/* $OpenBSD: if_iwx.c,v 1.54 2021/04/29 21:43:47 stsp Exp $ */ /* * Copyright (c) 2014, 2016 genua gmbh * Author: Stefan Sperling * Copyright (c) 2014 Fixup Software Ltd. * Copyright (c) 2017, 2019, 2020 Stefan Sperling * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * ****************************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2017 Intel Deutschland GmbH * Copyright(c) 2018 - 2019 Intel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Copyright(c) 2017 Intel Deutschland GmbH * Copyright(c) 2018 - 2019 Intel Corporation * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ***************************************************************************** */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include /* for SEQ_LT */ #undef DPRINTF /* defined in ieee80211_priv.h */ #define DEVNAME(_s) ((_s)->sc_dev.dv_xname) #define IC2IFP(_ic_) (&(_ic_)->ic_if) #define le16_to_cpup(_a_) (le16toh(*(const uint16_t *)(_a_))) #define le32_to_cpup(_a_) (le32toh(*(const uint32_t *)(_a_))) #ifdef IWX_DEBUG #define DPRINTF(x) do { if (iwx_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwx_debug >= (n)) printf x; } while (0) int iwx_debug = 1; #else #define DPRINTF(x) do { ; } while (0) #define DPRINTFN(n, x) do { ; } while (0) #endif #include #include const uint8_t iwx_nvm_channels_8000[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181 }; static const uint8_t iwx_nvm_channels_uhb[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181, /* 6-7 GHz */ 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185, 189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233 }; #define IWX_NUM_2GHZ_CHANNELS 14 const struct iwx_rate { uint16_t rate; uint8_t plcp; uint8_t ht_plcp; } iwx_rates[] = { /* Legacy */ /* HT */ { 2, IWX_RATE_1M_PLCP, IWX_RATE_HT_SISO_MCS_INV_PLCP }, { 4, IWX_RATE_2M_PLCP, IWX_RATE_HT_SISO_MCS_INV_PLCP }, { 11, IWX_RATE_5M_PLCP, IWX_RATE_HT_SISO_MCS_INV_PLCP }, { 22, IWX_RATE_11M_PLCP, IWX_RATE_HT_SISO_MCS_INV_PLCP }, { 12, IWX_RATE_6M_PLCP, IWX_RATE_HT_SISO_MCS_0_PLCP }, { 18, IWX_RATE_9M_PLCP, IWX_RATE_HT_SISO_MCS_INV_PLCP }, { 24, IWX_RATE_12M_PLCP, IWX_RATE_HT_SISO_MCS_1_PLCP }, { 26, IWX_RATE_INVM_PLCP, IWX_RATE_HT_MIMO2_MCS_8_PLCP }, { 36, IWX_RATE_18M_PLCP, IWX_RATE_HT_SISO_MCS_2_PLCP }, { 48, IWX_RATE_24M_PLCP, IWX_RATE_HT_SISO_MCS_3_PLCP }, { 52, IWX_RATE_INVM_PLCP, IWX_RATE_HT_MIMO2_MCS_9_PLCP }, { 72, IWX_RATE_36M_PLCP, IWX_RATE_HT_SISO_MCS_4_PLCP }, { 78, IWX_RATE_INVM_PLCP, IWX_RATE_HT_MIMO2_MCS_10_PLCP }, { 96, IWX_RATE_48M_PLCP, IWX_RATE_HT_SISO_MCS_5_PLCP }, { 104, IWX_RATE_INVM_PLCP, IWX_RATE_HT_MIMO2_MCS_11_PLCP }, { 108, IWX_RATE_54M_PLCP, IWX_RATE_HT_SISO_MCS_6_PLCP }, { 128, IWX_RATE_INVM_PLCP, IWX_RATE_HT_SISO_MCS_7_PLCP }, { 156, IWX_RATE_INVM_PLCP, IWX_RATE_HT_MIMO2_MCS_12_PLCP }, { 208, IWX_RATE_INVM_PLCP, IWX_RATE_HT_MIMO2_MCS_13_PLCP }, { 234, IWX_RATE_INVM_PLCP, IWX_RATE_HT_MIMO2_MCS_14_PLCP }, { 260, IWX_RATE_INVM_PLCP, IWX_RATE_HT_MIMO2_MCS_15_PLCP }, }; #define IWX_RIDX_CCK 0 #define IWX_RIDX_OFDM 4 #define IWX_RIDX_MAX (nitems(iwx_rates)-1) #define IWX_RIDX_IS_CCK(_i_) ((_i_) < IWX_RIDX_OFDM) #define IWX_RIDX_IS_OFDM(_i_) ((_i_) >= IWX_RIDX_OFDM) #define IWX_RVAL_IS_OFDM(_i_) ((_i_) >= 12 && (_i_) != 22) /* Convert an MCS index into an iwx_rates[] index. */ const int iwx_mcs2ridx[] = { IWX_RATE_MCS_0_INDEX, IWX_RATE_MCS_1_INDEX, IWX_RATE_MCS_2_INDEX, IWX_RATE_MCS_3_INDEX, IWX_RATE_MCS_4_INDEX, IWX_RATE_MCS_5_INDEX, IWX_RATE_MCS_6_INDEX, IWX_RATE_MCS_7_INDEX, IWX_RATE_MCS_8_INDEX, IWX_RATE_MCS_9_INDEX, IWX_RATE_MCS_10_INDEX, IWX_RATE_MCS_11_INDEX, IWX_RATE_MCS_12_INDEX, IWX_RATE_MCS_13_INDEX, IWX_RATE_MCS_14_INDEX, IWX_RATE_MCS_15_INDEX, }; uint8_t iwx_lookup_cmd_ver(struct iwx_softc *, uint8_t, uint8_t); int iwx_is_mimo_ht_plcp(uint8_t); int iwx_is_mimo_mcs(int); int iwx_store_cscheme(struct iwx_softc *, uint8_t *, size_t); int iwx_alloc_fw_monitor_block(struct iwx_softc *, uint8_t, uint8_t); int iwx_alloc_fw_monitor(struct iwx_softc *, uint8_t); int iwx_apply_debug_destination(struct iwx_softc *); int iwx_ctxt_info_init(struct iwx_softc *, const struct iwx_fw_sects *); void iwx_ctxt_info_free_fw_img(struct iwx_softc *); void iwx_ctxt_info_free_paging(struct iwx_softc *); int iwx_init_fw_sec(struct iwx_softc *, const struct iwx_fw_sects *, struct iwx_context_info_dram *); int iwx_firmware_store_section(struct iwx_softc *, enum iwx_ucode_type, uint8_t *, size_t); int iwx_set_default_calib(struct iwx_softc *, const void *); void iwx_fw_info_free(struct iwx_fw_info *); int iwx_read_firmware(struct iwx_softc *); uint32_t iwx_read_prph(struct iwx_softc *, uint32_t); void iwx_write_prph(struct iwx_softc *, uint32_t, uint32_t); int iwx_read_mem(struct iwx_softc *, uint32_t, void *, int); int iwx_write_mem(struct iwx_softc *, uint32_t, const void *, int); int iwx_write_mem32(struct iwx_softc *, uint32_t, uint32_t); int iwx_poll_bit(struct iwx_softc *, int, uint32_t, uint32_t, int); int iwx_nic_lock(struct iwx_softc *); void iwx_nic_assert_locked(struct iwx_softc *); void iwx_nic_unlock(struct iwx_softc *); void iwx_set_bits_mask_prph(struct iwx_softc *, uint32_t, uint32_t, uint32_t); void iwx_set_bits_prph(struct iwx_softc *, uint32_t, uint32_t); void iwx_clear_bits_prph(struct iwx_softc *, uint32_t, uint32_t); int iwx_dma_contig_alloc(bus_dma_tag_t, struct iwx_dma_info *, bus_size_t, bus_size_t); void iwx_dma_contig_free(struct iwx_dma_info *); int iwx_alloc_rx_ring(struct iwx_softc *, struct iwx_rx_ring *); void iwx_disable_rx_dma(struct iwx_softc *); void iwx_reset_rx_ring(struct iwx_softc *, struct iwx_rx_ring *); void iwx_free_rx_ring(struct iwx_softc *, struct iwx_rx_ring *); int iwx_alloc_tx_ring(struct iwx_softc *, struct iwx_tx_ring *, int); void iwx_reset_tx_ring(struct iwx_softc *, struct iwx_tx_ring *); void iwx_free_tx_ring(struct iwx_softc *, struct iwx_tx_ring *); void iwx_enable_rfkill_int(struct