/* $OpenBSD: if_iwn.c,v 1.16 2007/11/30 19:19:47 damien Exp $ */ /*- * Copyright (c) 2007 * Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Intel Wireless WiFi Link 4965AGN 802.11 network adapters. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const struct pci_matchid iwn_devices[] = { { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PRO_WL_4965AGN_2 } }; int iwn_match(struct device *, void *, void *); void iwn_attach(struct device *, struct device *, void *); void iwn_sensor_attach(struct iwn_softc *); void iwn_radiotap_attach(struct iwn_softc *); void iwn_power(int, void *); int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, void **, bus_size_t, bus_size_t, int); void iwn_dma_contig_free(struct iwn_dma_info *); int iwn_alloc_shared(struct iwn_softc *); void iwn_free_shared(struct iwn_softc *); int iwn_alloc_kw(struct iwn_softc *); void iwn_free_kw(struct iwn_softc *); int iwn_alloc_fwmem(struct iwn_softc *); void iwn_free_fwmem(struct iwn_softc *); struct iwn_rbuf *iwn_alloc_rbuf(struct iwn_softc *); void iwn_free_rbuf(caddr_t, u_int, void *); int iwn_alloc_rpool(struct iwn_softc *); void iwn_free_rpool(struct iwn_softc *); int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, int); void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); struct ieee80211_node *iwn_node_alloc(struct ieee80211com *); void iwn_newassoc(struct ieee80211com *, struct ieee80211_node *, int); int iwn_media_change(struct ifnet *); int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); void iwn_mem_lock(struct iwn_softc *); void iwn_mem_unlock(struct iwn_softc *); uint32_t iwn_mem_read(struct iwn_softc *, uint32_t); void iwn_mem_write(struct iwn_softc *, uint32_t, uint32_t); void iwn_mem_write_region_4(struct iwn_softc *, uint32_t, const uint32_t *, int); int iwn_eeprom_lock(struct iwn_softc *); void iwn_eeprom_unlock(struct iwn_softc *); int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); int iwn_load_microcode(struct iwn_softc *, const uint8_t *, int); int iwn_load_firmware(struct iwn_softc *); void iwn_calib_timeout(void *); void iwn_iter_func(void *, struct ieee80211_node *); void iwn_ampdu_rx_start(struct iwn_softc *, struct iwn_rx_desc *); void iwn_rx_intr(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *); void iwn_tx_intr(struct iwn_softc *, struct iwn_rx_desc *); void iwn_cmd_intr(struct iwn_softc *, struct iwn_rx_desc *); void iwn_notif_intr(struct iwn_softc *); int iwn_intr(void *); void iwn_read_eeprom(struct iwn_softc *); void iwn_read_eeprom_channels(struct iwn_softc *, int); void iwn_print_power_group(struct iwn_softc *, int); uint8_t iwn_plcp_signal(int); int iwn_tx_data(struct iwn_softc *, struct mbuf *, struct ieee80211_node *, int); void iwn_start(struct ifnet *); void iwn_watchdog(struct ifnet *); int iwn_ioctl(struct ifnet *, u_long, caddr_t); int iwn_cmd(struct iwn_softc *, int, const void *, int, int); int iwn_setup_node_mrr(struct iwn_softc *, uint8_t, int); int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, const struct ieee80211_key *); void iwn_updateedca(struct ieee80211com *); void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); int iwn_set_critical_temp(struct iwn_softc *); void iwn_enable_tsf(struct iwn_softc *, struct ieee80211_node *); void iwn_power_calibration(struct iwn_softc *, int); int iwn_set_txpower(struct iwn_softc *, struct ieee80211_channel *, int); int iwn_get_rssi(const struct iwn_rx_stat *); int iwn_get_noise(const struct iwn_rx_general_stats *); int iwn_get_temperature(struct iwn_softc *); int iwn_init_sensitivity(struct iwn_softc *); void iwn_compute_differential_gain(struct iwn_softc *, const struct iwn_rx_general_stats *); void iwn_tune_sensitivity(struct iwn_softc *, const struct iwn_rx_stats *); int iwn_send_sensitivity(struct iwn_softc *); int iwn_auth(struct iwn_softc *); int iwn_run(struct iwn_softc *); int iwn_scan(struct iwn_softc *, uint16_t); int iwn_config(struct iwn_softc *); void iwn_post_alive(struct iwn_softc *); void iwn_stop_master(struct iwn_softc *); int iwn_reset(struct iwn_softc *); void iwn_hw_config(struct iwn_softc *); int iwn_init(struct ifnet *); void iwn_stop(struct ifnet *, int); #define IWN_DEBUG #ifdef IWN_DEBUG #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) int iwn_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif struct cfattach iwn_ca = { sizeof (struct iwn_softc), iwn_match, iwn_attach }; int iwn_match(struct device *parent, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices, sizeof (iwn_devices) / sizeof (iwn_devices[0])); } /* Base Address Register */ #define IWN_PCI_BAR0 0x10 void iwn_attach(struct device *parent, struct device *self, void *aux) { struct iwn_softc *sc = (struct iwn_softc *)self; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct pci_attach_args *pa = aux; const char *intrstr; pci_intr_handle_t ih; pcireg_t memtype, data; int i, error; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz, 0); if (error != 0) { printf(": could not map memory space\n"); return; } if (pci_intr_map(pa, &ih) != 0) { printf(": could not map interrupt\n"); return; } intrstr = pci_intr_string(sc->sc_pct, ih); sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s", intrstr); /* * Put adapter into a known state. */ if ((error = iwn_reset(sc)) != 0) { printf(": could not reset adapter\n"); return; } /* * Allocate DMA memory for firmware transfers. */ if ((error = iwn_alloc_fwmem(sc)) != 0) { printf(": could not allocate firmware memory\n"); return; } /* * Allocate a "keep warm" page. */ if ((error = iwn_alloc_kw(sc)) != 0) { printf(": could not allocate keep warm page\n"); goto fail1; } /* * Allocate shared area (communication area). */ if ((error = iwn_alloc_shared(sc)) != 0) { printf(": could not allocate shared area\n"); goto fail2; } /* * Allocate Rx buffers and Tx/Rx rings. */ if ((error = iwn_alloc_rpool(sc)) != 0) { printf(": could not allocate Rx buffers\n"); goto fail3; } for (i = 0; i < IWN_NTXQUEUES; i++) { if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { printf(": could not allocate Tx ring %d\n", i); goto fail4; } } if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { printf(": could not allocate Rx ring\n"); goto fail4; } ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* set device capabilities */ ic->ic_caps = IEEE80211_C_WEP | /* s/w WEP */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_TXPMGT | /* tx power management */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_SHPREAMBLE; /* short preamble supported */ /* read supported channels and MAC address from EEPROM */ iwn_read_eeprom(sc); /* set supported .11a, .11b and .11g rates */ ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; /* IBSS channel undefined for now */ ic->ic_ibss_chan = &ic->ic_channels[0]; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwn_init; ifp->if_ioctl = iwn_ioctl; ifp->if_start = iwn_start; ifp->if_watchdog = iwn_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = iwn_node_alloc; ic->ic_newassoc = iwn_newassoc; ic->ic_set_key = iwn_set_key; ic->ic_updateedca = iwn_updateedca; /* override state transition machine */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwn_newstate; ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 15; iwn_sensor_attach(sc); iwn_radiotap_attach(sc); timeout_set(&sc->calib_to, iwn_calib_timeout, sc); sc->powerhook = powerhook_establish(iwn_power, sc); return; /* free allocated memory if something failed during attachment */ fail4: while (--i >= 0) iwn_free_tx_ring(sc, &sc->txq[i]); iwn_free_rpool(sc); fail3: iwn_free_shared(sc); fail2: iwn_free_kw(sc); fail1: iwn_free_fwmem(sc); } /* * Attach the adapter's on-board thermal sensor to the sensors framework. */ void iwn_sensor_attach(struct iwn_softc *sc) { strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname, sizeof sc->sensordev.xname); sc->sensor.type = SENSOR_TEMP; /* temperature invalid until interface is up */ sc->sensor.value = 0; sc->sensor.flags = SENSOR_FINVALID; sensor_attach(&sc->sensordev, &sc->sensor); sensordev_install(&sc->sensordev); } /* * Attach the interface to 802.11 radiotap. */ void iwn_radiotap_attach(struct iwn_softc *sc) { #if NBPFILTER > 0 bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); #endif } void iwn_power(int why, void *arg) { struct iwn_softc *sc = arg; struct ifnet *ifp; pcireg_t data; int s; if (why != PWR_RESUME) return; /* clear device specific PCI configuration register 0x41 */ data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); data &= ~0x0000ff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, data); s = splnet(); ifp = &sc->sc_ic.ic_if; if (ifp->if_flags & IFF_UP) { ifp->if_init(ifp); if (ifp->if_flags & IFF_RUNNING) ifp->if_start(ifp); } splx(s); } int iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, bus_size_t size, bus_size_t alignment, int flags) { int nsegs, error; dma->tag = tag; dma->size = size; error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map); if (error != 0) goto fail; error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, flags); if (error != 0) goto fail; error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags); if (error != 0) goto fail; error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size, flags); if (error != 0) goto fail; memset(dma->vaddr, 0, size); dma->paddr = dma->map->dm_segs[0].ds_addr; if (kvap != NULL) *kvap = dma->vaddr; return 0; fail: iwn_dma_contig_free(dma); return error; } void iwn_dma_contig_free(struct iwn_dma_info *dma) { if (dma->map != NULL) { if (dma->vaddr != NULL) { bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); bus_dmamem_free(dma->tag, &dma->seg, 1); dma->vaddr = NULL; } bus_dmamap_destroy(dma->tag, dma->map); dma->map = NULL; } } int iwn_alloc_shared(struct iwn_softc *sc) { /* must be aligned on a 1KB boundary */ return iwn_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma, (void **)&sc->shared, sizeof (struct iwn_shared), 1024, BUS_DMA_NOWAIT); } void iwn_free_shared(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->shared_dma); } int iwn_alloc_kw(struct iwn_softc *sc) { /* must be aligned on a 4KB boundary */ return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, PAGE_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT); } void iwn_free_kw(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->kw_dma); } int iwn_alloc_fwmem(struct iwn_softc *sc) { /* allocate enough contiguous space to store text and data */ return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, IWN_FW_MAIN_TEXT_MAXSZ + IWN_FW_MAIN_DATA_MAXSZ, 16, BUS_DMA_NOWAIT); } void iwn_free_fwmem(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->fw_dma); } struct iwn_rbuf * iwn_alloc_rbuf(struct iwn_softc *sc) { struct iwn_rbuf *rbuf; rbuf = SLIST_FIRST(&sc->rxq.freelist); if (rbuf == NULL) return NULL; SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); return rbuf; } /* * This is called automatically by the network stack when the mbuf to which * our Rx buffer is attached is freed. */ void iwn_free_rbuf(caddr_t buf, u_int size, void *arg) { struct iwn_rbuf *rbuf = arg; struct iwn_softc *sc = rbuf->sc; /* put the buffer back in the free list */ SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next); } int iwn_alloc_rpool(struct iwn_softc *sc) { struct iwn_rx_ring *ring = &sc->rxq; int i, error; /* allocate a big chunk of DMA'able memory.. */ error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL, IWN_RBUF_COUNT * IWN_RBUF_SIZE, PAGE_SIZE, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate Rx buffers DMA memory\n", sc->sc_dev.dv_xname); return error; } /* ..and split it into chunks of "rbufsz" bytes */ SLIST_INIT(&ring->freelist); for (i = 0; i < IWN_RBUF_COUNT; i++) { struct iwn_rbuf *rbuf = &ring->rbuf[i]; rbuf->sc = sc; /* backpointer for callbacks */ rbuf->vaddr = ring->buf_dma.vaddr + i * IWN_RBUF_SIZE; rbuf->paddr = ring->buf_dma.paddr + i * IWN_RBUF_SIZE; SLIST_INSERT_HEAD(&ring->freelist, rbuf, next); } return 0; } void iwn_free_rpool(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->rxq.buf_dma); } int iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int i, error; ring->cur = 0; error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, (void **)&ring->desc, IWN_RX_RING_COUNT * sizeof (uint32_t), IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate rx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } /* * Setup Rx buffers. */ for (i = 0; i < IWN_RX_RING_COUNT; i++) { struct iwn_rx_data *data = &ring->data[i]; struct iwn_rbuf *rbuf; MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } if ((rbuf = iwn_alloc_rbuf(sc)) == NULL) { m_freem(data->m); data->m = NULL; printf("%s: could not allocate rx buffer\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } /* attach Rx buffer to mbuf */ MEXTADD(data->m, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf, rbuf); /* Rx buffers are aligned on a 256-byte boundary */ ring->desc[i] = htole32(rbuf->paddr >> 8); } return 0; fail: iwn_free_rx_ring(sc, ring); return error; } void iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int ntries; iwn_mem_lock(sc); IWN_WRITE(sc, IWN_RX_CONFIG, 0); for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_RX_STATUS) & IWN_RX_IDLE) break; DELAY(10); } #ifdef IWN_DEBUG if (ntries == 100 && iwn_debug > 0) printf("%s: timeout resetting Rx ring\n", sc->sc_dev.dv_xname); #endif iwn_mem_unlock(sc); ring->cur = 0; } void iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int i; iwn_dma_contig_free(&ring->desc_dma); for (i = 0; i < IWN_RX_RING_COUNT; i++) { if (ring->data[i].m != NULL) m_freem(ring->data[i].m); } } int iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) { bus_size_t size; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, (void **)&ring->desc, size, IWN_RING_DMA_ALIGN, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate tx ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, (void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate tx cmd DMA memory\n", sc->sc_dev.dv_xname); goto fail; } for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create tx buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: iwn_free_tx_ring(sc, ring); return error; } void iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { uint32_t tmp; int i, ntries; iwn_mem_lock(sc); IWN_WRITE(sc, IWN_TX_CONFIG(ring->qid), 0); for (ntries = 0; ntries < 100; ntries++) { tmp = IWN_READ(sc, IWN_TX_STATUS); if ((tmp & IWN_TX_IDLE(ring->qid)) == IWN_TX_IDLE(ring->qid)) break; DELAY(10); } #ifdef IWN_DEBUG if (ntries == 100 && iwn_debug > 1) { printf("%s: timeout resetting Tx ring %d\n", sc->sc_dev.dv_xname, ring->qid); } #endif iwn_mem_unlock(sc); for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } } ring->queued = 0; ring->cur = 0; } void iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; iwn_dma_contig_free(&ring->desc_dma); iwn_dma_contig_free(&ring->cmd_dma); for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } } } struct ieee80211_node * iwn_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO); } void iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct iwn_softc *sc = ic->ic_if.if_softc; int i; ieee80211_amrr_node_init(&sc->amrr, &((struct iwn_node *)ni)->amn); /* set rate to some reasonable initial value */ for (i = ni->ni_rates.rs_nrates - 1; i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; i--); ni->ni_txrate = i; } int iwn_media_change(struct ifnet *ifp) { int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwn_stop(ifp, 0); iwn_init(ifp); } return 0; } int iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = &ic->ic_if; struct iwn_softc *sc = ifp->if_softc; int error; timeout_del(&sc->calib_to); switch (nstate) { case IEEE80211_S_SCAN: /* make the link LED blink while we're scanning */ iwn_set_led(sc, IWN_LED_LINK, 20, 2); if ((error = iwn_scan(sc, IEEE80211_CHAN_G)) != 0) { printf("%s: could not initiate scan\n", sc->sc_dev.dv_xname); return error; } ic->ic_state = nstate; return 0; case IEEE80211_S_ASSOC: if (ic->ic_state != IEEE80211_S_RUN) break; /* FALLTHROUGH */ case IEEE80211_S_AUTH: /* reset state to handle reassociations correctly */ sc->config.associd = 0; sc->config.filter &= ~htole32(IWN_FILTER_BSS); sc->calib.state = IWN_CALIB_STATE_INIT; if ((error = iwn_auth(sc)) != 0) { printf("%s: could not move to auth state\n", sc->sc_dev.dv_xname); return error; } break; case IEEE80211_S_RUN: if ((error = iwn_run(sc)) != 0) { printf("%s: could not move to run state\n", sc->sc_dev.dv_xname); return error; } break; case IEEE80211_S_INIT: sc->calib.state = IWN_CALIB_STATE_INIT; break; } return sc->sc_newstate(ic, nstate, arg); } /* * Grab exclusive access to NIC memory. */ void iwn_mem_lock(struct iwn_softc *sc) { uint32_t tmp; int ntries; tmp = IWN_READ(sc, IWN_GPIO_CTL); IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_MAC); /* spin until we actually get the lock */ for (ntries = 0; ntries < 1000; ntries++) { if ((IWN_READ(sc, IWN_GPIO_CTL) & (IWN_GPIO_CLOCK | IWN_GPIO_SLEEP)) == IWN_GPIO_CLOCK) break; DELAY(10); } if (ntries == 1000) printf("%s: could not lock memory\n", sc->sc_dev.dv_xname); } /* * Release lock on NIC memory. */ void iwn_mem_unlock(struct iwn_softc *sc) { uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL); IWN_WRITE(sc, IWN_GPIO_CTL, tmp & ~IWN_GPIO_MAC); } uint32_t iwn_mem_read(struct iwn_softc *sc, uint32_t addr) { IWN_WRITE(sc, IWN_READ_MEM_ADDR, IWN_MEM_4 | addr); return IWN_READ(sc, IWN_READ_MEM_DATA); } void iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) { IWN_WRITE(sc, IWN_WRITE_MEM_ADDR, IWN_MEM_4 | addr); IWN_WRITE(sc, IWN_WRITE_MEM_DATA, data); } void iwn_mem_write_region_4(struct iwn_softc *sc, uint32_t addr, const uint32_t *data, int wlen) { for (; wlen > 0; wlen--, data++, addr += 4) iwn_mem_write(sc, addr, *data); } int iwn_eeprom_lock(struct iwn_softc *sc) { uint32_t tmp; int ntries; tmp = IWN_READ(sc, IWN_HWCONFIG); IWN_WRITE(sc, IWN_HWCONFIG, tmp | IWN_HW_EEPROM_LOCKED); /* spin until we actually get the lock */ for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_HWCONFIG) & IWN_HW_EEPROM_LOCKED) return 0; DELAY(10); } return ETIMEDOUT; } void iwn_eeprom_unlock(struct iwn_softc *sc) { uint32_t tmp = IWN_READ(sc, IWN_HWCONFIG); IWN_WRITE(sc, IWN_HWCONFIG, tmp & ~IWN_HW_EEPROM_LOCKED); } /* * Read `len' bytes from the EEPROM. We access the EEPROM through the MAC * instead of using the traditional bit-bang method. */ int iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int len) { uint8_t *out = data; uint32_t val; int ntries; iwn_mem_lock(sc); for (; len > 0; len -= 2, addr++) { IWN_WRITE(sc, IWN_EEPROM_CTL, addr << 2); IWN_WRITE(sc, IWN_EEPROM_CTL, IWN_READ(sc, IWN_EEPROM_CTL) & ~IWN_EEPROM_CMD); for (ntries = 0; ntries < 10; ntries++) { if ((val = IWN_READ(sc, IWN_EEPROM_CTL)) & IWN_EEPROM_READY) break; DELAY(5); } if (ntries == 10) { printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } *out++ = val >> 16; if (len > 1) *out++ = val >> 24; } iwn_mem_unlock(sc); return 0; } /* * The firmware boot code is small and is intended to be copied directly into * the NIC internal memory. */ int iwn_load_microcode(struct iwn_softc *sc, const uint8_t *ucode, int size) { int ntries; size /= sizeof (uint32_t); iwn_mem_lock(sc); /* copy microcode image into NIC memory */ iwn_mem_write_region_4(sc, IWN_MEM_UCODE_BASE, (const uint32_t *)ucode, size); iwn_mem_write(sc, IWN_MEM_UCODE_SRC, 0); iwn_mem_write(sc, IWN_MEM_UCODE_DST, IWN_FW_TEXT); iwn_mem_write(sc, IWN_MEM_UCODE_SIZE, size); /* run microcode */ iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_RUN); /* wait for transfer to complete */ for (ntries = 0; ntries < 1000; ntries++) { if (!