAULTS, .bf_enable_beacon_filter = htole32(1), }; int ret; iwm_mvm_beacon_filter_set_cqm_params(sc, in, &cmd); ret = iwm_mvm_beacon_filter_send_cmd(sc, &cmd); if (ret == 0) sc->sc_bf.bf_enabled = 1; return ret; } int iwm_mvm_disable_beacon_filter(struct iwm_softc *sc, struct iwm_node *in) { struct iwm_beacon_filter_cmd cmd; int ret; memset(&cmd, 0, sizeof(cmd)); if ((sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_BF_UPDATED) == 0) return 0; ret = iwm_mvm_beacon_filter_send_cmd(sc, &cmd); if (ret == 0) sc->sc_bf.bf_enabled = 0; return ret; } #if 0 int iwm_mvm_update_beacon_filter(struct iwm_softc *sc, struct iwm_node *in) { if (!sc->sc_bf.bf_enabled) return 0; return iwm_mvm_enable_beacon_filter(sc, in); } #endif /* * END mvm/power.c */ /* * BEGIN mvm/sta.c */ void iwm_mvm_add_sta_cmd_v6_to_v5(struct iwm_mvm_add_sta_cmd_v6 *cmd_v6, struct iwm_mvm_add_sta_cmd_v5 *cmd_v5) { memset(cmd_v5, 0, sizeof(*cmd_v5)); cmd_v5->add_modify = cmd_v6->add_modify; cmd_v5->tid_disable_tx = cmd_v6->tid_disable_tx; cmd_v5->mac_id_n_color = cmd_v6->mac_id_n_color; memcpy(cmd_v5->addr, cmd_v6->addr, ETHER_ADDR_LEN); cmd_v5->sta_id = cmd_v6->sta_id; cmd_v5->modify_mask = cmd_v6->modify_mask; cmd_v5->station_flags = cmd_v6->station_flags; cmd_v5->station_flags_msk = cmd_v6->station_flags_msk; cmd_v5->add_immediate_ba_tid = cmd_v6->add_immediate_ba_tid; cmd_v5->remove_immediate_ba_tid = cmd_v6->remove_immediate_ba_tid; cmd_v5->add_immediate_ba_ssn = cmd_v6->add_immediate_ba_ssn; cmd_v5->sleep_tx_count = cmd_v6->sleep_tx_count; cmd_v5->sleep_state_flags = cmd_v6->sleep_state_flags; cmd_v5->assoc_id = cmd_v6->assoc_id; cmd_v5->beamform_flags = cmd_v6->beamform_flags; cmd_v5->tfd_queue_msk = cmd_v6->tfd_queue_msk; } int iwm_mvm_send_add_sta_cmd_status(struct iwm_softc *sc, struct iwm_mvm_add_sta_cmd_v6 *cmd, int *status) { struct iwm_mvm_add_sta_cmd_v5 cmd_v5; if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_STA_KEY_CMD) { return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(*cmd), cmd, status); } iwm_mvm_add_sta_cmd_v6_to_v5(cmd, &cmd_v5); return iwm_mvm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd_v5), &cmd_v5, status); } /* send station add/update command to firmware */ int iwm_mvm_sta_send_to_fw(struct iwm_softc *sc, struct iwm_node *in, int update) { struct iwm_mvm_add_sta_cmd_v6 add_sta_cmd; int ret; uint32_t status; memset(&add_sta_cmd, 0, sizeof(add_sta_cmd)); add_sta_cmd.sta_id = IWM_STATION_ID; add_sta_cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); if (!update) { add_sta_cmd.tfd_queue_msk = htole32(0xf); IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid); } add_sta_cmd.add_modify = update ? 1 : 0; add_sta_cmd.station_flags_msk |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK); status = IWM_ADD_STA_SUCCESS; ret = iwm_mvm_send_add_sta_cmd_status(sc, &add_sta_cmd, &status); if (ret) return ret; switch (status) { case IWM_ADD_STA_SUCCESS: break; default: ret = EIO; DPRINTF(("IWM_ADD_STA failed\n")); break; } return ret; } int iwm_mvm_add_sta(struct iwm_softc *sc, struct iwm_node *in) { int ret; ret = iwm_mvm_sta_send_to_fw(sc, in, 0); if (ret) return ret; return 0; } int iwm_mvm_update_sta(struct iwm_softc *sc, struct iwm_node *in) { return iwm_mvm_sta_send_to_fw(sc, in, 1); } int iwm_mvm_add_int_sta_common(struct iwm_softc *sc, struct iwm_int_sta *sta, const uint8_t *addr, uint16_t mac_id, uint16_t color) { struct iwm_mvm_add_sta_cmd_v6 cmd; int ret; uint32_t status; memset(&cmd, 0, sizeof(cmd)); cmd.sta_id = sta->sta_id; cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(mac_id, color)); cmd.tfd_queue_msk = htole32(sta->tfd_queue_msk); if (addr) memcpy(cmd.addr, addr, ETHER_ADDR_LEN); ret = iwm_mvm_send_add_sta_cmd_status(sc, &cmd, &status); if (ret) return ret; switch (status) { case IWM_ADD_STA_SUCCESS: DPRINTF(("Internal station added.\n")); return 0; default: DPRINTF(("%s: Add internal station failed, status=0x%x\n", DEVNAME(sc), status)); ret = EIO; break; } return ret; } int iwm_mvm_add_aux_sta(struct iwm_softc *sc) { int ret; sc->sc_aux_sta.sta_id = 3; sc->sc_aux_sta.tfd_queue_msk = 0; ret = iwm_mvm_add_int_sta_common(sc, &sc->sc_aux_sta, NULL, IWM_MAC_INDEX_AUX, 0); if (ret) memset(&sc->sc_aux_sta, 0, sizeof(sc->sc_aux_sta)); return ret; } /* * END mvm/sta.c */ /* * BEGIN mvm/scan.c */ #define IWM_PLCP_QUIET_THRESH 1 #define IWM_ACTIVE_QUIET_TIME 10 #define LONG_OUT_TIME_PERIOD 600 #define SHORT_OUT_TIME_PERIOD 200 #define SUSPEND_TIME_PERIOD 100 uint16_t iwm_mvm_scan_rx_chain(struct iwm_softc *sc) { uint16_t rx_chain; uint8_t rx_ant; rx_ant = IWM_FW_VALID_RX_ANT(sc); rx_chain = rx_ant << IWM_PHY_RX_CHAIN_VALID_POS; rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS; rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_SEL_POS; rx_chain |= 0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS; return htole16(rx_chain); } #define ieee80211_tu_to_usec(a) (1024*(a)) uint32_t iwm_mvm_scan_max_out_time(struct iwm_softc *sc, uint32_t flags, int is_assoc) { if (!is_assoc) return 0; if (flags & 0x1) return htole32(ieee80211_tu_to_usec(SHORT_OUT_TIME_PERIOD)); return htole32(ieee80211_tu_to_usec(LONG_OUT_TIME_PERIOD)); } uint32_t iwm_mvm_scan_suspend_time(struct iwm_softc *sc, int is_assoc) { if (!is_assoc) return 0; return htole32(ieee80211_tu_to_usec(SUSPEND_TIME_PERIOD)); } uint32_t iwm_mvm_scan_rxon_flags(struct iwm_softc *sc, int flags) { if (flags & IEEE80211_CHAN_2GHZ) return htole32(IWM_PHY_BAND_24); else return htole32(IWM_PHY_BAND_5); } uint32_t iwm_mvm_scan_rate_n_flags(struct iwm_softc *sc, int flags, int no_cck) { uint32_t tx_ant; int i, ind; for (i = 0, ind = sc->sc_scan_last_antenna; i < IWM_RATE_MCS_ANT_NUM; i++) { ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM; if (IWM_FW_VALID_TX_ANT(sc) & (1 << ind)) { sc->sc_scan_last_antenna = ind; break; } } tx_ant = (1 << sc->sc_scan_last_antenna) << IWM_RATE_MCS_ANT_POS; if ((flags & IEEE80211_CHAN_2GHZ) && !no_cck) return htole32(IWM_RATE_1M_PLCP | IWM_RATE_MCS_CCK_MSK | tx_ant); else return htole32(IWM_RATE_6M_PLCP | tx_ant); } /* * If req->n_ssids > 0, it means we should do an active scan. * In case of active scan w/o directed scan, we receive a zero-length SSID * just to notify that this scan is active and not passive. * In order to notify the FW of the number of SSIDs we wish to scan (including * the zero-length one), we need to set the corresponding bits in chan->type, * one for each SSID, and set the active bit (first). If the first SSID is * already included in the probe template, so we need to set only * req->n_ssids - 1 bits in addition to the first bit. */ uint16_t iwm_mvm_get_active_dwell(struct iwm_softc *sc, int flags, int n_ssids) { if (flags & IEEE80211_CHAN_2GHZ) return 30 + 3 * (n_ssids + 1); return 20 + 2 * (n_ssids + 1); } uint16_t iwm_mvm_get_passive_dwell(struct iwm_softc *sc, int flags) { return (flags & IEEE80211_CHAN_2GHZ) ? 100 + 20 : 100 + 10; } int iwm_mvm_scan_fill_channels(struct iwm_softc *sc, struct iwm_scan_cmd *cmd, int flags, int n_ssids, int basic_ssid) { struct ieee80211com *ic = &sc->sc_ic; uint16_t passive_dwell = iwm_mvm_get_passive_dwell(sc, flags); uint16_t active_dwell = iwm_mvm_get_active_dwell(sc, flags, n_ssids); struct iwm_scan_channel *chan = (struct iwm_scan_channel *) (cmd->data + le16toh(cmd->tx_cmd.len)); int type = (1 << n_ssids) - 1; struct ieee80211_channel *c; int nchan; if (!basic_ssid) type |= (1 << n_ssids); for (nchan = 0, c = &ic->ic_channels[1]; c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { if ((c->ic_flags & flags) != flags) continue; chan->channel = htole16(ieee80211_mhz2ieee(c->ic_freq, flags)); chan->type = htole32(type); if (c->ic_flags & IEEE80211_CHAN_PASSIVE) chan->type &= htole32(~IWM_SCAN_CHANNEL_TYPE_ACTIVE); chan->active_dwell = htole16(active_dwell); chan->passive_dwell = htole16(passive_dwell); chan->iteration_count = htole16(1); chan++; nchan++; } if (nchan == 0) DPRINTF(("%s: NO CHANNEL!