iwx_softc *); int iwx_check_rfkill(struct iwx_softc *); void iwx_enable_interrupts(struct iwx_softc *); void iwx_enable_fwload_interrupt(struct iwx_softc *); void iwx_restore_interrupts(struct iwx_softc *); void iwx_disable_interrupts(struct iwx_softc *); void iwx_ict_reset(struct iwx_softc *); int iwx_set_hw_ready(struct iwx_softc *); int iwx_prepare_card_hw(struct iwx_softc *); void iwx_force_power_gating(struct iwx_softc *); void iwx_apm_config(struct iwx_softc *); int iwx_apm_init(struct iwx_softc *); void iwx_apm_stop(struct iwx_softc *); int iwx_allow_mcast(struct iwx_softc *); void iwx_init_msix_hw(struct iwx_softc *); void iwx_conf_msix_hw(struct iwx_softc *, int); int iwx_start_hw(struct iwx_softc *); void iwx_stop_device(struct iwx_softc *); void iwx_nic_config(struct iwx_softc *); int iwx_nic_rx_init(struct iwx_softc *); int iwx_nic_init(struct iwx_softc *); int iwx_enable_txq(struct iwx_softc *, int, int, int, int); void iwx_post_alive(struct iwx_softc *); void iwx_protect_session(struct iwx_softc *, struct iwx_node *, uint32_t, uint32_t); void iwx_unprotect_session(struct iwx_softc *, struct iwx_node *); void iwx_init_channel_map(struct iwx_softc *, uint16_t *, uint32_t *, int); void iwx_setup_ht_rates(struct iwx_softc *); int iwx_mimo_enabled(struct iwx_softc *); void iwx_mac_ctxt_task(void *); void iwx_updateprot(struct ieee80211com *); void iwx_updateslot(struct ieee80211com *); void iwx_updateedca(struct ieee80211com *); void iwx_init_reorder_buffer(struct iwx_reorder_buffer *, uint16_t, uint16_t); void iwx_clear_reorder_buffer(struct iwx_softc *, struct iwx_rxba_data *); int iwx_ampdu_rx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); void iwx_ampdu_rx_stop(struct ieee80211com *, struct ieee80211_node *, uint8_t); void iwx_rx_ba_session_expired(void *); void iwx_reorder_timer_expired(void *); void iwx_sta_rx_agg(struct iwx_softc *, struct ieee80211_node *, uint8_t, uint16_t, uint16_t, int, int); #ifdef notyet int iwx_ampdu_tx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); void iwx_ampdu_tx_stop(struct ieee80211com *, struct ieee80211_node *, uint8_t); #endif void iwx_ba_task(void *); int iwx_set_mac_addr_from_csr(struct iwx_softc *, struct iwx_nvm_data *); int iwx_is_valid_mac_addr(const uint8_t *); int iwx_nvm_get(struct iwx_softc *); int iwx_load_firmware(struct iwx_softc *); int iwx_start_fw(struct iwx_softc *); int iwx_send_tx_ant_cfg(struct iwx_softc *, uint8_t); int iwx_send_phy_cfg_cmd(struct iwx_softc *); int iwx_load_ucode_wait_alive(struct iwx_softc *); int iwx_send_dqa_cmd(struct iwx_softc *); int iwx_run_init_mvm_ucode(struct iwx_softc *, int); int iwx_config_ltr(struct iwx_softc *); void iwx_update_rx_desc(struct iwx_softc *, struct iwx_rx_ring *, int); int iwx_rx_addbuf(struct iwx_softc *, int, int); int iwx_rxmq_get_signal_strength(struct iwx_softc *, struct iwx_rx_mpdu_desc *); void iwx_rx_rx_phy_cmd(struct iwx_softc *, struct iwx_rx_packet *, struct iwx_rx_data *); int iwx_get_noise(const struct iwx_statistics_rx_non_phy *); int iwx_rx_hwdecrypt(struct iwx_softc *, struct mbuf *, uint32_t, struct ieee80211_rxinfo *); int iwx_ccmp_decap(struct iwx_softc *, struct mbuf *, struct ieee80211_node *, struct ieee80211_rxinfo *); void iwx_rx_frame(struct iwx_softc *, struct mbuf *, int, uint32_t, int, int, uint32_t, struct ieee80211_rxinfo *, struct mbuf_list *); void iwx_rx_tx_cmd_single(struct iwx_softc *, struct iwx_rx_packet *, struct iwx_node *); void iwx_rx_tx_cmd(struct iwx_softc *, struct iwx_rx_packet *, struct iwx_rx_data *); void iwx_rx_bmiss(struct iwx_softc *, struct iwx_rx_packet *, struct iwx_rx_data *); int iwx_binding_cmd(struct iwx_softc *, struct iwx_node *, uint32_t); int iwx_phy_ctxt_cmd_uhb(struct iwx_softc *, struct iwx_phy_ctxt *, uint8_t, uint8_t, uint32_t, uint32_t); int iwx_phy_ctxt_cmd(struct iwx_softc *, struct iwx_phy_ctxt *, uint8_t, uint8_t, uint32_t, uint32_t); int iwx_send_cmd(struct iwx_softc *, struct iwx_host_cmd *); int iwx_send_cmd_pdu(struct iwx_softc *, uint32_t, uint32_t, uint16_t, const void *); int iwx_send_cmd_status(struct iwx_softc *, struct iwx_host_cmd *, uint32_t *); int iwx_send_cmd_pdu_status(struct iwx_softc *, uint32_t, uint16_t, const void *, uint32_t *); void iwx_free_resp(struct iwx_softc *, struct iwx_host_cmd *); void iwx_cmd_done(struct iwx_softc *, int, int, int); const struct iwx_rate *iwx_tx_fill_cmd(struct iwx_softc *, struct iwx_node *, struct ieee80211_frame *, struct iwx_tx_cmd_gen2 *); void iwx_tx_update_byte_tbl(struct iwx_tx_ring *, int, uint16_t, uint16_t); int iwx_tx(struct iwx_softc *, struct mbuf *, struct ieee80211_node *, int); int iwx_flush_tx_path(struct iwx_softc *); int iwx_beacon_filter_send_cmd(struct iwx_softc *, struct iwx_beacon_filter_cmd *); int iwx_update_beacon_abort(struct iwx_softc *, struct iwx_node *, int); void iwx_power_build_cmd(struct iwx_softc *, struct iwx_node *, struct iwx_mac_power_cmd *); int iwx_power_mac_update_mode(struct iwx_softc *, struct iwx_node *); int iwx_power_update_device(struct iwx_softc *); int iwx_enable_beacon_filter(struct iwx_softc *, struct iwx_node *); int iwx_disable_beacon_filter(struct iwx_softc *); int iwx_add_sta_cmd(struct iwx_softc *, struct iwx_node *, int); int iwx_add_aux_sta(struct iwx_softc *); int iwx_rm_sta_cmd(struct iwx_softc *, struct iwx_node *); int iwx_fill_probe_req(struct iwx_softc *, struct iwx_scan_probe_req *); int iwx_config_umac_scan(struct iwx_softc *); int iwx_umac_scan(struct iwx_softc *, int); void iwx_mcc_update(struct iwx_softc *, struct iwx_mcc_chub_notif *); uint8_t iwx_ridx2rate(struct ieee80211_rateset *, int); int iwx_rval2ridx(int); void iwx_ack_rates(struct iwx_softc *, struct iwx_node *, int *, int *); void iwx_mac_ctxt_cmd_common(struct iwx_softc *, struct iwx_node *, struct iwx_mac_ctx_cmd *, uint32_t); void iwx_mac_ctxt_cmd_fill_sta(struct iwx_softc *, struct