(iwn_mem_read(sc, IWN_MEM_UCODE_CTL) & IWN_UC_RUN)) break; DELAY(10); } if (ntries == 1000) { iwn_mem_unlock(sc); printf("%s: could not load boot firmware\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } iwn_mem_write(sc, IWN_MEM_UCODE_CTL, IWN_UC_ENABLE); iwn_mem_unlock(sc); return 0; } int iwn_load_firmware(struct iwn_softc *sc) { struct iwn_dma_info *dma = &sc->fw_dma; const struct iwn_firmware_hdr *hdr; const uint8_t *init_text, *init_data, *main_text, *main_data; const uint8_t *boot_text; uint32_t init_textsz, init_datasz, main_textsz, main_datasz; uint32_t boot_textsz; u_char *fw; size_t size; int error; /* load firmware image from disk */ if ((error = loadfirmware("iwn-4965agn", &fw, &size)) != 0) { printf("%s: error, %d, could not read firmware %s\n", sc->sc_dev.dv_xname, error, "iwn-4965agn"); goto fail1; } /* extract firmware header information */ if (size < sizeof (struct iwn_firmware_hdr)) { printf("%s: truncated firmware header: %d bytes\n", sc->sc_dev.dv_xname, size); error = EINVAL; goto fail2; } hdr = (const struct iwn_firmware_hdr *)fw; main_textsz = letoh32(hdr->main_textsz); main_datasz = letoh32(hdr->main_datasz); init_textsz = letoh32(hdr->init_textsz); init_datasz = letoh32(hdr->init_datasz); boot_textsz = letoh32(hdr->boot_textsz); /* sanity-check firmware segments sizes */ if (main_textsz > IWN_FW_MAIN_TEXT_MAXSZ || main_datasz > IWN_FW_MAIN_DATA_MAXSZ || init_textsz > IWN_FW_INIT_TEXT_MAXSZ || init_datasz > IWN_FW_INIT_DATA_MAXSZ || boot_textsz > IWN_FW_BOOT_TEXT_MAXSZ || (boot_textsz & 3) != 0) { printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname); error = EINVAL; goto fail2; } /* check that all firmware segments are present */ if (size < sizeof (struct iwn_firmware_hdr) + main_textsz + main_datasz + init_textsz + init_datasz + boot_textsz) { printf("%s: firmware file too short: %d bytes\n", sc->sc_dev.dv_xname, size); error = EINVAL; goto fail2; } /* get pointers to firmware segments */ main_text = (const uint8_t *)(hdr + 1); main_data = main_text + main_textsz; init_text = main_data + main_datasz; init_data = init_text + init_textsz; boot_text = init_data + init_datasz; /* copy initialization images into pre-allocated DMA-safe memory */ memcpy(dma->vaddr, init_data, init_datasz); memcpy(dma->vaddr + IWN_FW_INIT_DATA_MAXSZ, init_text, init_textsz); /* tell adapter where to find initialization images */ iwn_mem_lock(sc); iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4); iwn_mem_write(sc, IWN_MEM_DATA_SIZE, init_datasz); iwn_mem_write(sc, IWN_MEM_TEXT_BASE, (dma->paddr + IWN_FW_INIT_DATA_MAXSZ) >> 4); iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, init_textsz); iwn_mem_unlock(sc); /* load firmware boot code */ if ((error = iwn_load_microcode(sc, boot_text, boot_textsz)) != 0) { printf("%s: could not load boot firmware\n", sc->sc_dev.dv_xname); goto fail2; } /* now press "execute" ;-) */ IWN_WRITE(sc, IWN_RESET, 0); /* wait at most one second for first alive notification */ if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { /* this isn't what was supposed to happen.. */ printf("%s: timeout waiting for adapter to initialize\n", sc->sc_dev.dv_xname); goto fail2; } /* copy runtime images into pre-allocated DMA-safe memory */ memcpy(dma->vaddr, main_data, main_datasz); memcpy(dma->vaddr + IWN_FW_MAIN_DATA_MAXSZ, main_text, main_textsz); /* tell adapter where to find runtime images */ iwn_mem_lock(sc); iwn_mem_write(sc, IWN_MEM_DATA_BASE, dma->paddr >> 4); iwn_mem_write(sc, IWN_MEM_DATA_SIZE, main_datasz); iwn_mem_write(sc, IWN_MEM_TEXT_BASE, (dma->paddr + IWN_FW_MAIN_DATA_MAXSZ) >> 4); iwn_mem_write(sc, IWN_MEM_TEXT_SIZE, IWN_FW_UPDATED | main_textsz); iwn_mem_unlock(sc); /* wait at most one second for second alive notification */ if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { /* this isn't what was supposed to happen.. */ printf("%s: timeout waiting for adapter to initialize\n", sc->sc_dev.dv_xname); } fail2: free(fw, M_DEVBUF); fail1: return error; } void iwn_calib_timeout(void *arg) { struct iwn_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; /* automatic rate control triggered every 500ms */ if (ic->ic_fixed_rate == -1) { s = splnet(); if (ic->ic_opmode == IEEE80211_M_STA) iwn_iter_func(sc, ic->ic_bss); else ieee80211_iterate_nodes(ic, iwn_iter_func, sc); splx(s); } /* automatic calibration every 60s */ if (++sc->calib_cnt >= 120) { DPRINTF(("sending request for statistics\n")); (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, NULL, 0, 1); sc->calib_cnt = 0; } timeout_add(&sc->calib_to, hz / 2); } void iwn_iter_func(void *arg, struct ieee80211_node *ni) { struct iwn_softc *sc = arg; struct iwn_node *wn = (struct iwn_node *)ni; ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); } void iwn_ampdu_rx_start(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_rx_stat *stat; DPRINTFN(2, ("received AMPDU stats\n")); /* save Rx statistics, they will be used on IWN_AMPDU_RX_DONE */ stat = (struct iwn_rx_stat *)(desc + 1); memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); sc->last_rx_valid = 1; } void iwn_rx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwn_rx_ring *ring = &sc->rxq; struct iwn_rbuf *rbuf; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct mbuf *m, *mnew; struct iwn_rx_stat *stat; caddr_t head; uint32_t *tail; int len, rssi; if (desc->type == IWN_AMPDU_RX_DONE) { /* check for prior AMPDU_RX_START */ if (!sc->last_rx_valid) { DPRINTF(("missing AMPDU_RX_START\n")); ifp->if_ierrors++; return; } sc->last_rx_valid = 0; stat = &sc->last_rx_stat; } else stat = (struct iwn_rx_stat *)(desc + 1); if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { printf("%s: invalid rx statistic header\n", sc->sc_dev.dv_xname); ifp->if_ierrors++; return; } if (desc->type == IWN_AMPDU_RX_DONE) { struct iwn_rx_ampdu *ampdu = (struct iwn_rx_ampdu *)(desc + 1); head = (caddr_t)(ampdu + 1); len = letoh16(ampdu->len); } else { head = (caddr_t)(stat + 1) + stat->cfg_phy_len; len = letoh16(stat->len); } /* discard Rx frames with bad CRC early */ tail = (uint32_t *)(head + len); if ((letoh32(*tail) & IWN_RX_NOERROR) != IWN_RX_NOERROR) { DPRINTFN(2, ("rx flags error %x\n", letoh32(*tail))); ifp->if_ierrors++; return; } /* XXX for ieee80211_find_rxnode() */ if (len < sizeof (struct ieee80211_frame)) { DPRINTF(("frame too short: %d\n", len)); ic->ic_stats.is_rx_tooshort++; ifp->if_ierrors++; return; } m = data->m; /* finalize mbuf */ m->m_pkthdr.rcvif = ifp; m->m_data = head; m->m_pkthdr.len = m->m_len = len; if ((rbuf = SLIST_FIRST(&sc->rxq.freelist)) != NULL) { MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ic->ic_stats.is_rx_nombuf++; ifp->if_ierrors++; return; } /* attach Rx buffer to mbuf */ MEXTADD(mnew, rbuf->vaddr, IWN_RBUF_SIZE, 0, iwn_free_rbuf, rbuf); SLIST_REMOVE_HEAD(&sc->rxq.freelist, next); data->m = mnew; /* update Rx descriptor */ ring->desc[ring->cur] = htole32(rbuf->paddr >> 8); } else { /* no free rbufs, copy frame */ m = m_copym2(m, 0, M_COPYALL, M_DONTWAIT); if (m == NULL) { /* no free mbufs either, drop frame */ ic->ic_stats.is_rx_nombuf++; ifp->if_ierrors++; return; } } rssi = iwn_get_rssi(stat); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; tap->wr_chan_freq = htole16(ic->ic_channels[stat->chan].ic_freq); tap->wr_chan_flags = htole16(ic->ic_channels[stat->chan].ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)sc->noise; tap->wr_tsft = stat->tstamp; switch (stat->rate) { /* CCK rates */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* unknown rate: should not happen */ default: tap->wr_rate = 0; } mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif /* grab a reference to the source node */ wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); /* send the frame to the 802.11 layer */ ieee80211_input(ifp, m, ni, rssi, 0); /* node is no longer needed */ ieee80211_release_node(ic, ni); } void iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct ieee80211com *ic = &sc->sc_ic; struct iwn_calib_state *calib = &sc->calib; struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); /* ignore beacon statistics received during a scan */ if (ic->ic_state != IEEE80211_S_RUN) return; DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); sc->calib_cnt = 0; /* reset timeout */ /* test if temperature has changed */ if (stats->general.temp != sc->rawtemp) { int temp; sc->rawtemp = stats->general.temp; temp = iwn_get_temperature(sc); DPRINTFN(2, ("temperature=%d\n", temp)); /* update temperature sensor */ sc->sensor.value = IWN_CTOMUK(temp); /* update Tx power if need be */ iwn_power_calibration(sc, temp); } if (desc->type != IWN_BEACON_STATISTICS) return; /* reply to a statistics request */ sc->noise = iwn_get_noise(&stats->rx.general); DPRINTFN(3, ("noise=%d\n", sc->noise)); /* test that RSSI and noise are present in stats report */ if (letoh32(stats->rx.general.flags) != 1) { DPRINTF(("received statistics without RSSI\n")); return; } if (calib->state == IWN_CALIB_STATE_ASSOC) iwn_compute_differential_gain(sc, &stats->rx.general); else if (calib->state == IWN_CALIB_STATE_RUN) iwn_tune_sensitivity(sc, &stats->rx); } void iwn_tx_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; struct iwn_tx_data *data = &ring->data[desc->idx]; struct iwn_tx_stat *stat = (struct iwn_tx_stat *)(desc + 1); struct iwn_node *wn = (struct iwn_node *)data->ni; uint32_t status; DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x " "duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries, stat->nkill, stat->rate, letoh16(stat->duration), letoh32(stat->status))); /* * Update rate control statistics for the node. */ wn->amn.amn_txcnt++; if (stat->ntries > 0) { DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries)); wn->amn.amn_retrycnt++; } status = letoh32(stat->status) & 0xff; if (status != 1 && status != 2) ifp->if_oerrors++; else ifp->if_opackets++; bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_release_node(ic, data->ni); data->ni = NULL; ring->queued--; sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; (*ifp->if_start)(ifp); } void iwn_cmd_intr(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_data *data; if ((desc->qid & 0xf) != 4) return; /* not a command ack */ data = &ring->data[desc->idx]; /* if the command was mapped in a mbuf, free it */ if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->cmd[desc->idx]); } void iwn_notif_intr(struct iwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; uint16_t hw; hw = letoh16(sc->shared->closed_count); while (sc->rxq.cur != hw) { struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct iwn_rx_desc *desc = (void *)data->m->m_ext.ext_buf; DPRINTFN(4,("rx notification qid=%x idx=%d flags=%x type=%d " "len=%d\n", desc->qid, desc->idx, desc->flags, desc->type, letoh32(desc->len))); if (!