\n", DEVNAME(sc))); return nchan; } /* * Fill in probe request with the following parameters: * TA is our vif HW address, which mac80211 ensures we have. * Packet is broadcasted, so this is both SA and DA. * The probe request IE is made out of two: first comes the most prioritized * SSID if a directed scan is requested. Second comes whatever extra * information was given to us as the scan request IE. */ uint16_t iwm_mvm_fill_probe_req(struct iwm_softc *sc, struct ieee80211_frame *frame, const uint8_t *ta, int n_ssids, const uint8_t *ssid, int ssid_len, const uint8_t *ie, int ie_len, int left) { int len = 0; uint8_t *pos = NULL; /* Make sure there is enough space for the probe request, * two mandatory IEs and the data */ left -= sizeof(*frame); if (left < 0) return 0; frame->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; frame->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(frame->i_addr1, etherbroadcastaddr); memcpy(frame->i_addr2, ta, ETHER_ADDR_LEN); IEEE80211_ADDR_COPY(frame->i_addr3, etherbroadcastaddr); len += sizeof(*frame); CTASSERT(sizeof(*frame) == 24); /* for passive scans, no need to fill anything */ if (n_ssids == 0) return (uint16_t)len; /* points to the payload of the request */ pos = (uint8_t *)frame + sizeof(*frame); /* fill in our SSID IE */ left -= ssid_len + 2; if (left < 0) return 0; *pos++ = IEEE80211_ELEMID_SSID; *pos++ = ssid_len; if (ssid && ssid_len) { /* ssid_len may be == 0 even if ssid is valid */ memcpy(pos, ssid, ssid_len); pos += ssid_len; } len += ssid_len + 2; if (left < ie_len) return len; if (ie && ie_len) { memcpy(pos, ie, ie_len); len += ie_len; } return (uint16_t)len; } int iwm_mvm_scan_request(struct iwm_softc *sc, int flags, int n_ssids, uint8_t *ssid, int ssid_len) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_host_cmd hcmd = { .id = IWM_SCAN_REQUEST_CMD, .len = { 0, }, .data = { sc->sc_scan_cmd, }, .flags = IWM_CMD_SYNC, .dataflags = { IWM_HCMD_DFL_NOCOPY, }, }; struct iwm_scan_cmd *cmd = sc->sc_scan_cmd; int is_assoc = 0; int ret; uint32_t status; int basic_ssid = !(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_NO_BASIC_SSID); //lockdep_assert_held(&mvm->mutex); sc->sc_scanband = flags & (IEEE80211_CHAN_2GHZ | IEEE80211_CHAN_5GHZ); DPRINTF(("Handling ieee80211 scan request\n")); memset(cmd, 0, sc->sc_scan_cmd_len); cmd->quiet_time = htole16(IWM_ACTIVE_QUIET_TIME); cmd->quiet_plcp_th = htole16(IWM_PLCP_QUIET_THRESH); cmd->rxchain_sel_flags = iwm_mvm_scan_rx_chain(sc); cmd->max_out_time = iwm_mvm_scan_max_out_time(sc, 0, is_assoc); cmd->suspend_time = iwm_mvm_scan_suspend_time(sc, is_assoc); cmd->rxon_flags = iwm_mvm_scan_rxon_flags(sc, flags); cmd->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP | IWM_MAC_FILTER_IN_BEACON); cmd->type = htole32(IWM_SCAN_TYPE_FORCED); cmd->repeats = htole32(1); /* * If the user asked for passive scan, don't change to active scan if * you see any activity on the channel - remain passive. */ if (n_ssids > 0) { cmd->passive2active = htole16(1); cmd->scan_flags |= IWM_SCAN_FLAGS_PASSIVE2ACTIVE; #if 0 if (basic_ssid) { ssid = req->ssids[0].ssid; ssid_len = req->ssids[0].ssid_len; } #endif } else { cmd->passive2active = 0; cmd->scan_flags &= ~IWM_SCAN_FLAGS_PASSIVE2ACTIVE; } cmd->tx_cmd.tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL | IWM_TX_CMD_FLG_BT_DIS); cmd->tx_cmd.sta_id = sc->sc_aux_sta.sta_id; cmd->tx_cmd.life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); cmd->tx_cmd.rate_n_flags = iwm_mvm_scan_rate_n_flags(sc, flags, 1/*XXX*/); cmd->tx_cmd.len = htole16(iwm_mvm_fill_probe_req(sc, (struct ieee80211_frame *)cmd->data, ic->ic_myaddr, n_ssids, ssid, ssid_len, NULL, 0, sc->sc_capa_max_probe_len)); cmd->channel_count = iwm_mvm_scan_fill_channels(sc, cmd, flags, n_ssids, basic_ssid); cmd->len = htole16(sizeof(struct iwm_scan_cmd) + le16toh(cmd->tx_cmd.len) + (cmd->channel_count * sizeof(struct iwm_scan_channel))); hcmd.len[0] = le16toh(cmd->len); status = IWM_SCAN_RESPONSE_OK; ret = iwm_mvm_send_cmd_status(sc, &hcmd, &status); if (!ret && status == IWM_SCAN_RESPONSE_OK) { DPRINTF(("Scan request was sent successfully\n")); } else { /* * If the scan failed, it usually means that the FW was unable * to allocate the time events. Warn on it, but maybe we * should try to send the command again with different params. */ sc->sc_scanband = 0; ret = EIO; } return ret; } /* * END mvm/scan.c */ /* * BEGIN mvm/mac-ctxt.c */ void iwm_mvm_ack_rates(struct iwm_softc *sc, struct iwm_node *in, int *cck_rates, int *ofdm_rates) { struct ieee80211_node *ni = &in->in_ni; int lowest_present_ofdm = 100; int lowest_present_cck = 100; uint8_t cck = 0; uint8_t ofdm = 0; int i; if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { for (i = 0; i <= IWM_LAST_CCK_RATE; i++) { cck |= (1 << i); if (lowest_present_cck > i) lowest_present_cck = i; } } for (i = IWM_FIRST_OFDM_RATE; i <= IWM_LAST_NON_HT_RATE; i++) { int adj = i - IWM_FIRST_OFDM_RATE; ofdm |= (1 << adj); if (lowest_present_ofdm > i) lowest_present_ofdm = i; } /* * Now we've got the basic rates as bitmaps in the ofdm and cck * variables. This isn't sufficient though, as there might not * be all the right rates in the bitmap. E.g. if the only basic * rates are 5.5 Mbps and 11 Mbps, we still need to add 1 Mbps * and 6 Mbps because the 802.11-2007 standard says in 9.6: * * [...] a STA responding to a received frame shall transmit * its Control Response frame [...] at the highest rate in the * BSSBasicRateSet parameter that is less than or equal to the * rate of the immediately previous frame in the frame exchange * sequence ([...]) and that is of the same modulation class * ([...]) as the received frame. If no rate contained in the * BSSBasicRateSet parameter meets these conditions, then the * control frame sent in response to a received frame shall be * transmitted at the highest mandatory rate of the PHY that is * less than or equal to the rate of the received frame, and * that is of the same modulation class as the received frame. * * As a consequence, we need to add all mandatory rates that are * lower than all of the basic rates to these bitmaps. */ if (IWM_RATE_24M_INDEX < lowest_present_ofdm) ofdm |= IWM_RATE_BIT_MSK(24) >> IWM_FIRST_OFDM_RATE; if (IWM_RATE_12M_INDEX < lowest_present_ofdm) ofdm |= IWM_RATE_BIT_MSK(12) >> IWM_FIRST_OFDM_RATE; /* 6M already there or needed so always add */ ofdm |= IWM_RATE_BIT_MSK(6) >> IWM_FIRST_OFDM_RATE; /* * CCK is a bit more complex with DSSS vs. HR/DSSS vs. ERP. * Note, however: * - if no CCK rates are basic, it must be ERP since there must * be some basic rates at all, so they're OFDM => ERP PHY * (or we're in 5 GHz, and the cck bitmap will never be used) * - if 11M is a basic rate, it must be ERP as well, so add 5.5M * - if 5.5M is basic, 1M and 2M are mandatory * - if 2M is basic, 1M is mandatory * - if 1M is basic, that's the only valid ACK rate. * As a consequence, it's not as complicated as it sounds, just add * any lower rates to the ACK rate bitmap. */ if (IWM_RATE_11M_INDEX < lowest_present_cck) cck |= IWM_RATE_BIT_MSK(11) >> IWM_FIRST_CCK_RATE; if (IWM_RATE_5M_INDEX < lowest_present_cck) cck |= IWM_RATE_BIT_MSK(5) >> IWM_FIRST_CCK_RATE; if (IWM_RATE_2M_INDEX < lowest_present_cck) cck |= IWM_RATE_BIT_MSK(2) >> IWM_FIRST_CCK_RATE; /* 