/* $OpenBSD: if_iwn.c,v 1.57 2009/05/29 08:25:45 damien Exp $ */ /*- * Copyright (c) 2007-2009 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * Driver for Intel Wireless WiFi Link 4965 and Intel WiFi Link 5000 Series * 802.11 network adapters. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static const struct pci_matchid iwn_devices[] = { { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_4965_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_4965_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5100_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5100_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5150_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5150_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5300_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5300_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5350_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_5350_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_3 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_4 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_5 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6000_6 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6050_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6050_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6050_3 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_6050_4 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_1000_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WIFI_LINK_1000_2 } }; int iwn_match(struct device *, void *, void *); void iwn_attach(struct device *, struct device *, void *); const struct iwn_hal *iwn_hal_attach(struct iwn_softc *); #ifndef SMALL_KERNEL void iwn_sensor_attach(struct iwn_softc *); #endif #if NBPFILTER > 0 void iwn_radiotap_attach(struct iwn_softc *); #endif void iwn_power(int, void *); int iwn_nic_lock(struct iwn_softc *); int iwn_eeprom_lock(struct iwn_softc *); int iwn_init_otprom(struct iwn_softc *); int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int); int iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *, void **, bus_size_t, bus_size_t); void iwn_dma_contig_free(struct iwn_dma_info *); int iwn_alloc_sched(struct iwn_softc *); void iwn_free_sched(struct iwn_softc *); int iwn_alloc_kw(struct iwn_softc *); void iwn_free_kw(struct iwn_softc *); int iwn_alloc_fwmem(struct iwn_softc *); void iwn_free_fwmem(struct iwn_softc *); int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *); int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *, int); void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *); int iwn_read_eeprom(struct iwn_softc *); void iwn4965_read_eeprom(struct iwn_softc *); void iwn4965_print_power_group(struct iwn_softc *, int); void iwn5000_read_eeprom(struct iwn_softc *); void iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t); struct ieee80211_node *iwn_node_alloc(struct ieee80211com *); void iwn_newassoc(struct ieee80211com *, struct ieee80211_node *, int); int iwn_media_change(struct ifnet *); int iwn_newstate(struct ieee80211com *, enum ieee80211_state, int); void iwn_iter_func(void *, struct ieee80211_node *); void iwn_calib_timeout(void *); int iwn_ccmp_decap(struct iwn_softc *, struct mbuf *, struct ieee80211_key *); void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); void iwn5000_rx_calib_results(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *, struct iwn_rx_data *); void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int, uint8_t); void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *); void iwn_notif_intr(struct iwn_softc *); void iwn_wakeup_intr(struct iwn_softc *); void iwn_fatal_intr(struct iwn_softc *); int iwn_intr(void *); void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t, uint16_t); void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t, uint16_t); void iwn5000_reset_sched(struct iwn_softc *, int, int); int iwn_tx(struct iwn_softc *, struct mbuf *, struct ieee80211_node *); void iwn_start(struct ifnet *); void iwn_watchdog(struct ifnet *); int iwn_ioctl(struct ifnet *, u_long, caddr_t); int iwn_cmd(struct iwn_softc *, int, const void *, int, int); int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *, int); int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *, int); int iwn_set_link_quality(struct iwn_softc *, struct ieee80211_node *); int iwn_add_broadcast_node(struct iwn_softc *, int); void iwn_updateedca(struct ieee80211com *); void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t); int iwn_set_critical_temp(struct iwn_softc *); int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *); void iwn4965_power_calibration(struct iwn_softc *, int); int iwn4965_set_txpower(struct iwn_softc *, int); int iwn5000_set_txpower(struct iwn_softc *, int); int iwn4965_get_rssi(const struct iwn_rx_stat *); int iwn5000_get_rssi(const struct iwn_rx_stat *); int iwn_get_noise(const struct iwn_rx_general_stats *); int iwn4965_get_temperature(struct iwn_softc *); int iwn5000_get_temperature(struct iwn_softc *); int iwn_init_sensitivity(struct iwn_softc *); void iwn_collect_noise(struct iwn_softc *, const struct iwn_rx_general_stats *); int iwn4965_init_gains(struct iwn_softc *); int iwn5000_init_gains(struct iwn_softc *); int iwn4965_set_gains(struct iwn_softc *); int iwn5000_set_gains(struct iwn_softc *); void iwn_tune_sensitivity(struct iwn_softc *, const struct iwn_rx_stats *); int iwn_send_sensitivity(struct iwn_softc *); int iwn_set_pslevel(struct iwn_softc *, int, int, int); int iwn_config(struct iwn_softc *); int iwn_scan(struct iwn_softc *, uint16_t); int iwn_auth(struct iwn_softc *); int iwn_run(struct iwn_softc *); int iwn_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void iwn_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); #ifndef IEEE80211_NO_HT int iwn_ampdu_rx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); void iwn_ampdu_rx_stop(struct ieee80211com *, struct ieee80211_node *, uint8_t); int iwn_ampdu_tx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); void iwn_ampdu_tx_stop(struct ieee80211com *, struct ieee80211_node *, uint8_t); void iwn4965_ampdu_tx_start(struct iwn_softc *, struct ieee80211_node *, uint8_t, uint16_t); void iwn4965_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t); void iwn5000_ampdu_tx_start(struct iwn_softc *, struct ieee80211_node *, uint8_t, uint16_t); void iwn5000_ampdu_tx_stop(struct iwn_softc *, uint8_t, uint16_t); #endif int iwn5000_query_calibration(struct iwn_softc *); int iwn5000_send_calibration(struct iwn_softc *); int iwn4965_post_alive(struct iwn_softc *); int iwn5000_post_alive(struct iwn_softc *); int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *, int); int iwn4965_load_firmware(struct iwn_softc *); int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t, const uint8_t *, int); int iwn5000_load_firmware(struct iwn_softc *); int iwn_read_firmware(struct iwn_softc *); int iwn_clock_wait(struct iwn_softc *); int iwn4965_apm_init(struct iwn_softc *); int iwn5000_apm_init(struct iwn_softc *); void iwn_apm_stop_master(struct iwn_softc *); void iwn_apm_stop(struct iwn_softc *); int iwn4965_nic_config(struct iwn_softc *); int iwn5000_nic_config(struct iwn_softc *); int iwn_hw_prepare(struct iwn_softc *); int iwn_hw_init(struct iwn_softc *); void iwn_hw_stop(struct iwn_softc *); int iwn_init(struct ifnet *); void iwn_stop(struct ifnet *, int); #ifdef IWN_DEBUG #define DPRINTF(x) do { if (iwn_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwn_debug >= (n)) printf x; } while (0) int iwn_debug = 0; #else #define DPRINTF(x) #define DPRINTFN(n, x) #endif static const struct iwn_hal iwn4965_hal = { iwn4965_load_firmware, iwn4965_read_eeprom, iwn4965_post_alive, iwn4965_apm_init, iwn4965_nic_config, iwn4965_update_sched, iwn4965_get_temperature, iwn4965_get_rssi, iwn4965_set_txpower, iwn4965_init_gains, iwn4965_set_gains, iwn4965_add_node, iwn4965_tx_done, #ifndef IEEE80211_NO_HT iwn4965_ampdu_tx_start, iwn4965_ampdu_tx_stop, #endif &iwn4965_sensitivity_limits, IWN4965_NTXQUEUES, IWN4965_NDMACHNLS, IWN4965_ID_BROADCAST, IWN4965_RXONSZ, IWN4965_SCHEDSZ, IWN4965_FW_TEXT_MAXSZ, IWN4965_FW_DATA_MAXSZ, IWN4965_FWSZ, IWN4965_SCHED_TXFACT }; static const struct iwn_hal iwn5000_hal = { iwn5000_load_firmware, iwn5000_read_eeprom, iwn5000_post_alive, iwn5000_apm_init, iwn5000_nic_config, iwn5000_update_sched, iwn5000_get_temperature, iwn5000_get_rssi, iwn5000_set_txpower, iwn5000_init_gains, iwn5000_set_gains, iwn5000_add_node, iwn5000_tx_done, #ifndef IEEE80211_NO_HT iwn5000_ampdu_tx_start, iwn5000_ampdu_tx_stop, #endif &iwn5000_sensitivity_limits, IWN5000_NTXQUEUES, IWN5000_NDMACHNLS, IWN5000_ID_BROADCAST, IWN5000_RXONSZ, IWN5000_SCHEDSZ, IWN5000_FW_TEXT_MAXSZ, IWN5000_FW_DATA_MAXSZ, IWN5000_FWSZ, IWN5000_SCHED_TXFACT }; struct cfdriver iwn_cd = { NULL, "iwn", DV_IFNET }; struct cfattach iwn_ca = { sizeof (struct iwn_softc), iwn_match, iwn_attach }; int iwn_match(struct device *parent, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices, nitems(iwn_devices)); } void iwn_attach(struct device *parent, struct device *self, void *aux) { struct iwn_softc *sc = (struct iwn_softc *)self; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct pci_attach_args *pa = aux; const struct iwn_hal *hal; const char *intrstr; pci_intr_handle_t ih; pcireg_t memtype, reg; int i, error; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; /* * Get the offset of the PCI Express Capability Structure in PCI * Configuration Space. */ error = pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); if (error == 0) { printf(": PCIe capability structure not found!\n"); return; } /* Clear device-specific "PCI retry timeout" register (41h). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); reg &= ~0xff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); /* Hardware bug workaround. */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { DPRINTF(("PCIe INTx Disable set\n")); reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); } memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0); error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz, 0); if (error != 0) { printf(": can't map mem space\n"); return; } /* Install interrupt handler. */ if (pci_intr_map(pa, &ih) != 0) { printf(": can't map interrupt\n"); return; } intrstr = pci_intr_string(sc->sc_pct, ih); sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": can't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s", intrstr); /* Attach Hardware Abstraction Layer. */ if ((hal = iwn_hal_attach(sc)) == NULL) return; if ((error = iwn_hw_prepare(sc)) != 0) { printf(": hardware not ready\n"); return; } /* Power ON adapter. */ if ((error = hal->apm_init(sc)) != 0) { printf(": could not power ON adapter\n"); return; } /* Read MAC address, channels, etc from EEPROM. */ if ((error = iwn_read_eeprom(sc)) != 0) { printf(": could not read EEPROM\n"); return; } /* Allocate DMA memory for firmware transfers. */ if ((error = iwn_alloc_fwmem(sc)) != 0) { printf(": could not allocate memory for firmware\n"); return; } /* Allocate "Keep Warm" page. */ if ((error = iwn_alloc_kw(sc)) != 0) { printf(": could not allocate keep warm page\n"); goto fail1; } /* Allocate TX scheduler "rings". */ if ((error = iwn_alloc_sched(sc)) != 0) { printf(": could not allocate TX scheduler rings\n"); goto fail2; } /* Allocate TX rings (16 on 4965AGN, 20 on 5000.) */ for (i = 0; i < hal->ntxqs; i++) { if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) { printf(": could not allocate TX ring %d\n", i); goto fail3; } } /* Allocate RX ring. */ if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) { printf(": could not allocate RX ring\n"); goto fail3; } /* Power OFF adapter. */ iwn_apm_stop(sc); /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains, sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr)); /* Initialization firmware has not been loaded yet. */ sc->sc_flags |= IWN_FLAG_FIRST_BOOT; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_WEP | /* WEP */ IEEE80211_C_RSN | /* WPA/RSN */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_SHPREAMBLE | /* short preamble supported */ IEEE80211_C_PMGT; /* power saving supported */ /* Set supported rates. */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) { ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; } /* IBSS channel undefined for now. */ ic->ic_ibss_chan = &ic->ic_channels[0]; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwn_init; ifp->if_ioctl = iwn_ioctl; ifp->if_start = iwn_start; ifp->if_watchdog = iwn_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ic->ic_node_alloc = iwn_node_alloc; ic->ic_newassoc = iwn_newassoc; ic->ic_updateedca = iwn_updateedca; ic->ic_set_key = iwn_set_key; ic->ic_delete_key = iwn_delete_key; #ifndef IEEE80211_NO_HT ic->ic_ampdu_rx_start = iwn_ampdu_rx_start; ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop; ic->ic_ampdu_tx_start = iwn_ampdu_tx_start; ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop; #endif /* Override 802.11 state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwn_newstate; ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status); sc->amrr.amrr_min_success_threshold = 1; sc->amrr.amrr_max_success_threshold = 15; #ifndef SMALL_KERNEL iwn_sensor_attach(sc); #endif #if NBPFILTER > 0 iwn_radiotap_attach(sc); #endif timeout_set(&sc->calib_to, iwn_calib_timeout, sc); sc->powerhook = powerhook_establish(iwn_power, sc); return; /* Free allocated memory if something failed during attachment. */ fail3: while (--i >= 0) iwn_free_tx_ring(sc, &sc->txq[i]); iwn_free_sched(sc); fail2: iwn_free_kw(sc); fail1: iwn_free_fwmem(sc); } const struct iwn_hal * iwn_hal_attach(struct iwn_softc *sc) { sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf; switch (sc->hw_type) { case IWN_HW_REV_TYPE_4965: sc->sc_hal = &iwn4965_hal; sc->fwname = "iwn-4965"; sc->critical_temp = IWN_CTOK(110); sc->txantmsk = IWN_ANT_A | IWN_ANT_B; sc->rxantmsk = IWN_ANT_ABC; sc->ntxchains = 2; sc->nrxchains = 3; break; case IWN_HW_REV_TYPE_5100: sc->sc_hal = &iwn5000_hal; sc->fwname = "iwn-5000"; sc->critical_temp = 110; sc->txantmsk = IWN_ANT_B; sc->rxantmsk = IWN_ANT_A | IWN_ANT_B; sc->ntxchains = 1; sc->nrxchains = 2; break; case IWN_HW_REV_TYPE_5150: sc->sc_hal = &iwn5000_hal; sc->fwname = "iwn-5150"; /* NB: critical temperature will be read from EEPROM. */ sc->txantmsk = IWN_ANT_A; sc->rxantmsk = IWN_ANT_A | IWN_ANT_B; sc->ntxchains = 1; sc->nrxchains = 2; break; case IWN_HW_REV_TYPE_5300: case IWN_HW_REV_TYPE_5350: sc->sc_hal = &iwn5000_hal; sc->fwname = "iwn-5000"; sc->critical_temp = 110; sc->txantmsk = sc->rxantmsk = IWN_ANT_ABC; sc->ntxchains = sc->nrxchains = 3; break; case IWN_HW_REV_TYPE_1000: sc->sc_hal = &iwn5000_hal; sc->fwname = "iwn-1000"; sc->critical_temp = 110; sc->txantmsk = IWN_ANT_A; sc->rxantmsk = IWN_ANT_A | IWN_ANT_B; sc->ntxchains = 1; sc->nrxchains = 2; break; case IWN_HW_REV_TYPE_6000: sc->sc_hal = &iwn5000_hal; sc->fwname = "iwn-6000"; sc->critical_temp = 110; sc->txantmsk = IWN_ANT_ABC; sc->rxantmsk = IWN_ANT_ABC; sc->ntxchains = 3; sc->nrxchains = 3; break; case IWN_HW_REV_TYPE_6050: sc->sc_hal = &iwn5000_hal; sc->fwname = "iwn-6050"; sc->critical_temp = 110; sc->txantmsk = IWN_ANT_ABC; sc->rxantmsk = IWN_ANT_ABC; sc->ntxchains = 3; sc->nrxchains = 3; break; default: printf(": adapter type %d not supported\n", sc->hw_type); return NULL; } return sc->sc_hal; } #ifndef SMALL_KERNEL /* * Attach the adapter's on-board thermal sensor to the sensors framework. */ void iwn_sensor_attach(struct iwn_softc *sc) { strlcpy(sc->sensordev.xname, sc->sc_dev.dv_xname, sizeof sc->sensordev.xname); sc->sensor.type = SENSOR_TEMP; /* Temperature is not valid unless interface is up. */ sc->sensor.flags = SENSOR_FINVALID; sensor_attach(&sc->sensordev, &sc->sensor); sensordev_install(&sc->sensordev); } #endif #if NBPFILTER > 0 /* * Attach the interface to 802.11 radiotap. */ void iwn_radiotap_attach(struct iwn_softc *sc) { bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT); } #endif void iwn_power(int why, void *arg) { struct iwn_softc *sc = arg; struct ifnet *ifp; pcireg_t reg; int s; if (why != PWR_RESUME) return; /* Clear device-specific "PCI retry timeout" register (41h). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); reg &= ~0xff00; pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg); s = splnet(); ifp = &sc->sc_ic.ic_if; if (ifp->if_flags & IFF_UP) { ifp->if_init(ifp); if (ifp->if_flags & IFF_RUNNING) ifp->if_start(ifp); } splx(s); } int iwn_nic_lock(struct iwn_softc *sc) { int ntries; /* Request exclusive access to NIC. */ IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); /* Spin until we actually get the lock. */ for (ntries = 0; ntries < 1000; ntries++) { if ((IWN_READ(sc, IWN_GP_CNTRL) & (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) == IWN_GP_CNTRL_MAC_ACCESS_ENA) return 0; DELAY(10); } return ETIMEDOUT; } static __inline void iwn_nic_unlock(struct iwn_softc *sc) { IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ); } static __inline uint32_t iwn_prph_read(struct iwn_softc *sc, uint32_t addr) { IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr); return IWN_READ(sc, IWN_PRPH_RDATA); } static __inline void iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) { IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr); IWN_WRITE(sc, IWN_PRPH_WDATA, data); } static __inline void iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) { iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask); } static __inline void iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask) { iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask); } static __inline void iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr, const uint32_t *data, int count) { for (; count > 0; count--, data++, addr += 4) iwn_prph_write(sc, addr, *data); } static __inline uint32_t iwn_mem_read(struct iwn_softc *sc, uint32_t addr) { IWN_WRITE(sc, IWN_MEM_RADDR, addr); return IWN_READ(sc, IWN_MEM_RDATA); } static __inline void iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data) { IWN_WRITE(sc, IWN_MEM_WADDR, addr); IWN_WRITE(sc, IWN_MEM_WDATA, data); } static __inline void iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data) { uint32_t tmp; tmp = iwn_mem_read(sc, addr & ~3); if (addr & 3) tmp = (tmp & 0x0000ffff) | data << 16; else tmp = (tmp & 0xffff0000) | data; iwn_mem_write(sc, addr & ~3, tmp); } static __inline void iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data, int count) { for (; count > 0; count--, addr += 4) *data++ = iwn_mem_read(sc, addr); } static __inline void iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val, int count) { for (; count > 0; count--, addr += 4) iwn_mem_write(sc, addr, val); } int iwn_eeprom_lock(struct iwn_softc *sc) { int i, ntries; for (i = 0; i < 100; i++) { /* Request exclusive access to EEPROM. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); /* Spin until we actually get the lock. */ for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_EEPROM_LOCKED) return 0; DELAY(10); } } return ETIMEDOUT; } static __inline void iwn_eeprom_unlock(struct iwn_softc *sc) { IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED); } /* * Initialize access by host to One Time Programmable ROM. * NB: This kind of ROM can be found on 1000 or 6000 Series only. */ int iwn_init_otprom(struct iwn_softc *sc) { int error; if ((error = iwn_clock_wait(sc)) != 0) return error; if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); DELAY(5); iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ); iwn_nic_unlock(sc); IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER); /* Clear ECC status. */ IWN_SETBITS(sc, IWN_OTP_GP, IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS); return 0; } int iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count) { uint8_t *out = data; uint32_t val, tmp; int ntries; for (; count > 0; count -= 2, addr++) { IWN_WRITE(sc, IWN_EEPROM, addr << 2); for (ntries = 0; ntries < 10; ntries++) { val = IWN_READ(sc, IWN_EEPROM); if (val & IWN_EEPROM_READ_VALID) break; DELAY(5); } if (ntries == 10) { printf("%s: timeout reading ROM at 0x%x\n", sc->sc_dev.dv_xname, addr); return ETIMEDOUT; } if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) { /* OTPROM, check for ECC errors. */ tmp = IWN_READ(sc, IWN_OTP_GP); if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) { printf("%s: OTPROM ECC error at 0x%x\n", sc->sc_dev.dv_xname, addr); return EIO; } if (tmp & IWN_OTP_GP_ECC_CORR_STTS) { /* Correctable ECC error, clear bit. */ IWN_SETBITS(sc, IWN_OTP_GP, IWN_OTP_GP_ECC_CORR_STTS); } } *out++ = val >> 16; if (count > 1) *out++ = val >> 24; } return 0; } int iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap, bus_size_t size, bus_size_t alignment) { int nsegs, error; dma->tag = tag; dma->size = size; error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->map); if (error != 0) goto fail; error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO); if (error != 0) goto fail; error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, BUS_DMA_NOWAIT); if (error != 0) goto fail; error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size, BUS_DMA_NOWAIT); if (error != 0) goto fail; bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); dma->paddr = dma->map->dm_segs[0].ds_addr; if (kvap != NULL) *kvap = dma->vaddr; return 0; fail: iwn_dma_contig_free(dma); return error; } void iwn_dma_contig_free(struct iwn_dma_info *dma) { if (dma->map != NULL) { if (dma->vaddr != NULL) { bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); bus_dmamem_free(dma->tag, &dma->seg, 1); dma->vaddr = NULL; } bus_dmamap_destroy(dma->tag, dma->map); dma->map = NULL; } } int iwn_alloc_sched(struct iwn_softc *sc) { /* TX scheduler rings must be aligned on a 1KB boundary. */ return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, (void **)&sc->sched, sc->sc_hal->schedsz, 1024); } void iwn_free_sched(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->sched_dma); } int iwn_alloc_kw(struct iwn_softc *sc) { /* "Keep Warm" page must be aligned on a 4KB boundary. */ return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096, 4096); } void iwn_free_kw(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->kw_dma); } int iwn_alloc_fwmem(struct iwn_softc *sc) { /* Must be aligned on a 16-byte boundary. */ return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL, sc->sc_hal->fwsz, 16); } void iwn_free_fwmem(struct iwn_softc *sc) { iwn_dma_contig_free(&sc->fw_dma); } int iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { bus_size_t size; int i, error; ring->cur = 0; /* Allocate RX descriptors (256-byte aligned.) */ size = IWN_RX_RING_COUNT * sizeof (uint32_t); error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, (void **)&ring->desc, size, 256); if (error != 0) { printf("%s: could not allocate RX ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } /* Allocate RX status area (16-byte aligned.) */ error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, (void **)&ring->stat, sizeof (struct iwn_rx_status), 16); if (error != 0) { printf("%s: could not allocate RX status DMA memory\n", sc->sc_dev.dv_xname); goto fail; } /* * Allocate and map RX buffers. */ for (i = 0; i < IWN_RX_RING_COUNT; i++) { struct iwn_rx_data *data = &ring->data[i]; error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1, IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create RX buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate RX mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGETI(data->m, M_DONTWAIT, NULL, IWN_RBUF_SIZE); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate RX mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOBUFS; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); goto fail; } /* Set physical address of RX buffer (256-byte aligned.) */ ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8); } bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size, BUS_DMASYNC_PREWRITE); return 0; fail: iwn_free_rx_ring(sc, ring); return error; } void iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int ntries; if (iwn_nic_lock(sc) == 0) { IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); for (ntries = 0; ntries < 1000; ntries++) { if (IWN_READ(sc, IWN_FH_RX_STATUS) & IWN_FH_RX_STATUS_IDLE) break; DELAY(10); } iwn_nic_unlock(sc); } ring->cur = 0; sc->last_rx_valid = 0; } void iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring) { int i; iwn_dma_contig_free(&ring->desc_dma); iwn_dma_contig_free(&ring->stat_dma); for (i = 0; i < IWN_RX_RING_COUNT; i++) { struct iwn_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } int iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid) { bus_addr_t paddr; bus_size_t size; int i, error; ring->qid = qid; ring->queued = 0; ring->cur = 0; /* Allocate TX descriptors (256-byte aligned.) */ size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc); error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, (void **)&ring->desc, size, 256); if (error != 0) { printf("%s: could not allocate TX ring DMA memory\n", sc->sc_dev.dv_xname); goto fail; } /* * We only use rings 0 through 4 (4 EDCA + cmd) so there is no need * to allocate commands space for other rings. * XXX Do we really need to allocate descriptors for other rings? */ if (qid > 4) return 0; size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd); error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, (void **)&ring->cmd, size, 4); if (error != 0) { printf("%s: could not allocate TX cmd DMA memory\n", sc->sc_dev.dv_xname); goto fail; } paddr = ring->cmd_dma.paddr; for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; data->cmd_paddr = paddr; data->scratch_paddr = paddr + 12; paddr += sizeof (struct iwn_tx_cmd); error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create TX buf DMA map\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: iwn_free_tx_ring(sc, ring); return error; } void iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } } /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, ring->desc_dma.size, BUS_DMASYNC_PREWRITE); sc->qfullmsk &= ~(1 << ring->qid); ring->queued = 0; ring->cur = 0; } void iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring) { int i; iwn_dma_contig_free(&ring->desc_dma); iwn_dma_contig_free(&ring->cmd_dma); for (i = 0; i < IWN_TX_RING_COUNT; i++) { struct iwn_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } int iwn_read_eeprom(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; struct ieee80211com *ic = &sc->sc_ic; uint16_t val; int error; /* Check whether adapter has an EEPROM or an OTPROM. */ if (sc->hw_type >= IWN_HW_REV_TYPE_1000 && (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP)) sc->sc_flags |= IWN_FLAG_HAS_OTPROM; DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM")); if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) { printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname); return EIO; } if ((error = iwn_eeprom_lock(sc)) != 0) { printf("%s: could not lock ROM (error=%d)\n", sc->sc_dev.dv_xname, error); return error; } if ((sc->sc_flags & IWN_FLAG_HAS_OTPROM) && ((error = iwn_init_otprom(sc)) != 0)) { printf("%s: could not initialize OTPROM (error=%d)\n", sc->sc_dev.dv_xname, error); return error; } iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2); sc->rfcfg = letoh16(val); DPRINTF(("radio config=0x%04x\n", sc->rfcfg)); /* Read MAC address. */ iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6); /* Read adapter-specific information from EEPROM. */ hal->read_eeprom(sc); iwn_eeprom_unlock(sc); return 0; } void iwn4965_read_eeprom(struct iwn_softc *sc) { uint32_t addr; uint16_t val; int i; /* Read regulatory domain (4 ASCII characters.) */ iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4); /* Read the list of authorized channels (20MHz ones only.) */ for (i = 0; i < 5; i++) { addr = iwn4965_regulatory_bands[i]; iwn_read_eeprom_channels(sc, i, addr); } /* Read maximum allowed TX power for 2GHz and 5GHz bands. */ iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2); sc->maxpwr2GHz = val & 0xff; sc->maxpwr5GHz = val >> 8; /* Check that EEPROM values are within valid range. */ if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50) sc->maxpwr5GHz = 38; if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50) sc->maxpwr2GHz = 38; DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz)); /* Read samples for each TX power group. */ iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands, sizeof sc->bands); /* Read voltage at which samples were taken. */ iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2); sc->eeprom_voltage = (int16_t)letoh16(val); DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage)); #ifdef IWN_DEBUG /* Print samples. */ if (iwn_debug > 0) { for (i = 0; i < IWN_NBANDS; i++) iwn4965_print_power_group(sc, i); } #endif } #ifdef IWN_DEBUG void iwn4965_print_power_group(struct iwn_softc *sc, int i) { struct iwn4965_eeprom_band *band = &sc->bands[i]; struct iwn4965_eeprom_chan_samples *chans = band->chans; int j, c; printf("===band %d===\n", i); printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi); printf("chan1 num=%d\n", chans[0].num); for (c = 0; c < 2; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[0].samples[c][j].temp, chans[0].samples[c][j].gain, chans[0].samples[c][j].power, chans[0].samples[c][j].pa_det); } } printf("chan2 num=%d\n", chans[1].num); for (c = 0; c < 2; c++) { for (j = 0; j < IWN_NSAMPLES; j++) { printf("chain %d, sample %d: temp=%d gain=%d " "power=%d pa_det=%d\n", c, j, chans[1].samples[c][j].temp, chans[1].samples[c][j].gain, chans[1].samples[c][j].power, chans[1].samples[c][j].pa_det); } } } #endif void iwn5000_read_eeprom(struct iwn_softc *sc) { int32_t temp, volt, delta; uint32_t base, addr; uint16_t val; int i; /* Read regulatory domain (4 ASCII characters.) */ iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2); base = letoh16(val); iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN, sc->eeprom_domain, 4); /* Read the list of authorized channels (20MHz ones only.) */ for (i = 0; i < 5; i++) { addr = base + iwn5000_regulatory_bands[i]; iwn_read_eeprom_channels(sc, i, addr); } iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2); base = letoh16(val); if (sc->hw_type == IWN_HW_REV_TYPE_5150) { /* Compute critical temperature (in Kelvin.) */ iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2); temp = letoh16(val); iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2); volt = letoh16(val); delta = temp - (volt / -5); sc->critical_temp = (IWN_CTOK(110) - delta) * -5; DPRINTF(("temp=%d volt=%d delta=%dK\n", temp, volt, delta)); } else { /* Read crystal calibration. */ iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL, &sc->eeprom_crystal, sizeof (uint32_t)); DPRINTF(("crystal calibration 0x%08x\n", letoh32(sc->eeprom_crystal))); } } void iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr) { struct ieee80211com *ic = &sc->sc_ic; const struct iwn_chan_band *band = &iwn_bands[n]; struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND]; uint8_t chan; int i; iwn_read_prom_data(sc, addr, channels, band->nchan * sizeof (struct iwn_eeprom_chan)); for (i = 0; i < band->nchan; i++) { if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) continue; chan = band->chan[i]; if (n == 0) { /* 2GHz band */ ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } else { /* 5GHz band */ /* * Some adapters support channels 7, 8, 11 and 12 * both in the 2GHz and 4.9GHz bands. * Because of limitations in our net80211 layer, * we don't support them in the 4.9GHz band. */ if (chan <= 14) continue; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A; /* We have at least one valid 5GHz channel. */ sc->sc_flags |= IWN_FLAG_HAS_5GHZ; } /* Is active scan allowed on this channel? */ if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) { ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_PASSIVE; } /* Save maximum allowed TX power for this channel. */ sc->maxpwr[chan] = channels[i].maxpwr; DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n", chan, channels[i].flags, sc->maxpwr[chan])); } } struct ieee80211_node * iwn_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO); } void iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) { struct iwn_softc *sc = ic->ic_if.if_softc; struct iwn_node *wn = (void *)ni; uint8_t rate; int ridx, i; ieee80211_amrr_node_init(&sc->amrr, &wn->amn); for (i = 0; i < ni->ni_rates.rs_nrates; i++) { rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL; /* Map 802.11 rate to HW rate index. */ for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) if (iwn_rates[ridx].rate == rate) break; wn->ridx[i] = ridx; /* Initial TX rate <= 24Mbps. */ if (rate <= 48) ni->ni_txrate = i; } } int iwn_media_change(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int error; error = ieee80211_media_change(ifp); if (error != ENETRESET) return error; if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; /* Map 802.11 rate to HW rate index. */ for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) if (iwn_rates[ridx].rate == rate) break; sc->fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwn_stop(ifp, 0); error = iwn_init(ifp); } return error; } int iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = &ic->ic_if; struct iwn_softc *sc = ifp->if_softc; int error; timeout_del(&sc->calib_to); switch (nstate) { case IEEE80211_S_SCAN: /* Make the link LED blink while we're scanning. */ iwn_set_led(sc, IWN_LED_LINK, 10, 10); if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ)) != 0) { printf("%s: could not initiate scan\n", sc->sc_dev.dv_xname); return error; } ic->ic_state = nstate; return 0; case IEEE80211_S_ASSOC: if (ic->ic_state != IEEE80211_S_RUN) break; /* FALLTHROUGH */ case IEEE80211_S_AUTH: /* Reset state to handle reassociations correctly. */ sc->rxon.associd = 0; sc->rxon.filter &= ~htole32(IWN_FILTER_BSS); sc->calib.state = IWN_CALIB_STATE_INIT; if ((error = iwn_auth(sc)) != 0) { printf("%s: could not move to auth state\n", sc->sc_dev.dv_xname); return error; } break; case IEEE80211_S_RUN: if ((error = iwn_run(sc)) != 0) { printf("%s: could not move to run state\n", sc->sc_dev.dv_xname); return error; } break; case IEEE80211_S_INIT: sc->calib.state = IWN_CALIB_STATE_INIT; break; } return sc->sc_newstate(ic, nstate, arg); } void iwn_iter_func(void *arg, struct ieee80211_node *ni) { struct iwn_softc *sc = arg; struct iwn_node *wn = (struct iwn_node *)ni; ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn); } void iwn_calib_timeout(void *arg) { struct iwn_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; int s; if (ic->ic_fixed_rate == -1) { s = splnet(); if (ic->ic_opmode == IEEE80211_M_STA) iwn_iter_func(sc, ic->ic_bss); else ieee80211_iterate_nodes(ic, iwn_iter_func, sc); splx(s); } /* Force automatic TX power calibration every 60 secs. */ if (++sc->calib_cnt >= 120) { uint32_t flags = 0; DPRINTF(("sending request for statistics\n")); (void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); sc->calib_cnt = 0; } /* Automatic rate control triggered every 500ms. */ timeout_add(&sc->calib_to, hz / 2); } int iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_key *k) { struct ieee80211_frame *wh; uint64_t pn, *prsc; uint8_t *ivp; uint8_t tid; int hdrlen; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); ivp = (uint8_t *)wh + hdrlen; /* Check that ExtIV bit is be set. */ if (!(ivp[3] & IEEE80211_WEP_EXTIV)) { DPRINTF(("CCMP decap ExtIV not set\n")); return 1; } tid = ieee80211_has_qos(wh) ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0; prsc = &k->k_rsc[tid]; /* Extract the 48-bit PN from the CCMP header. */ pn = (uint64_t)ivp[0] | (uint64_t)ivp[1] << 8 | (uint64_t)ivp[4] << 16 | (uint64_t)ivp[5] << 24 | (uint64_t)ivp[6] << 32 | (uint64_t)ivp[7] << 40; if (pn <= *prsc) { /* * Not necessarily a replayed frame since we did not check * the sequence number of the 802.11 header yet. */ DPRINTF(("CCMP replayed\n")); return 1; } /* Update last seen packet number. */ *prsc = pn; /* Clear Protected bit and strip IV. */ wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED; ovbcopy(wh, mtod(m, caddr_t) + IEEE80211_CCMP_HDRLEN, hdrlen); m_adj(m, IEEE80211_CCMP_HDRLEN); /* Strip MIC. */ m_adj(m, -IEEE80211_CCMP_MICLEN); return 0; } /* * Process an RX_PHY firmware notification. This is usually immediately * followed by an MPDU_RX_DONE notification. */ void iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1); DPRINTFN(2, ("received PHY stats\n")); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*stat), BUS_DMASYNC_POSTREAD); /* Save RX statistics, they will be used on MPDU_RX_DONE. */ memcpy(&sc->last_rx_stat, stat, sizeof (*stat)); sc->last_rx_valid = 1; } /* * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification. * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one. */ void iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { const struct iwn_hal *hal = sc->sc_hal; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwn_rx_ring *ring = &sc->rxq; struct ieee80211_frame *wh; struct ieee80211_rxinfo rxi; struct ieee80211_node *ni; struct mbuf *m, *m1; struct iwn_rx_stat *stat; caddr_t head; uint32_t flags; int error, len, rssi; if (desc->type == IWN_MPDU_RX_DONE) { /* Check for prior RX_PHY notification. */ if (!sc->last_rx_valid) { DPRINTF(("missing RX_PHY\n")); ifp->if_ierrors++; return; } sc->last_rx_valid = 0; stat = &sc->last_rx_stat; } else stat = (struct iwn_rx_stat *)(desc + 1); bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE, BUS_DMASYNC_POSTREAD); if (stat->cfg_phy_len > IWN_STAT_MAXLEN) { printf("%s: invalid RX statistic header\n", sc->sc_dev.dv_xname); ifp->if_ierrors++; return; } if (desc->type == IWN_MPDU_RX_DONE) { struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1); head = (caddr_t)(mpdu + 1); len = letoh16(mpdu->len); } else { head = (caddr_t)(stat + 1) + stat->cfg_phy_len; len = letoh16(stat->len); } flags = letoh32(*(uint32_t *)(head + len)); /* Discard frames with a bad FCS early. */ if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) { DPRINTFN(2, ("RX flags error %x\n", flags)); ifp->if_ierrors++; return; } /* Discard frames that are too short. */ if (len < sizeof (*wh)) { DPRINTF(("frame too short: %d\n", len)); ic->ic_stats.is_rx_tooshort++; ifp->if_ierrors++; return; } MGETHDR(m1, M_DONTWAIT, MT_DATA); if (m1 == NULL) { ic->ic_stats.is_rx_nombuf++; ifp->if_ierrors++; return; } MCLGETI(m1, M_DONTWAIT, NULL, IWN_RBUF_SIZE); if (!(m1->m_flags & M_EXT)) { m_freem(m1); ic->ic_stats.is_rx_nombuf++; ifp->if_ierrors++; return; } bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *), IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m1); /* Try to reload the old mbuf. */ error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT); if (error != 0) { panic("%s: could not load old RX mbuf", sc->sc_dev.dv_xname); } /* Physical address may have changed. */ ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, ring->cur * sizeof (uint32_t), sizeof (uint32_t), BUS_DMASYNC_PREWRITE); ifp->if_ierrors++; return; } m = data->m; data->m = m1; /* Update RX descriptor. */ ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, ring->cur * sizeof (uint32_t), sizeof (uint32_t), BUS_DMASYNC_PREWRITE); /* Finalize mbuf. */ m->m_pkthdr.rcvif = ifp; m->m_data = head; m->m_pkthdr.len = m->m_len = len; /* Grab a reference to the source node. */ wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); rxi.rxi_flags = 0; if ((wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && !IEEE80211_IS_MULTICAST(wh->i_addr1) && (ni->ni_flags & IEEE80211_NODE_RXPROT) && ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) { if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) { ic->ic_stats.is_ccmp_dec_errs++; ifp->if_ierrors++; return; } /* Check whether decryption was successful or not. */ if ((desc->type == IWN_MPDU_RX_DONE && (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) != (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) || (desc->type != IWN_MPDU_RX_DONE && (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) { DPRINTF(("CCMP decryption failed 0x%x\n", flags)); ic->ic_stats.is_ccmp_dec_errs++; ifp->if_ierrors++; return; } if (iwn_ccmp_decap(sc, m, &ni->ni_pairwise_key) != 0) { ifp->if_ierrors++; return; } rxi.rxi_flags |= IEEE80211_RXI_HWDEC; } rssi = hal->get_rssi(stat); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_chan_freq = htole16(ic->ic_channels[stat->chan].ic_freq); tap->wr_chan_flags = htole16(ic->ic_channels[stat->chan].ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)sc->noise; tap->wr_tsft = stat->tstamp; switch (stat->rate) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_rxtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); } #endif /* Send the frame to the 802.11 layer. */ rxi.rxi_rssi = rssi; rxi.rxi_tstamp = 0; /* unused */ ieee80211_input(ifp, m, ni, &rxi); /* Node is no longer needed. */ ieee80211_release_node(ic, ni); } /* * Process a CALIBRATION_RESULT notification sent by the initialization * firmware on response to a CMD_CALIB_CONFIG command (5000 only.) */ void iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1); int len, idx = -1; /* Runtime firmware should not send such a notification. */ if (!(sc->sc_flags & IWN_FLAG_FIRST_BOOT)) return; len = (letoh32(desc->len) & 0x3fff) - 4; bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len, BUS_DMASYNC_POSTREAD); switch (calib->code) { case IWN5000_PHY_CALIB_DC: if (sc->hw_type == IWN_HW_REV_TYPE_5150) idx = 0; break; case IWN5000_PHY_CALIB_LO: idx = 1; break; case IWN5000_PHY_CALIB_TX_IQ: idx = 2; break; case IWN5000_PHY_CALIB_TX_IQ_PERD: if (sc->hw_type != IWN_HW_REV_TYPE_5150) idx = 3; break; case IWN5000_PHY_CALIB_BASE_BAND: idx = 4; break; } if (idx == -1) /* Ignore other results. */ return; /* Save calibration result. */ if (sc->calibcmd[idx].buf != NULL) free(sc->calibcmd[idx].buf, M_DEVBUF); sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT); if (sc->calibcmd[idx].buf == NULL) { DPRINTF(("not enough memory for calibration result %d\n", calib->code)); return; } DPRINTF(("saving calibration result code=%d len=%d\n", calib->code, len)); sc->calibcmd[idx].len = len; memcpy(sc->calibcmd[idx].buf, calib, len); } /* * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification. * The latter is sent by the firmware after each received beacon. */ void iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { const struct iwn_hal *hal = sc->sc_hal; struct ieee80211com *ic = &sc->sc_ic; struct iwn_calib_state *calib = &sc->calib; struct iwn_stats *stats = (struct iwn_stats *)(desc + 1); int temp; /* Ignore statistics received during a scan. */ if (ic->ic_state != IEEE80211_S_RUN) return; bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*stats), BUS_DMASYNC_POSTREAD); DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type)); sc->calib_cnt = 0; /* Reset TX power calibration timeout. */ /* Test if temperature has changed. */ if (stats->general.temp != sc->rawtemp) { /* Convert "raw" temperature to degC. */ sc->rawtemp = stats->general.temp; temp = hal->get_temperature(sc); DPRINTFN(2, ("temperature=%dC\n", temp)); /* Update temperature sensor. */ sc->sensor.value = IWN_CTOMUK(temp); sc->sensor.flags &= ~SENSOR_FINVALID; /* Update TX power if need be (4965AGN only.) */ if (sc->hw_type == IWN_HW_REV_TYPE_4965) iwn4965_power_calibration(sc, temp); } if (desc->type != IWN_BEACON_STATISTICS) return; /* Reply to a statistics request. */ sc->noise = iwn_get_noise(&stats->rx.general); /* Test that RSSI and noise are present in stats report. */ if (letoh32(stats->rx.general.flags) != 1) { DPRINTF(("received statistics without RSSI\n")); return; } if (calib->state == IWN_CALIB_STATE_ASSOC) iwn_collect_noise(sc, &stats->rx.general); else if (calib->state == IWN_CALIB_STATE_RUN) iwn_tune_sensitivity(sc, &stats->rx); } /* * Process a TX_DONE firmware notification. Unfortunately, the 4965AGN * and 5000 adapters have different incompatible TX status formats. */ void iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*stat), BUS_DMASYNC_POSTREAD); iwn_tx_done(sc, desc, stat->retrycnt, letoh32(stat->status) & 0xff); } void iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, struct iwn_rx_data *data) { struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1); /* Reset TX scheduler slot. */ iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*stat), BUS_DMASYNC_POSTREAD); iwn_tx_done(sc, desc, stat->retrycnt, letoh16(stat->status) & 0xff); } /* * Adapter-independent backend for TX_DONE firmware notifications. */ void iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int retrycnt, uint8_t status) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf]; struct iwn_tx_data *data = &ring->data[desc->idx]; struct iwn_node *wn = (struct iwn_node *)data->ni; /* Update rate control statistics. */ wn->amn.amn_txcnt++; if (retrycnt > 0) wn->amn.amn_retrycnt++; if (status != 1 && status != 2) ifp->if_oerrors++; else ifp->if_opackets++; /* Unmap and free mbuf. */ bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; ieee80211_release_node(ic, data->ni); data->ni = NULL; sc->sc_tx_timer = 0; if (--ring->queued < IWN_TX_RING_LOMARK) { sc->qfullmsk &= ~(1 << ring->qid); if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { ifp->if_flags &= ~IFF_OACTIVE; (*ifp->if_start)(ifp); } } } /* * Process a "command done" firmware notification. This is where we wakeup * processes waiting for a synchronous command completion. */ void iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc) { struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_data *data; if ((desc->qid & 0xf) != 4) return; /* Not a command ack. */ data = &ring->data[desc->idx]; /* If the command was mapped in an mbuf, free it. */ if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->desc[desc->idx]); } /* * Process an INT_FH_RX or INT_SW_RX interrupt. */ void iwn_notif_intr(struct iwn_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; uint16_t hw; bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); hw = letoh16(sc->rxq.stat->closed_count) & 0xfff; while (sc->rxq.cur != hw) { struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct iwn_rx_desc *desc; bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc), BUS_DMASYNC_POSTREAD); desc = mtod(data->m, struct iwn_rx_desc *); DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n", desc->qid & 0xf, desc->idx, desc->flags, desc->type)); if (!(desc->qid & 0x80)) /* Reply to a command. */ iwn_cmd_done(sc, desc); switch (desc->type) { case IWN_RX_PHY: iwn_rx_phy(sc, desc, data); break; case IWN_RX_DONE: /* 4965AGN only. */ case IWN_MPDU_RX_DONE: /* An 802.11 frame has been received. */ iwn_rx_done(sc, desc, data); break; case IWN_TX_DONE: /* An 802.11 frame has been transmitted. */ sc->sc_hal->tx_done(sc, desc, data); break; case IWN_RX_STATISTICS: case IWN_BEACON_STATISTICS: iwn_rx_statistics(sc, desc, data); break; case IWN_BEACON_MISSED: { struct iwn_beacon_missed *miss = (struct iwn_beacon_missed *)(desc + 1); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*miss), BUS_DMASYNC_POSTREAD); /* * If more than 5 consecutive beacons are missed, * reinitialize the sensitivity state machine. */ DPRINTF(("beacons missed %d/%d\n", letoh32(miss->consecutive), letoh32(miss->total))); if (ic->ic_state == IEEE80211_S_RUN && letoh32(miss->consecutive) > 5) (void)iwn_init_sensitivity(sc); break; } case IWN_UC_READY: { struct iwn_ucode_info *uc = (struct iwn_ucode_info *)(desc + 1); /* The microcontroller is ready. */ bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*uc), BUS_DMASYNC_POSTREAD); DPRINTF(("microcode alive notification version=%d.