(desc->qid & 0x80)) /* reply to a command */ iwn_cmd_intr(sc, desc); switch (desc->type) { case IWN_RX_DONE: case IWN_AMPDU_RX_DONE: iwn_rx_intr(sc, desc, data); break; case IWN_AMPDU_RX_START: iwn_ampdu_rx_start(sc, desc); break; case IWN_TX_DONE: /* a 802.11 frame has been transmitted */ iwn_tx_intr(sc, desc); break; case IWN_RX_STATISTICS: case IWN_BEACON_STATISTICS: iwn_rx_statistics(sc, desc); break; case IWN_BEACON_MISSED: { struct iwn_beacon_missed *miss = (struct iwn_beacon_missed *)(desc + 1); /* * If more than 5 consecutive beacons are missed, * reinitialize the sensitivity state machine. */ DPRINTFN(2, ("beacons missed %d/%d\n", letoh32(miss->consecutive), letoh32(miss->total))); if (ic->ic_state == IEEE80211_S_RUN && letoh32(miss->consecutive) > 5) (void)iwn_init_sensitivity(sc); break; } case IWN_UC_READY: { struct iwn_ucode_info *uc = (struct iwn_ucode_info *)(desc + 1); /* the microcontroller is ready */ DPRINTF(("microcode alive notification version=%d.%d " "subtype=%x alive=%x\n", uc->major, uc->minor, uc->subtype, letoh32(uc->valid))); if (letoh32(uc->valid) != 1) { printf("%s: microcontroller initialization " "failed\n", sc->sc_dev.dv_xname); break; } if (uc->subtype == IWN_UCODE_INIT) { /* save microcontroller's report */ memcpy(&sc->ucode_info, uc, sizeof (*uc)); } break; } case IWN_STATE_CHANGED: { uint32_t *status = (uint32_t *)(desc + 1); /* enabled/disabled notification */ DPRINTF(("state changed to %x\n", letoh32(*status))); if (letoh32(*status) & 1) { /* the radio button has to be pushed */ printf("%s: Radio transmitter is off\n", sc->sc_dev.dv_xname); /* turn the interface down */ ifp->if_flags &= ~IFF_UP; iwn_stop(ifp, 1); return; /* no further processing */ } break; } case IWN_START_SCAN: { struct iwn_start_scan *scan = (struct iwn_start_scan *)(desc + 1); DPRINTFN(2, ("scanning channel %d status %x\n", scan->chan, letoh32(scan->status))); /* fix current channel */ ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; break; } case IWN_STOP_SCAN: { struct iwn_stop_scan *scan = (struct iwn_stop_scan *)(desc + 1); DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", scan->nchan, scan->status, scan->chan)); if (scan->status == 1 && scan->chan <= 14) { /* * We just finished scanning 802.11g channels, * start scanning 802.11a ones. */ if (iwn_scan(sc, IEEE80211_CHAN_A) == 0) break; } ieee80211_end_scan(ifp); break; } } sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; } /* tell the firmware what we have processed */ hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; IWN_WRITE(sc, IWN_RX_WIDX, hw & ~7); } int iwn_intr(void *arg) { struct iwn_softc *sc = arg; struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t r1, r2; /* disable interrupts */ IWN_WRITE(sc, IWN_MASK, 0); r1 = IWN_READ(sc, IWN_INTR); r2 = IWN_READ(sc, IWN_INTR_STATUS); if (r1 == 0 && r2 == 0) { if (ifp->if_flags & IFF_UP) IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK); return 0; /* not for us */ } if (r1 == 0xffffffff) return 0; /* hardware gone */ /* ack interrupts */ IWN_WRITE(sc, IWN_INTR, r1); IWN_WRITE(sc, IWN_INTR_STATUS, r2); DPRINTFN(6, ("interrupt reg1=%x reg2=%x\n", r1, r2)); if (r1 & IWN_RF_TOGGLED) { uint32_t tmp = IWN_READ(sc, IWN_GPIO_CTL); printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname, (tmp & IWN_GPIO_RF_ENABLED) ? "enabled" : "disabled"); } if (r1 & IWN_CT_REACHED) { printf("%s: critical temperature reached!\n", sc->sc_dev.dv_xname); } if (r1 & (IWN_SW_ERROR | IWN_HW_ERROR)) { printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); ifp->if_flags &= ~IFF_UP; iwn_stop(ifp, 1); return 1; } if ((r1 & (IWN_RX_INTR | IWN_SW_RX_INTR)) || (r2 & IWN_RX_STATUS_INTR)) iwn_notif_intr(sc); if (r1 & IWN_ALIVE_INTR) wakeup(sc); /* re-enable interrupts */ if (ifp->if_flags & IFF_UP) IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK); return 1; } uint8_t iwn_plcp_signal(int rate) { switch (rate) { /* CCK rates (returned values are device-dependent) */ case 2: return 10; case 4: return 20; case 11: return 55; case 22: return 110; /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ /* R1-R4, (u)ral is R4-R1 */ case 12: return 0xd; case 18: return 0xf; case 24: return 0x5; case 36: return 0x7; case 48: return 0x9; case 72: return 0xb; case 96: return 0x1; case 108: return 0x3; case 120: return 0x3; } /* unknown rate (should not get there) */ return 0; } /* determine if a given rate is CCK or OFDM */ #define IWN_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) int iwn_tx_data(struct iwn_softc *sc, struct mbuf *m0, struct ieee80211_node *ni, int ac) { struct ieee80211com *ic = &sc->sc_ic; struct iwn_tx_ring *ring = &sc->txq[ac]; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct ieee80211_frame *wh; struct mbuf *mnew; bus_addr_t paddr; uint32_t flags; uint8_t type; u_int hdrlen; int i, rate, error, pad, ovhd = 0; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; wh = mtod(m0, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* pickup a rate */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) { /* mgmt/multicast frames are sent at the lowest avail. rate */ rate = ni->ni_rates.rs_rates[0]; } else if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate]; } else rate = ni->ni_rates.rs_rates[ni->ni_txrate]; rate &= IEEE80211_RATE_VAL; #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); tap->wt_rate = rate; tap->wt_hwqueue = ac; if (wh->i_fc[1] & IEEE80211_FC1_WEP) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m0; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif cmd = &ring->cmd[ring->cur]; cmd->code = IWN_CMD_TX_DATA; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; tx = (struct iwn_cmd_data *)cmd->data; /* no need to bzero tx, all fields are reinitialized here */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { const struct ieee80211_key *key = &ic->ic_nw_keys[ic->ic_wep_txkey]; if (key->k_cipher == IEEE80211_CIPHER_WEP40) tx->security = IWN_CIPHER_WEP40; else tx->security = IWN_CIPHER_WEP104; tx->security |= ic->ic_wep_txkey << 6; memcpy(&tx->key[3], key->k_key, key->k_len); /* compute crypto overhead */ ovhd = IEEE80211_WEP_TOTLEN; } else tx->security = 0; flags = IWN_TX_AUTO_SEQ; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) flags |= IWN_TX_NEED_ACK; if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) tx->id = IWN_ID_BROADCAST; else tx->id = IWN_ID_BSS; /* check if RTS/CTS or CTS-to-self protection must be used */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* multicast frames are not sent at OFDM rates in 802.11b/g */ if (m0->m_pkthdr.len + ovhd + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && IWN_RATE_IS_OFDM(rate)) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP; } } if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; /* tell h/w to set timestamp in probe responses */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= IWN_TX_INSERT_TSTAMP; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } else tx->timeout = htole16(0); if (hdrlen & 3) { /* first segment's length must be a multiple of 4 */ flags |= IWN_TX_NEED_PADDING; pad = 4 - (hdrlen & 3); } else pad = 0; tx->flags = htole32(flags); tx->len = htole16(m0->m_pkthdr.len); tx->rate = iwn_plcp_signal(rate); tx->rts_ntries = 60; tx->data_ntries = 15; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); /* XXX alternate between Ant A and Ant B ? */ tx->rflags = IWN_RFLAG_ANT_B; if (tx->id == IWN_ID_BROADCAST) { tx->ridx = IWN_MAX_TX_RETRIES - 1; if (!IWN_RATE_IS_OFDM(rate)) tx->rflags |= IWN_RFLAG_CCK; } else { tx->ridx = 0; /* tell adapter to ignore rflags */ tx->flags |= htole32(IWN_TX_USE_NODE_RATE); } /* copy and trim IEEE802.11 header */ memcpy((uint8_t *)(tx + 1), wh, hdrlen); m_adj(m0, hdrlen); error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m0); return ENOMEM; } M_DUP_PKTHDR(mnew, m0); if (m0->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(m0); m_freem(mnew); return ENOMEM; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t)); m_freem(m0); mnew->m_len = mnew->m_pkthdr.len; m0 = mnew; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } } data->m = m0; data->ni = ni; DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs)); paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd); tx->loaddr = htole32(paddr + 4 + offsetof(struct iwn_cmd_data, ntries)); tx->hiaddr = 0; /* limit to 32-bit physical addresses */ /* first scatter/gather segment is used by the tx data command */ IWN_SET_DESC_NSEGS(desc, 1 + data->map->dm_nsegs); IWN_SET_DESC_SEG(desc, 0, paddr, 4 + sizeof (*tx) + hdrlen + pad); for (i = 1; i <= data->map->dm_nsegs; i++) { IWN_SET_DESC_SEG(desc, i, data->map->dm_segs[i - 1].ds_addr, data->map->dm_segs[i - 1].ds_len); } sc->shared->len[ring->qid][ring->cur] = htole16(hdrlen + m0->m_pkthdr.len + 8); if (ring->cur < IWN_TX_WINDOW) { sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] = htole16(hdrlen + m0->m_pkthdr.len + 8); } ring->queued++; /* kick Tx ring */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur); return 0; } void iwn_start(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m0; /* * net80211 may still try to send management frames even if the * IFF_RUNNING flag is not set... */ if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IF_POLL(&ic->ic_mgtq, m0); if (m0 != NULL) { /* management frames go into ring 0 */ if (sc->txq[0].queued >= IWN_TX_RING_COUNT - 8) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ic->ic_mgtq, m0); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (iwn_tx_data(sc, m0, ni, 0) != 0) break; } else { if (ic->ic_state != IEEE80211_S_RUN) break; IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (sc->txq[0].queued >= IWN_TX_RING_COUNT - 8) { /* there is no place left in this ring */ ifp->if_flags |= IFF_OACTIVE; break; } IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif m0 = ieee80211_encap(ifp, m0, &ni); if (m0 == NULL) continue; #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m0, BPF_DIRECTION_OUT); #endif if (iwn_tx_data(sc, m0, ni, 0) != 0) { if (ni != NULL) ieee80211_release_node(ic, ni); ifp->if_oerrors++; break; } } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void