1M already there or needed so always add */ cck |= IWM_RATE_BIT_MSK(1) >> IWM_FIRST_CCK_RATE; *cck_rates = cck; *ofdm_rates = ofdm; } void iwm_mvm_mac_ctxt_cmd_common(struct iwm_softc *sc, struct iwm_node *in, struct iwm_mac_ctx_cmd *cmd, uint32_t action) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; int cck_ack_rates, ofdm_ack_rates; int i; cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); cmd->action = htole32(action); cmd->mac_type = htole32(IWM_FW_MAC_TYPE_BSS_STA); cmd->tsf_id = htole32(in->in_tsfid); IEEE80211_ADDR_COPY(cmd->node_addr, ic->ic_myaddr); if (in->in_assoc) { IEEE80211_ADDR_COPY(cmd->bssid_addr, ni->ni_bssid); } else { memset(cmd->bssid_addr, 0, sizeof(cmd->bssid_addr)); } iwm_mvm_ack_rates(sc, in, &cck_ack_rates, &ofdm_ack_rates); cmd->cck_rates = htole32(cck_ack_rates); cmd->ofdm_rates = htole32(ofdm_ack_rates); cmd->cck_short_preamble = htole32((ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? IWM_MAC_FLG_SHORT_PREAMBLE : 0); cmd->short_slot = htole32((ic->ic_flags & IEEE80211_F_SHSLOT) ? IWM_MAC_FLG_SHORT_SLOT : 0); for (i = 0; i < IWM_AC_NUM+1; i++) { int txf = i; cmd->ac[txf].cw_min = htole16(0x0f); cmd->ac[txf].cw_max = htole16(0x3f); cmd->ac[txf].aifsn = 1; cmd->ac[txf].fifos_mask = (1 << txf); cmd->ac[txf].edca_txop = 0; } if (ic->ic_flags & IEEE80211_F_USEPROT) cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_TGG_PROTECT); cmd->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP); } int iwm_mvm_mac_ctxt_send_cmd(struct iwm_softc *sc, struct iwm_mac_ctx_cmd *cmd) { int ret = iwm_mvm_send_cmd_pdu(sc, IWM_MAC_CONTEXT_CMD, IWM_CMD_SYNC, sizeof(*cmd), cmd); if (ret) DPRINTF(("%s: Failed to send MAC context (action:%d): %d\n", DEVNAME(sc), le32toh(cmd->action), ret)); return ret; } /* * Fill the specific data for mac context of type station or p2p client */ void iwm_mvm_mac_ctxt_cmd_fill_sta(struct iwm_softc *sc, struct iwm_node *in, struct iwm_mac_data_sta *ctxt_sta, int force_assoc_off) { struct ieee80211_node *ni = &in->in_ni; unsigned dtim_period, dtim_count; struct ieee80211com *ic = &sc->sc_ic; /* will this work? */ dtim_period = ic->ic_dtim_period; dtim_count = ic->ic_dtim_count; DPRINTF(("dtim %d %d\n", dtim_period, dtim_count)); /* We need the dtim_period to set the MAC as associated */ if (in->in_assoc && dtim_period && !force_assoc_off) { uint64_t tsf; uint32_t dtim_offs; /* * The DTIM count counts down, so when it is N that means N * more beacon intervals happen until the DTIM TBTT. Therefore * add this to the current time. If that ends up being in the * future, the firmware will handle it. * * Also note that the system_timestamp (which we get here as * "sync_device_ts") and TSF timestamp aren't at exactly the * same offset in the frame -- the TSF is at the first symbol * of the TSF, the system timestamp is at signal acquisition * time. This means there's an offset between them of at most * a few hundred microseconds (24 * 8 bits + PLCP time gives * 384us in the longest case), this is currently not relevant * as the firmware wakes up around 2ms before the TBTT. */ dtim_offs = dtim_count * ni->ni_intval; /* convert TU to usecs */ dtim_offs *= 1024; /* XXX: byte order? */ memcpy(&tsf, ni->ni_tstamp, sizeof(tsf)); ctxt_sta->dtim_tsf = htole64(tsf + dtim_offs); ctxt_sta->dtim_time = htole64(ni->ni_rstamp + dtim_offs); DPRINTF(("DTIM TBTT is 0x%llx/0x%x, offset %d\n", (long long)le64toh(ctxt_sta->dtim_tsf), le32toh(ctxt_sta->dtim_time), dtim_offs)); ctxt_sta->is_assoc = htole32(1); } else { ctxt_sta->is_assoc = htole32(0); } ctxt_sta->bi = htole32(ni->ni_intval); ctxt_sta->bi_reciprocal = htole32(iwm_mvm_reciprocal(ni->ni_intval)); ctxt_sta->dtim_interval = htole32(ni->ni_intval * dtim_period); ctxt_sta->dtim_reciprocal = htole32(iwm_mvm_reciprocal(ni->ni_intval * dtim_period)); /* 10 = CONN_MAX_LISTEN_INTERVAL */ ctxt_sta->listen_interval = htole32(10); ctxt_sta->assoc_id = htole32(ni->ni_associd); } int iwm_mvm_mac_ctxt_cmd_station(struct iwm_softc *sc, struct iwm_node *in, uint32_t action) { struct iwm_mac_ctx_cmd cmd; memset(&cmd, 0, sizeof(cmd)); /* Fill the common data for all mac context types */ iwm_mvm_mac_ctxt_cmd_common(sc, in, &cmd, action); /* Allow beacons to pass through as long as we are not associated,or we * do not have dtim period information */ if (!in->in_assoc || !sc->sc_ic.ic_dtim_period) cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_BEACON); else cmd.filter_flags &= ~htole32(IWM_MAC_FILTER_IN_BEACON); /* Fill the data specific for station mode */ iwm_mvm_mac_ctxt_cmd_fill_sta(sc, in, &cmd.sta, action == IWM_FW_CTXT_ACTION_ADD); return iwm_mvm_mac_ctxt_send_cmd(sc, &cmd); } int iwm_mvm_mac_ctx_send(struct iwm_softc *sc, struct iwm_node *in, uint32_t action) { return iwm_mvm_mac_ctxt_cmd_station(sc, in, action); } int iwm_mvm_mac_ctxt_add(struct iwm_softc *sc, struct iwm_node *in) { int ret; ret = iwm_mvm_mac_ctx_send(sc, in, IWM_FW_CTXT_ACTION_ADD); if (ret) return ret; return 0; } int iwm_mvm_mac_ctxt_changed(struct iwm_softc *sc, struct iwm_node *in) { return iwm_mvm_mac_ctx_send(sc, in, IWM_FW_CTXT_ACTION_MODIFY); } #if 0 int iwm_mvm_mac_ctxt_remove(struct iwm_softc *sc, struct iwm_node *in) { struct iwm_mac_ctx_cmd cmd; int ret; if (!in->in_uploaded) { print("%s: attempt to remove !uploaded node %p", DEVNAME(sc), in); return EIO; } memset(&cmd, 0, sizeof(cmd)); cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); cmd.action = htole32(IWM_FW_CTXT_ACTION_REMOVE); ret = iwm_mvm_send_cmd_pdu(sc, IWM_MAC_CONTEXT_CMD, IWM_CMD_SYNC, sizeof(cmd), &cmd); if (ret) { printf("%s: Failed to remove MAC context: %d\n", DEVNAME(sc), ret); return ret; } in->in_uploaded = 0; return 0; } #endif /* * END mvm/mac-ctxt.c */ /* * BEGIN mvm/quota.c */ int iwm_mvm_update_quotas(struct iwm_softc *sc, struct iwm_node *in) { struct iwm_time_quota_cmd cmd; int i, idx, ret, num_active_macs, quota, quota_rem; int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, }; int n_ifs[IWM_MAX_BINDINGS] = {0, }; uint16_t id; memset(&cmd, 0, sizeof(cmd)); /* currently, PHY ID == binding ID */ if (in) { id = in->in_phyctxt->id; KASSERT(id < IWM_MAX_BINDINGS); colors[id] = in->in_phyctxt->color; if (1) n_ifs[id] = 1; } /* * The FW's scheduling session consists of * IWM_MVM_MAX_QUOTA fragments. Divide these fragments * equally between all the bindings that require quota */ num_active_macs = 0; for (i = 0; i < IWM_MAX_BINDINGS; i++) { cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID); num_active_macs += n_ifs[i]; } quota = 0; quota_rem = 0; if (num_active_macs) { quota = IWM_MVM_MAX_QUOTA / num_active_macs; quota_rem = IWM_MVM_MAX_QUOTA % num_active_macs; } for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) { if (colors[i] < 0) continue; cmd.quotas[idx].id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i])); if (n_ifs[i] <= 0) { cmd.quotas[idx].quota = htole32(0); cmd.quotas[idx].max_duration = htole32(0); } else { cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); cmd.quotas[idx].max_duration = htole32(0); } idx++; } /* Give the remainder of the session to the first binding */ cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); ret = iwm_mvm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, IWM_CMD_SYNC, sizeof(cmd), &cmd); if (ret) DPRINTF(("%s: Failed to send quota: %d\n", DEVNAME(sc), ret)); return ret; } /* * END mvm/quota.c */ /* * aieee80211 routines */ /* * Change to AUTH state in 80211 state machine. Roughly matches what * Linux does in bss_info_changed(). */ int iwm_auth(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (void *)ic->ic_bss; uint32_t