iwx_node *, struct iwx_mac_data_sta *, int); int iwx_mac_ctxt_cmd(struct iwx_softc *, struct iwx_node *, uint32_t, int); int iwx_clear_statistics(struct iwx_softc *); int iwx_update_quotas(struct iwx_softc *, struct iwx_node *, int); void iwx_add_task(struct iwx_softc *, struct taskq *, struct task *); void iwx_del_task(struct iwx_softc *, struct taskq *, struct task *); int iwx_scan(struct iwx_softc *); int iwx_bgscan(struct ieee80211com *); int iwx_umac_scan_abort(struct iwx_softc *); int iwx_scan_abort(struct iwx_softc *); int iwx_rs_rval2idx(uint8_t); uint16_t iwx_rs_ht_rates(struct iwx_softc *, struct ieee80211_node *, int); int iwx_rs_init(struct iwx_softc *, struct iwx_node *); int iwx_enable_data_tx_queues(struct iwx_softc *); int iwx_auth(struct iwx_softc *); int iwx_deauth(struct iwx_softc *); int iwx_assoc(struct iwx_softc *); int iwx_disassoc(struct iwx_softc *); int iwx_run(struct iwx_softc *); int iwx_run_stop(struct iwx_softc *); struct ieee80211_node *iwx_node_alloc(struct ieee80211com *); int iwx_set_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); void iwx_delete_key(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_key *); int iwx_media_change(struct ifnet *); void iwx_newstate_task(void *); int iwx_newstate(struct ieee80211com *, enum ieee80211_state, int); void iwx_endscan(struct iwx_softc *); void iwx_fill_sf_command(struct iwx_softc *, struct iwx_sf_cfg_cmd *, struct ieee80211_node *); int iwx_sf_config(struct iwx_softc *, int); int iwx_send_bt_init_conf(struct iwx_softc *); int iwx_send_soc_conf(struct iwx_softc *); int iwx_send_update_mcc_cmd(struct iwx_softc *, const char *); int iwx_send_temp_report_ths_cmd(struct iwx_softc *); int iwx_init_hw(struct iwx_softc *); int iwx_init(struct ifnet *); void iwx_start(struct ifnet *); void iwx_stop(struct ifnet *); void iwx_watchdog(struct ifnet *); int iwx_ioctl(struct ifnet *, u_long, caddr_t); const char *iwx_desc_lookup(uint32_t); void iwx_nic_error(struct iwx_softc *); void iwx_nic_umac_error(struct iwx_softc *); int iwx_detect_duplicate(struct iwx_softc *, struct mbuf *, struct iwx_rx_mpdu_desc *, struct ieee80211_rxinfo *); int iwx_is_sn_less(uint16_t, uint16_t, uint16_t); void iwx_release_frames(struct iwx_softc *, struct ieee80211_node *, struct iwx_rxba_data *, struct iwx_reorder_buffer *, uint16_t, struct mbuf_list *); int iwx_oldsn_workaround(struct iwx_softc *, struct ieee80211_node *, int, struct iwx_reorder_buffer *, uint32_t, uint32_t); int iwx_rx_reorder(struct iwx_softc *, struct mbuf *, int, struct iwx_rx_mpdu_desc *, int, int, uint32_t, struct ieee80211_rxinfo *, struct mbuf_list *); void iwx_rx_mpdu_mq(struct iwx_softc *, struct mbuf *, void *, size_t, struct mbuf_list *); int iwx_rx_pkt_valid(struct iwx_rx_packet *); void iwx_rx_pkt(struct iwx_softc *, struct iwx_rx_data *, struct mbuf_list *); void iwx_notif_intr(struct iwx_softc *); int iwx_intr(void *); int iwx_intr_msix(void *); int iwx_match(struct device *, void *, void *); int iwx_preinit(struct iwx_softc *); void iwx_attach_hook(struct device *); void iwx_attach(struct device *, struct device *, void *); void iwx_init_task(void *); int iwx_activate(struct device *, int); int iwx_resume(struct iwx_softc *); #if NBPFILTER > 0 void iwx_radiotap_attach(struct iwx_softc *); #endif uint8_t iwx_lookup_cmd_ver(struct iwx_softc *sc, uint8_t grp, uint8_t cmd) { const struct iwx_fw_cmd_version *entry; int i; for (i = 0; i < sc->n_cmd_versions; i++) { entry = &sc->cmd_versions[i]; if (entry->group == grp && entry->cmd == cmd) return entry->cmd_ver; } return IWX_FW_CMD_VER_UNKNOWN; } int iwx_is_mimo_ht_plcp(uint8_t ht_plcp) { return (ht_plcp != IWX_RATE_HT_SISO_MCS_INV_PLCP && (ht_plcp & IWX_RATE_HT_MCS_NSS_MSK)); } int iwx_is_mimo_mcs(int mcs) { int ridx = iwx_mcs2ridx[mcs]; return iwx_is_mimo_ht_plcp(iwx_rates[ridx].ht_plcp); } int iwx_store_cscheme(struct iwx_softc *sc, uint8_t *data, size_t dlen) { struct iwx_fw_cscheme_list *l = (void *)data; if (dlen < sizeof(*l) || dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) return EINVAL; /* we don't actually store anything for now, always use s/w crypto */ return 0; } int iwx_ctxt_info_alloc_dma(struct iwx_softc *sc, const struct iwx_fw_onesect *sec, struct iwx_dma_info *dram) { int err = iwx_dma_contig_alloc(sc->sc_dmat, dram, sec->fws_len, 0); if (err) { printf("%s: could not allocate context info DMA memory\n", DEVNAME(sc)); return err; } memcpy(dram->vaddr, sec->fws_data, sec->fws_len); return 0; } void iwx_ctxt_info_free_paging(struct iwx_softc *sc) { struct iwx_self_init_dram *dram = &sc->init_dram; int i; if (!dram->paging) return; /* free paging*/ for (i = 0; i < dram->paging_cnt; i++) iwx_dma_contig_free(dram->paging); free(dram->paging, M_DEVBUF, dram->paging_cnt * sizeof(*dram->paging)); dram->paging_cnt = 0; dram->paging = NULL; } int iwx_get_num_sections(const struct iwx_fw_sects *fws, int start) { int i = 0; while (start < fws->fw_count && fws->fw_sect[start].fws_devoff != IWX_CPU1_CPU2_SEPARATOR_SECTION && fws->fw_sect[start].fws_devoff != IWX_PAGING_SEPARATOR_SECTION) { start++; i++; } return i; } int iwx_init_fw_sec(struct iwx_softc *sc, const struct iwx_fw_sects *fws, struct iwx_context_info_dram *ctxt_dram) { struct iwx_self_init_dram *dram = &sc->init_dram; int i, ret, fw_cnt = 0; KASSERT(dram->paging == NULL); dram->lmac_cnt = iwx_get_num_sections(fws, 0); /* add 1 due to separator */ dram->umac_cnt = iwx_get_num_sections(fws, dram->lmac_cnt + 1); /* add 2 due to separators */ dram->paging_cnt = iwx_get_num_sections(fws, dram->lmac_cnt + dram->umac_cnt + 2); dram->fw = mallocarray(dram->umac_cnt + dram->lmac_cnt, sizeof(*dram->fw), M_DEVBUF, M_ZERO | M_NOWAIT); if (!dram->fw) { printf("%s: could not allocate memory for firmware sections\n", DEVNAME(sc)); return ENOMEM; } dram->paging = mallocarray(dram->paging_cnt, sizeof(*dram->paging), M_DEVBUF, M_ZERO | M_NOWAIT); if (!dram->paging) { printf("%s: could not allocate memory for firmware paging\n", DEVNAME(sc)); return ENOMEM; } /* initialize lmac sections */ for (i = 0; i < dram->lmac_cnt; i++) { ret = iwx_ctxt_info_alloc_dma(sc, &fws->fw_sect[i], &dram->fw[fw_cnt]); if (ret) return ret; ctxt_dram->lmac_img[i] = htole64(dram->fw[fw_cnt].paddr); DPRINTF(("%s: firmware LMAC section %d at 0x%llx size %lld\n", __func__, i, (unsigned long long)dram->fw[fw_cnt].paddr, (unsigned long long)dram->fw[fw_cnt].size)); fw_cnt++; } /* initialize umac sections */ for (i = 0; i < dram->umac_cnt; i++) { /* access FW with +1 to make up for lmac separator */ ret = iwx_ctxt_info_alloc_dma(sc, &fws->fw_sect[fw_cnt + 1], &dram->fw[fw_cnt]); if (ret) return ret; ctxt_dram->umac_img[i] = htole64(dram->fw[fw_cnt].paddr); DPRINTF(("%s: firmware UMAC section %d at 0x%llx size %lld\n", __func__, i, (unsigned long long)dram->fw[fw_cnt].paddr, (unsigned long long)dram->fw[fw_cnt].size)); fw_cnt++; } /* * Initialize paging. * Paging memory isn't stored in dram->fw as the umac and lmac - it is * stored separately. * This is since the timing of its release is different - * while fw memory can be released on alive, the paging memory can be * freed only when the device goes down. * Given that, the logic here in accessing the fw image is a bit * different - fw_cnt isn't changing so loop counter is added to it. */ for (i = 0; i < dram->paging_cnt; i++) { /* access FW with +2 to make up for lmac & umac separators */ int fw_idx = fw_cnt + i + 2; ret = iwx_ctxt_info_alloc_dma(sc, &fws->fw_sect[fw_idx], &dram->paging[i]); if (ret) return ret; ctxt_dram->virtual_img[i] = htole64(dram->paging[i].paddr); DPRINTF(("%s: firmware paging section %d at 0x%llx size %lld\n", __func__, i, (unsigned long long)dram->paging[i].paddr, (unsigned long long)dram->paging[i].size)); } return 0; } int iwx_alloc_fw_monitor_block(struct iwx_softc *sc, uint8_t max_power, uint8_t min_power) { struct iwx_dma_info *fw_mon = &sc->fw_mon; uint32_t size = 0; uint8_t power; int err; if (fw_mon->size) return 0; for (power = max_power; power >= min_power; power--) { size = (1 << power); err = iwx_dma_contig_alloc(sc->sc_dmat, fw_mon, size, 0); if (err) continue; DPRINTF(("%s: allocated 0x%08x bytes for firmware monitor.\n", DEVNAME(sc), size)); break; } if (err) { fw_mon->size = 0; return err; } if (power != max_power) DPRINTF(("%s: Sorry - debug buffer is only %luK while you requested %luK\n", DEVNAME(sc), (unsigned long)(1 << (power - 10)), (unsigned long)(1 << (max_power - 10)))); return 0; } int iwx_alloc_fw_monitor(struct iwx_softc *sc, uint8_t max_power) { if (!max_power) { /* default max_power is maximum */ max_power = 26; } else { max_power += 11; } if (max_power > 26) { DPRINTF(("%s: External buffer size for monitor is too big %d, " "check the FW TLV\n", DEVNAME(sc), max_power)); return 0; } if (sc->fw_mon.size) return 0; return iwx_alloc_fw_monitor_block(sc, max_power, 11); } int iwx_apply_debug_destination(struct iwx_softc *sc) { struct iwx_fw_dbg_dest_tlv_v1 *dest_v1; int i, err; uint8_t mon_mode, size_power, base_shift, end_shift; uint32_t base_reg, end_reg; dest_v1 = sc->sc_fw.dbg_dest_tlv_v1; mon_mode = dest_v1->monitor_mode; size_power = dest_v1->size_power; base_reg = le32toh(dest_v1->base_reg); end_reg = le32toh(dest_v1->end_reg); base_shift = dest_v1->base_shift; end_shift = dest_v1->end_shift; DPRINTF(("%s: applying debug destination %d\n", DEVNAME(sc), mon_mode)); if (mon_mode == EXTERNAL_MODE) { err = iwx_alloc_fw_monitor(sc, size_power); if (err) return err; } if (!iwx_nic_lock(sc)) return EBUSY; for (i = 0; i < sc->sc_fw.n_dest_reg; i++) { uint32_t addr, val; uint8_t op; addr = le32toh(dest_v1->reg_ops[i].addr); val = le32toh(dest_v1->reg_ops[i].val); op = dest_v1->reg_ops[i].op; DPRINTF(("%s: op=%u addr=%u val=%u\n", __func__, op, addr, val)); switch (op) { case CSR_ASSIGN: IWX_WRITE(sc, addr, val); break; case CSR_SETBIT: IWX_SETBITS(sc, addr, (1 << val)); break; case CSR_CLEARBIT: IWX_CLRBITS(sc, addr, (1 << val)); break; case PRPH_ASSIGN: iwx_write_prph(sc, addr, val); break; case PRPH_SETBIT: iwx_set_bits_prph(sc, addr, (1 << val)); break; case PRPH_CLEARBIT: iwx_clear_bits_prph(sc, addr, (1 << val)); break; case PRPH_BLOCKBIT: if (iwx_read_prph(sc, addr) & (1 << val)) goto monitor; break; default: DPRINTF(("%s: FW debug - unknown OP %d\n", DEVNAME(sc), op)); break; } } monitor: if (mon_mode == EXTERNAL_MODE && sc->fw_mon.size) { iwx_write_prph(sc, le32toh(base_reg), sc->fw_mon.paddr >> base_shift); iwx_write_prph(sc, end_reg, (sc->fw_mon.paddr + sc->fw_mon.size - 256) >> end_shift); } iwx_nic_unlock(sc); return 0; } int iwx_ctxt_info_init(struct iwx_softc *sc, const struct iwx_fw_sects *fws) { struct iwx_context_info *ctxt_info; struct iwx_context_info_rbd_cfg *rx_cfg; uint32_t control_flags = 0, rb_size; uint64_t paddr; int err; ctxt_info = sc->ctxt_info_dma.vaddr; ctxt_info->version.version = 0; ctxt_info->version.mac_id = htole16((uint16_t)IWX_READ(sc, IWX_CSR_HW_REV)); /* size is in DWs */ ctxt_info->version.size = htole16(sizeof(*ctxt_info) / 4); if (sc->sc_device_family >= IWX_DEVICE_FAMILY_22560) rb_size = IWX_CTXT_INFO_RB_SIZE_2K; else rb_size = IWX_CTXT_INFO_RB_SIZE_4K; KASSERT(IWX_RX_QUEUE_CB_SIZE(IWX_MQ_RX_TABLE_SIZE) < 0xF); control_flags = IWX_CTXT_INFO_TFD_FORMAT_LONG | (IWX_RX_QUEUE_CB_SIZE(IWX_MQ_RX_TABLE_SIZE) << IWX_CTXT_INFO_RB_CB_SIZE_POS) | (rb_size << IWX_CTXT_INFO_RB_SIZE_POS); ctxt_info->control.control_flags = htole32(control_flags); /* initialize RX default queue */ rx_cfg = &ctxt_info->rbd_cfg; rx_cfg->free_rbd_addr = htole64(sc->rxq.free_desc_dma.paddr); rx_cfg->used_rbd_addr = htole64(sc->rxq.used_desc_dma.paddr); rx_cfg->status_wr_ptr = htole64(sc->rxq.stat_dma.paddr); /* initialize TX command queue */ ctxt_info->hcmd_cfg.cmd_queue_addr = htole64(sc->txq[IWX_DQA_CMD_QUEUE].desc_dma.paddr); ctxt_info->hcmd_cfg.cmd_queue_size = IWX_TFD_QUEUE_CB_SIZE(IWX_TX_RING_COUNT); /* allocate ucode sections in dram and set addresses */ err = iwx_init_fw_sec(sc, fws, &ctxt_info->dram); if (err) { iwx_ctxt_info_free_fw_img(sc); return err; } /* Configure debug, if exists */ if (sc->sc_fw.dbg_dest_tlv_v1) { err = iwx_apply_debug_destination(sc); if (err) { iwx_ctxt_info_free_fw_img(sc); return err; } } /* * Write the context info DMA base address. The device expects a * 64-bit address but a simple bus_space_write_8 to this register * won't work on some devices, such as the AX201. */ paddr = sc->ctxt_info_dma.paddr; IWX_WRITE(sc, IWX_CSR_CTXT_INFO_BA, paddr & 0xffffffff); IWX_WRITE(sc, IWX_CSR_CTXT_INFO_BA + 4, paddr >> 32); /* kick FW self load */ if (!iwx_nic_lock(sc)) return EBUSY; iwx_write_prph(sc, IWX_UREG_CPU_INIT_RUN, 1); iwx_nic_unlock(sc); /* Context info will be released upon alive or failure to get one */ return 0; } void iwx_ctxt_info_free_fw_img(struct iwx_softc *sc) { struct iwx_self_init_dram *dram = &sc->init_dram; int i; if (!dram->fw) return; for (i = 0; i < dram->lmac_cnt + dram->umac_cnt; i++) iwx_dma_contig_free(&dram->fw[i]); free(dram->fw, M_DEVBUF, (dram->lmac_cnt + dram->umac_cnt) * sizeof(*dram->fw)); dram->lmac_cnt = 0; dram->umac_cnt = 0; dram->fw = NULL; } int iwx_firmware_store_section(struct iwx_softc *sc, enum iwx_ucode_type type, uint8_t *data, size_t dlen) { struct iwx_fw_sects *fws; struct iwx_fw_onesect *fwone; if (type >= IWX_UCODE_TYPE_MAX) return EINVAL; if (dlen < sizeof(uint32_t)) return EINVAL; fws = &sc->sc_fw.fw_sects[type]; DPRINTF(("%s: ucode type %d section %d\n", DEVNAME(sc), type, fws->fw_count)); if (fws->fw_count >= IWX_UCODE_SECT_MAX) return EINVAL; fwone = &fws->fw_sect[fws->fw_count]; /* first 32bit are device load offset */ memcpy(&fwone->fws_devoff, data, sizeof(uint32_t)); /* rest is data */ fwone->fws_data = data + sizeof(uint32_t); fwone->fws_len = dlen - sizeof(uint32_t); fws->fw_count++; fws->fw_totlen += fwone->fws_len; return 0; } #define IWX_DEFAULT_SCAN_CHANNELS 40 /* Newer firmware might support more channels. Raise this value if needed. */ #define IWX_MAX_SCAN_CHANNELS 52 /* as of 8265-34 firmware image */ struct iwx_tlv_calib_data { uint32_t ucode_type; struct iwx_tlv_calib_ctrl calib; } __packed; int iwx_set_default_calib(struct iwx_softc *sc, const void *data) { const struct iwx_tlv_calib_data *def_calib = data; uint32_t ucode_type = le32toh(def_calib->ucode_type); if (ucode_type >= IWX_UCODE_TYPE_MAX) return EINVAL; sc->sc_default_calib[ucode_type].flow_trigger = def_calib->calib.flow_trigger; sc->sc_default_calib[ucode_type].event_trigger = def_calib->calib.event_trigger; return 0; } void iwx_fw_info_free(struct iwx_fw_info *fw) { free(fw->fw_rawdata, M_DEVBUF, fw->fw_rawsize); fw->fw_rawdata = NULL; fw->fw_rawsize = 0; /* don't touch fw->fw_status */ memset(fw->fw_sects, 0, sizeof(fw->fw_sects)); } #define IWX_FW_ADDR_CACHE_CONTROL 0xC0000000 int iwx_read_firmware(struct iwx_softc *sc) { struct iwx_fw_info *fw = &sc->sc_fw; struct iwx_tlv_ucode_header *uhdr; struct iwx_ucode_tlv tlv; uint32_t tlv_type; uint8_t *data; int err; size_t len; if (fw->fw_status == IWX_FW_STATUS_DONE) return 0; while (fw->fw_status == IWX_FW_STATUS_INPROGRESS) tsleep_nsec(&sc->sc_fw, 0, "iwxfwp", INFSLP); fw->fw_status = IWX_FW_STATUS_INPROGRESS; if (fw->fw_rawdata != NULL) iwx_fw_info_free(fw); err = loadfirmware(sc->sc_fwname, (u_char **)&fw->fw_rawdata, &fw->fw_rawsize); if (err) { printf("%s: could not read firmware %s (error %d)\n", DEVNAME(sc), sc->sc_fwname, err); goto out; } sc->sc_capaflags = 0; sc->sc_capa_n_scan_channels = IWX_DEFAULT_SCAN_CHANNELS; memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa)); uhdr = (void *)fw->fw_rawdata; if (*(uint32_t *)fw->fw_rawdata != 0 || le32toh(uhdr->magic) != IWX_TLV_UCODE_MAGIC) { printf("%s: invalid firmware %s\n", DEVNAME(sc), sc->sc_fwname); err = EINVAL; goto out; } snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)", IWX_UCODE_MAJOR(le32toh(uhdr->ver)), IWX_UCODE_MINOR(le32toh(uhdr->ver)), IWX_UCODE_API(le32toh(uhdr->ver))); data = uhdr->data; len = fw->fw_rawsize - sizeof(*uhdr); while (len >= sizeof(tlv)) { size_t tlv_len; void *tlv_data; memcpy(&tlv, data, sizeof(tlv)); tlv_len = le32toh(tlv.length); tlv_type = le32toh(tlv.type); len -= sizeof(tlv); data += sizeof(tlv); tlv_data = data; if (len < tlv_len) { printf("%s: firmware too short: %zu bytes\n", DEVNAME(sc), len); err = EINVAL; goto parse_out; } switch (tlv_type) { case IWX_UCODE_TLV_PROBE_MAX_LEN: if (tlv_len < sizeof(uint32_t)) { err = EINVAL; goto parse_out; } sc->sc_capa_max_probe_len = le32toh(*(uint32_t *)tlv_data); if (sc->sc_capa_max_probe_len > IWX_SCAN_OFFLOAD_PROBE_REQ_SIZE) { err = EINVAL; goto parse_out; } break; case IWX_UCODE_TLV_PAN: if (tlv_len) { err = EINVAL; goto parse_out; } sc->sc_capaflags |= IWX_UCODE_TLV_FLAGS_PAN; break; case IWX_UCODE_TLV_FLAGS: if (tlv_len < sizeof(uint32_t)) { err = EINVAL; goto parse_out; } /* * Apparently there can be many flags, but Linux driver * parses only the first one, and so do we. * * XXX: why does this override IWX_UCODE_TLV_PAN? * Intentional or a bug? Observations from * current firmware file: * 1) TLV_PAN is parsed first * 2) TLV_FLAGS contains TLV_FLAGS_PAN * ==> this resets TLV_PAN to itself... hnnnk */ sc->sc_capaflags = le32toh(*(uint32_t *)tlv_data); break; case IWX_UCODE_TLV_CSCHEME: err = iwx_store_cscheme(sc, tlv_data, tlv_len); if (err) goto parse_out; break; case IWX_UCODE_TLV_NUM_OF_CPU: { uint32_t num_cpu; if (tlv_len != sizeof(uint32_t)) { err = EINVAL; goto parse_out; } num_cpu = le32toh(*(uint32_t *)tlv_data); if (num_cpu < 1 || num_cpu > 2) { err = EINVAL; goto parse_out; } break; } case IWX_UCODE_TLV_SEC_RT: err = iwx_firmware_store_section(sc, IWX_UCODE_TYPE_REGULAR, tlv_data, tlv_len); if (err) goto