%d " "subtype=%x alive=%x\n", uc->major, uc->minor, uc->subtype, letoh32(uc->valid))); if (letoh32(uc->valid) != 1) { printf("%s: microcontroller initialization " "failed\n", sc->sc_dev.dv_xname); break; } if (uc->subtype == IWN_UCODE_INIT) { /* Save microcontroller's report. */ memcpy(&sc->ucode_info, uc, sizeof (*uc)); } /* Save the address of the error log in SRAM. */ sc->errptr = letoh32(uc->errptr); break; } case IWN_STATE_CHANGED: { uint32_t *status = (uint32_t *)(desc + 1); /* Enabled/disabled notification. */ bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*status), BUS_DMASYNC_POSTREAD); DPRINTF(("state changed to %x\n", letoh32(*status))); if (letoh32(*status) & 1) { /* The radio button has to be pushed. */ printf("%s: Radio transmitter is off\n", sc->sc_dev.dv_xname); /* Turn the interface down. */ ifp->if_flags &= ~IFF_UP; iwn_stop(ifp, 1); return; /* No further processing. */ } break; } case IWN_START_SCAN: { struct iwn_start_scan *scan = (struct iwn_start_scan *)(desc + 1); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*scan), BUS_DMASYNC_POSTREAD); DPRINTFN(2, ("scanning channel %d status %x\n", scan->chan, letoh32(scan->status))); /* Fix current channel. */ ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan]; break; } case IWN_STOP_SCAN: { struct iwn_stop_scan *scan = (struct iwn_stop_scan *)(desc + 1); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*scan), BUS_DMASYNC_POSTREAD); DPRINTF(("scan finished nchan=%d status=%d chan=%d\n", scan->nchan, scan->status, scan->chan)); if (scan->status == 1 && scan->chan <= 14 && (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) { /* * We just finished scanning 2GHz channels, * start scanning 5GHz ones. */ if (iwn_scan(sc, IEEE80211_CHAN_5GHZ) == 0) break; } ieee80211_end_scan(ifp); break; } case IWN5000_CALIBRATION_RESULT: iwn5000_rx_calib_results(sc, desc, data); break; case IWN5000_CALIBRATION_DONE: wakeup(sc); break; } sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT; } /* Tell the firmware what we have processed. */ hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1; IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7); } /* * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up * from power-down sleep mode. */ void iwn_wakeup_intr(struct iwn_softc *sc) { int qid; DPRINTF(("ucode wakeup from power-down sleep\n")); /* Wakeup RX and TX rings. */ IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7); for (qid = 0; qid < 6; qid++) { struct iwn_tx_ring *ring = &sc->txq[qid]; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur); } } /* * Dump the error log of the firmware when a firmware panic occurs. Although * we can't debug the firmware because it is neither open source nor free, it * can help us to identify certain classes of problems. */ void iwn_fatal_intr(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; struct iwn_fw_dump dump; int i; /* Check that the error log address is valid. */ if (sc->errptr < IWN_FW_DATA_BASE || sc->errptr + sizeof (dump) > IWN_FW_DATA_BASE + hal->fw_data_maxsz) { printf("%s: bad firmware error log address 0x%08x\n", sc->sc_dev.dv_xname, sc->errptr); return; } if (iwn_nic_lock(sc) != 0) { printf("%s: could not read firmware error log\n", sc->sc_dev.dv_xname); return; } /* Read firmware error log from SRAM. */ iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump, sizeof (dump) / sizeof (uint32_t)); iwn_nic_unlock(sc); if (dump.valid == 0) { printf("%s: firmware error log is empty\n", sc->sc_dev.dv_xname); return; } printf("firmware error log:\n"); printf(" error type = \"%s\" (0x%08X)\n", (dump.id < nitems(iwn_fw_errmsg)) ? iwn_fw_errmsg[dump.id] : "UNKNOWN", dump.id); printf(" program counter = 0x%08X\n", dump.pc); printf(" source line = 0x%08X\n", dump.src_line); printf(" error data = 0x%08X%08X\n", dump.error_data[0], dump.error_data[1]); printf(" branch link = 0x%08X%08X\n", dump.branch_link[0], dump.branch_link[1]); printf(" interrupt link = 0x%08X%08X\n", dump.interrupt_link[0], dump.interrupt_link[1]); printf(" time = %u\n", dump.time[0]); /* Dump driver status (TX and RX rings) while we're here. */ printf("driver status:\n"); for (i = 0; i < hal->ntxqs; i++) { struct iwn_tx_ring *ring = &sc->txq[i]; printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n", i, ring->qid, ring->cur, ring->queued); } printf(" rx ring: cur=%d\n", sc->rxq.cur); printf(" 802.11 state %d\n", sc->sc_ic.ic_state); } int iwn_intr(void *arg) { struct iwn_softc *sc = arg; struct ifnet *ifp = &sc->sc_ic.ic_if; uint32_t r1, r2; /* Disable interrupts. */ IWN_WRITE(sc, IWN_MASK, 0); r1 = IWN_READ(sc, IWN_INT); r2 = IWN_READ(sc, IWN_FH_INT); if (r1 == 0 && r2 == 0) { if (ifp->if_flags & IFF_UP) IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK); return 0; /* Interrupt not for us. */ } if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) return 0; /* Hardware gone! */ /* Acknowledge interrupts. */ IWN_WRITE(sc, IWN_INT, r1); IWN_WRITE(sc, IWN_FH_INT, r2); if (r1 & IWN_INT_RF_TOGGLED) { uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL); printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname, (tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled"); } if (r1 & IWN_INT_CT_REACHED) { printf("%s: critical temperature reached!\n", sc->sc_dev.dv_xname); /* XXX Reduce TX power? */ } if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) { printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname); /* Dump firmware error log and stop. */ iwn_fatal_intr(sc); ifp->if_flags &= ~IFF_UP; iwn_stop(ifp, 1); return 1; } if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) || (r2 & IWN_FH_INT_RX)) iwn_notif_intr(sc); if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) wakeup(sc); /* FH DMA transfer completed. */ if (r1 & IWN_INT_ALIVE) wakeup(sc); /* Firmware is alive. */ if (r1 & IWN_INT_WAKEUP) iwn_wakeup_intr(sc); /* Re-enable interrupts. */ if (ifp->if_flags & IFF_UP) IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK); return 1; } /* * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and * 5000 adapters use a slightly different format.) */ void iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, uint16_t len) { uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx]; *w = htole16(len + 8); bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t), BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr, sizeof (uint16_t), BUS_DMASYNC_PREWRITE); } } void iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id, uint16_t len) { uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; *w = htole16(id << 12 | (len + 8)); bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t), BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr, sizeof (uint16_t), BUS_DMASYNC_PREWRITE); } } void iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx) { uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx]; *w = (*w & htole16(0xf000)) | htole16(1); bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t), BUS_DMASYNC_PREWRITE); if (idx < IWN_SCHED_WINSZ) { *(w + IWN_TX_RING_COUNT) = *w; bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr, sizeof (uint16_t), BUS_DMASYNC_PREWRITE); } } int iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni) { const struct iwn_hal *hal = sc->sc_hal; struct ieee80211com *ic = &sc->sc_ic; struct iwn_node *wn = (void *)ni; struct iwn_tx_ring *ring; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct iwn_cmd_data *tx; const struct iwn_rate *rinfo; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct mbuf *m1; enum ieee80211_edca_ac ac; uint32_t flags; uint16_t qos; u_int hdrlen; bus_dma_segment_t *seg; uint8_t *ivp, tid, ridx, txant, type; int i, totlen, hasqos, error, pad; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* Select EDCA Access Category and TX ring for this frame. */ if ((hasqos = ieee80211_has_qos(wh))) { qos = ieee80211_get_qos(wh); tid = qos & IEEE80211_QOS_TID; ac = ieee80211_up_to_ac(ic, tid); } else { tid = 0; ac = EDCA_AC_BE; } ring = &sc->txq[ac]; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; /* Choose a TX rate index. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) { ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ? IWN_RIDX_OFDM6 : IWN_RIDX_CCK1; } else if (ic->ic_fixed_rate != -1) { ridx = sc->fixed_ridx; } else ridx = wn->ridx[ni->ni_txrate]; rinfo = &iwn_rates[ridx]; #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct mbuf mb; struct iwn_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); tap->wt_rate = rinfo->rate; tap->wt_hwqueue = ac; if ((ic->ic_flags & IEEE80211_F_WEPON) && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; mb.m_data = (caddr_t)tap; mb.m_len = sc->sc_txtap_len; mb.m_next = m; mb.m_nextpkt = NULL; mb.m_type = 0; mb.m_flags = 0; bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); } #endif totlen = m->m_pkthdr.len; /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { /* Retrieve key for TX. */ k = ieee80211_get_txkey(ic, wh, ni); if (k->k_cipher != IEEE80211_CIPHER_CCMP) { /* Do software encryption. */ if ((m = ieee80211_encrypt(ic, m, k)) == NULL) return ENOBUFS; /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); totlen = m->m_pkthdr.len; } else /* HW appends CCMP MIC. */ totlen += IEEE80211_CCMP_HDRLEN; } /* Prepare TX firmware command. */ cmd = &ring->cmd[ring->cur]; cmd->code = IWN_CMD_TX_DATA; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; tx = (struct iwn_cmd_data *)cmd->data; /* NB: No need to clear tx, all fields are reinitialized here. */ tx->scratch = 0; /* clear "scratch" area */ flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* Unicast frame, check if an ACK is expected. */ if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) != IEEE80211_QOS_ACK_POLICY_NOACK) flags |= IWN_TX_NEED_ACK; } if ((wh->i_fc[0] & (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR)) flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */ if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */ /* Check if frame must be protected using RTS/CTS or CTS-to-self. */ if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { /* NB: Group frames are sent using CCK in 802.11b/g. */ if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) { flags |= IWN_TX_NEED_RTS; } else if ((ic->ic_flags & IEEE80211_F_USEPROT) && ridx >= IWN_RIDX_OFDM6) { if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) flags |= IWN_TX_NEED_CTS; else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) flags |= IWN_TX_NEED_RTS; } if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) { if (sc->hw_type != IWN_HW_REV_TYPE_4965) { /* 5000 autoselects RTS/CTS or CTS-to-self. */ flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS); flags |= IWN_TX_NEED_PROTECTION; } else flags |= IWN_TX_FULL_TXOP; } } if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) tx->id = hal->broadcast_id; else tx->id = wn->id; if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; #ifndef IEEE80211_STA_ONLY /* Tell HW to set timestamp in probe responses. */ if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP) flags |= IWN_TX_INSERT_TSTAMP; #endif if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->timeout = htole16(3); else tx->timeout = htole16(2); } else tx->timeout = htole16(0); if (hdrlen & 3) { /* First segment's length must be a multiple of 4. */ flags |= IWN_TX_NEED_PADDING; pad = 4 - (hdrlen & 3); } else pad = 0; tx->len = htole16(totlen); tx->tid = tid; tx->rts_ntries = 60; tx->data_ntries = 15; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); tx->plcp = rinfo->plcp; tx->rflags = rinfo->flags; if (tx->id == hal->broadcast_id) { /* Group or management frame. */ tx->linkq = 0; /* XXX Alternate between antenna A and B? */ txant = IWN_LSB(sc->txantmsk); tx->rflags |= IWN_RFLAG_ANT(txant); } else { tx->linkq = ni->ni_rates.rs_nrates - ni->ni_txrate - 1; flags |= IWN_TX_LINKQ; /* enable MRR */ } /* Set physical address of "scratch area". */ tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr)); tx->hiaddr = IWN_HIADDR(data->scratch_paddr); /* Copy 802.11 header in TX command. */ memcpy((uint8_t *)(tx + 1), wh, hdrlen); if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) { /* Trim 802.11 header and prepend CCMP IV. */ m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN); ivp = mtod(m, uint8_t *); k->k_tsc++; ivp[0] = k->k_tsc; ivp[1] = k->k_tsc >> 8; ivp[2] = 0; ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV; ivp[4] = k->k_tsc >> 16; ivp[5] = k->k_tsc >> 24; ivp[6] = k->k_tsc >> 32; ivp[7] = k->k_tsc >> 40; tx->security = IWN_CIPHER_CCMP; /* XXX flags |= IWN_TX_AMPDU_CCMP; */ memcpy(tx->key, k->k_key, k->k_len); /* TX scheduler includes CCMP MIC len w/5000 Series. */ if (sc->hw_type != IWN_HW_REV_TYPE_4965) totlen += IEEE80211_CCMP_MICLEN; } else { /* Trim 802.11 header. */ m_adj(m, hdrlen); tx->security = 0; } tx->flags = htole32(flags); error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return error; } if (error != 0) { /* Too many DMA segments, linearize mbuf. */ MGETHDR(m1, M_DONTWAIT, MT_DATA); if (m1 == NULL) { m_freem(m); return ENOBUFS; } if (m->m_pkthdr.len > MHLEN) { MCLGET(m1, M_DONTWAIT); if (!(m1->m_flags & M_EXT)) { m_freem(m); m_freem(m1); return ENOBUFS; } } m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, caddr_t)); m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; m_freem(m); m = m1; error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: can't map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m); return error; } } data->m = m; data->ni = ni; DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n", ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs)); /* Fill TX descriptor. */ desc->nsegs = 1 + data->map->dm_nsegs; /* First DMA segment is used by the TX command. */ desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr)); desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) | (4 + sizeof (*tx) + hdrlen + pad) << 4); /* Other DMA segments are for data payload. */ seg = data->map->dm_segs; for (i = 1; i <= data->map->dm_nsegs; i++) { desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr)); desc->segs[i].len = htole16(IWN_HIADDR(seg->ds_addr) | seg->ds_len << 4); seg++; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc), BUS_DMASYNC_PREWRITE); /* Update TX scheduler. */ hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen); /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWN_TX_RING_HIMARK) sc->qfullmsk |= 1 << ring->qid; return 0; } void iwn_start(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct mbuf *m; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { if (sc->qfullmsk != 0) { ifp->if_flags |= IFF_OACTIVE; break; } /* Send pending management frames first. */ IF_DEQUEUE(&ic->ic_mgtq, m); if (m != NULL) { ni = (void *)m->m_pkthdr.rcvif; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) break; /* Encapsulate and send data frames. */ IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) continue; sendit: #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (iwn_tx(sc, m, ni) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } sc->sc_tx_timer = 5; ifp->if_timer = 1; } } void iwn_watchdog(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_flags &= ~IFF_UP; iwn_stop(ifp, 1); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifaddr *ifa; struct ifreq *ifr; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifa = (struct ifaddr *)data; ifp->if_flags |= IFF_UP; #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&ic->ic_ac, ifa); #endif /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) error = iwn_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) iwn_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: ifr = (struct ifreq *)data; error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &ic->ic_ac) : ether_delmulti(ifr, &ic->ic_ac); if (error == ENETRESET) error = 0; break; case SIOCS80211POWER: error = ieee80211_ioctl(ifp, cmd, data); if (error != ENETRESET) break; if (ic->ic_state == IEEE80211_S_RUN && sc->calib.state == IWN_CALIB_STATE_RUN) { if (ic->ic_flags & IEEE80211_F_PMGTON) error = iwn_set_pslevel(sc, 0, 3, 0); else /* back to CAM */ error = iwn_set_pslevel(sc, 0, 0, 0); } else { /* Defer until transition to IWN_CALIB_STATE_RUN. */ error = 0; } break; default: error = ieee80211_ioctl(ifp, cmd, data); } if (error == ENETRESET) { error = 0; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwn_stop(ifp, 0); error = iwn_init(ifp); } } splx(s); return error; } /* * Send a command to the firmware. */ int iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async) { const struct iwn_hal *hal = sc->sc_hal; struct iwn_tx_ring *ring = &sc->txq[4]; struct iwn_tx_desc *desc; struct iwn_tx_data *data; struct iwn_tx_cmd *cmd; struct mbuf *m; bus_addr_t paddr; int totlen, error; desc = &ring->desc[ring->cur]; data = &ring->data[ring->cur]; totlen = 4 + size; if (size > sizeof cmd->data) { /* Command is too large to fit in a descriptor. */ if (totlen > MCLBYTES) return EINVAL; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return ENOMEM; if (totlen > MHLEN) { MCLGET(m, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { m_freem(m); return ENOMEM; } } cmd = mtod(m, struct iwn_tx_cmd *); error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen, NULL, BUS_DMA_NOWAIT); if (error != 0) { m_freem(m); return error; } data->m = m; paddr = data->map->dm_segs[0].ds_addr; } else { cmd = &ring->cmd[ring->cur]; paddr = data->cmd_paddr; } cmd->code = code; cmd->flags = 0; cmd->qid = ring->qid; cmd->idx = ring->cur; memcpy(cmd->data, buf, size); desc->nsegs = 1; desc->segs[0].addr = htole32(IWN_LOADDR(paddr)); desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4); if (size > sizeof cmd->data) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen, BUS_DMASYNC_PREWRITE); } else { bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, (caddr_t)cmd - ring->cmd_dma.vaddr, totlen, BUS_DMASYNC_PREWRITE); } bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc), BUS_DMASYNC_PREWRITE); /* Update TX scheduler. */ hal->update_sched(sc, ring->qid, ring->cur, 0, 0); /* Kick command ring. */ ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT; IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); return async ? 