iwn_watchdog(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_flags &= ~IFF_UP; iwn_stop(ifp, 1); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) iwn_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) iwn_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwn_stop(ifp, 0); iwn_init(ifp); } error = 0; } splx(s); return error; } void iwn_read_eeprom(struct iwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; char domain[4]; uint16_t val; int i, error; if ((error = iwn_eeprom_lock(sc)) != 0) { printf("%s: could not lock EEPROM (error=%d)\n", sc->sc_dev.dv_xname, error); return; } /* read and print regulatory domain */ iwn_read_prom_data(sc, IWN_EEPROM_DOMAIN, domain, 4); printf(", %.4s", domain); /* read and print MAC address */ iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); printf(", address %s\n", ether_sprintf(ic->ic_myaddr)); /* read the list of authorized channels */ for (i = 0; i < IWN_CHAN_BANDS_COUNT; i++) iwn_read_eeprom_channels(sc, i); /* read maximum allowed Tx power for 2GHz and 5GHz bands */ iwn_read_prom_data(sc, IWN_EEPROM_MAXPOW, &val, 2); sc->maxpwr2GHz = val & 0xff; sc->maxpwr5GHz = val >> 8; /* check that EEPROM values are correct */ if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) sc->maxpwr5GHz = 38; if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) sc->maxpwr2GHz = 38; DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); /* read voltage at which samples were taken */ iwn_read_prom_data(sc, IWN_EEPROM_VOLTAGE, &val, 2); sc->eeprom_voltage = (int16_t)letoh16(val); DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); /* read power groups */ iwn_read_prom_data(sc, IWN_EEPROM_BANDS, sc->bands, sizeof sc->bands); #ifdef IWN_DEBUG if (iwn_debug > 0) { for (i = 0; i < IWN_NBANDS; i++) iwn_print_power_group(sc, i); } #endif iwn_eeprom_unlock(sc); } void iwn_read_eeprom_channels(struct iwn_softc *sc, int n) { struct ieee80211com *ic = &sc->sc_ic; const struct iwn_chan_band *band = &iwn_bands[n]; struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; int chan, i; iwn_read_prom_data(sc, band->addr, channels, band->nchan * sizeof (struct iwn_eeprom_chan)); for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) continue; chan = band->chan[i]; if (n == 0) { /* 2GHz band */ ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } else { /* 5GHz band */ /* * Some adapters support channels 7, 8, 11 and 12 * both in the 2GHz *and* 5GHz bands. * Because of limitations in our net80211(9) stack, * we can't support these channels in 5GHz band. */ if (chan <= 14) continue; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; } /* is active scan allowed on this channel? */ if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_PASSIVE; } /* save maximum allowed power for this channel */ sc->maxpwr[chan] = channels[i].maxpwr; DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", chan, channels[i].flags, sc->maxpwr[chan])); } } #ifdef IWN_DEBUG void iwn_print_power_group(struct iwn_softc *sc, int i) { struct iwn_eeprom_band *band = &sc->bands[i]; struct iwn_eeprom_chan_samples *chans = band->chans; int j, c; printf("===band %d===\n", i); printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); printf("chan1 num=%d\n", chans[0].num); for (c = 0; c < IWN_NTXCHAINS; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[0].samples[c][j].temp, chans[0].samples[c][j].gain, chans[0].samples[c][j].power, chans[0].samples[c][j].pa_det); } } printf("chan2 num=%d\n", chans[1].num); for (c = 0; c < IWN_NTXCHAINS; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[1].samples[c][j].temp, chans[1].samples[c][j].gain, chans[1].samples[c][j].power, chans[1].samples[c][j].pa_det); } } } #endif /* * Send a command to the firmware. */ int iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) { struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_desc *desc; struct iwn_tx_cmd *cmd; bus_addr_t paddr; KASSERT(size <= sizeof cmd->data); desc = &ring->desc[ring->cur]; cmd = &ring->cmd[ring->cur]; cmd->code = code; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; memcpy(cmd->data, buf, size); paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd); IWN_SET_DESC_NSEGS(desc, 1); IWN_SET_DESC_SEG(desc, 0, paddr, 4 + size); sc->shared->len[ring->qid][ring->cur] = htole16(8); if (ring->cur < IWN_TX_WINDOW) { sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] = htole16(8); } /* kick cmd ring */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur); return async ? 0 : tsleep(cmd, PCATCH, "iwncmd", hz); } /* * Configure hardware multi-rate retries for one node. */ int iwn_setup_node_mrr(struct iwn_softc *sc, uint8_t id, int async) { struct ieee80211com *ic = &sc->sc_ic; struct iwn_cmd_mrr mrr; int i, ridx; memset(&mrr, 0, sizeof mrr); mrr.id = id; mrr.ssmask = 2; mrr.dsmask = 3; mrr.ampdu_disable = 3; mrr.ampdu_limit = 4000; if (id == IWN_ID_BSS) ridx = IWN_OFDM54; else if (ic->ic_curmode == IEEE80211_MODE_11A) ridx = IWN_OFDM6; else ridx = IWN_CCK1; for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { mrr.table[i].rate = iwn_ridx_to_plcp[ridx]; mrr.table[i].rflags = IWN_RFLAG_ANT_B; if (ridx <= IWN_CCK11) mrr.table[i].rflags |= IWN_RFLAG_CCK; ridx = iwn_prev_ridx[ridx]; } return iwn_cmd(sc, IWN_CMD_NODE_MRR_SETUP, &mrr, sizeof mrr, async); } /* * Install a pairwise key into the hardware. */ int iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, const struct ieee80211_key *k) { struct iwn_softc *sc = ic->ic_softc; struct iwn_node_info node; if (k->k_flags & IEEE80211_KEY_GROUP) return 0; memset(&node, 0, sizeof node); switch (k->k_cipher) { case IEEE80211_CIPHER_CCMP: node.security = htole16(IWN_CIPHER_CCMP); memcpy(node.key, k->k_key, k->k_len); break; default: return 0; } node.id = IWN_ID_BSS; IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_KEY; return iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1); } void iwn_updateedca(struct ieee80211com *ic) { #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct iwn_softc *sc = ic->ic_softc; struct iwn_edca_params cmd; int aci; memset(&cmd, 0, sizeof cmd); cmd.flags = htole32(IWN_EDCA_UPDATE); for (aci = 0; aci < EDCA_NUM_AC; aci++) { const struct ieee80211_edca_ac_params *ac = &ic->ic_edca_ac[aci]; cmd.ac[aci].aifsn = ac->ac_aifsn; cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin)); cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax)); cmd.ac[aci].txoplimit = htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit)); } (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); #undef IWN_EXP2 } void iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) { struct iwn_cmd_led led; led.which = which; led.unit = htole32(100000); /* on/off in unit of 100ms */ led.off = off; led.on = on; (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); } /* * Set the critical temperature at which the firmware will automatically stop * the radio transmitter. */ int iwn_set_critical_temp(struct iwn_softc *sc) { struct iwn_ucode_info *uc = &sc->ucode_info; struct iwn_critical_temp crit; uint32_t r1, r2, r3, temp; r1 = letoh32(uc->temp[0].chan20MHz); r2 = letoh32(uc->temp[1].chan20MHz); r3 = letoh32(uc->temp[2].chan20MHz); /* inverse function of iwn_get_temperature() */ temp = r2 + (IWN_CTOK(110) * (r3 - r1)) / 259; IWN_WRITE(sc, IWN_UCODE_CLR, IWN_CTEMP_STOP_RF); memset(&crit, 0, sizeof crit); crit.tempR = htole32(temp); DPRINTF(("setting critical temperature to %u\n", temp)); return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); } void iwn_enable_tsf(struct iwn_softc *sc, struct ieee80211_node *ni) { struct iwn_cmd_tsf tsf; uint64_t val, mod; memset(&tsf, 0, sizeof tsf); memcpy(&tsf.tstamp, ni->ni_tstamp, sizeof (uint64_t)); tsf.bintval = htole16(ni->ni_intval); tsf.lintval = htole16(10); /* compute remaining time until next beacon */ val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ mod = letoh64(tsf.tstamp) % val; tsf.binitval = htole32((uint32_t)(val - mod)); DPRINTF(("TSF bintval=%u tstamp=%llu, init=%u\n", ni->ni_intval, letoh64(tsf.tstamp), (uint32_t)(val - mod))); if (iwn_cmd(sc, IWN_CMD_TSF, &tsf, sizeof tsf, 1) != 0) printf("%s: could not enable TSF\n", sc->sc_dev.dv_xname); } void iwn_power_calibration(struct iwn_softc *sc, int temp) { struct ieee80211com *ic = &sc->sc_ic; DPRINTF(("temperature %d->%d\n", sc->temp, temp)); /* adjust Tx power if need be (delta >= 3°C) */ if (abs(temp - sc->temp) < 3) return; sc->temp = temp; DPRINTF(("setting Tx power for channel %d\n", ieee80211_chan2ieee(ic, ic->ic_bss->ni_chan))); if (iwn_set_txpower(sc, ic->ic_bss->ni_chan, 1) != 0) { /* just warn, too bad for the automatic calibration... */ printf("%s: could not adjust Tx power\n", sc->sc_dev.dv_xname); } } /* * Set Tx power for a given channel (each rate has its own power settings). * This function takes into account the regulatory information from EEPROM, * the current temperature and the current voltage. */ int iwn_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch, int async) { /* fixed-point arithmetic division using a n-bit fractional part */ #define fdivround(a, b, n) \ ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) /* linear interpolation */ #define interpolate(x, x1, y1, x2, y2, n) \ ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; struct ieee80211com *ic = &sc->sc_ic; struct iwn_ucode_info *uc = &sc->ucode_info; struct iwn_cmd_txpower cmd; struct iwn_eeprom_chan_samples *chans; const uint8_t *rf_gain, *dsp_gain; int32_t vdiff, tdiff; int i, c, grp, maxpwr; u_int chan; /* get channel number */ chan = ieee80211_chan2ieee(ic, ch); memset(&cmd, 0, sizeof cmd); cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; cmd.chan = chan; if (IEEE80211_IS_CHAN_5GHZ(ch)) { maxpwr = sc->maxpwr5GHz; rf_gain = iwn_rf_gain_5ghz; dsp_gain = iwn_dsp_gain_5ghz; } else { maxpwr = sc->maxpwr2GHz; rf_gain = iwn_rf_gain_2ghz; dsp_gain = iwn_dsp_gain_2ghz; } /* compute voltage compensation */ vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7; if (vdiff > 0) vdiff *= 2; if (abs(vdiff) > 2) vdiff = 0; DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", vdiff, letoh32(uc->volt), sc->eeprom_voltage)); /* get channel's attenuation group */ if (chan <= 20) /* 1-20 */ grp = 4; else if (chan <= 43) /* 34-43 */ grp = 0; else if (chan <= 70) /* 44-70 */ grp = 1; else if (chan <= 124) /* 71-124 */ grp = 2; else /* 125-200 */ grp = 3; DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); /* get channel's sub-band */ for (i = 0; i < IWN_NBANDS; i++) if (sc->bands[i].lo != 0 && sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) break; chans = sc->bands[i].chans; DPRINTF(("chan %d sub-band=%d\n", chan, i)); for (c = 0; c < IWN_NTXCHAINS; c++) { uint8_t power, gain, temp; int maxchpwr, pwr, ridx, idx; power = interpolate(chan, chans[0].num, chans[0].samples[c][1].power, chans[1].num, chans[1].samples[c][1].power, 1); gain = interpolate(chan, chans[0].num, chans[0].samples[c][1].gain, chans[1].num, chans[1].samples[c][1].gain, 1); temp = interpolate(chan, chans[0].num, chans[0].samples[c][1].temp, chans[1].num, chans[1].samples[c][1].temp, 1); DPRINTF(("Tx chain %d: power=%d gain=%d temp=%d\n", c, power, gain, temp)); /* compute temperature compensation */ tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; DPRINTF(("temperature compensation=%d (current=%d, " "EEPROM=%d)\n", tdiff, sc->temp, temp)); for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { maxchpwr = sc->maxpwr[chan] * 2; if ((ridx / 8) & 1) { /* MIMO: decrease Tx power (-3dB) */ maxchpwr -= 6; } pwr = maxpwr - 10; /* decrease power for highest OFDM rates */ if ((ridx % 8) == 5) /* 48Mbit/s */ pwr -= 5; else if ((ridx % 8) == 6) /* 54Mbit/s */ pwr -= 7; else if ((ridx % 8) == 7) /* 60Mbit/s */ pwr -= 10; if (pwr > maxchpwr) pwr = maxchpwr; idx = gain - (pwr - power) - tdiff - vdiff; if ((ridx / 8) & 1) /* MIMO */ idx += (int32_t)letoh32(uc->atten[grp][c]); if (cmd.band == 0) idx += 9; /* 5GHz */ if (ridx == IWN_RIDX_MAX) idx += 5; /* CCK */ /* make sure idx stays in a valid range */ if (idx < 0) idx = 0; else if (idx > IWN_MAX_PWR_INDEX) idx = IWN_MAX_PWR_INDEX; DPRINTF(("Tx chain %d, rate idx %d: power=%d\n", c, ridx, idx)); cmd.power[ridx].rf_gain[c] = rf_gain[idx]; cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; } } DPRINTF(("setting tx power for chan %d\n", chan)); return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); #undef interpolate #undef fdivround } /* * Get the best (maximum) RSSI among Rx antennas (in dBm). */ int iwn_get_rssi(const struct iwn_rx_stat *stat) { uint8_t mask, agc; int rssi; mask = (letoh16(stat->antenna) >> 4) & 0x7; agc = (letoh16(stat->agc) >> 7) & 0x7f; rssi = 0; if (mask & (1 << 0)) /* Ant A */ rssi = max(rssi, stat->rssi[0]); if (mask & (1 << 1)) /* Ant B */ rssi = max(rssi, stat->rssi[2]); if (mask & (1 << 2)) /* Ant C */ rssi = max(rssi, stat->rssi[4]); return rssi - agc - IWN_RSSI_TO_DBM; } /* * Get the average noise among Rx antennas (in dBm). */ int iwn_get_noise(const struct iwn_rx_general_stats *stats) { int i, total, nbant, noise; total = nbant = 0; for (i = 0; i < 3; i++) { if ((noise = letoh32(stats->noise[i]) & 0xff) == 0) continue; total += noise; nbant++; } /* there should be at least one antenna but check anyway */ return (nbant == 0) ? -127 : (total / nbant) - 107; } /* * Read temperature (in degC) from the on-board thermal sensor. */ int iwn_get_temperature(struct iwn_softc *sc) { struct iwn_ucode_info *uc = &sc->ucode_info; int32_t r1, r2, r3, r4, temp; r1 = letoh32(uc->temp[0].chan20MHz); r2 = letoh32(uc->temp[1].chan20MHz); r3 = letoh32(uc->temp[2].chan20MHz); r4 = letoh32(sc->rawtemp); if (r1 == r3) /* prevents division by 0 (should not happen) */ return 0; /* sign-extend 23-bit R4 value to 32-bit */ r4 = (r4 << 8) >> 8; /* compute temperature */ temp = (259 * (r4 - r2)) / (r3 - r1); temp = (temp * 97) / 100 + 8; DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); return IWN_KTOC(temp); } /* * Initialize sensitivity calibration state machine. */ int iwn_init_sensitivity(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_cmd cmd; int error; /* reset calibration state */ memset(calib, 0, sizeof (*calib)); calib->state = IWN_CALIB_STATE_INIT; calib->cck_state = IWN_CCK_STATE_HIFA; /* initial values taken from the reference driver */ calib->corr_ofdm_x1 = 105; calib->corr_ofdm_mrc_x1 = 220; calib->corr_ofdm_x4 = 90; calib->corr_ofdm_mrc_x4 = 170; calib->corr_cck_x4 = 125; calib->corr_cck_mrc_x4 = 200; calib->energy_cck = 100; /* write initial sensitivity values */ if ((error = iwn_send_sensitivity(sc)) != 0) return error; memset(&cmd, 0, sizeof cmd); cmd.code = IWN_SET_DIFF_GAIN; /* differential gains initially set to 0 for all 3 antennas */ DPRINTF(("setting differential gains\n")); return iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1); } /* * Collect noise and RSSI statistics for the first 20 beacons received * after association and use them to determine connected antennas and * set differential gains. */ void iwn_compute_differential_gain(struct iwn_softc *sc, const struct iwn_rx_general_stats *stats) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_cmd cmd; int i, val; /* accumulate RSSI and noise for all 3 antennas */ for (i = 0; i < 3; i++) { calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff; calib->noise[i] += letoh32(stats->noise[i]) & 0xff; } /* we update differential gain only once after 20 beacons */ if (++calib->nbeacons < 20) return; /* determine antenna with highest average RSSI */ val = max(calib->rssi[0], calib->rssi[1]); val = max(calib->rssi[2], val); /* determine which antennas are connected */ sc->antmsk = 0; for (i = 0; i < 3; i++) if (val - calib->rssi[i] <= 15 * 20) sc->antmsk |= 1 << i; /* if neither Ant A and Ant B are connected.. */ if ((sc->antmsk & (1 << 0 | 1 << 1)) == 0) sc->antmsk |= 1 << 1; /* ..mark Ant B as connected! */ /* get minimal noise among connected antennas */ val = INT_MAX; /* ok, there's at least one */ for (i = 0; i < 3; i++) if (sc->antmsk & (1 << i)) val = min(calib->noise[i], val); memset(&cmd, 0, sizeof cmd); cmd.code = IWN_SET_DIFF_GAIN; /* set differential gains for connected antennas */ for (i = 0; i < 3; i++) { if (sc->antmsk & (1 << i)) { cmd.gain[i] = (calib->noise[i] - val) / 30; /* limit differential gain to 3 */ cmd.gain[i] = min(cmd.gain[i], 3); cmd.gain[i] |= IWN_GAIN_SET; } } DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk)); if (iwn_cmd(sc, IWN_PHY_CALIB, &cmd, sizeof cmd, 1) == 0) calib->state = IWN_CALIB_STATE_RUN; } /* * Tune RF Rx sensitivity based on the number of false alarms detected * during the last beacon period. */ void iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) { #define inc_clip(val, inc, max) \ if ((val) < (max)) { \ if ((val) < (max) - (inc)) \ (val) += (inc); \ else \ (val) = (max); \ needs_update = 1; \ } #define dec_clip(val, dec, min) \ if ((val) > (min)) { \ if ((val) > (min) + (dec)) \ (val) -= (dec); \ else \ (val) = (min); \ needs_update = 1; \ } struct iwn_calib_state *calib = &sc->calib; uint32_t val, rxena, fa; uint32_t energy[3], energy_min; uint8_t noise[3], noise_ref; int i, needs_update = 0; /* check that we've been enabled long enough */ if ((rxena = letoh32(stats->general.load)) == 0) return; /* compute number of false alarms since last call for OFDM */ fa = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm; fa *= 200 * 1024; /* 200TU */ /* save counters values for next call */ calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp); calib->fa_ofdm = letoh32(stats->ofdm.fa); if (fa > 50 * rxena) { /* high false alarm count, decrease sensitivity */ DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); inc_clip(calib->corr_ofdm_x1, 1, 140); inc_clip(calib->corr_ofdm_mrc_x1, 1, 270); inc_clip(calib->corr_ofdm_x4, 1, 120); inc_clip(calib->corr_ofdm_mrc_x4, 1, 210); } else if (fa < 5 * rxena) { /* low false alarm count, increase sensitivity */ DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); dec_clip(calib->corr_ofdm_x1, 1, 105); dec_clip(calib->corr_ofdm_mrc_x1, 1, 220); dec_clip(calib->corr_ofdm_x4, 1, 85); dec_clip(calib->corr_ofdm_mrc_x4, 1, 170); } /* compute maximum noise among 3 antennas */ for (i = 0; i < 3; i++) noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff; val = max(noise[0], noise[1]); val = max(noise[2], val); /* insert it into our samples table */ calib->noise_samples[calib->cur_noise_sample] = val; calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; /* compute maximum noise among last 20 samples */ noise_ref = calib->noise_samples[0]; for (i = 1; i < 20; i++) noise_ref = max(noise_ref, calib->noise_samples[i]); /* compute maximum energy among 3 antennas */ for (i = 0; i < 3; i++) energy[i] = letoh32(stats->general.energy[i]); val = min(energy[0], energy[1]); val = min(energy[2], val); /* insert it into our samples table */ calib->energy_samples[calib->cur_energy_sample] = val; calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; /* compute minimum energy among last 10 samples */ energy_min = calib->energy_samples[0]; for (i = 1; i < 10; i++) energy_min = max(energy_min, calib->energy_samples[i]); energy_min += 6; /* compute number of false alarms since last call for CCK */ fa = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck; fa += letoh32(stats->cck.fa) - calib->fa_cck; fa *= 200 * 1024; /* 200TU */ /* save counters values for next call */ calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp); calib->fa_cck = letoh32(stats->cck.fa); if (fa > 50 * rxena) { /* high false alarm count, decrease sensitivity */ DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); calib->cck_state = IWN_CCK_STATE_HIFA; calib->low_fa = 0; if (calib->corr_cck_x4 > 160) { calib->noise_ref = noise_ref; if (calib->energy_cck > 2) dec_clip(calib->energy_cck, 2, energy_min); } if (calib->corr_cck_x4 < 160) { calib->corr_cck_x4 = 161; needs_update = 1; } else inc_clip(calib->corr_cck_x4, 3, 200); inc_clip(calib->corr_cck_mrc_x4, 3, 400); } else if (fa < 5 * rxena) { /* low false alarm count, increase sensitivity */ DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); calib->cck_state = IWN_CCK_STATE_LOFA; calib->low_fa++; if (calib->cck_state != 0 && ((calib->noise_ref - noise_ref) > 2 || calib->low_fa > 100)) { inc_clip(calib->energy_cck, 2, 97); dec_clip(calib->corr_cck_x4, 3, 125); dec_clip(calib->corr_cck_mrc_x4, 