parse_out; break; case IWX_UCODE_TLV_SEC_INIT: err = iwx_firmware_store_section(sc, IWX_UCODE_TYPE_INIT, tlv_data, tlv_len); if (err) goto parse_out; break; case IWX_UCODE_TLV_SEC_WOWLAN: err = iwx_firmware_store_section(sc, IWX_UCODE_TYPE_WOW, tlv_data, tlv_len); if (err) goto parse_out; break; case IWX_UCODE_TLV_DEF_CALIB: if (tlv_len != sizeof(struct iwx_tlv_calib_data)) { err = EINVAL; goto parse_out; } err = iwx_set_default_calib(sc, tlv_data); if (err) goto parse_out; break; case IWX_UCODE_TLV_PHY_SKU: if (tlv_len != sizeof(uint32_t)) { err = EINVAL; goto parse_out; } sc->sc_fw_phy_config = le32toh(*(uint32_t *)tlv_data); break; case IWX_UCODE_TLV_API_CHANGES_SET: { struct iwx_ucode_api *api; int idx, i; if (tlv_len != sizeof(*api)) { err = EINVAL; goto parse_out; } api = (struct iwx_ucode_api *)tlv_data; idx = le32toh(api->api_index); if (idx >= howmany(IWX_NUM_UCODE_TLV_API, 32)) { err = EINVAL; goto parse_out; } for (i = 0; i < 32; i++) { if ((le32toh(api->api_flags) & (1 << i)) == 0) continue; setbit(sc->sc_ucode_api, i + (32 * idx)); } break; } case IWX_UCODE_TLV_ENABLED_CAPABILITIES: { struct iwx_ucode_capa *capa; int idx, i; if (tlv_len != sizeof(*capa)) { err = EINVAL; goto parse_out; } capa = (struct iwx_ucode_capa *)tlv_data; idx = le32toh(capa->api_index); if (idx >= howmany(IWX_NUM_UCODE_TLV_CAPA, 32)) { goto parse_out; } for (i = 0; i < 32; i++) { if ((le32toh(capa->api_capa) & (1 << i)) == 0) continue; setbit(sc->sc_enabled_capa, i + (32 * idx)); } break; } case IWX_UCODE_TLV_SDIO_ADMA_ADDR: case IWX_UCODE_TLV_FW_GSCAN_CAPA: /* ignore, not used by current driver */ break; case IWX_UCODE_TLV_SEC_RT_USNIFFER: err = iwx_firmware_store_section(sc, IWX_UCODE_TYPE_REGULAR_USNIFFER, tlv_data, tlv_len); if (err) goto parse_out; break; case IWX_UCODE_TLV_PAGING: if (tlv_len != sizeof(uint32_t)) { err = EINVAL; goto parse_out; } break; case IWX_UCODE_TLV_N_SCAN_CHANNELS: if (tlv_len != sizeof(uint32_t)) { err = EINVAL; goto parse_out; } sc->sc_capa_n_scan_channels = le32toh(*(uint32_t *)tlv_data); if (sc->sc_capa_n_scan_channels > IWX_MAX_SCAN_CHANNELS) { err = ERANGE; goto parse_out; } break; case IWX_UCODE_TLV_FW_VERSION: if (tlv_len != sizeof(uint32_t) * 3) { err = EINVAL; goto parse_out; } snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%u.%u.%u", le32toh(((uint32_t *)tlv_data)[0]), le32toh(((uint32_t *)tlv_data)[1]), le32toh(((uint32_t *)tlv_data)[2])); break; case IWX_UCODE_TLV_FW_DBG_DEST: { struct iwx_fw_dbg_dest_tlv_v1 *dest_v1 = NULL; fw->dbg_dest_ver = (uint8_t *)tlv_data; if (*fw->dbg_dest_ver != 0) { err = EINVAL; goto parse_out; } if (fw->dbg_dest_tlv_init) break; fw->dbg_dest_tlv_init = true; dest_v1 = (void *)tlv_data; fw->dbg_dest_tlv_v1 = dest_v1; fw->n_dest_reg = tlv_len - offsetof(struct iwx_fw_dbg_dest_tlv_v1, reg_ops); fw->n_dest_reg /= sizeof(dest_v1->reg_ops[0]); DPRINTF(("%s: found debug dest; n_dest_reg=%d\n", __func__, fw->n_dest_reg)); break; } case IWX_UCODE_TLV_FW_DBG_CONF: { struct iwx_fw_dbg_conf_tlv *conf = (void *)tlv_data; if (!fw->dbg_dest_tlv_init || conf->id >= nitems(fw->dbg_conf_tlv) || fw->dbg_conf_tlv[conf->id] != NULL) break; DPRINTF(("Found debug configuration: %d\n", conf->id)); fw->dbg_conf_tlv[conf->id] = conf; fw->dbg_conf_tlv_len[conf->id] = tlv_len; break; } case IWX_UCODE_TLV_UMAC_DEBUG_ADDRS: { struct iwx_umac_debug_addrs *dbg_ptrs = (void *)tlv_data; if (tlv_len != sizeof(*dbg_ptrs)) { err = EINVAL; goto parse_out; } if (sc->sc_device_family < IWX_DEVICE_FAMILY_22000) break; sc->sc_uc.uc_umac_error_event_table = le32toh(dbg_ptrs->error_info_addr) & ~IWX_FW_ADDR_CACHE_CONTROL; sc->sc_uc.error_event_table_tlv_status |= IWX_ERROR_EVENT_TABLE_UMAC; break; } case IWX_UCODE_TLV_LMAC_DEBUG_ADDRS: { struct iwx_lmac_debug_addrs *dbg_ptrs = (void *)tlv_data; if (tlv_len != sizeof(*dbg_ptrs)) { err = EINVAL; goto parse_out; } if (sc->sc_device_family < IWX_DEVICE_FAMILY_22000) break; sc->sc_uc.uc_lmac_error_event_table[0] = le32toh(dbg_ptrs->error_event_table_ptr) & ~IWX_FW_ADDR_CACHE_CONTROL; sc->sc_uc.error_event_table_tlv_status |= IWX_ERROR_EVENT_TABLE_LMAC1; break; } case IWX_UCODE_TLV_FW_MEM_SEG: break; case IWX_UCODE_TLV_CMD_VERSIONS: if (tlv_len % sizeof(struct iwx_fw_cmd_version)) { tlv_len /= sizeof(struct iwx_fw_cmd_version); tlv_len *= sizeof(struct iwx_fw_cmd_version); } if (sc->n_cmd_versions != 0) { err = EINVAL; goto parse_out; } if (tlv_len > sizeof(sc->cmd_versions)) { err = EINVAL; goto parse_out; } memcpy(&sc->cmd_versions[0], tlv_data, tlv_len); sc->n_cmd_versions = tlv_len / sizeof(struct iwx_fw_cmd_version); break; case IWX_UCODE_TLV_FW_RECOVERY_INFO: break; case IWX_UCODE_TLV_FW_FSEQ_VERSION: break; /* undocumented TLVs found in iwx-cc-a0-46 image */ case 58: case 0x1000003: case 0x1000004: break; /* undocumented TLVs found in iwx-cc-a0-48 image */ case 0x1000000: case 0x1000002: break; default: err = EINVAL; goto parse_out; } len -= roundup(tlv_len, 4); data += roundup(tlv_len, 4); } KASSERT(err == 0); parse_out: if (err) { printf("%s: firmware parse error %d, " "section type %d\n", DEVNAME(sc), err, tlv_type); } out: if (err) { fw->fw_status = IWX_FW_STATUS_NONE; if (fw->fw_rawdata != NULL) iwx_fw_info_free(fw); } else fw->fw_status = IWX_FW_STATUS_DONE; wakeup(&sc->sc_fw); return err; } uint32_t iwx_read_prph(struct iwx_softc *sc, uint32_t addr) { iwx_nic_assert_locked(sc); IWX_WRITE(sc, IWX_HBUS_TARG_PRPH_RADDR, ((addr & 0x000fffff) | (3 << 24))); IWX_BARRIER_READ_WRITE(sc); return IWX_READ(sc, IWX_HBUS_TARG_PRPH_RDAT); } void iwx_write_prph(struct iwx_softc *sc, uint32_t addr, uint32_t val) { iwx_nic_assert_locked(sc); IWX_WRITE(sc, IWX_HBUS_TARG_PRPH_WADDR, ((addr & 0x000fffff) | (3 << 24))); IWX_BARRIER_WRITE(sc); IWX_WRITE(sc, IWX_HBUS_TARG_PRPH_WDAT, val); } void iwx_write_prph64(struct iwx_softc *sc, uint64_t addr, uint64_t val) { iwx_write_prph(sc, (uint32_t)addr, val & 