duration; uint32_t min_duration; int error; in->in_assoc = 0; error = iwm_allow_mcast(sc); if (error) return error; if ((error = iwm_mvm_mac_ctxt_add(sc, in)) != 0) { DPRINTF(("%s: failed to add MAC\n", DEVNAME(sc))); return error; } if ((error = iwm_mvm_phy_ctxt_changed(sc, &sc->sc_phyctxt[0], in->in_ni.ni_chan, 1, 1)) != 0) { DPRINTF(("%s: failed add phy ctxt\n", DEVNAME(sc))); return error; } in->in_phyctxt = &sc->sc_phyctxt[0]; if ((error = iwm_mvm_binding_add_vif(sc, in)) != 0) { DPRINTF(("%s: binding cmd\n", DEVNAME(sc))); return error; } if ((error = iwm_mvm_add_sta(sc, in)) != 0) { DPRINTF(("%s: failed to add MAC\n", DEVNAME(sc))); return error; } /* a bit superfluous? */ while (sc->sc_auth_prot) tsleep(&sc->sc_auth_prot, 0, "iwmauth", 0); sc->sc_auth_prot = 1; duration = min(IWM_MVM_TE_SESSION_PROTECTION_MAX_TIME_MS, 200 + in->in_ni.ni_intval); min_duration = min(IWM_MVM_TE_SESSION_PROTECTION_MIN_TIME_MS, 100 + in->in_ni.ni_intval); iwm_mvm_protect_session(sc, in, duration, min_duration, 500); while (sc->sc_auth_prot != 2) { /* * well, meh, but if the kernel is sleeping for half a * second, we have bigger problems */ if (sc->sc_auth_prot == 0) { DPRINTF(("%s: missed auth window!\n", DEVNAME(sc))); return ETIMEDOUT; } else if (sc->sc_auth_prot == -1) { DPRINTF(("%s: no time event, denied!\n", DEVNAME(sc))); sc->sc_auth_prot = 0; return EAUTH; } tsleep(&sc->sc_auth_prot, 0, "iwmau2", 0); } return 0; } int iwm_assoc(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (void *)ic->ic_bss; int error; if ((error = iwm_mvm_update_sta(sc, in)) != 0) { DPRINTF(("%s: failed to update STA\n", DEVNAME(sc))); return error; } in->in_assoc = 1; if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) { DPRINTF(("%s: failed to update MAC\n", DEVNAME(sc))); return error; } return 0; } int iwm_release(struct iwm_softc *sc, struct iwm_node *in) { /* * Ok, so *technically* the proper set of calls for going * from RUN back to SCAN is: * * iwm_mvm_power_mac_disable(sc, in); * iwm_mvm_mac_ctxt_changed(sc, in); * iwm_mvm_rm_sta(sc, in); * iwm_mvm_update_quotas(sc, NULL); * iwm_mvm_mac_ctxt_changed(sc, in); * iwm_mvm_binding_remove_vif(sc, in); * iwm_mvm_mac_ctxt_remove(sc, in); * * However, that freezes the device not matter which permutations * and modifications are attempted. Obviously, this driver is missing * something since it works in the Linux driver, but figuring out what * is missing is a little more complicated. Now, since we're going * back to nothing anyway, we'll just do a complete device reset. * Up your's, device! */ //iwm_mvm_flush_tx_path(sc, 0xf, 1); iwm_stop_device(sc); iwm_init_hw(sc); if (in) in->in_assoc = 0; return 0; #if 0 int error; iwm_mvm_power_mac_disable(sc, in); if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) { printf("%s: mac ctxt change fail 1 %d\n", DEVNAME(sc), error); return error; } if ((error = iwm_mvm_rm_sta(sc, in)) != 0) { printf("%s: sta remove fail %d\n", DEVNAME(sc), error); return error; } error = iwm_mvm_rm_sta(sc, in); in->in_assoc = 0; iwm_mvm_update_quotas(sc, NULL); if ((error = iwm_mvm_mac_ctxt_changed(sc, in)) != 0) { printf("%s: mac ctxt change fail 2 %d\n", DEVNAME(sc), error); return error; } iwm_mvm_binding_remove_vif(sc, in); iwm_mvm_mac_ctxt_remove(sc, in); return error; #endif } struct ieee80211_node * iwm_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct iwm_node), M_DEVBUF, M_NOWAIT | M_ZERO); } void iwm_calib_timeout(void *arg) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; s = splnet(); if (ic->ic_fixed_rate == -1 && ic->ic_opmode == IEEE80211_M_STA && ic->ic_bss) { struct iwm_node *in = (void *)ic->ic_bss; ieee80211_amrr_choose(&sc->sc_amrr, &in->in_ni, &in->in_amn); } splx(s); timeout_add(&sc->sc_calib_to, hz/2); } void iwm_setrates(struct iwm_node *in) { struct ieee80211_node *ni = &in->in_ni; struct ieee80211com *ic = ni->ni_ic; struct iwm_softc *sc = IC2IFP(ic)->if_softc; struct iwm_lq_cmd *lq = &in->in_lq; int nrates = ni->ni_rates.rs_nrates; int i, ridx, tab = 0; int txant = 0; if (nrates > nitems(lq->rs_table)) { DPRINTF(("%s: node supports %d rates, driver handles " "only %zu\n", DEVNAME(sc), nrates, nitems(lq->rs_table))); return; } /* first figure out which rates we should support */ memset(&in->in_ridx, -1, sizeof(in->in_ridx)); for (i = 0; i < nrates; i++) { int rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; /* Map 802.11 rate to HW rate index. */ for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++) if (iwm_rates[ridx].rate == rate) break; if (ridx > IWM_RIDX_MAX) DPRINTF(("%s: WARNING: device rate for %d not found!\n", DEVNAME(sc), rate)); else in->in_ridx[i] = ridx; } /* then construct a lq_cmd based on those */ memset(lq, 0, sizeof(*lq)); lq->sta_id = IWM_STATION_ID; /* * are these used? (we don't do SISO or MIMO) * need to set them to non-zero, though, or we get an error. */ lq->single_stream_ant_msk = 1; lq->dual_stream_ant_msk = 1; /* * Build the actual rate selection table. * The lowest bits are the rates. Additionally, * CCK needs bit 9 to be set. The rest of the bits * we add to the table select the tx antenna * Note that we add the rates in the highest rate first * (opposite of ni_rates). */ for (i = 0; i < nrates; i++) { int nextant; if (txant == 0) txant = IWM_FW_VALID_TX_ANT(sc); nextant = 1<<(ffs(txant)-1); txant &= ~nextant; ridx = in->in_ridx[(nrates-1)-i]; tab = iwm_rates[ridx].plcp; tab |= nextant << IWM_RATE_MCS_ANT_POS; if (IWM_RIDX_IS_CCK(ridx)) tab |= IWM_RATE_MCS_CCK_MSK; DPRINTFN(2, ("station rate %d %x\n", i, tab)); lq->rs_table[i] = htole32(tab); } /* then fill the rest with the lowest possible rate */ for (i = nrates; i < nitems(lq->rs_table); i++) { KASSERT(tab != 0); lq->rs_table[i] = htole32(tab); } /* init amrr */ ieee80211_amrr_node_init(&sc->sc_amrr, &in->in_amn); /* Start at lowest available bit-rate, AMRR will raise. */ ni->ni_txrate = 0; } int iwm_media_change(struct ifnet *ifp) { struct iwm_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; /* Map 802.11 rate to HW rate index. */ for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++) if (iwm_rates[ridx].rate == rate) break; sc->sc_fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwm_stop(ifp, 0); error = iwm_init(ifp); } return error; } void iwm_newstate_cb(void *wk) { struct iwm_newstate_state *iwmns = (void *)wk; struct ieee80211com *ic = iwmns->ns_ic; enum ieee80211_state nstate = iwmns->ns_nstate; int generation = iwmns->ns_generation; struct iwm_node *in; int arg = iwmns->ns_arg; struct ifnet *ifp = IC2IFP(ic); struct iwm_softc *sc = ifp->if_softc; int error; free(iwmns, M_DEVBUF, sizeof(*iwmns)); DPRINTF(("Prepare to switch state %d->%d\n", ic->ic_state, nstate)); if (sc->sc_generation != generation) { DPRINTF(("newstate_cb: someone pulled the plug meanwhile\n")); if (nstate == IEEE80211_S_INIT) { DPRINTF(("newstate_cb: nstate == IEEE80211_S_INIT: calling sc_newstate()\n")); sc->sc_newstate(ic, nstate, arg); } return; } DPRINTF(("switching state %d->%d\n", ic->ic_state, nstate)); /* disable beacon filtering if we're hopping out of RUN */ if (ic->ic_state == IEEE80211_S_RUN && nstate != ic->ic_state) { iwm_mvm_disable_beacon_filter(sc, (void *)ic->ic_bss); if (((in = (void *)ic->ic_bss) != NULL)) in->in_assoc = 0; iwm_release(sc, NULL); /* * It's impossible to directly go RUN->SCAN. If we iwm_release() * above then the card will be completely reinitialized, * so the driver must do everything necessary to bring the card * from INIT to SCAN. * * Additionally, upon receiving deauth frame from AP, * OpenBSD 802.11 stack puts the driver in IEEE80211_S_AUTH * state. This will also fail with this driver, so bring the FSM * from IEEE80211_S_RUN to IEEE80211_S_SCAN in this case as well. */ if (nstate == IEEE80211_S_SCAN || nstate == IEEE80211_S_AUTH || nstate == IEEE80211_S_ASSOC) { DPRINTF(("Force transition to INIT; MGT=%d\n", arg)); sc->sc_newstate(ic, IEEE80211_S_INIT, arg); DPRINTF(("Going INIT->SCAN\n")); nstate = IEEE80211_S_SCAN; } } switch (nstate) { case IEEE80211_S_INIT: sc->sc_scanband = 0; break; case IEEE80211_S_SCAN: if (sc->sc_scanband) break; if ((error = iwm_mvm_scan_request(sc, IEEE80211_CHAN_2GHZ, ic->ic_des_esslen != 0, ic->ic_des_essid, ic->ic_des_esslen)) != 0) { printf("%s: could not initiate scan\n", DEVNAME(sc)); return; } ic->ic_state = nstate; return; case IEEE80211_S_AUTH: if ((error = iwm_auth(sc)) != 0) { DPRINTF(("%s: could not move to auth state: %d\n", DEVNAME(sc), error)); return; } break; case IEEE80211_S_ASSOC: if ((error = iwm_assoc(sc)) != 0) { DPRINTF(("%s: failed to associate: %d\n", DEVNAME(sc), error)); return; } break; case IEEE80211_S_RUN: { struct iwm_host_cmd cmd = { .id = IWM_LQ_CMD, .len = { sizeof(in->in_lq), }, .flags = IWM_CMD_SYNC, }; in = (struct iwm_node *)ic->ic_bss; iwm_mvm_power_mac_update_mode(sc, in); iwm_mvm_enable_beacon_filter(sc, in); iwm_mvm_update_quotas(sc, in); iwm_setrates(in); cmd.data[0] = &in->in_lq; if ((error = iwm_send_cmd(sc, &cmd)) != 0) { DPRINTF(("%s: IWM_LQ_CMD failed\n", DEVNAME(sc))); } timeout_add(&sc->sc_calib_to, hz/2); break; } default: break; } sc->sc_newstate(ic, nstate, arg); } int iwm_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct iwm_newstate_state *iwmns; struct ifnet *ifp = IC2IFP(ic); struct iwm_softc *sc = ifp->if_softc; timeout_del(&sc->sc_calib_to); iwmns = malloc(sizeof(*iwmns), M_DEVBUF, M_NOWAIT); if (!iwmns) { DPRINTF(("%s: allocating state cb mem failed\n", DEVNAME(sc))); return ENOMEM; } iwmns->ns_ic = ic; iwmns->ns_nstate = nstate; iwmns->ns_arg = arg; iwmns->ns_generation = sc->sc_generation; task_set(&iwmns->ns_wk, iwm_newstate_cb, iwmns); task_add(sc->sc_nswq, &iwmns->ns_wk); return 0; } void iwm_endscan_cb(void *arg) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int done; DPRINTF(("scan ended\n")); if (sc->sc_scanband == IEEE80211_CHAN_2GHZ) { int error; done = 0; if ((error = iwm_mvm_scan_request(sc, IEEE80211_CHAN_5GHZ, ic->ic_des_esslen != 0, ic->ic_des_essid, ic->ic_des_esslen)) != 0) { printf("%s: could not initiate scan\n", DEVNAME(sc)); done = 1; } } else { done = 1; } if (done) { if (!sc->sc_scanband) { ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; } else { ieee80211_end_scan(&ic->ic_if); } sc->sc_scanband = 0; } } int iwm_init_hw(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int error, i, qid; if ((error = iwm_preinit(sc)) != 0) return error; if ((error = iwm_start_hw(sc)) != 0) return error; if ((error = iwm_run_init_mvm_ucode(sc, 0)) != 0) { return error; } /* * should stop and start HW since that INIT * image just loaded */ iwm_stop_device(sc); if ((error = iwm_start_hw(sc)) != 0) { printf("%s: could not initialize hardware\n", DEVNAME(sc)); return error; } /* omstart, this time with the regular firmware */ error = iwm_mvm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR); if (error) { printf("%s: could not load firmware\n", DEVNAME(sc)); goto error; } if ((error = iwm_send_tx_ant_cfg(sc, IWM_FW_VALID_TX_ANT(sc))) != 0) goto error; /* Send phy db control command and then phy db calibration*/ if ((error = iwm_send_phy_db_data(sc)) != 0) goto error; if ((error = iwm_send_phy_cfg_cmd(sc)) != 0) goto error; /* Add auxiliary station for scanning */ if ((error = iwm_mvm_add_aux_sta(sc)) != 0) goto error; for (i = 0; i < IWM_NUM_PHY_CTX; i++) { /* * The channel used here isn't relevant as it's * going to be overwritten in the other flows. * For now use the first channel we have. */ if ((error = iwm_mvm_phy_ctxt_add(sc, &sc->sc_phyctxt[i], &ic->ic_channels[1], 1, 1)) != 0) goto error; } error = iwm_mvm_power_update_device(sc); if (error) goto error; /* Mark TX rings as active. */ for (qid = 0; qid < 4; qid++) { iwm_enable_txq(sc, qid, qid); } return 0; error: iwm_stop_device(sc); return error; } /* Allow multicast from our BSSID. */ int iwm_allow_mcast(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct iwm_mcast_filter_cmd *cmd; size_t size; int error; size = roundup(sizeof(*cmd), 4); cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (cmd == NULL) return ENOMEM; cmd->filter_own = 1; cmd->port_id = 0; cmd->count = 0; cmd->pass_all = 1; IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); error = iwm_mvm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, IWM_CMD_SYNC, size, cmd); free(cmd, M_DEVBUF, size); return error; } /* * ifnet interfaces */ int iwm_init(struct ifnet *ifp) { struct iwm_softc *sc = ifp->if_softc; int error; if (sc->sc_flags & IWM_FLAG_HW_INITED) { return 0; } sc->sc_generation++; sc->sc_flags &= ~IWM_FLAG_STOPPED; if ((error = iwm_init_hw(sc)) != 0) { iwm_stop(ifp, 1); return error; } /* * Ok, firmware loaded and we are jogging */ ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; ieee80211_begin_scan(ifp); sc->sc_flags |= IWM_FLAG_HW_INITED; return 0; } /* * Dequeue packets from sendq and call send. * mostly from iwn */ void iwm_start(struct ifnet *ifp) { struct iwm_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct ether_header *eh; struct mbuf *m; int ac; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { /* why isn't this done per-queue? */ if (sc->qfullmsk != 0) { ifp->if_flags |= IFF_OACTIVE; break; } /* need to send management frames even if we're not RUNning */ IF_DEQUEUE(&ic->ic_mgtq, m); if (m) { ni = m->m_pkthdr.ph_cookie; ac = 0; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) { break; } IFQ_DEQUEUE(&ifp->if_snd, m); if (!m) break; if (m->m_len < sizeof (*eh) && (m = m_pullup(m, sizeof (*eh))) == NULL) { ifp->if_oerrors++; continue; } #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) { ifp->if_oerrors++; continue; } sendit: #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (iwm_tx(sc, m, ni, ac) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } if (ifp->if_flags & IFF_UP) { sc->sc_tx_timer = 15; ifp->if_timer = 1; } } return; } void iwm_stop(struct ifnet *ifp, int disable) { struct iwm_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; sc->sc_flags &= ~IWM_FLAG_HW_INITED; sc->sc_flags |= IWM_FLAG_STOPPED; sc->sc_generation++; sc->sc_scanband = 0; sc->sc_auth_prot = 0; ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); if (ic->ic_state != IEEE80211_S_INIT) ieee80211_new_state(ic, IEEE80211_S_INIT, -1); ifp->if_timer = sc->sc_tx_timer = 0; iwm_stop_device(sc); } void iwm_watchdog(struct ifnet *ifp) { struct iwm_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", DEVNAME(sc)); #ifdef IWM_DEBUG iwm_nic_error(sc); #endif ifp->if_flags &= ~IFF_UP; iwm_stop(ifp, 1); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int iwm_ioctl(struct ifnet *ifp, u_long cmd, iwm_caddr_t data) { struct iwm_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); /* * Prevent processes from entering this function while another * process is tsleep'ing in it. */ while ((sc->sc_flags & IWM_FLAG_BUSY) && error == 0) error = tsleep(&sc->sc_flags, PCATCH, "iwmioc", 0); if (error != 0) { splx(s); return error; } sc->sc_flags |= IWM_FLAG_BUSY; switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; ifa = (struct ifaddr *)data; if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) { if ((error = iwm_init(ifp)) != 0) ifp->if_flags &= ~IFF_UP; } } else { if (ifp->if_flags & IFF_RUNNING) iwm_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { error = 0; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwm_stop(ifp, 0); error = iwm_init(ifp); } } sc->sc_flags &= ~IWM_FLAG_BUSY; wakeup(&sc->sc_flags); splx(s); return error; } /* * The interrupt side of things */ /* * error dumping routines are from iwlwifi/mvm/utils.c */ /* * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with uint32_t-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwm_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t pc; /* program counter */ uint32_t blink1; /* branch link */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t bcon_time; /* beacon timer */ uint32_t tsf_low; /* network timestamp function timer */ uint32_t tsf_hi; /* network timestamp function timer */ uint32_t gp1; /* GP1 timer register */ uint32_t gp2; /* GP2 timer register */ uint32_t gp3; /* GP3 timer register */ uint32_t ucode_ver; /* uCode version */ uint32_t hw_ver; /* HW Silicon version */ uint32_t brd_ver; /* HW board version */ uint32_t log_pc; /* log program counter */ uint32_t frame_ptr; /* frame pointer */ uint32_t stack_ptr; /* stack pointer */ uint32_t hcmd; /* last host command header */ uint32_t isr0; /* isr status register LMPM_NIC_ISR0: * rxtx_flag */ uint32_t isr1; /* isr status register LMPM_NIC_ISR1: * host_flag */ uint32_t isr2; /* isr status register LMPM_NIC_ISR2: * enc_flag */ uint32_t isr3; /* isr status register LMPM_NIC_ISR3: * time_flag */ uint32_t isr4; /* isr status register LMPM_NIC_ISR4: * wico interrupt */ uint32_t isr_pref; /* isr status register LMPM_NIC_PREF_STAT */ uint32_t wait_event; /* wait event() caller address */ uint32_t l2p_control; /* L2pControlField */ uint32_t l2p_duration; /* L2pDurationField */ uint32_t l2p_mhvalid; /* L2pMhValidBits */ uint32_t l2p_addr_match; /* L2pAddrMatchStat */ uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on * (LMPM_PMG_SEL) */ uint32_t u_timestamp; /* indicate when the date and time of the * compilation */ uint32_t flow_handler; /* FH read/write pointers, RX credit */ } __packed; #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) struct { const char *name; uint8_t num; } advanced_lookup[] = { { "NMI_INTERRUPT_WDG", 0x34 }, { "SYSASSERT", 0x35 }, { "UCODE_VERSION_MISMATCH", 0x37 }, { "BAD_COMMAND", 0x38 }, { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, { "FATAL_ERROR", 0x3D }, { "NMI_TRM_HW_ERR", 0x46 }, { "NMI_INTERRUPT_TRM", 0x4C }, { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, { "NMI_INTERRUPT_HOST", 0x66 }, { "NMI_INTERRUPT_ACTION_PT", 0x7C }, { "NMI_INTERRUPT_UNKNOWN", 0x84 }, { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, { "ADVANCED_SYSASSERT", 0 }, }; const char * iwm_desc_lookup(uint32_t num) { int i; for (i = 0; i < nitems(advanced_lookup) - 1; i++) if (advanced_lookup[i].num == num) return advanced_lookup[i].name; /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ return advanced_lookup[i].name; } #ifdef IWM_DEBUG /* * Support for dumping the error log seemed like a good idea ... * but it's mostly hex junk and the only sensible thing is the * hw/ucode revision (which we know anyway). Since it's here, * I'll just leave it in, just in case e.g. the Intel guys want to * help us decipher some "ADVANCED_SYSASSERT" later. */ void iwm_nic_error(struct iwm_softc *sc) { struct iwm_error_event_table table; uint32_t base; printf("%s: dumping device error log\n", DEVNAME(sc)); base = sc->sc_uc.uc_error_event_table; if (base < 0x800000 || base >= 0x80C000) { printf("%s: Not valid error log pointer 0x%08x\n", DEVNAME(sc), base); return; } if (iwm_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t)) != 0) { printf("%s: reading errlog failed\n", DEVNAME(sc)); return; } if (!table.valid) { printf("%s: errlog not found, skipping\n", DEVNAME(sc)); return; } if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { printf("%s: Start IWL Error Log Dump:\n", DEVNAME(sc)); printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc), sc->sc_flags, table.valid); } printf("%s: 0x%08X | %-28s\n", DEVNAME(sc), table.error_id, iwm_desc_lookup(table.error_id)); printf("%s: %08X | uPc\n", DEVNAME(sc), table.pc); printf("%s: %08X | branchlink1\n", DEVNAME(sc), table.blink1); printf("%s: %08X | branchlink2\n", DEVNAME(sc), table.blink2); printf("%s: %08X | interruptlink1\n", DEVNAME(sc), table.ilink1); printf("%s: %08X | interruptlink2\n", DEVNAME(sc), table.ilink2); printf("%s: %08X | data1\n", DEVNAME(sc), table.data1); printf("%s: %08X | data2\n", DEVNAME(sc), table.data2); printf("%s: %08X | data3\n", DEVNAME(sc), table.data3); printf("%s: %08X | beacon time\n", DEVNAME(sc), table.bcon_time); printf("%s: %08X | tsf low\n", DEVNAME(sc), table.tsf_low); printf("%s: %08X | tsf hi\n", DEVNAME(sc), table.tsf_hi); printf("%s: %08X | time gp1\n", DEVNAME(sc), table.gp1); printf("%s: %08X | time gp2\n", DEVNAME(sc), table.gp2); printf("%s: %08X | time gp3\n", DEVNAME(sc), table.gp3); printf("%s: %08X | uCode version\n", DEVNAME(sc), table.ucode_ver); printf("%s: %08X | hw version\n", DEVNAME(sc), table.hw_ver); printf("%s: %08X | board version\n", DEVNAME(sc), table.brd_ver); printf("%s: %08X | hcmd\n", DEVNAME(sc), table.hcmd); printf("%s: %08X | isr0\n", DEVNAME(sc), table.isr0); printf("%s: %08X | isr1\n", DEVNAME(sc), table.isr1); printf("%s: %08X | isr2\n", DEVNAME(sc), table.isr2); printf("%s: %08X | isr3\n", DEVNAME(sc), table.isr3); printf("%s: %08X | isr4\n", DEVNAME(sc), table.isr4); printf("%s: %08X | isr_pref\n", DEVNAME(sc), table.isr_pref); printf("%s: %08X | wait_event\n", DEVNAME(sc), table.wait_event); printf("%s: %08X | l2p_control\n", DEVNAME(sc), table.l2p_control); printf("%s: %08X | l2p_duration\n", DEVNAME(sc), table.l2p_duration); printf("%s: %08X | l2p_mhvalid\n", DEVNAME(sc), table.l2p_mhvalid); printf("%s: %08X | l2p_addr_match\n", DEVNAME(sc), table.l2p_addr_match); printf("%s: %08X | lmpm_pmg_sel\n", DEVNAME(sc), table.lmpm_pmg_sel); printf("%s: %08X | timestamp\n", DEVNAME(sc), table.u_timestamp); printf("%s: %08X | flow_handler\n", DEVNAME(sc), table.flow_handler); } #endif #define SYNC_RESP_STRUCT(_var_, _pkt_) \ do { \ bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \ sizeof(*(_var_)), BUS_DMASYNC_POSTREAD); \ _var_ = (void *)((_pkt_)+1); \ } while (/*CONSTCOND*/0) #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \ do { \ bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \ sizeof(len), BUS_DMASYNC_POSTREAD); \ _ptr_ = (void *)((_pkt_)+1); \ } while (/*CONSTCOND*/0) #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT); /* * Process an IWM_CSR_INT_BIT_FH_RX or IWM_CSR_INT_BIT_SW_RX interrupt. * Basic structure from if_iwn */ void iwm_notif_intr(struct iwm_softc *sc) { uint16_t hw; bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; while (sc->rxq.cur != hw) { struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct iwm_rx_packet *pkt; struct iwm_cmd_response *cresp; int qid, idx; bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof(*pkt), BUS_DMASYNC_POSTREAD); pkt = mtod(data->m, struct iwm_rx_packet *); qid = pkt->hdr.qid & ~0x80; idx = pkt->hdr.idx; DPRINTFN(12, ("rx packet qid=%d idx=%d flags=%x type=%x %d %d\n", pkt->hdr.qid & ~0x80, pkt->hdr.idx, pkt->hdr.flags, pkt->hdr.code, sc->rxq.cur, hw)); /* * randomly get these from the firmware, no idea why. * they at least seem harmless, so just ignore them for now */ if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0) || pkt->len_n_flags == htole32(0x55550000))) { ADVANCE_RXQ(sc); continue; } switch (pkt->hdr.code) { case IWM_REPLY_RX_PHY_CMD: iwm_mvm_rx_rx_phy_cmd(sc, pkt, data); break; case