0 : tsleep(desc, PCATCH, "iwncmd", hz); } int iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) { struct iwn4965_node_info hnode; caddr_t src, dst; /* * We use the node structure for 5000 Series internally (it is * a superset of the one for 4965AGN). We thus copy the common * fields before sending the command. */ src = (caddr_t)node; dst = (caddr_t)&hnode; memcpy(dst, src, 48); /* Skip TSC, RX MIC and TX MIC fields from ``src''. */ memcpy(dst + 48, src + 72, 20); return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async); } int iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async) { /* Direct mapping. */ return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async); } int iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni) { struct iwn_node *wn = (void *)ni; struct ieee80211_rateset *rs = &ni->ni_rates; struct iwn_cmd_link_quality linkq; const struct iwn_rate *rinfo; uint8_t txant; int i, txrate; /* Use the first valid TX antenna. */ txant = IWN_LSB(sc->txantmsk); memset(&linkq, 0, sizeof linkq); linkq.id = wn->id; linkq.antmsk_1stream = txant; linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B; linkq.ampdu_max = 64; linkq.ampdu_threshold = 3; linkq.ampdu_limit = htole16(4000); /* 4ms */ /* Start at highest available bit-rate. */ txrate = rs->rs_nrates - 1; for (i = 0; i < IWN_MAX_TX_RETRIES; i++) { rinfo = &iwn_rates[wn->ridx[txrate]]; linkq.retry[i].plcp = rinfo->plcp; linkq.retry[i].rflags = rinfo->flags; linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant); /* Next retry at immediate lower bit-rate. */ if (txrate > 0) txrate--; } return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1); } /* * Broadcast node is used to send group-addressed and management frames. */ int iwn_add_broadcast_node(struct iwn_softc *sc, int async) { const struct iwn_hal *hal = sc->sc_hal; struct iwn_node_info node; struct iwn_cmd_link_quality linkq; const struct iwn_rate *rinfo; uint8_t txant; int i, error; memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr); node.id = hal->broadcast_id; DPRINTF(("adding broadcast node\n")); if ((error = hal->add_node(sc, &node, async)) != 0) return error; /* Use the first valid TX antenna. */ txant = IWN_LSB(sc->txantmsk); memset(&linkq, 0, sizeof linkq); linkq.id = hal->broadcast_id; linkq.antmsk_1stream = txant; linkq.antmsk_2stream = IWN_ANT_A | IWN_ANT_B; linkq.ampdu_max = 64; linkq.ampdu_threshold = 3; linkq.ampdu_limit = htole16(4000); /* 4ms */ /* Use lowest mandatory bit-rate. */ rinfo = (sc->sc_ic.ic_curmode != IEEE80211_MODE_11A) ? &iwn_rates[IWN_RIDX_CCK1] : &iwn_rates[IWN_RIDX_OFDM6]; linkq.retry[0].plcp = rinfo->plcp; linkq.retry[0].rflags = rinfo->flags; linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant); /* Use same bit-rate for all TX retries. */ for (i = 1; i < IWN_MAX_TX_RETRIES; i++) { linkq.retry[i].plcp = linkq.retry[0].plcp; linkq.retry[i].rflags = linkq.retry[0].rflags; } return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async); } void iwn_updateedca(struct ieee80211com *ic) { #define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct iwn_softc *sc = ic->ic_softc; struct iwn_edca_params cmd; int aci; memset(&cmd, 0, sizeof cmd); cmd.flags = htole32(IWN_EDCA_UPDATE); for (aci = 0; aci < EDCA_NUM_AC; aci++) { const struct ieee80211_edca_ac_params *ac = &ic->ic_edca_ac[aci]; cmd.ac[aci].aifsn = ac->ac_aifsn; cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin)); cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax)); cmd.ac[aci].txoplimit = htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit)); } (void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1); #undef IWN_EXP2 } void iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on) { struct iwn_cmd_led led; /* Clear microcode LED ownership. */ IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL); led.which = which; led.unit = htole32(10000); /* on/off in unit of 100ms */ led.off = off; led.on = on; (void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1); } /* * Set the critical temperature at which the firmware will notify us. */ int iwn_set_critical_temp(struct iwn_softc *sc) { struct iwn_critical_temp crit; IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF); memset(&crit, 0, sizeof crit); crit.tempR = htole32(sc->critical_temp); DPRINTF(("setting critical temperature to %u\n", sc->critical_temp)); return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0); } int iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni) { struct iwn_cmd_timing cmd; uint64_t val, mod; memset(&cmd, 0, sizeof cmd); memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t)); cmd.bintval = htole16(ni->ni_intval); cmd.lintval = htole16(10); /* Compute remaining time until next beacon. */ val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */ mod = letoh64(cmd.tstamp) % val; cmd.binitval = htole32((uint32_t)(val - mod)); DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n", ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod))); return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1); } void iwn4965_power_calibration(struct iwn_softc *sc, int temp) { /* Adjust TX power if need be (delta >= 3 degC.) */ DPRINTF(("temperature %d->%d\n", sc->temp, temp)); if (abs(temp - sc->temp) >= 3) { /* Record temperature of last calibration. */ sc->temp = temp; (void)iwn4965_set_txpower(sc, 1); } } /* * Set TX power for current channel (each rate has its own power settings). * This function takes into account the regulatory information from EEPROM, * the current temperature and the current voltage. */ int iwn4965_set_txpower(struct iwn_softc *sc, int async) { /* Fixed-point arithmetic division using a n-bit fractional part. */ #define fdivround(a, b, n) \ ((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n)) /* Linear interpolation. */ #define interpolate(x, x1, y1, x2, y2, n) \ ((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n)) static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 }; struct ieee80211com *ic = &sc->sc_ic; struct iwn_ucode_info *uc = &sc->ucode_info; struct ieee80211_channel *ch; struct iwn4965_cmd_txpower cmd; struct iwn4965_eeprom_chan_samples *chans; const uint8_t *rf_gain, *dsp_gain; int32_t vdiff, tdiff; int i, c, grp, maxpwr; uint8_t chan; /* Retrieve current channel from last RXON. */ chan = sc->rxon.chan; DPRINTF(("setting TX power for channel %d\n", chan)); ch = &ic->ic_channels[chan]; memset(&cmd, 0, sizeof cmd); cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1; cmd.chan = chan; if (IEEE80211_IS_CHAN_5GHZ(ch)) { maxpwr = sc->maxpwr5GHz; rf_gain = iwn4965_rf_gain_5ghz; dsp_gain = iwn4965_dsp_gain_5ghz; } else { maxpwr = sc->maxpwr2GHz; rf_gain = iwn4965_rf_gain_2ghz; dsp_gain = iwn4965_dsp_gain_2ghz; } /* Compute voltage compensation. */ vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7; if (vdiff > 0) vdiff *= 2; if (abs(vdiff) > 2) vdiff = 0; DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n", vdiff, letoh32(uc->volt), sc->eeprom_voltage)); /* Get channel's attenuation group. */ if (chan <= 20) /* 1-20 */ grp = 4; else if (chan <= 43) /* 34-43 */ grp = 0; else if (chan <= 70) /* 44-70 */ grp = 1; else if (chan <= 124) /* 71-124 */ grp = 2; else /* 125-200 */ grp = 3; DPRINTF(("chan %d, attenuation group=%d\n", chan, grp)); /* Get channel's sub-band. */ for (i = 0; i < IWN_NBANDS; i++) if (sc->bands[i].lo != 0 && sc->bands[i].lo <= chan && chan <= sc->bands[i].hi) break; chans = sc->bands[i].chans; DPRINTF(("chan %d sub-band=%d\n", chan, i)); for (c = 0; c < 2; c++) { uint8_t power, gain, temp; int maxchpwr, pwr, ridx, idx; power = interpolate(chan, chans[0].num, chans[0].samples[c][1].power, chans[1].num, chans[1].samples[c][1].power, 1); gain = interpolate(chan, chans[0].num, chans[0].samples[c][1].gain, chans[1].num, chans[1].samples[c][1].gain, 1); temp = interpolate(chan, chans[0].num, chans[0].samples[c][1].temp, chans[1].num, chans[1].samples[c][1].temp, 1); DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n", c, power, gain, temp)); /* Compute temperature compensation. */ tdiff = ((sc->temp - temp) * 2) / tdiv[grp]; DPRINTF(("temperature compensation=%d (current=%d, " "EEPROM=%d)\n", tdiff, sc->temp, temp)); for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) { maxchpwr = sc->maxpwr[chan] * 2; if ((ridx / 8) & 1) maxchpwr -= 6; /* MIMO 2T: -3dB */ pwr = maxpwr; /* Adjust TX power based on rate. */ if ((ridx % 8) == 5) pwr -= 15; /* OFDM48: -7.5dB */ else if ((ridx % 8) == 6) pwr -= 17; /* OFDM54: -8.5dB */ else if ((ridx % 8) == 7) pwr -= 20; /* OFDM60: -10dB */ else pwr -= 10; /* Others: -5dB */ /* Do not exceed channel's max TX power. */ if (pwr > maxchpwr) pwr = maxchpwr; idx = gain - (pwr - power) - tdiff - vdiff; if ((ridx / 8) & 1) /* MIMO */ idx += (int32_t)letoh32(uc->atten[grp][c]); if (cmd.band == 0) idx += 9; /* 5GHz */ if (ridx == IWN_RIDX_MAX) idx += 5; /* CCK */ /* Make sure idx stays in a valid range. */ if (idx < 0) idx = 0; else if (idx > IWN4965_MAX_PWR_INDEX) idx = IWN4965_MAX_PWR_INDEX; DPRINTF(("TX chain %d, rate idx %d: power=%d\n", c, ridx, idx)); cmd.power[ridx].rf_gain[c] = rf_gain[idx]; cmd.power[ridx].dsp_gain[c] = dsp_gain[idx]; } } DPRINTF(("setting TX power for chan %d\n", chan)); return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async); #undef interpolate #undef fdivround } int iwn5000_set_txpower(struct iwn_softc *sc, int async) { struct iwn5000_cmd_txpower cmd; /* * TX power calibration is handled automatically by the firmware * for 5000 Series. */ memset(&cmd, 0, sizeof cmd); cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */ cmd.flags = IWN5000_TXPOWER_NO_CLOSED; cmd.srv_limit = IWN5000_TXPOWER_AUTO; DPRINTF(("setting TX power\n")); return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async); } /* * Retrieve the maximum RSSI (in dBm) among receivers. */ int iwn4965_get_rssi(const struct iwn_rx_stat *stat) { struct iwn4965_rx_phystat *phy = (void *)stat->phybuf; uint8_t mask, agc; int rssi; mask = (letoh16(phy->antenna) >> 4) & 0x7; agc = (letoh16(phy->agc) >> 7) & 0x7f; rssi = 0; if (mask & IWN_ANT_A) rssi = MAX(rssi, phy->rssi[0]); if (mask & IWN_ANT_B) rssi = MAX(rssi, phy->rssi[2]); if (mask & IWN_ANT_C) rssi = MAX(rssi, phy->rssi[4]); return rssi - agc - IWN_RSSI_TO_DBM; } int iwn5000_get_rssi(const struct iwn_rx_stat *stat) { struct iwn5000_rx_phystat *phy = (void *)stat->phybuf; uint8_t agc; int rssi; agc = (letoh32(phy->agc) >> 9) & 0x7f; rssi = MAX(letoh16(phy->rssi[0]) & 0xff, letoh16(phy->rssi[1]) & 0xff); rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi); return rssi - agc - IWN_RSSI_TO_DBM; } /* * Retrieve the average noise (in dBm) among receivers. */ int iwn_get_noise(const struct iwn_rx_general_stats *stats) { int i, total, nbant, noise; total = nbant = 0; for (i = 0; i < 3; i++) { if ((noise = letoh32(stats->noise[i]) & 0xff) == 0) continue; total += noise; nbant++; } /* There should be at least one antenna but check anyway. */ return (nbant == 0) ? -127 : (total / nbant) - 107; } /* * Compute temperature (in degC) from last received statistics. */ int iwn4965_get_temperature(struct iwn_softc *sc) { struct iwn_ucode_info *uc = &sc->ucode_info; int32_t r1, r2, r3, r4, temp; r1 = letoh32(uc->temp[0].chan20MHz); r2 = letoh32(uc->temp[1].chan20MHz); r3 = letoh32(uc->temp[2].chan20MHz); r4 = letoh32(sc->rawtemp); if (r1 == r3) /* Prevents division by 0 (should not happen.) */ return 0; /* Sign-extend 23-bit R4 value to 32-bit. */ r4 = (r4 << 8) >> 8; /* Compute temperature in Kelvin. */ temp = (259 * (r4 - r2)) / (r3 - r1); temp = (temp * 97) / 100 + 8; DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp))); return IWN_KTOC(temp); } int iwn5000_get_temperature(struct iwn_softc *sc) { /* * Temperature is not used by the driver for 5000 Series because * TX power calibration is handled by firmware. We export it to * users through the sensor framework though. */ return letoh32(sc->rawtemp); } /* * Initialize sensitivity calibration state machine. */ int iwn_init_sensitivity(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; struct iwn_calib_state *calib = &sc->calib; uint32_t flags; int error; /* Reset calibration state machine. */ memset(calib, 0, sizeof (*calib)); calib->state = IWN_CALIB_STATE_INIT; calib->cck_state = IWN_CCK_STATE_HIFA; /* Set initial correlation values. */ calib->ofdm_x1 = hal->limits->min_ofdm_x1; calib->ofdm_mrc_x1 = hal->limits->min_ofdm_mrc_x1; calib->ofdm_x4 = 90; calib->ofdm_mrc_x4 = hal->limits->min_ofdm_mrc_x4; calib->cck_x4 = 125; calib->cck_mrc_x4 = hal->limits->min_cck_mrc_x4; calib->energy_cck = hal->limits->energy_cck; /* Write initial sensitivity. */ if ((error = iwn_send_sensitivity(sc)) != 0) return error; /* Write initial gains. */ if ((error = hal->init_gains(sc)) != 0) return error; /* Request statistics at each beacon interval. */ flags = 0; DPRINTF(("sending request for statistics\n")); return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1); } /* * Collect noise and RSSI statistics for the first 20 beacons received * after association and use them to determine connected antennas and * to set differential gains. */ void iwn_collect_noise(struct iwn_softc *sc, const struct iwn_rx_general_stats *stats) { const struct iwn_hal *hal = sc->sc_hal; struct iwn_calib_state *calib = &sc->calib; uint32_t val; int i; /* Accumulate RSSI and noise for all 3 antennas. */ for (i = 0; i < 3; i++) { calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff; calib->noise[i] += letoh32(stats->noise[i]) & 0xff; } /* NB: We update differential gains only once after 20 beacons. */ if (++calib->nbeacons < 20) return; /* Determine highest average RSSI. */ val = MAX(calib->rssi[0], calib->rssi[1]); val = MAX(calib->rssi[2], val); /* Determine which antennas are connected. */ sc->antmsk = 0; for (i = 0; i < 3; i++) if (val - calib->rssi[i] <= 15 * 20) sc->antmsk |= 1 << i; /* If none of the TX antennas are connected, keep at least one. */ if ((sc->antmsk & sc->txantmsk) == 0) sc->antmsk |= IWN_LSB(sc->txantmsk); (void)hal->set_gains(sc); calib->state = IWN_CALIB_STATE_RUN; #ifdef notyet /* XXX Disable RX chains with no antennas connected. */ sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->antmsk)); (void)iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1); #endif /* Enable power-saving mode if requested by user. */ if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON) (void)iwn_set_pslevel(sc, 0, 3, 1); } int iwn4965_init_gains(struct iwn_softc *sc) { struct iwn_phy_calib_gain cmd; memset(&cmd, 0, sizeof cmd); cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; /* Differential gains initially set to 0 for all 3 antennas. */ DPRINTF(("setting initial differential gains\n")); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } int iwn5000_init_gains(struct iwn_softc *sc) { struct iwn_phy_calib cmd; if (sc->hw_type == IWN_HW_REV_TYPE_6000 || sc->hw_type == IWN_HW_REV_TYPE_6050) return 0; memset(&cmd, 0, sizeof cmd); cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN; cmd.ngroups = 1; cmd.isvalid = 1; DPRINTF(("setting initial differential gains\n")); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } int iwn4965_set_gains(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_gain cmd; int i, delta, noise; /* Get minimal noise among connected antennas. */ noise = INT_MAX; /* NB: There's at least one antenna. */ for (i = 0; i < 3; i++) if (sc->antmsk & (1 << i)) noise = MIN(calib->noise[i], noise); memset(&cmd, 0, sizeof cmd); cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN; /* Set differential gains for connected antennas. */ for (i = 0; i < 3; i++) { if (sc->antmsk & (1 << i)) { /* Compute attenuation (in unit of 1.5dB). */ delta = (noise - (int32_t)calib->noise[i]) / 30; /* NB: delta <= 0 */ /* Limit to [-4.5dB,0]. */ cmd.gain[i] = MIN(abs(delta), 3); if (delta < 0) cmd.gain[i] |= 1 << 2; /* sign bit */ } } DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n", cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->antmsk)); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } int iwn5000_set_gains(struct iwn_softc *sc) { struct iwn_calib_state *calib = &sc->calib; struct iwn_phy_calib_gain cmd; int i, delta; if (sc->hw_type == IWN_HW_REV_TYPE_6000 || sc->hw_type == IWN_HW_REV_TYPE_6050) return 0; memset(&cmd, 0, sizeof cmd); cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN; cmd.ngroups = 1; cmd.isvalid = 1; /* Set differential gains for antennas B and C. */ for (i = 1; i < 3; i++) { if (sc->antmsk & (1 << i)) { /* The delta is relative to antenna A. */ delta = ((int32_t)calib->noise[0] - (int32_t)calib->noise[i]) / 30; /* Limit to [-4.5dB,+4.5dB]. */ cmd.gain[i - 1] = MIN(abs(delta), 3); if (delta < 0) cmd.gain[i - 1] |= 1 << 2; /* sign bit */ } } DPRINTF(("setting differential gains Ant B/C: %x/%x (%x)\n", cmd.gain[0], cmd.gain[1], sc->antmsk)); return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1); } /* * Tune RF RX sensitivity based on the number of false alarms detected * during the last beacon period. */ void iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats) { #define inc(val, inc, max) \ if ((val) < (max)) { \ if ((val) < (max) - (inc)) \ (val) += (inc); \ else \ (val) = (max); \ needs_update = 1; \ } #define dec(val, dec, min) \ if ((val) > (min)) { \ if ((val) > (min) + (dec)) \ (val) -= (dec); \ else \ (val) = (min); \ needs_update = 1; \ } const struct iwn_hal *hal = sc->sc_hal; const struct iwn_sensitivity_limits *limits = hal->limits; struct iwn_calib_state *calib = &sc->calib; uint32_t val, rxena, fa; uint32_t energy[3], energy_min; uint8_t noise[3], noise_ref; int i, needs_update = 0; /* Check that we've been enabled long enough. */ if ((rxena = letoh32(stats->general.load)) == 0) return; /* Compute number of false alarms since last call for OFDM. */ fa = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm; fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm; fa *= 200 * 1024; /* 200TU */ /* Save counters values for next call. */ calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp); calib->fa_ofdm = letoh32(stats->ofdm.fa); if (fa > 50 * rxena) { /* High false alarm count, decrease sensitivity. */ DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa)); inc(calib->ofdm_x1, 1, limits->max_ofdm_x1); inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1); inc(calib->ofdm_x4, 1, limits->max_ofdm_x4); inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4); } else if (fa < 5 * rxena) { /* Low false alarm count, increase sensitivity. */ DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa)); dec(calib->ofdm_x1, 1, limits->min_ofdm_x1); dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1); dec(calib->ofdm_x4, 1, limits->min_ofdm_x4); dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4); } /* Compute maximum noise among 3 receivers. */ for (i = 0; i < 3; i++) noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff; val = MAX(noise[0], noise[1]); val = MAX(noise[2], val); /* Insert it into our samples table. */ calib->noise_samples[calib->cur_noise_sample] = val; calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20; /* Compute maximum noise among last 20 samples. */ noise_ref = calib->noise_samples[0]; for (i = 1; i < 20; i++) noise_ref = MAX(noise_ref, calib->noise_samples[i]); /* Compute maximum energy among 3 receivers. */ for (i = 0; i < 3; i++) energy[i] = letoh32(stats->general.energy[i]); val = MIN(energy[0], energy[1]); val = MIN(energy[2], val); /* Insert it into our samples table. */ calib->energy_samples[calib->cur_energy_sample] = val; calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10; /* Compute minimum energy among last 10 samples. */ energy_min = calib->energy_samples[0]; for (i = 1; i < 10; i++) energy_min = MAX(energy_min, calib->energy_samples[i]); energy_min += 6; /* Compute number of false alarms since last call for CCK. */ fa = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck; fa += letoh32(stats->cck.fa) - calib->fa_cck; fa *= 200 * 1024; /* 200TU */ /* Save counters values for next call. */ calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp); calib->fa_cck = letoh32(stats->cck.fa); if (fa > 50 * rxena) { /* High false alarm count, decrease sensitivity. */ DPRINTFN(2, ("CCK high false alarm count: %u\n", fa)); calib->cck_state = IWN_CCK_STATE_HIFA; calib->low_fa = 0; if (calib->cck_x4 > 160) { calib->noise_ref = noise_ref; if (calib->energy_cck > 2) dec(calib->energy_cck, 2, energy_min); } if (calib->cck_x4 < 160) { calib->cck_x4 = 161; needs_update = 1; } else inc(calib->cck_x4, 3, limits->max_cck_x4); inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4); } else if (fa < 5 * rxena) { /* Low false alarm count, increase sensitivity. */ DPRINTFN(2, ("CCK low false alarm count: %u\n", fa)); calib->cck_state = IWN_CCK_STATE_LOFA; calib->low_fa++; if (calib->cck_state != IWN_CCK_STATE_INIT && (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 || calib->low_fa > 100)) { inc(calib->energy_cck, 2, limits->min_energy_cck); dec(calib->cck_x4, 3, limits->min_cck_x4); dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4); } } else { /* Not worth to increase or decrease sensitivity. */ DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa)); calib->low_fa = 0; calib->noise_ref = noise_ref; if (calib->cck_state == IWN_CCK_STATE_HIFA) { /* Previous interval had many false alarms. */ dec(calib->energy_cck, 8, energy_min); } calib->cck_state = IWN_CCK_STATE_INIT; } if (needs_update) (void)iwn_send_sensitivity(sc); #undef dec #undef inc } int iwn_send_sensitivity(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; struct iwn_calib_state *calib = &sc->calib; struct iwn_sensitivity_cmd cmd; memset(&cmd, 0, sizeof cmd); cmd.which = IWN_SENSITIVITY_WORKTBL; /* OFDM modulation. */ cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1); cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1); cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4); cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4); cmd.energy_ofdm = htole16(hal->limits->energy_ofdm); cmd.energy_ofdm_th = htole16(62); /* CCK modulation. */ cmd.corr_cck_x4 = htole16(calib->cck_x4); cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4); cmd.energy_cck = htole16(calib->energy_cck); /* Barker modulation: use default values. */ cmd.corr_barker = htole16(190); cmd.corr_barker_mrc = htole16(390); DPRINTFN(2, ("setting sensitivity %d/%d/%d/%d/%d/%d/%d\n", calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4, calib->ofdm_mrc_x4, calib->cck_x4, calib->cck_mrc_x4, calib->energy_cck)); return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1); } /* * Set STA mode power saving level (between 0 and 5). * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving. */ int iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async) { struct iwn_pmgt_cmd cmd; const struct iwn_pmgt *pmgt; uint32_t max, skip_dtim; pcireg_t reg; int i; /* Select which PS parameters to use. */ if (dtim <= 2) pmgt = &iwn_pmgt[0][level]; else if (dtim <= 10) pmgt = &iwn_pmgt[1][level]; else pmgt = &iwn_pmgt[2][level]; memset(&cmd, 0, sizeof cmd); if (level != 0) /* not CAM */ cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP); if (level == 5) cmd.flags |= htole16(IWN_PS_FAST_PD); /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, sc->sc_cap_off + PCI_PCIE_LCSR); if (!(reg & PCI_PCIE_LCSR_ASPM_L0S)) /* L0s Entry disabled. */ cmd.flags |= htole16(IWN_PS_PCI_PMGT); cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024); cmd.txtimeout = htole32(pmgt->txtimeout * 1024); if (dtim == 0) { dtim = 1; skip_dtim = 0; } else skip_dtim = pmgt->skip_dtim; if (skip_dtim != 0) { cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM); max = pmgt->intval[4]; if (max == (uint32_t)-1) max = dtim * (skip_dtim + 1); else if (max > dtim) max = (max / dtim) * dtim; } else max = dtim; for (i = 0; i < 5; i++) cmd.intval[i] = htole32(MIN(max, pmgt->intval[i])); DPRINTF(("setting power saving level to %d\n", level)); return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async); } int iwn_config(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; struct iwn_bluetooth bluetooth; uint16_t rxchain; int error; /* Set power saving level to CAM during initialization. */ if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) { printf("%s: could not set power saving level\n", sc->sc_dev.dv_xname); return error; } /* Configure bluetooth coexistence. */ memset(&bluetooth, 0, sizeof bluetooth); bluetooth.flags = 3; bluetooth.lead = 0xaa; bluetooth.kill = 1; DPRINTF(("configuring bluetooth coexistence\n")); error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0); if (error != 0) { printf("%s: could not configure bluetooth coexistence\n", sc->sc_dev.dv_xname); return error; } /* Configure adapter. */ memset(&sc->rxon, 0, sizeof (struct iwn_rxon)); IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr); IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr); /* Set default channel. */ sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); switch (ic->ic_opmode) { case IEEE80211_M_STA: sc->rxon.mode = IWN_MODE_STA; sc->rxon.filter = htole32(IWN_FILTER_MULTICAST); break; case IEEE80211_M_MONITOR: sc->rxon.mode = IWN_MODE_MONITOR; sc->rxon.filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_CTL | IWN_FILTER_PROMISC); break; default: /* Should not get there. */ break; } sc->rxon.cck_mask = 0x0f; /* not yet negotiated */ sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */ sc->rxon.ht_single_mask = 0xff; sc->rxon.ht_dual_mask = 0xff; rxchain = IWN_RXCHAIN_VALID(IWN_ANT_ABC) | IWN_RXCHAIN_IDLE_COUNT(2) | IWN_RXCHAIN_MIMO_COUNT(2); sc->rxon.rxchain = htole16(rxchain); DPRINTF(("setting configuration\n")); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 0); if (error != 0) { printf("%s: configure command failed\n", sc->sc_dev.dv_xname); return error; } /* Configuration has changed, set TX power accordingly. */ if ((error = hal->set_txpower(sc, 0)) != 0) { printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); return error; } if ((error = iwn_add_broadcast_node(sc, 0)) != 0) { printf("%s: could not add broadcast node\n", sc->sc_dev.dv_xname); return error; } if ((error = iwn_set_critical_temp(sc)) != 0) { printf("%s: could not set critical temperature\n", sc->sc_dev.dv_xname); return error; } return 0; } int iwn_scan(struct iwn_softc *sc, uint16_t flags) { struct ieee80211com *ic = &sc->sc_ic; struct iwn_scan_hdr *hdr; struct iwn_cmd_data *tx; struct iwn_scan_essid *essid; struct iwn_scan_chan *chan; struct ieee80211_frame *wh; struct ieee80211_rateset *rs; struct ieee80211_channel *c; uint8_t *buf, *frm; uint16_t rxchain; uint8_t txant; int buflen, error; buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO); if (buf == NULL) { printf("%s: could not allocate buffer for scan command\n", sc->sc_dev.dv_xname); return ENOMEM; } hdr = (struct iwn_scan_hdr *)buf; /* * Move to the next channel if no frames are received within 10ms * after sending the probe request. */ hdr->quiet_time = htole16(10); /* timeout in milliseconds */ hdr->quiet_threshold = htole16(1); /* min # of packets */ /* Select antennas for scanning. */ rxchain = IWN_RXCHAIN_FORCE | IWN_RXCHAIN_VALID(IWN_ANT_ABC) | IWN_RXCHAIN_MIMO(IWN_ANT_ABC); if ((flags & IEEE80211_CHAN_5GHZ) && sc->hw_type == IWN_HW_REV_TYPE_4965) { /* Ant A must be avoided in 5GHz because of an HW bug. */ rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_B | IWN_ANT_C); } else /* Use all available RX antennas. */ rxchain |= IWN_RXCHAIN_SEL(IWN_ANT_ABC); hdr->rxchain = htole16(rxchain); hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON); tx = (struct iwn_cmd_data *)(hdr + 1); tx->flags = htole32(IWN_TX_AUTO_SEQ); tx->id = sc->sc_hal->broadcast_id; tx->lifetime = htole32(IWN_LIFETIME_INFINITE); if (flags & IEEE80211_CHAN_5GHZ) { hdr->crc_threshold = htole16(1); /* Send probe requests at 6Mbps. */ tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp; rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; } else { hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO); /* Send probe requests at 1Mbps. */ tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp; tx->rflags = IWN_RFLAG_CCK; rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; } /* Use the first valid TX antenna. */ txant = IWN_LSB(sc->txantmsk); tx->rflags |= IWN_RFLAG_ANT(txant); essid = (struct iwn_scan_essid *)(tx + 1); if (ic->ic_des_esslen != 0) { essid[0].id = IEEE80211_ELEMID_SSID; essid[0].len = ic->ic_des_esslen; memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen); } /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh = (struct ieee80211_frame *)(essid + 20); wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ frm = (uint8_t *)(wh + 1); frm = ieee80211_add_ssid(frm, NULL, 0); frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); /* Set length of probe request. */ tx->len = htole16(frm - (uint8_t *)wh); chan = (struct iwn_scan_chan *)frm; for (c = &ic->ic_channels[1]; c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) { if ((c->ic_flags & flags) != flags) continue; chan->chan = htole16(ieee80211_chan2ieee(ic, c)); DPRINTFN(2, ("adding channel %d\n", chan->chan)); chan->flags = 0; if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) chan->flags |= htole32(IWN_CHAN_ACTIVE); if (ic->ic_des_esslen != 0) chan->flags |= htole32(IWN_CHAN_NPBREQS(1)); chan->dsp_gain = 0x6e; if (IEEE80211_IS_CHAN_5GHZ(c)) { chan->rf_gain = 0x3b; chan->active = htole16(24); chan->passive = htole16(110); } else { chan->rf_gain = 0x28; chan->active = htole16(36); chan->passive = htole16(120); } hdr->nchan++; chan++; } buflen = (uint8_t *)chan - buf; hdr->len = htole16(buflen); DPRINTF(("sending scan command nchan=%d\n", hdr->nchan)); error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1); free(buf, M_DEVBUF); return error; } int iwn_auth(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; int error; /* Update adapter's configuration. */ IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid); sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan); sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF); if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); switch (ic->ic_curmode) { case IEEE80211_MODE_11A: sc->rxon.cck_mask = 0; sc->rxon.ofdm_mask = 0x15; break; case IEEE80211_MODE_11B: sc->rxon.cck_mask = 0x03; sc->rxon.ofdm_mask = 0; break; default: /* Assume 802.11b/g. */ sc->rxon.cck_mask = 0x0f; sc->rxon.ofdm_mask = 0x15; } DPRINTF(("rxon chan %d flags %x cck %x ofdm %x\n", sc->rxon.chan, sc->rxon.flags, sc->rxon.cck_mask, sc->rxon.ofdm_mask)); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1); if (error != 0) { printf("%s: could not configure\n", sc->sc_dev.dv_xname); return error; } /* Configuration has changed, set TX power accordingly. */ if ((error = hal->set_txpower(sc, 1)) != 0) { printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); return error; } /* * Reconfiguring RXON clears the firmware's nodes table so we must * add the broadcast node again. */ if ((error = iwn_add_broadcast_node(sc, 1)) != 0) { printf("%s: could not add broadcast node\n", sc->sc_dev.dv_xname); return error; } return 0; } int iwn_run(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct iwn_node_info node; int error; if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* Link LED blinks while monitoring. */ iwn_set_led(sc, IWN_LED_LINK, 5, 5); return 0; } if ((error = iwn_set_timing(sc, ni)) != 0) { printf("%s: could not set timing\n", sc->sc_dev.dv_xname); return error; } /* Update adapter's configuration. */ sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd)); /* Short preamble and slot time are negotiated when associating. */ sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHSLOT) sc->rxon.flags |= htole32(IWN_RXON_SHSLOT); if (ic->ic_flags & IEEE80211_F_SHPREAMBLE) sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE); sc->rxon.filter |= htole32(IWN_FILTER_BSS); DPRINTF(("rxon chan %d flags %x\n", sc->rxon.chan, sc->rxon.flags)); error = iwn_cmd(sc, IWN_CMD_CONFIGURE, &sc->rxon, hal->rxonsz, 1); if (error != 0) { printf("%s: could not update configuration\n", sc->sc_dev.dv_xname); return error; } /* Configuration has changed, set TX power accordingly. */ if ((error = hal->set_txpower(sc, 1)) != 0) { printf("%s: could not set TX power\n", sc->sc_dev.dv_xname); return error; } /* Fake a join to initialize the TX rate. */ ((struct iwn_node *)ni)->id = IWN_ID_BSS; iwn_newassoc(ic, ni, 1); /* Add BSS node. */ memset(&node, 0, sizeof node); IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr); node.id = IWN_ID_BSS; #ifdef notyet node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) | IWN_AMDPU_DENSITY(5)); /* 2us */ #endif DPRINTF(("adding BSS node\n")); error = hal->add_node(sc, &node, 1); if (error != 0) { printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname); return error; } DPRINTF(("setting link quality for node %d\n", node.id)); if ((error = iwn_set_link_quality(sc, ni)) != 0) { printf("%s: could not setup link quality for node %d\n", sc->sc_dev.dv_xname, node.id); return error; } if ((error = iwn_init_sensitivity(sc)) != 0) { printf("%s: could not set sensitivity\n", sc->sc_dev.dv_xname); return error; } /* Start periodic calibration timer. */ sc->calib.state = IWN_CALIB_STATE_ASSOC; sc->calib_cnt = 0; timeout_add(&sc->calib_to, hz / 2); /* Link LED always on while associated. */ iwn_set_led(sc, IWN_LED_LINK, 0, 1); return 0; } /* * We support CCMP hardware encryption/decryption of unicast frames only. * HW support for TKIP really sucks. We should let TKIP die anyway. */ int iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct iwn_softc *sc = ic->ic_softc; const struct iwn_hal *hal = sc->sc_hal; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; uint16_t kflags; if ((k->k_flags & IEEE80211_KEY_GROUP) || k->k_cipher != IEEE80211_CIPHER_CCMP) return ieee80211_set_key(ic, ni, k); kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id); if (k->k_flags & IEEE80211_KEY_GROUP) kflags |= IWN_KFLAG_GROUP; memset(&node, 0, sizeof node); node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? hal->broadcast_id : wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_KEY; node.kflags = htole16(kflags); node.kid = k->k_id; memcpy(node.key, k->k_key, k->k_len); DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id)); return hal->add_node(sc, &node, 1); } void iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct iwn_softc *sc = ic->ic_softc; const struct iwn_hal *hal = sc->sc_hal; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; if ((k->k_flags & IEEE80211_KEY_GROUP) || k->k_cipher != IEEE80211_CIPHER_CCMP) { /* See comment about other ciphers above. */ ieee80211_delete_key(ic, ni, k); return; } if (ic->ic_state != IEEE80211_S_RUN) return; /* Nothing to do. */ memset(&node, 0, sizeof node); node.id = (k->k_flags & IEEE80211_KEY_GROUP) ? hal->broadcast_id : wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_KEY; node.kflags = htole16(IWN_KFLAG_INVALID); node.kid = 0xff; DPRINTF(("delete keys for node %d\n", node.id)); (void)hal->add_node(sc, &node, 1); } #ifndef IEEE80211_NO_HT /* * This function is called by upper layer when an ADDBA request is received * from another STA and before the ADDBA response is sent. */ int iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; struct iwn_softc *sc = ic->ic_softc; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_ADDBA; node.addba_tid = tid; node.addba_ssn = htole16(ba->ba_winstart); DPRINTFN(2, ("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid, ba->ba_winstart)); return sc->sc_hal->add_node(sc, &node, 1); } /* * This function is called by upper layer on teardown of an HT-immediate * Block Ack agreement (eg. uppon receipt of a DELBA frame.) */ void iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct iwn_softc *sc = ic->ic_softc; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_DELBA; node.delba_tid = tid; DPRINTFN(2, ("DELBA RA=%d TID=%d\n", wn->id, tid)); (void)sc->sc_hal->add_node(sc, &node, 1); } /* * This function is called by upper layer when an ADDBA response is received * from another STA. */ int iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; struct iwn_softc *sc = ic->ic_softc; const struct iwn_hal *hal = sc->sc_hal; struct iwn_node *wn = (void *)ni; struct iwn_node_info node; int error; /* Enable TX for the specified RA/TID. */ wn->disable_tid &= ~(1 << tid); memset(&node, 0, sizeof node); node.id = wn->id; node.control = IWN_NODE_UPDATE; node.flags = IWN_FLAG_SET_DISABLE_TID; node.disable_tid = htole16(wn->disable_tid); error = hal->add_node(sc, &node, 1); if (error != 0) return error; if ((error = iwn_nic_lock(sc)) != 0) return error; hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart); iwn_nic_unlock(sc); return 0; } void iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid]; struct iwn_softc *sc = ic->ic_softc; if (iwn_nic_lock(sc) != 0) return; sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart); iwn_nic_unlock(sc); } void iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, uint8_t tid, uint16_t ssn) { struct iwn_node *wn = (void *)ni; int qid = 7 + tid; /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_CHGACT); /* Assign RA/TID translation to the queue. */ iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid), wn->id << 4 | tid); /* Enable chain mode for the queue. */ iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn); iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); /* Set scheduler window size. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); /* Set scheduler frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16); /* Enable interrupts for the queue. */ iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as active. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA | iwn_tid2fifo[tid] << 1); } void iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) { int qid = 7 + tid; /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_CHGACT); /* Set starting sequence number from the ADDBA request. */ IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn); iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn); /* Disable interrupts for the queue. */ iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as inactive. */ iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1); } void iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni, uint8_t tid, uint16_t ssn) { struct iwn_node *wn = (void *)ni; int qid = 10 + tid; /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_CHGACT); /* Assign RA/TID translation to the queue. */ iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid), wn->id << 4 | tid); /* Enable chain mode for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid); /* Enable aggregation for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn); iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); /* Set scheduler window size and frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); /* Enable interrupts for the queue. */ iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as active. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]); } void iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn) { int qid = 10 + tid; /* Stop TX scheduler while we're changing its configuration. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_CHGACT); /* Disable aggregation for the queue. */ iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid); /* Set starting sequence number from the ADDBA request. */ IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ssn); iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn); /* Disable interrupts for the queue. */ iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid); /* Mark the queue as inactive. */ iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]); } #endif /* !IEEE80211_NO_HT */ /* * Query calibration tables from the initialization firmware. We do this * only once at first boot. Called from a process context. */ int iwn5000_query_calibration(struct iwn_softc *sc) { struct iwn5000_calib_config cmd; int error; memset(&cmd, 0, sizeof cmd); cmd.ucode.once.enable = 0xffffffff; cmd.ucode.once.start = 0xffffffff; cmd.ucode.once.send = 0xffffffff; cmd.ucode.flags = 0xffffffff; DPRINTF(("sending calibration query\n")); error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0); if (error != 0) return error; /* Wait at most two seconds for calibration to complete. */ return tsleep(sc, PCATCH, "iwncal", 2 * hz); } /* * Send calibration results to the runtime firmware. These results were * obtained on first boot from the initialization firmware. */ int iwn5000_send_calibration(struct iwn_softc *sc) { int idx, error; for (idx = 0; idx < 5; idx++) { if (sc->calibcmd[idx].buf == NULL) continue; /* No results available. */ DPRINTF(("send calibration result idx=%d len=%d\n", idx, sc->calibcmd[idx].len)); error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf, sc->calibcmd[idx].len, 0); if (error != 0) { printf("%s: could not send calibration result\n", sc->sc_dev.dv_xname); return error; } } return 0; } /* * This function is called after the runtime firmware notifies us of its * readiness (called in a process context.) */ int iwn4965_post_alive(struct iwn_softc *sc) { int error, qid; if ((error = iwn_nic_lock(sc)) != 0) return error; /* Clear TX scheduler's state in SRAM. */ sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0, IWN4965_SCHED_CTX_LEN); /* Set physical address of TX scheduler rings (1KB aligned.) */ iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); /* Disable chain mode for all our 16 queues. */ iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0); for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) { iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); /* Set scheduler window size. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ); /* Set scheduler frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16); } /* Enable interrupts for all our 16 queues. */ iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff); /* Identify TX FIFO rings (0-7). */ iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff); /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ for (qid = 0; qid < 7; qid++) { static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 }; iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid), IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1); } iwn_nic_unlock(sc); return 0; } /* * This function is called after the initialization or runtime firmware * notifies us of its readiness (called in a process context.) */ int iwn5000_post_alive(struct iwn_softc *sc) { struct iwn5000_wimax_coex wimax; int error, qid; if ((error = iwn_nic_lock(sc)) != 0) return error; /* Clear TX scheduler's state in SRAM. */ sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR); iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0, IWN5000_SCHED_CTX_LEN); /* Set physical address of TX scheduler rings (1KB aligned.) */ iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10); IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY); /* Enable chain mode for all our 20 queues. */ iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffff); iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0); for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) { iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0); IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0); iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid), 0); /* Set scheduler window size and frame limit. */ iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4, IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ); } /* Enable interrupts for all our 20 queues. */ iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff); /* Identify TX FIFO rings (0-7). */ iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff); /* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */ for (qid = 0; qid < 7; qid++) { static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 }; iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid), IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]); } iwn_nic_unlock(sc); /* Configure WiMAX (IEEE 802.16e) coexistence. */ memset(&wimax, 0, sizeof wimax); DPRINTF(("Configuring WiMAX coexistence\n")); error = iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0); if (error != 0) { printf("%s: could not configure WiMAX coexistence\n", sc->sc_dev.dv_xname); return error; } if (sc->hw_type != IWN_HW_REV_TYPE_5150) { struct iwn5000_phy_calib_crystal cmd; /* Perform crystal calibration. */ memset(&cmd, 0, sizeof cmd); cmd.code = IWN5000_PHY_CALIB_CRYSTAL; cmd.ngroups = 1; cmd.isvalid = 1; cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff; cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff; DPRINTF(("sending crystal calibration %d, %d\n", cmd.cap_pin[0], cmd.cap_pin[1])); error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0); if (error != 0) { printf("%s: crystal calibration failed\n", sc->sc_dev.dv_xname); return error; } } if (sc->sc_flags & IWN_FLAG_FIRST_BOOT) { /* Query calibration from the initialization firmware. */ if ((error = iwn5000_query_calibration(sc)) != 0) { printf("%s: could not query calibration\n", sc->sc_dev.dv_xname); return error; } /* * We have the calibration results now so we can skip * loading the initialization firmware next time. */ sc->sc_flags &= ~IWN_FLAG_FIRST_BOOT; /* Reboot (call ourselves recursively!) */ iwn_hw_stop(sc); error = iwn_hw_init(sc); } else { /* Send calibration results to runtime firmware. */ error = iwn5000_send_calibration(sc); } return error; } /* * The firmware boot code is small and is intended to be copied directly into * the NIC internal memory (no DMA transfer.) */ int iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size) { int error, ntries; size /= sizeof (uint32_t); if ((error = iwn_nic_lock(sc)) != 0) return error; /* Copy microcode image into NIC memory. */ iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE, (const uint32_t *)ucode, size); iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0); iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE); iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size); /* Start boot load now. */ iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START); /* Wait for transfer to complete. */ for (ntries = 0; ntries < 1000; ntries++) { if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) & IWN_BSM_WR_CTRL_START)) break; DELAY(10); } if (ntries == 1000) { printf("%s: could not load boot firmware\n", sc->sc_dev.dv_xname); iwn_nic_unlock(sc); return ETIMEDOUT; } /* Enable boot after power up. */ iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN); iwn_nic_unlock(sc); return 0; } int iwn4965_load_firmware(struct iwn_softc *sc) { struct iwn_fw_info *fw = &sc->fw; struct iwn_dma_info *dma = &sc->fw_dma; int error; /* Copy initialization sections into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, fw->init.data, fw->init.datasz); bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz, BUS_DMASYNC_PREWRITE); memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, fw->init.text, fw->init.textsz); bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, fw->init.textsz, BUS_DMASYNC_PREWRITE); /* Tell adapter where to find initialization sections. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz); iwn_nic_unlock(sc); /* Load firmware boot code. */ error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz); if (error != 0) { printf("%s: could not load boot firmware\n", sc->sc_dev.dv_xname); return error; } /* Now press "execute". */ IWN_WRITE(sc, IWN_RESET, 0); /* Wait at most one second for first alive notification. */ if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { printf("%s: timeout waiting for adapter to initialize\n", sc->sc_dev.dv_xname); return error; } /* Retrieve current temperature for initial TX power calibration. */ sc->rawtemp = sc->ucode_info.temp[3].chan20MHz; sc->temp = iwn4965_get_temperature(sc); /* Copy runtime sections into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, fw->main.data, fw->main.datasz); bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz, BUS_DMASYNC_PREWRITE); memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ, fw->main.text, fw->main.textsz); bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ, fw->main.textsz, BUS_DMASYNC_PREWRITE); /* Tell adapter where to find runtime sections. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR, (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4); iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, IWN_FW_UPDATED | fw->main.textsz); iwn_nic_unlock(sc); return 0; } int iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst, const uint8_t *section, int size) { struct iwn_dma_info *dma = &sc->fw_dma; int error; /* Copy firmware section into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, section, size); bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE); if ((error = iwn_nic_lock(sc)) != 0) return error; IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), IWN_FH_TX_CONFIG_DMA_PAUSE); IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst); IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL), IWN_LOADDR(dma->paddr)); IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL), IWN_HIADDR(dma->paddr) << 28 | size); IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL), IWN_FH_TXBUF_STATUS_TBNUM(1) | IWN_FH_TXBUF_STATUS_TBIDX(1) | IWN_FH_TXBUF_STATUS_TFBD_VALID); /* Kick Flow Handler to start DMA transfer. */ IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL), IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD); iwn_nic_unlock(sc); /* Wait at most five seconds for FH DMA transfer to complete. */ return tsleep(sc, PCATCH, "iwninit", 5 * hz); } int iwn5000_load_firmware(struct iwn_softc *sc) { struct iwn_fw_part *fw; int error; /* Load the initialization firmware on first boot only. */ fw = (sc->sc_flags & IWN_FLAG_FIRST_BOOT) ? &sc->fw.init : &sc->fw.main; error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE, fw->text, fw->textsz); if (error != 0) { printf("%s: could not load firmware %s section\n", sc->sc_dev.dv_xname, ".text"); return error; } error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE, fw->data, fw->datasz); if (error != 0) { printf("%s: could not load firmware %s section\n", sc->sc_dev.dv_xname, ".data"); return error; } /* Now press "execute". */ IWN_WRITE(sc, IWN_RESET, 0); return 0; } int iwn_read_firmware(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; struct iwn_fw_info *fw = &sc->fw; const struct iwn_firmware_hdr *hdr; size_t size; int error; /* Read firmware image from filesystem. */ if ((error = loadfirmware(sc->fwname, &fw->data, &size)) != 0) { printf("%s: error, %d, could not read firmware %s\n", sc->sc_dev.dv_xname, error, sc->fwname); return error; } if (size < sizeof (*hdr)) { printf("%s: truncated firmware header: %d bytes\n", sc->sc_dev.dv_xname, size); free(fw->data, M_DEVBUF); return EINVAL; } /* Extract firmware header information. */ hdr = (struct iwn_firmware_hdr *)fw->data; fw->main.textsz = letoh32(hdr->main_textsz); fw->main.datasz = letoh32(hdr->main_datasz); fw->init.textsz = letoh32(hdr->init_textsz); fw->init.datasz = letoh32(hdr->init_datasz); fw->boot.textsz = letoh32(hdr->boot_textsz); fw->boot.datasz = 0; /* Sanity-check firmware header. */ if (fw->main.textsz > hal->fw_text_maxsz || fw->main.datasz > hal->fw_data_maxsz || fw->init.textsz > hal->fw_text_maxsz || fw->init.datasz > hal->fw_data_maxsz || fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ || (fw->boot.textsz & 3) != 0) { printf("%s: invalid firmware header\n", sc->sc_dev.dv_xname); free(fw->data, M_DEVBUF); return EINVAL; } /* Check that all firmware sections fit. */ if (size < sizeof (*hdr) + fw->main.textsz + fw->main.datasz + fw->init.textsz + fw->init.datasz + fw->boot.textsz) { printf("%s: firmware file too short: %d bytes\n", sc->sc_dev.dv_xname, size); free(fw->data, M_DEVBUF); return EINVAL; } /* Get pointers to firmware sections. */ fw->main.text = (const uint8_t *)(hdr + 1); fw->main.data = fw->main.text + fw->main.textsz; fw->init.text = fw->main.data + fw->main.datasz; fw->init.data = fw->init.text + fw->init.textsz; fw->boot.text = fw->init.data + fw->init.datasz; return 0; } int iwn_clock_wait(struct iwn_softc *sc) { int ntries; /* Set "initialization complete" bit. */ IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); /* Wait for clock stabilization. */ for (ntries = 0; ntries < 25000; ntries++) { if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY) return 0; DELAY(100); } printf("%s: timeout waiting for clock stabilization\n", sc->sc_dev.dv_xname); return ETIMEDOUT; } int iwn4965_apm_init(struct iwn_softc *sc) { int error; /* Disable L0s. */ IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); if ((error = iwn_clock_wait(sc)) != 0) return error; if ((error = iwn_nic_lock(sc)) != 0) return error; /* Enable DMA. */ iwn_prph_write(sc, IWN_APMG_CLK_CTRL, IWN_APMG_CLK_CTRL_DMA_CLK_RQT | IWN_APMG_CLK_CTRL_BSM_CLK_RQT); DELAY(20); /* Disable L1. */ iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); iwn_nic_unlock(sc); return 0; } int iwn5000_apm_init(struct iwn_softc *sc) { int error; /* Disable L0s. */ IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER); IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX); /* Set Flow Handler wait threshold to the maximum. */ IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000); /* Enable HAP to move adapter from L1a to L0s. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A); if (sc->hw_type != IWN_HW_REV_TYPE_6000 && sc->hw_type != IWN_HW_REV_TYPE_6050) IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT); if ((error = iwn_clock_wait(sc)) != 0) return error; if ((error = iwn_nic_lock(sc)) != 0) return error; /* Enable DMA. */ iwn_prph_write(sc, IWN_APMG_CLK_CTRL, IWN_APMG_CLK_CTRL_DMA_CLK_RQT); DELAY(20); /* Disable L1. */ iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS); iwn_nic_unlock(sc); return 0; } void iwn_apm_stop_master(struct iwn_softc *sc) { int ntries; IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER); for (ntries = 0; ntries < 100; ntries++) { if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED) return; DELAY(10); } printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname); } void iwn_apm_stop(struct iwn_softc *sc) { iwn_apm_stop_master(sc); IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW); DELAY(10); /* Clear "initialization complete" bit. */ IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE); } int iwn4965_nic_config(struct iwn_softc *sc) { pcireg_t reg; /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, sc->sc_cap_off + PCI_PCIE_LCSR); if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); else IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) { /* * I don't believe this to be correct but this is what the * vendor driver is doing. Probably the bits should not be * shifted in IWN_RFCFG_*. */ IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_RFCFG_TYPE(sc->rfcfg) | IWN_RFCFG_STEP(sc->rfcfg) | IWN_RFCFG_DASH(sc->rfcfg)); } IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); return 0; } int iwn5000_nic_config(struct iwn_softc *sc) { pcireg_t reg; int error; /* Retrieve PCIe Active State Power Management (ASPM). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, sc->sc_cap_off + PCI_PCIE_LCSR); if (reg & PCI_PCIE_LCSR_ASPM_L1) /* L1 Entry enabled. */ IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); else IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA); if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) { IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_RFCFG_TYPE(sc->rfcfg) | IWN_RFCFG_STEP(sc->rfcfg) | IWN_RFCFG_DASH(sc->rfcfg)); } IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI); if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS); iwn_nic_unlock(sc); return 0; } /* * Take NIC ownership over Intel Active Management Technology (AMT). */ int iwn_hw_prepare(struct iwn_softc *sc) { int ntries; IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE); for (ntries = 0; ntries < 15000; ntries++) { if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_PREPARE_DONE)) break; DELAY(10); } if (ntries == 15000) return ETIMEDOUT; IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY); for (ntries = 0; ntries < 5; ntries++) { if (IWN_READ(sc, IWN_HW_IF_CONFIG) & IWN_HW_IF_CONFIG_NIC_READY) return 0; DELAY(10); } return ETIMEDOUT; } int iwn_hw_init(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; int error, chnl, qid; /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); if ((error = hal->apm_init(sc)) != 0) { printf("%s: could not power ON adapter\n", sc->sc_dev.dv_xname); return error; } /* Select VMAIN power source. */ if ((error = iwn_nic_lock(sc)) != 0) return error; iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK); iwn_nic_unlock(sc); /* Perform adapter-specific initialization. */ if ((error = hal->nic_config(sc)) != 0) return error; /* Initialize RX ring. */ if ((error = iwn_nic_lock(sc)) != 0) return error; IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0); IWN_WRITE(sc, IWN_FH_RX_WPTR, 0); /* Set physical address of RX ring (256-byte aligned.) */ IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8); /* Set physical address of RX status (16-byte aligned.) */ IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4); /* Enable RX. */ IWN_WRITE(sc, IWN_FH_RX_CONFIG, IWN_FH_RX_CONFIG_ENA | IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */ IWN_FH_RX_CONFIG_IRQ_DST_HOST | IWN_FH_RX_CONFIG_SINGLE_FRAME | IWN_FH_RX_CONFIG_RB_TIMEOUT(0) | IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG)); iwn_nic_unlock(sc); IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7); if ((error = iwn_nic_lock(sc)) != 0) return error; /* Initialize TX scheduler. */ iwn_prph_write(sc, hal->sched_txfact_addr, 0); /* Set physical address of "keep warm" page (16-byte aligned.) */ IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4); /* Initialize TX rings. */ for (qid = 0; qid < hal->ntxqs; qid++) { struct iwn_tx_ring *txq = &sc->txq[qid]; /* Set physical address of TX ring (256-byte aligned.) */ IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid), txq->desc_dma.paddr >> 8); } iwn_nic_unlock(sc); /* Enable DMA channels. */ for (chnl = 0; chnl < hal->ndmachnls; chnl++) { IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_DMA_CREDIT_ENA); } /* Clear "radio off" and "commands blocked" bits. */ IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED); /* Clear pending interrupts. */ IWN_WRITE(sc, IWN_INT, 0xffffffff); /* Enable interrupt coalescing. */ IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8); /* Enable interrupts. */ IWN_WRITE(sc, IWN_MASK, IWN_INT_MASK); /* _Really_ make sure "radio off" bit is cleared! */ IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL); if ((error = hal->load_firmware(sc)) != 0) { printf("%s: could not load firmware\n", sc->sc_dev.dv_xname); return error; } /* Wait at most one second for firmware alive notification. */ if ((error = tsleep(sc, PCATCH, "iwninit", hz)) != 0) { printf("%s: timeout waiting for adapter to initialize\n", sc->sc_dev.dv_xname); return error; } /* Do post-firmware initialization. */ return hal->post_alive(sc); } void iwn_hw_stop(struct iwn_softc *sc) { const struct iwn_hal *hal = sc->sc_hal; int chnl, qid, ntries; uint32_t tmp; IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO); /* Disable interrupts. */ IWN_WRITE(sc, IWN_MASK, 0); IWN_WRITE(sc, IWN_INT, 0xffffffff); IWN_WRITE(sc, IWN_FH_INT, 0xffffffff); /* Make sure we no longer hold the NIC lock. */ iwn_nic_unlock(sc); /* Stop TX scheduler. */ iwn_prph_write(sc, hal->sched_txfact_addr, 0); /* Stop all DMA channels. */ if (iwn_nic_lock(sc) == 0) { for (chnl = 0; chnl < hal->ndmachnls; chnl++) { IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0); for (ntries = 0; ntries < 200; ntries++) { tmp = IWN_READ(sc, IWN_FH_TX_STATUS); if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) == IWN_FH_TX_STATUS_IDLE(chnl)) break; DELAY(10); } } iwn_nic_unlock(sc); } /* Stop RX ring. */ iwn_reset_rx_ring(sc, &sc->rxq); /* Reset all TX rings. */ for (qid = 0; qid < hal->ntxqs; qid++) iwn_reset_tx_ring(sc, &sc->txq[qid]); if (iwn_nic_lock(sc) == 0) { iwn_prph_write(sc, IWN_APMG_CLK_DIS, IWN_APMG_CLK_DMA_RQT); iwn_nic_unlock(sc); } DELAY(5); /* Power OFF adapter. */ iwn_apm_stop(sc); } int iwn_init(struct ifnet *ifp) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int error; if ((error = iwn_hw_prepare(sc)) != 0) { printf("%s: hardware not ready\n", sc->sc_dev.dv_xname); goto fail; } /* Check that the radio is not disabled by hardware switch. */ if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) { printf("%s: radio is disabled by hardware switch\n", sc->sc_dev.dv_xname); error = EPERM; /* :-) */ goto fail; } /* Read firmware images from the filesystem. */ if ((error = iwn_read_firmware(sc)) != 0) { printf("%s: could not read firmware\n", sc->sc_dev.dv_xname); goto fail; } /* Initialize hardware and upload firmware. */ error = iwn_hw_init(sc); free(sc->fw.data, M_DEVBUF); if (error != 0) { printf("%s: could not initialize hardware\n", sc->sc_dev.dv_xname); goto fail; } /* Configure adapter now that it is ready. */ if ((error = iwn_config(sc)) != 0) { printf("%s: could not configure device\n", sc->sc_dev.dv_xname); goto fail; } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode != IEEE80211_M_MONITOR) ieee80211_begin_scan(ifp); else ieee80211_new_state(ic, IEEE80211_S_RUN, -1); return 0; fail: iwn_stop(ifp, 1); return error; } void iwn_stop(struct ifnet *ifp, int disable) { struct iwn_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; ifp->if_timer = sc->sc_tx_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* In case we were scanning, release the scan "lock". */ ic->ic_scan_lock = IEEE80211_SCAN_UNLOCKED; ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* Power OFF hardware. */ iwn_hw_stop(sc); /* Temperature sensor is no longer valid. */ sc->sensor.value = 0; sc->sensor.flags |= SENSOR_FINVALID; }