0xffffffff); iwx_write_prph(sc, (uint32_t)addr + 4, val >> 32); } int iwx_read_mem(struct iwx_softc *sc, uint32_t addr, void *buf, int dwords) { int offs, err = 0; uint32_t *vals = buf; if (iwx_nic_lock(sc)) { IWX_WRITE(sc, IWX_HBUS_TARG_MEM_RADDR, addr); for (offs = 0; offs < dwords; offs++) vals[offs] = le32toh(IWX_READ(sc, IWX_HBUS_TARG_MEM_RDAT)); iwx_nic_unlock(sc); } else { err = EBUSY; } return err; } int iwx_write_mem(struct iwx_softc *sc, uint32_t addr, const void *buf, int dwords) { int offs; const uint32_t *vals = buf; if (iwx_nic_lock(sc)) { IWX_WRITE(sc, IWX_HBUS_TARG_MEM_WADDR, addr); /* WADDR auto-increments */ for (offs = 0; offs < dwords; offs++) { uint32_t val = vals ? vals[offs] : 0; IWX_WRITE(sc, IWX_HBUS_TARG_MEM_WDAT, val); } iwx_nic_unlock(sc); } else { return EBUSY; } return 0; } int iwx_write_mem32(struct iwx_softc *sc, uint32_t addr, uint32_t val) { return iwx_write_mem(sc, addr, &val, 1); } int iwx_poll_bit(struct iwx_softc *sc, int reg, uint32_t bits, uint32_t mask, int timo) { for (;;) { if ((IWX_READ(sc, reg) & mask) == (bits & mask)) { return 1; } if (timo < 10) { return 0; } timo -= 10; DELAY(10); } } int iwx_nic_lock(struct iwx_softc *sc) { if (sc->sc_nic_locks > 0) { iwx_nic_assert_locked(sc); sc->sc_nic_locks++; return 1; /* already locked */ } IWX_SETBITS(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); DELAY(2); if (iwx_poll_bit(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | IWX_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP, 150000)) { sc->sc_nic_locks++; return 1; } printf("%s: acquiring device failed\n", DEVNAME(sc)); return 0; } void iwx_nic_assert_locked(struct iwx_softc *sc) { uint32_t reg = IWX_READ(sc, IWX_CSR_GP_CNTRL); if ((reg & IWX_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY) == 0) panic("%s: mac clock not ready", DEVNAME(sc)); if (reg & IWX_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP) panic("%s: mac gone to sleep", DEVNAME(sc)); if (sc->sc_nic_locks <= 0) panic("%s: nic locks counter %d", DEVNAME(sc), sc->sc_nic_locks); } void iwx_nic_unlock(struct iwx_softc *sc) { if (sc->sc_nic_locks > 0) { if (--sc->sc_nic_locks == 0) IWX_CLRBITS(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); } else printf("%s: NIC already unlocked\n", DEVNAME(sc)); } void iwx_set_bits_mask_prph(struct iwx_softc *sc, uint32_t reg, uint32_t bits, uint32_t mask) { uint32_t val; /* XXX: no error path? */ if (iwx_nic_lock(sc)) { val = iwx_read_prph(sc, reg) & mask; val |= bits; iwx_write_prph(sc, reg, val); iwx_nic_unlock(sc); } } void iwx_set_bits_prph(struct iwx_softc *sc, uint32_t reg, uint32_t bits) { iwx_set_bits_mask_prph(sc, reg, bits, ~0); } void iwx_clear_bits_prph(struct iwx_softc *sc, uint32_t reg, uint32_t bits) { iwx_set_bits_mask_prph(sc, reg, 0, ~bits); } int iwx_dma_contig_alloc(bus_dma_tag_t tag, struct iwx_dma_info *dma, bus_size_t size, bus_size_t alignment) { int nsegs, err; caddr_t va; dma->tag = tag; dma->size = size; err = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->map); if (err) goto fail; err = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (err) goto fail; err = bus_dmamem_map(tag, &dma->seg, 1, size, &va, BUS_DMA_NOWAIT); if (err) goto fail; dma->vaddr = va; err = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, BUS_DMA_NOWAIT); if (err) goto fail; memset(dma->vaddr, 0, size); bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); dma->paddr = dma->map->dm_segs[0].ds_addr; return 0; fail: iwx_dma_contig_free(dma); return err; } void iwx_dma_contig_free(struct iwx_dma_info *dma) { if (dma->map != NULL) { if (dma->vaddr != NULL) { bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); bus_dmamem_free(dma->tag, &dma->seg, 1); dma->vaddr = NULL; } bus_dmamap_destroy(dma->tag, dma->map); dma->map = NULL; } } int iwx_alloc_rx_ring(struct iwx_softc *sc, struct iwx_rx_ring *ring) { bus_size_t size; int i, err; ring->cur = 0; /* Allocate RX descriptors (256-byte aligned). */ size = IWX_RX_MQ_RING_COUNT * sizeof(uint64_t); err = iwx_dma_contig_alloc(sc->sc_dmat, &ring->free_desc_dma, size, 256); if (err) { printf("%s: could not allocate RX ring DMA memory\n", DEVNAME(sc)); goto fail; } ring->desc = ring->free_desc_dma.vaddr; /* Allocate RX status area (16-byte aligned). */ err = iwx_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, sizeof(*ring->stat), 16); if (err) { printf("%s: could not allocate RX status DMA memory\n", DEVNAME(sc)); goto fail; } ring->stat = ring->stat_dma.vaddr; size = IWX_RX_MQ_RING_COUNT * sizeof(uint32_t); err = iwx_dma_contig_alloc(sc->sc_dmat, &ring->used_desc_dma, size, 256); if (err) { printf("%s: could not allocate RX ring DMA memory\n", DEVNAME(sc)); goto fail; } for (i = 0; i < IWX_RX_MQ_RING_COUNT; i++) { struct iwx_rx_data *data = &ring->data[i]; memset(data, 0, sizeof(*data)); err = bus_dmamap_create(sc->sc_dmat, IWX_RBUF_SIZE, 1, IWX_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &data->map); if (err) { printf("%s: could not create RX buf DMA map\n", DEVNAME(sc)); goto fail; } err = iwx_rx_addbuf(sc, IWX_RBUF_SIZE, i); if (err) goto fail; } return 0; fail: iwx_free_rx_ring(sc, ring); return err; } void iwx_disable_rx_dma(struct iwx_softc *sc) { int ntries; if (iwx_nic_lock(sc)) { iwx_write_prph(sc, IWX_RFH_RXF_DMA_CFG, 0); for (ntries = 0; ntries < 1000; ntries++) { if (iwx_read_prph(sc, IWX_RFH_GEN_STATUS) & IWX_RXF_DMA_IDLE) break; DELAY(10); } iwx_nic_unlock(sc); } } void iwx_reset_rx_ring(struct iwx_softc *sc, struct iwx_rx_ring *ring) { ring->cur = 0; bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0, ring->stat_dma.size, BUS_DMASYNC_PREWRITE); memset(ring->stat, 0, sizeof(*ring->stat)); bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0, ring->stat_dma.size, BUS_DMASYNC_POSTWRITE); } void iwx_free_rx_ring(struct iwx_softc *sc, struct iwx_rx_ring *ring) { int