IWM_REPLY_RX_MPDU_CMD: iwm_mvm_rx_rx_mpdu(sc, pkt, data); break; case IWM_TX_CMD: iwm_mvm_rx_tx_cmd(sc, pkt, data); break; case IWM_MISSED_BEACONS_NOTIFICATION: /* OpenBSD does not provide ieee80211_beacon_miss() */ break; case IWM_MVM_ALIVE: { struct iwm_mvm_alive_resp *resp; SYNC_RESP_STRUCT(resp, pkt); sc->sc_uc.uc_error_event_table = le32toh(resp->error_event_table_ptr); sc->sc_uc.uc_log_event_table = le32toh(resp->log_event_table_ptr); sc->sched_base = le32toh(resp->scd_base_ptr); sc->sc_uc.uc_ok = resp->status == IWM_ALIVE_STATUS_OK; sc->sc_uc.uc_intr = 1; wakeup(&sc->sc_uc); break; } case IWM_CALIB_RES_NOTIF_PHY_DB: { struct iwm_calib_res_notif_phy_db *phy_db_notif; SYNC_RESP_STRUCT(phy_db_notif, pkt); iwm_phy_db_set_section(sc, phy_db_notif); break; } case IWM_STATISTICS_NOTIFICATION: { struct iwm_notif_statistics *stats; SYNC_RESP_STRUCT(stats, pkt); memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); sc->sc_noise = iwm_get_noise(&stats->rx.general); break; } case IWM_NVM_ACCESS_CMD: if (sc->sc_wantresp == ((qid << 16) | idx)) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof(sc->sc_cmd_resp), BUS_DMASYNC_POSTREAD); memcpy(sc->sc_cmd_resp, pkt, sizeof(sc->sc_cmd_resp)); } break; case IWM_PHY_CONFIGURATION_CMD: case IWM_TX_ANT_CONFIGURATION_CMD: case IWM_ADD_STA: case IWM_MAC_CONTEXT_CMD: case IWM_REPLY_SF_CFG_CMD: case IWM_POWER_TABLE_CMD: case IWM_PHY_CONTEXT_CMD: case IWM_BINDING_CONTEXT_CMD: case IWM_TIME_EVENT_CMD: case IWM_SCAN_REQUEST_CMD: case IWM_REPLY_BEACON_FILTERING_CMD: case IWM_MAC_PM_POWER_TABLE: case IWM_TIME_QUOTA_CMD: case IWM_REMOVE_STA: case IWM_TXPATH_FLUSH: case IWM_LQ_CMD: SYNC_RESP_STRUCT(cresp, pkt); if (sc->sc_wantresp == ((qid << 16) | idx)) { memcpy(sc->sc_cmd_resp, pkt, sizeof(*pkt)+sizeof(*cresp)); } break; /* ignore */ case 0x6c: /* IWM_PHY_DB_CMD, no idea why it's not in fw-api.h */ break; case IWM_INIT_COMPLETE_NOTIF: sc->sc_init_complete = 1; wakeup(&sc->sc_init_complete); break; case IWM_SCAN_COMPLETE_NOTIFICATION: { struct iwm_scan_complete_notif *notif; SYNC_RESP_STRUCT(notif, pkt); task_add(sc->sc_eswq, &sc->sc_eswk); break; } case IWM_REPLY_ERROR: { struct iwm_error_resp *resp; SYNC_RESP_STRUCT(resp, pkt); printf("%s: firmware error 0x%x, cmd 0x%x\n", DEVNAME(sc), le32toh(resp->error_type), resp->cmd_id); break; } case IWM_TIME_EVENT_NOTIFICATION: { struct iwm_time_event_notif *notif; SYNC_RESP_STRUCT(notif, pkt); if (notif->status) { if (le32toh(notif->action) & IWM_TE_V2_NOTIF_HOST_EVENT_START) sc->sc_auth_prot = 2; else sc->sc_auth_prot = 0; } else { sc->sc_auth_prot = -1; } wakeup(&sc->sc_auth_prot); break; } case IWM_MCAST_FILTER_CMD: break; default: printf("%s: frame %d/%d %x UNHANDLED (this should " "not happen)\n", DEVNAME(sc), qid, idx, pkt->len_n_flags); break; } /* * Why test bit 0x80? The Linux driver: * * There is one exception: uCode sets bit 15 when it * originates the response/notification, i.e. when the * response/notification is not a direct response to a * command sent by the driver. For example, uCode issues * IWM_REPLY_RX when it sends a received frame to the driver; * it is not a direct response to any driver command. * * Ok, so since when is 7 == 15? Well, the Linux driver * uses a slightly different format for pkt->hdr, and "qid" * is actually the upper byte of a two-byte field. */ if (!(pkt->hdr.qid & (1 << 7))) { iwm_cmd_done(sc, pkt); } ADVANCE_RXQ(sc); } IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* * Tell the firmware what we have processed. * Seems like the hardware gets upset unless we align * the write by 8?? */ hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1; IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7); } int iwm_intr(void *arg) { struct iwm_softc *sc = arg; struct ifnet *ifp = IC2IFP(&sc->sc_ic); int handled = 0; int r1, r2, rv = 0; int isperiodic = 0; IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); if (sc->sc_flags & IWM_FLAG_USE_ICT) { uint32_t *ict = sc->ict_dma.vaddr; int tmp; tmp = htole32(ict[sc->ict_cur]); if (!tmp) goto out_ena; /* * ok, there was something. keep plowing until we have all. */ r1 = r2 = 0; while (tmp) { r1 |= tmp; ict[sc->ict_cur] = 0; sc->ict_cur = (sc->ict_cur+1) % IWM_ICT_COUNT; tmp = htole32(ict[sc->ict_cur]); } /* this is where the fun begins. don't ask */ if (r1 == 0xffffffff) r1 = 0; /* i am not expected to understand this */ if (r1 & 0xc0000) r1 |= 0x8000; r1 = (0xff & r1) | ((0xff00 & r1) << 16); } else { r1 = IWM_READ(sc, IWM_CSR_INT); /* "hardware gone" (where, fishing?) */ if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) goto out; r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS); } if (r1 == 0 && r2 == 0) { goto out_ena; } IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask); /* ignored */ handled |= (r1 & (IWM_CSR_INT_BIT_ALIVE /*| IWM_CSR_INT_BIT_SCD*/)); if (r1 & IWM_CSR_INT_BIT_SW_ERR) { #ifdef IWM_DEBUG int i; iwm_nic_error(sc); /* Dump driver status (TX and RX rings) while we're here. */ DPRINTF(("driver status:\n")); for (i = 0; i < IWM_MVM_MAX_QUEUES; i++) { struct iwm_tx_ring *ring = &sc->txq[i]; DPRINTF((" tx ring %2d: qid=%-2d cur=%-3d " "queued=%-3d\n", i, ring->qid, ring->cur, ring->queued)); } DPRINTF((" rx ring: cur=%d\n", sc->rxq.cur)); DPRINTF((" 802.11 state %d\n", sc->sc_ic.ic_state)); #endif printf("%s: fatal firmware error\n", DEVNAME(sc)); ifp->if_flags &= ~IFF_UP; iwm_stop(ifp, 1); rv = 1; goto out; } if (r1 & IWM_CSR_INT_BIT_HW_ERR) { handled |= IWM_CSR_INT_BIT_HW_ERR; printf("%s: hardware error, stopping device \n", DEVNAME(sc)); ifp->if_flags &= ~IFF_UP; iwm_stop(ifp, 1); rv = 1; goto out; } /* firmware chunk loaded */ if (r1 & IWM_CSR_INT_BIT_FH_TX) { IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK); handled |= IWM_CSR_INT_BIT_FH_TX; sc->sc_fw_chunk_done = 1; wakeup(&sc->sc_fw); } if (r1 & IWM_CSR_INT_BIT_RF_KILL) { handled |= IWM_CSR_INT_BIT_RF_KILL; if (iwm_check_rfkill(sc) && (ifp->if_flags & IFF_UP)) { DPRINTF(("%s: rfkill switch, disabling interface\n", DEVNAME(sc))); ifp->if_flags &= ~IFF_UP; iwm_stop(ifp, 1); } } /* * The Linux driver uses periodic interrupts to avoid races. * We cargo-cult like it's going out of fashion. */ if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) { handled |= IWM_CSR_INT_BIT_RX_PERIODIC; IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC); if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0) IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS); isperiodic = 1; } if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) { handled |= (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX); IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK); iwm_notif_intr(sc); /* enable periodic interrupt, see above */ if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic) IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_ENA); } if (__predict_false(r1 & ~handled)) DPRINTF(("%s: unhandled interrupts: %x\n", DEVNAME(sc), r1)); rv = 1; out_ena: iwm_restore_interrupts(sc); out: return rv; } /* * Autoconf glue-sniffing */ typedef void *iwm_match_t; static const struct pci_matchid iwm_devices[] = { { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7260_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7260_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7265_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_7265_2 }, }; int iwm_match(struct device *parent, iwm_match_t match __unused, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, iwm_devices, nitems(iwm_devices)); } int iwm_preinit(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); int error; static int attached; if ((error = iwm_prepare_card_hw(sc)) != 0) { printf("%s: could not initialize hardware\n", DEVNAME(sc)); return error; } if (attached) return 0; if ((error = iwm_start_hw(sc)) != 0) { printf("%s: could not initialize hardware\n", DEVNAME(sc)); return error; } error = iwm_run_init_mvm_ucode(sc, 1); iwm_stop_device(sc); if (error) return error; /* Print version info and MAC address on first successful fw load. */ attached = 1; printf("%s: hw rev: 0x%x, fw ver %d.