3, 200); } } else { /* not worth to increase or decrease sensitivity */ DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); calib->low_fa = 0; calib->noise_ref = noise_ref; if (calib->cck_state == IWN_CCK_STATE_HIFA) { /* previous interval had many false alarms */ dec_clip(calib->energy_cck, 8, energy_min); } calib->cck_state = IWN_CCK_STATE_INIT; } if (needs_update) (void)iwn_send_sensitivity(sc); #undef dec_clip #undef inc_clip } int iwn_send_sensitivity(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_sensitivity_cmd cmd; memset(&cmd, 0, sizeof cmd); cmd.which = IWN_SENSITIVITY_WORKTBL; /* OFDM modulation */ cmd.corr_ofdm_x1 = htole16(calib->corr_ofdm_x1); cmd.corr_ofdm_mrc_x1 = htole16(calib->corr_ofdm_mrc_x1); cmd.corr_ofdm_x4 = htole16(calib->corr_ofdm_x4); cmd.corr_ofdm_mrc_x4 = htole16(calib->corr_ofdm_mrc_x4); cmd.energy_ofdm = htole16(100); cmd.energy_ofdm_th = htole16(62); /* CCK modulation */ cmd.corr_cck_x4 = htole16(calib->corr_cck_x4); cmd.corr_cck_mrc_x4 = htole16(calib->corr_cck_mrc_x4); cmd.energy_cck = htole16(calib->energy_cck); /* Barker modulation: use default values */ cmd.corr_barker = htole16(190); cmd.corr_barker_mrc = htole16(390); DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", calib->corr_ofdm_x1, calib->corr_ofdm_mrc_x1, calib->corr_ofdm_x4, calib->corr_ofdm_mrc_x4, calib->corr_cck_x4, calib->corr_cck_mrc_x4, calib->energy_cck)); return iwn_cmd(sc, IWN_SENSITIVITY, &cmd, sizeof cmd, 1); } int iwn_auth(struct iwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct iwn_node_info node; int error; /* update adapter's configuration */ IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid); sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan); sc->config.flags = htole32(IWN_CONFIG_TSF); if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ); } switch (ic->ic_curmode) { case IEEE80211_MODE_11A: sc->config.cck_mask = 0; sc->config.ofdm_mask = 0x15; break; case IEEE80211_MODE_11B: sc->config.cck_mask = 0x03; sc->config.ofdm_mask = 0; break; default: /* assume 802.11b/g */ sc->config.cck_mask = 0x0f; sc->config.ofdm_mask = 0x15; } if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->config.flags |= htole32(IWN_CONFIG_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE); DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan, sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask)); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config, sizeof (struct iwn_config), 1); if (error != 0) { printf("%s: could not configure\n", sc->sc_dev.dv_xname); return error; } /* configuration has changed, set Tx power accordingly */ if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) { printf("%s: could not set Tx power\n", sc->sc_dev.dv_xname); return error; } /* * Reconfiguring clears the adapter's nodes table so we must * add the broadcast node again. */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); node.id = IWN_ID_BROADCAST; DPRINTF(("adding broadcast node\n")); error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1); if (error != 0) { printf("%s: could not add broadcast node\n", sc->sc_dev.dv_xname); return error; } DPRINTF(("setting MRR for node %d\n", node.id)); if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) { printf("%s: could not setup MRR for broadcast node\n", sc->sc_dev.dv_xname, node.id); return error; } return 0; } /* * Configure the adapter for associated state. */ int iwn_run(struct iwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct iwn_node_info node; int error; if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* link LED blinks while monitoring */ iwn_set_led(sc, IWN_LED_LINK, 5, 5); return 0; } iwn_enable_tsf(sc, ni); /* update adapter's configuration */ sc->config.associd = htole16(ni->ni_associd & ~0xc000); /* short preamble/slot time are negotiated when associating */ sc->config.flags &= ~htole32(IWN_CONFIG_SHPREAMBLE | IWN_CONFIG_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->config.flags |= htole32(IWN_CONFIG_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->config.flags |= htole32(IWN_CONFIG_SHPREAMBLE); sc->config.filter |= htole32(IWN_FILTER_BSS); DPRINTF(("config chan %d flags %x\n", sc->config.chan, sc->config.flags)); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config, sizeof (struct iwn_config), 1); if (error != 0) { printf("%s: could not update configuration\n", sc->sc_dev.dv_xname); return error; } /* configuration has changed, set Tx power accordingly */ if ((error = iwn_set_txpower(sc, ni->ni_chan, 1)) != 0) { printf("%s: could not set Tx power\n", sc->sc_dev.dv_xname); return error; } /* add BSS node */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.id = IWN_ID_BSS; node.htflags = htole32(3 << IWN_AMDPU_SIZE_FACTOR_SHIFT | 5 << IWN_AMDPU_DENSITY_SHIFT); DPRINTF(("adding BSS node\n")); error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 1); if (error != 0) { printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname); return error; } DPRINTF(("setting MRR for node %d\n", node.id)); if ((error = iwn_setup_node_mrr(sc, node.id, 1)) != 0) { printf("%s: could not setup MRR for node %d\n", sc->sc_dev.dv_xname, node.id); return error; } if (ic->ic_opmode == IEEE80211_M_STA) { /* fake a join to init the tx rate */ iwn_newassoc(ic, ni, 1); } if ((error = iwn_init_sensitivity(sc)) != 0) { printf("%s: could not set sensitivity\n", sc->sc_dev.dv_xname); return error; } /* start periodic calibration timer */ sc->calib.state = IWN_CALIB_STATE_ASSOC; sc->calib_cnt = 0; timeout_add(&sc->calib_to, hz / 2); /* link LED always on while associated */ iwn_set_led(sc, IWN_LED_LINK, 0, 1); return 0; } /* * Send a scan request to the firmware. Since this command is huge, we map it * into a mbuf instead of using the pre-allocated set of commands. */ int iwn_scan(struct iwn_softc *sc, uint16_t flags) { struct ieee80211com *ic = &sc->sc_ic; struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; struct iwn_scan_hdr *hdr; struct iwn_scan_essid *essid; struct iwn_scan_chan *chan; struct ieee80211_frame *wh; struct ieee80211_rateset *rs; struct ieee80211_channel *c; enum ieee80211_phymode mode; uint8_t *frm; int pktlen, error; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate mbuf for scan command\n", sc->sc_dev.dv_xname); return ENOMEM; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { m_freem(data->m); data->m = NULL; printf("%s: could not allocate mbuf for scan command\n", sc->sc_dev.dv_xname); return ENOMEM; } cmd = mtod(data->m, struct iwn_tx_cmd *); cmd->code = IWN_CMD_SCAN; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; hdr = (struct iwn_scan_hdr *)cmd->data; memset(hdr, 0, sizeof (struct iwn_scan_hdr)); /* * Move to the next channel if no packets are received within 5 msecs * after sending the probe request (this helps to reduce the duration * of active scans). */ hdr->quiet = htole16(5); /* timeout in milliseconds */ hdr->plcp_threshold = htole16(1); /* min # of packets */ /* select Ant B and Ant C for scanning */ hdr->rxchain = htole16(0x3e1 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT); tx = (struct iwn_cmd_data *)(hdr + 1); memset(tx, 0, sizeof (struct iwn_cmd_data)); tx->flags = htole32(IWN_TX_AUTO_SEQ | 0x200); /* XXX */ tx->id = IWN_ID_BROADCAST; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); tx->rflags = IWN_RFLAG_ANT_B; if (flags & IEEE80211_CHAN_A) { hdr->crc_threshold = htole16(1); /* send probe requests at 6Mbps */ tx->rate = iwn_ridx_to_plcp[IWN_OFDM6]; } else { hdr->flags = htole32(IWN_CONFIG_24GHZ | IWN_CONFIG_AUTO); /* send probe requests at 1Mbps */ tx->rate = iwn_ridx_to_plcp[IWN_CCK1]; tx->rflags |= IWN_RFLAG_CCK; } essid = (struct iwn_scan_essid *)(tx + 1); memset(essid, 0, 4 * sizeof (struct iwn_scan_essid)); essid[0].id = IEEE80211_ELEMID_SSID; essid[0].len = ic->ic_des_esslen; memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh = (struct ieee80211_frame *)&essid[4]; wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); *(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */ *(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */ frm = (uint8_t *)(wh + 1); /* add SSID IE */ frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen); mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan); rs = &ic->ic_sup_rates[mode]; /* add supported rates IE */ frm = ieee80211_add_rates(frm, rs); /* add supported xrates IE */ if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); /* setup length of probe request */ tx->len = htole16(frm - (uint8_t *)wh); chan = (struct iwn_scan_chan *)frm; for (c = &ic->ic_channels[1]; c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { if ((c->ic_flags & flags) != flags) continue; chan->chan = ieee80211_chan2ieee(ic, c); chan->flags = 0; if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) { chan->flags |= IWN_CHAN_ACTIVE; if (ic->ic_des_esslen != 0) chan->flags |= IWN_CHAN_DIRECT; } chan->dsp_gain = 0x6e; if (IEEE80211_IS_CHAN_5GHZ(c)) { chan->rf_gain = 0x3b; chan->active = htole16(10); chan->passive = htole16(110); } else { chan->rf_gain = 0x28; chan->active = htole16(20); chan->passive = htole16(120); } hdr->nchan++; chan++; frm += sizeof (struct iwn_scan_chan); } hdr->len = htole16(frm - (uint8_t *)hdr); pktlen = frm - (uint8_t *)cmd; error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map scan command\n", sc->sc_dev.dv_xname); m_freem(data->m); data->m = NULL; return error; } IWN_SET_DESC_NSEGS(desc, 1); IWN_SET_DESC_SEG(desc, 0, data->map->dm_segs[0].ds_addr, data->map->dm_segs[0].ds_len); sc->shared->len[ring->qid][ring->cur] = htole16(8); if (ring->cur < IWN_TX_WINDOW) { sc->shared->len[ring->qid][ring->cur + IWN_TX_RING_COUNT] = htole16(8); } /* kick cmd ring */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_TX_WIDX, ring->qid << 8 | ring->cur); return 0; /* will be notified async. of failure/success */ } int iwn_config(struct iwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwn_power power; struct iwn_bluetooth bluetooth; struct iwn_node_info node; int error; /* set power mode */ memset(&power, 0, sizeof power); power.flags = htole16(IWN_POWER_CAM | 0x8); DPRINTF(("setting power mode\n")); error = iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &power, sizeof power, 0); if (error != 0) { printf("%s: could not set power mode\n", sc->sc_dev.dv_xname); return error; } /* configure bluetooth coexistence */ memset(&bluetooth, 0, sizeof bluetooth); bluetooth.flags = 3; bluetooth.lead = 0xaa; bluetooth.kill = 1; DPRINTF(("configuring bluetooth coexistence\n")); error = iwn_cmd(sc, IWN_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth, 0); if (error != 0) { printf("%s: could not configure bluetooth coexistence\n", sc->sc_dev.dv_xname); return error; } /* configure adapter */ memset(&sc->config, 0, sizeof (struct iwn_config)); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr); IEEE80211_ADDR_COPY(sc->config.wlap, ic->ic_myaddr); /* set default channel */ sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); sc->config.flags = htole32(IWN_CONFIG_TSF); if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) { sc->config.flags |= htole32(IWN_CONFIG_AUTO | IWN_CONFIG_24GHZ); } sc->config.filter = 0; switch (ic->ic_opmode) { case IEEE80211_M_STA: sc->config.mode = IWN_MODE_STA; sc->config.filter |= htole32(IWN_FILTER_MULTICAST); break; case IEEE80211_M_IBSS: case IEEE80211_M_AHDEMO: sc->config.mode = IWN_MODE_IBSS; break; case IEEE80211_M_HOSTAP: sc->config.mode = IWN_MODE_HOSTAP; break; case IEEE80211_M_MONITOR: sc->config.mode = IWN_MODE_MONITOR; sc->config.filter |= htole32(IWN_FILTER_MULTICAST | IWN_FILTER_CTL | IWN_FILTER_PROMISC); break; } sc->config.cck_mask = 0x0f; /* not yet negotiated */ sc->config.ofdm_mask = 0xff; /* not yet negotiated */ sc->config.ht_single_mask = 0xff; sc->config.ht_dual_mask = 0xff; sc->config.rxchain = htole16(0x2800 | 7 << IWN_RXCHAIN_ANTMSK_SHIFT); DPRINTF(("setting configuration\n")); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->config, sizeof (struct iwn_config), 0); if (error != 0) { printf("%s: configure command failed\n", sc->sc_dev.dv_xname); return error; } /* configuration has changed, set Tx power accordingly */ if ((error = iwn_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) { printf("%s: could not set Tx power\n", sc->sc_dev.dv_xname); return error; } /* add broadcast node */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); node.id = IWN_ID_BROADCAST; DPRINTF(("adding broadcast node\n")); error = iwn_cmd(sc, IWN_CMD_ADD_NODE, &node, sizeof node, 0); if (error != 0) { printf("%s: could not add broadcast node\n", sc->sc_dev.dv_xname); return error; } DPRINTF(("setting MRR for node %d\n", node.id)); if ((error = iwn_setup_node_mrr(sc, node.id, 0)) != 0) { printf("%s: could not setup MRR for node %d\n", sc->sc_dev.dv_xname, node.id); return error; } if ((error = iwn_set_critical_temp(sc)) != 0) { printf("%s: could not set critical temperature\n", sc->sc_dev.dv_xname); return error; } return 0; } /* * Do post-alive initialization of the NIC (after firmware upload). */ void iwn_post_alive(struct iwn_softc *sc) { uint32_t base; uint16_t offset; int qid; iwn_mem_lock(sc); /* clear SRAM */ base = iwn_mem_read(sc, IWN_SRAM_BASE); for (offset = 0x380; offset < 0x520; offset += 4) { IWN_WRITE(sc, IWN_MEM_WADDR, base + offset); IWN_WRITE(sc, IWN_MEM_WDATA, 0); } /* shared area is aligned on a 1K boundary */ iwn_mem_write(sc, IWN_SRAM_BASE, sc->shared_dma.paddr >> 10); iwn_mem_write(sc, IWN_SELECT_QCHAIN, 0); for (qid = 0; qid < IWN_NTXQUEUES; qid++) { iwn_mem_write(sc, IWN_QUEUE_RIDX(qid), 0); IWN_WRITE(sc, IWN_TX_WIDX, qid << 8 | 0); /* set sched. window size */ IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid)); IWN_WRITE(sc, IWN_MEM_WDATA, 64); /* set sched. frame limit */ IWN_WRITE(sc, IWN_MEM_WADDR, base + IWN_QUEUE_OFFSET(qid) + 4); IWN_WRITE(sc, IWN_MEM_WDATA, 64 << 16); } /* enable interrupts for all 16 queues */ iwn_mem_write(sc, IWN_QUEUE_INTR_MASK, 0xffff); /* identify active Tx rings (0-7) */ iwn_mem_write(sc, IWN_TX_ACTIVE, 0xff); /* mark Tx rings (4 EDCA + cmd + 2 HCCA) as active */ for (qid = 0; qid < 7; qid++) { iwn_mem_write(sc, IWN_TXQ_STATUS(qid), IWN_TXQ_STATUS_ACTIVE | qid << 1); } iwn_mem_unlock(sc); } void iwn_stop_master(struct iwn_softc *sc) { uint32_t tmp; int ntries; tmp = IWN_READ(sc, IWN_RESET); IWN_WRITE(sc, IWN_RESET, tmp | IWN_STOP_MASTER); tmp = IWN_READ(sc, IWN_GPIO_CTL); if ((tmp & IWN_GPIO_PWR_STATUS) == IWN_GPIO_PWR_SLEEP) return; /* already asleep */ for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_RESET) & IWN_MASTER_DISABLED) break; DELAY(10); } if (ntries == 100) { printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); } } int iwn_reset(struct iwn_softc *sc) { uint32_t tmp; int ntries; /* clear any pending interrupts */ IWN_WRITE(sc, IWN_INTR, 0xffffffff); tmp = IWN_READ(sc, IWN_CHICKEN); IWN_WRITE(sc, IWN_CHICKEN, tmp | IWN_CHICKEN_DISLOS); tmp = IWN_READ(sc, IWN_GPIO_CTL); IWN_WRITE(sc, IWN_GPIO_CTL, tmp | IWN_GPIO_INIT); /* wait for clock stabilization */ for (ntries = 0; ntries < 1000; ntries++) { if (IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_CLOCK) break; DELAY(10); } if (ntries == 1000) { printf("%s: timeout waiting for clock stabilization\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } return 0; } void iwn_hw_config(struct iwn_softc *sc) { uint32_t tmp, hw; /* enable interrupts mitigation */ IWN_WRITE(sc, IWN_INTR_MIT, 512 / 32); /* voodoo from the reference driver */ tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG); tmp = PCI_REVISION(tmp); if ((tmp & 0x80) && (tmp & 0x7f) < 8) { /* enable "no snoop" field */ tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xe8); tmp &= ~IWN_DIS_NOSNOOP; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xe8, tmp); } /* disable L1 entry to work around a hardware bug */ tmp = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0xf0); tmp &= ~IWN_ENA_L1; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0xf0, tmp); hw = IWN_READ(sc, IWN_HWCONFIG); IWN_WRITE(sc, IWN_HWCONFIG, hw | 0x310); iwn_mem_lock(sc); tmp = iwn_mem_read(sc, IWN_MEM_POWER); iwn_mem_write(sc, IWN_MEM_POWER, tmp | IWN_POWER_RESET); DELAY(5); tmp = iwn_mem_read(sc, IWN_MEM_POWER); iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~IWN_POWER_RESET); iwn_mem_unlock(sc); } int iwn_init(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int error, qid; if ((error = iwn_reset(sc)) != 0) { printf("%s: could not reset adapter\n", sc->sc_dev.dv_xname); goto fail1; } iwn_mem_lock(sc); iwn_mem_read(sc, IWN_CLOCK_CTL); iwn_mem_write(sc, IWN_CLOCK_CTL, 0xa00); iwn_mem_read(sc, IWN_CLOCK_CTL); iwn_mem_unlock(sc); DELAY(20); iwn_mem_lock(sc); tmp = iwn_mem_read(sc, IWN_MEM_PCIDEV); iwn_mem_write(sc, IWN_MEM_PCIDEV, tmp | 0x800); iwn_mem_unlock(sc); iwn_mem_lock(sc); tmp = iwn_mem_read(sc, IWN_MEM_POWER); iwn_mem_write(sc, IWN_MEM_POWER, tmp & ~0x03000000); iwn_mem_unlock(sc); iwn_hw_config(sc); /* init Rx ring */ iwn_mem_lock(sc); IWN_WRITE(sc, IWN_RX_CONFIG, 0); IWN_WRITE(sc, IWN_RX_WIDX, 0); /* Rx ring is aligned on a 256-byte boundary */ IWN_WRITE(sc, IWN_RX_BASE, sc->rxq.desc_dma.paddr >> 8); /* shared area is aligned on a 16-byte boundary */ IWN_WRITE(sc, IWN_RW_WIDX_PTR, (sc->shared_dma.paddr + offsetof(struct iwn_shared, closed_count)) >> 4); IWN_WRITE(sc, IWN_RX_CONFIG, 0x80601000); iwn_mem_unlock(sc); IWN_WRITE(sc, IWN_RX_WIDX, (IWN_RX_RING_COUNT - 1) & ~7); iwn_mem_lock(sc); iwn_mem_write(sc, IWN_TX_ACTIVE, 0); /* set physical address of "keep warm" page */ IWN_WRITE(sc, IWN_KW_BASE, sc->kw_dma.paddr >> 4); /* init Tx rings */ for (qid = 0; qid < IWN_NTXQUEUES; qid++) { struct iwn_tx_ring *txq = &sc->txq[qid]; IWN_WRITE(sc, IWN_TX_BASE(qid), txq->desc_dma.paddr >> 8); IWN_WRITE(sc, IWN_TX_CONFIG(qid), 0x80000008); } iwn_mem_unlock(sc); /* clear "radio off" and "disable command" bits (reversed logic) */ IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF); IWN_WRITE(sc, IWN_UCODE_CLR, IWN_DISABLE_CMD); /* clear any pending interrupts */ IWN_WRITE(sc, IWN_INTR, 0xffffffff); /* enable interrupts */ IWN_WRITE(sc, IWN_MASK, IWN_INTR_MASK); /* not sure why/if this is necessary... */ IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF); IWN_WRITE(sc, IWN_UCODE_CLR, IWN_RADIO_OFF); /* check that the radio is not disabled by RF switch */ if (!(IWN_READ(sc, IWN_GPIO_CTL) & IWN_GPIO_RF_ENABLED)) { printf("%s: radio is disabled by hardware switch\n", sc->sc_dev.dv_xname); error = EPERM; /* XXX ;-) */ goto fail1; } if ((error = iwn_load_firmware(sc)) != 0) { printf("%s: could not load firmware\n", sc->sc_dev.dv_xname); goto fail1; } /* firmware has notified us that it is alive.. */ iwn_post_alive(sc); /* ..do post alive initialization */ sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; sc->temp = iwn_get_temperature(sc); DPRINTF(("temperature=%d\n", sc->temp)); sc->sensor.value = IWN_CTOMUK(sc->temp); sc->sensor.flags &= ~SENSOR_FINVALID; if ((error = iwn_config(sc)) != 0) { printf("%s: could not configure device\n", sc->sc_dev.dv_xname); goto fail1; } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode != IEEE80211_M_MONITOR) ieee80211_begin_scan(ifp); else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); return 0; fail1: iwn_stop(ifp, 1); return error; } void iwn_stop(struct ifnet *ifp, int disable) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint32_t tmp; int i; ifp->if_timer = sc->sc_tx_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* in case we were scanning, release the scan "lock" */ ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); IWN_WRITE(sc, IWN_RESET, IWN_NEVO_RESET); /* disable interrupts */ IWN_WRITE(sc, IWN_MASK, 0); IWN_WRITE(sc, IWN_INTR, 0xffffffff); IWN_WRITE(sc, IWN_INTR_STATUS, 0xffffffff); /* make sure we no longer hold the memory lock */ iwn_mem_unlock(sc); /* reset all Tx rings */ for (i = 0; i < IWN_NTXQUEUES; i++) iwn_reset_tx_ring(sc, &sc->txq[i]); /* reset Rx ring */ iwn_reset_rx_ring(sc, &sc->rxq); /* temperature is no longer valid */ sc->sensor.value = 0; sc->sensor.flags |= SENSOR_FINVALID; iwn_mem_lock(sc); iwn_mem_write(sc, IWN_MEM_CLOCK2, 0x200); iwn_mem_unlock(sc); DELAY(5); iwn_stop_master(sc); tmp = IWN_READ(sc, IWN_RESET); IWN_WRITE(sc, IWN_RESET, tmp | IWN_SW_RESET); } struct cfdriver iwn_cd = { NULL, "iwn", DV_IFNET };