%d (API ver %d), address %s\n", DEVNAME(sc), sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, IWM_UCODE_MAJOR(sc->sc_fwver), IWM_UCODE_MINOR(sc->sc_fwver), IWM_UCODE_API(sc->sc_fwver), ether_sprintf(sc->sc_nvm.hw_addr)); /* Reattach net80211 so MAC address and channel map are picked up. */ ieee80211_ifdetach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = iwm_node_alloc; /* Override 802.11 state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwm_newstate; ieee80211_media_init(ifp, iwm_media_change, ieee80211_media_status); return 0; } void iwm_attach_hook(iwm_hookarg_t arg) { struct iwm_softc *sc = arg; KASSERT(!cold); iwm_preinit(sc); } void iwm_attach(struct device *parent, struct device *self, void *aux) { struct iwm_softc *sc = (void *)self; struct pci_attach_args *pa = aux; pci_intr_handle_t ih; pcireg_t reg, memtype; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; const char *intrstr; int error; int txq_i, i; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; task_set(&sc->sc_eswk, iwm_endscan_cb, sc); /* * Get the offset of the PCI Express Capability Structure in PCI * Configuration Space. */ error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); if (error == 0) { printf("%s: PCIe capability structure not found!\n", DEVNAME(sc)); return; } /* Clear device-specific "PCI retry timeout" register (41h). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); /* Enable bus-mastering and hardware bug workaround. */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); reg |= PCI_COMMAND_MASTER_ENABLE; /* if !MSI */ if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; } pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START); error = pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz, 0); if (error != 0) { printf("%s: can't map mem space\n", DEVNAME(sc)); return; } /* Install interrupt handler. */ if (pci_intr_map_msi(pa, &ih) && pci_intr_map(pa, &ih)) { printf("%s: can't map interrupt\n", DEVNAME(sc)); return; } intrstr = pci_intr_string(sc->sc_pct, ih); sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwm_intr, sc, DEVNAME(sc)); if (sc->sc_ih == NULL) { printf("\n"); printf("%s: can't establish interrupt", DEVNAME(sc)); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(", %s\n", intrstr); sc->sc_wantresp = -1; switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_INTEL_WL_3160_1: case PCI_PRODUCT_INTEL_WL_3160_2: sc->sc_fwname = "iwm-3160-9"; sc->host_interrupt_operation_mode = 1; break; case PCI_PRODUCT_INTEL_WL_7260_1: case PCI_PRODUCT_INTEL_WL_7260_2: sc->sc_fwname = "iwm-7260-9"; sc->host_interrupt_operation_mode = 1; break; case PCI_PRODUCT_INTEL_WL_7265_1: case PCI_PRODUCT_INTEL_WL_7265_2: sc->sc_fwname = "iwm-7265-9"; sc->host_interrupt_operation_mode = 0; break; default: printf("%s: unknown adapter type\n", DEVNAME(sc)); return; } sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; /* * We now start fiddling with the hardware */ sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV); if (iwm_prepare_card_hw(sc) != 0) { printf("%s: could not initialize hardware\n", DEVNAME(sc)); return; } /* Allocate DMA memory for firmware transfers. */ if ((error = iwm_alloc_fwmem(sc)) != 0) { printf("%s: could not allocate memory for firmware\n", DEVNAME(sc)); return; } /* Allocate "Keep Warm" page. */ if ((error = iwm_alloc_kw(sc)) != 0) { printf("%s: could not allocate keep warm page\n", DEVNAME(sc)); goto fail1; } /* We use ICT interrupts */ if ((error = iwm_alloc_ict(sc)) != 0) { printf("%s: could not allocate ICT table\n", DEVNAME(sc)); goto fail2; } /* Allocate TX scheduler "rings". */ if ((error = iwm_alloc_sched(sc)) != 0) { printf("%s: could not allocate TX scheduler rings\n", DEVNAME(sc)); goto fail3; } /* Allocate TX rings */ for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) { if ((error = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i)) != 0) { printf("%s: could not allocate TX ring %d\n", DEVNAME(sc), txq_i); goto fail4; } } /* Allocate RX ring. */ if ((error = iwm_alloc_rx_ring(sc, &sc->rxq)) != 0) { printf("%s: could not allocate RX ring\n", DEVNAME(sc)); goto fail4; } sc->sc_eswq = taskq_create("iwmes", 1, IPL_NET, 0); if (sc->sc_eswq == NULL) goto fail4; sc->sc_nswq = taskq_create("iwmns", 1, IPL_NET, 0); if (sc->sc_nswq == NULL) goto fail4; /* Clear pending interrupts. */ IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff); ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_WEP | /* WEP */ IEEE80211_C_RSN | /* WPA/RSN */ IEEE80211_C_SCANALL | /* device scans all channels at once */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_SHPREAMBLE; /* short preamble supported */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; for (i = 0; i < nitems(sc->sc_phyctxt); i++) { sc->sc_phyctxt[i].id = i; } sc->sc_amrr.amrr_min_success_threshold = 1; sc->sc_amrr.amrr_max_success_threshold = 15; /* IBSS channel undefined for now. */ ic->ic_ibss_chan = &ic->ic_channels[1]; /* Max RSSI */ ic->ic_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = iwm_ioctl; ifp->if_start = iwm_start; ifp->if_watchdog = iwm_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ieee80211_media_init(ifp, iwm_media_change, ieee80211_media_status); #if NBPFILTER > 0 iwm_radiotap_attach(sc); #endif timeout_set(&sc->sc_calib_to, iwm_calib_timeout, sc); task_set(&sc->init_task, iwm_init_task, sc); /* * We cannot read the MAC address without loading the * firmware from disk. Postpone until mountroot is done. */ if (rootvp == NULL) mountroothook_establish(iwm_attach_hook, sc); else iwm_attach_hook(sc); return; /* Free allocated memory if something failed during attachment. */ fail4: while (--txq_i >= 0) iwm_free_tx_ring(sc, &sc->txq[txq_i]); iwm_free_sched(sc); fail3: if (sc->ict_dma.vaddr != NULL) iwm_free_ict(sc); fail2: iwm_free_kw(sc); fail1: iwm_free_fwmem(sc); return; } #if NBPFILTER > 0 /* * Attach the interface to 802.11 radiotap. */ void iwm_radiotap_attach(struct iwm_softc *sc) { bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWM_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWM_TX_RADIOTAP_PRESENT); } #endif void iwm_init_task(void *arg1) { struct iwm_softc *sc = arg1; struct ifnet *ifp = &sc->sc_ic.ic_if; int s; s = splnet(); while (sc->sc_flags & IWM_FLAG_BUSY) tsleep(&sc->sc_flags, 0, "iwmpwr", 0); sc->sc_flags |= IWM_FLAG_BUSY; iwm_stop(ifp, 0); if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP) iwm_init(ifp); sc->sc_flags &= ~IWM_FLAG_BUSY; wakeup(&sc->sc_flags); splx(s); } void iwm_wakeup(struct iwm_softc *sc) { pcireg_t reg; /* Clear device-specific "PCI retry timeout" register (41h). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); iwm_init_task(sc); } int iwm_activate(struct device *self, int act) { struct iwm_softc *sc = (struct iwm_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; switch (act) { case DVACT_SUSPEND: if (ifp->if_flags & IFF_RUNNING) iwm_stop(ifp, 0); break; case DVACT_WAKEUP: iwm_wakeup(sc); break; } return 0; } struct cfdriver iwm_cd = { NULL, "iwm", DV_IFNET }; struct cfattach iwm_ca = { sizeof(struct iwm_softc), iwm_match, iwm_attach, NULL, iwm_activate };