i; iwx_dma_contig_free(&ring->free_desc_dma); iwx_dma_contig_free(&ring->stat_dma); iwx_dma_contig_free(&ring->used_desc_dma); for (i = 0; i < IWX_RX_MQ_RING_COUNT; i++) { struct iwx_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } int iwx_alloc_tx_ring(struct iwx_softc *sc, struct iwx_tx_ring *ring, int qid) { bus_addr_t paddr; bus_size_t size; int i, err; ring->qid = qid; ring->queued = 0; ring->cur = 0; ring->tail = 0; /* Allocate TX descriptors (256-byte aligned). */ size = IWX_TX_RING_COUNT * sizeof(struct iwx_tfh_tfd); err = iwx_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); if (err) { printf("%s: could not allocate TX ring DMA memory\n", DEVNAME(sc)); goto fail; } ring->desc = ring->desc_dma.vaddr; /* * There is no need to allocate DMA buffers for unused rings. * The hardware supports up to 31 Tx rings which is more * than we currently need. * * In DQA mode we use 1 command queue + 4 DQA mgmt/data queues. * The command is queue 0 (sc->txq[0]), and 4 mgmt/data frame queues * are sc->tqx[ac + IWX_DQA_AUX_QUEUE + 1], i.e. sc->txq[2:5], * in order to provide one queue per EDCA category. * * Tx aggregation will require additional queues (one queue per TID * for which aggregation is enabled) but we do not implement this yet. */ if (qid > IWX_DQA_MIN_MGMT_QUEUE) return 0; err = iwx_dma_contig_alloc(sc->sc_dmat, &ring->bc_tbl, sizeof(struct iwx_agn_scd_bc_tbl), 0); if (err) { printf("%s: could not allocate byte count table DMA memory\n", DEVNAME(sc)); goto fail; } size = IWX_TX_RING_COUNT * sizeof(struct iwx_device_cmd); err = iwx_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, IWX_FIRST_TB_SIZE_ALIGN); if (err) { printf("%s: could not allocate cmd DMA memory\n", DEVNAME(sc)); goto fail; } ring->cmd = ring->cmd_dma.vaddr; paddr = ring->cmd_dma.paddr; for (i = 0; i < IWX_TX_RING_COUNT; i++) { struct iwx_tx_data *data = &ring->data[i]; size_t mapsize; data->cmd_paddr = paddr; paddr += sizeof(struct iwx_device_cmd); /* FW commands may require more mapped space than packets. */ if (qid == IWX_DQA_CMD_QUEUE) mapsize = (sizeof(struct iwx_cmd_header) + IWX_MAX_CMD_PAYLOAD_SIZE); else mapsize = MCLBYTES; err = bus_dmamap_create(sc->sc_dmat, mapsize, IWX_TFH_NUM_TBS - 2, mapsize, 0, BUS_DMA_NOWAIT, &data->map); if (err) { printf("%s: could not create TX buf DMA map\n", DEVNAME(sc)); goto fail; } } KASSERT(paddr == ring->cmd_dma.paddr + size); return 0; fail: iwx_free_tx_ring(sc, ring); return err; } void iwx_reset_tx_ring(struct iwx_softc *sc, struct iwx_tx_ring *ring) { int i; for (i = 0; i < IWX_TX_RING_COUNT; i++) { struct iwx_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } } /* Clear byte count table. */ memset(ring->bc_tbl.vaddr, 0, ring->bc_tbl.size); /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, ring->desc_dma.size, BUS_DMASYNC_PREWRITE); sc->qfullmsk &= ~(1 << ring->qid); ring->queued = 0; ring->cur = 0; ring->tail = 0; } void iwx_free_tx_ring(struct iwx_softc *sc, struct iwx_tx_ring *ring) { int i; iwx_dma_contig_free(&ring->desc_dma); iwx_dma_contig_free(&ring->cmd_dma); iwx_dma_contig_free(&ring->bc_tbl); for (i = 0; i < IWX_TX_RING_COUNT; i++) { struct iwx_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } void iwx_enable_rfkill_int(struct iwx_softc *sc) { if (!sc->sc_msix) { sc->sc_intmask = IWX_CSR_INT_BIT_RF_KILL; IWX_WRITE(sc, IWX_CSR_INT_MASK, sc->sc_intmask); } else { IWX_WRITE(sc, IWX_CSR_MSIX_FH_INT_MASK_AD, sc->sc_fh_init_mask); IWX_WRITE(sc, IWX_CSR_MSIX_HW_INT_MASK_AD, ~IWX_MSIX_HW_INT_CAUSES_REG_RF_KILL); sc->sc_hw_mask = IWX_MSIX_HW_INT_CAUSES_REG_RF_KILL; } IWX_SETBITS(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_RFKILL_WAKE_L1A_EN); } int iwx_check_rfkill(struct iwx_softc *sc) { uint32_t v; int s; int rv; s = splnet(); /* * "documentation" is not really helpful here: * 27: HW_RF_KILL_SW * Indicates state of (platform's) hardware RF-Kill switch * * But apparently when it's off, it's on ... */ v = IWX_READ(sc, IWX_CSR_GP_CNTRL); rv = (v & IWX_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) == 0; if (rv) { sc->sc_flags |= IWX_FLAG_RFKILL; } else { sc->sc_flags &= ~IWX_FLAG_RFKILL; } splx(s); return rv; } void iwx_enable_interrupts(struct iwx_softc *sc) { if (!sc->sc_msix) { sc->sc_intmask = IWX_CSR_INI_SET_MASK; IWX_WRITE(sc, IWX_CSR_INT_MASK, sc->sc_intmask); } else { /* * fh/hw_mask keeps all the unmasked causes. * Unlike msi, in msix cause is enabled when it is unset. */ sc->sc_hw_mask = sc->sc_hw_init_mask; sc->sc_fh_mask = sc->sc_fh_init_mask; IWX_WRITE(sc, IWX_CSR_MSIX_FH_INT_MASK_AD, ~sc->sc_fh_mask); IWX_WRITE(sc, IWX_CSR_MSIX_HW_INT_MASK_AD, ~sc->sc_hw_mask); } } void iwx_enable_fwload_interrupt(struct iwx_softc *sc) { if (!sc->sc_msix) { sc->sc_intmask = IWX_CSR_INT_BIT_ALIVE | IWX_CSR_INT_BIT_FH_RX; IWX_WRITE(sc, IWX_CSR_INT_MASK, sc->sc_intmask); } else { IWX_WRITE(sc, IWX_CSR_MSIX_HW_INT_MASK_AD, ~IWX_MSIX_HW_INT_CAUSES_REG_ALIVE); sc->sc_hw_mask = IWX_MSIX_HW_INT_CAUSES_REG_ALIVE; /* * Leave all the FH causes enabled to get the ALIVE * notification. */ IWX_WRITE(sc, IWX_CSR_MSIX_FH_INT_MASK_AD, ~sc->sc_fh_init_mask); sc->sc_fh_mask = sc->sc_fh_init_mask; } } void iwx_restore_interrupts(struct iwx_softc *sc) { IWX_WRITE(sc, IWX_CSR_INT_MASK, sc->sc_intmask); } void iwx_disable_interrupts(struct iwx_softc *sc) { int s = splnet(); if (!sc->sc_msix) { IWX_WRITE(sc, IWX_CSR_INT_MASK, 0); /* acknowledge all interrupts */ IWX_WRITE(sc, IWX_CSR_INT, ~0); IWX_WRITE(sc, IWX_CSR_FH_INT_STATUS, ~0); } else { IWX_WRITE(sc, IWX_CSR_MSIX_FH_INT_MASK_AD, sc->sc_fh_init_mask); IWX_WRITE(sc, IWX_CSR_MSIX_HW_INT_MASK_AD, sc->sc_hw_init_mask); } splx(s); } void iwx_ict_reset(struct iwx_softc *sc) { iwx_disable_interrupts(sc); memset(sc->ict_dma.vaddr, 0, IWX_ICT_SIZE); sc->ict_cur = 0; /* Set physical address of ICT (4KB aligned). */ IWX_WRITE(sc, IWX_CSR_DRAM_INT_TBL_REG, IWX_CSR_DRAM_INT_TBL_ENABLE | IWX_CSR_DRAM_INIT_TBL_WRAP_CHECK | IWX_CSR_DRAM_INIT_TBL_WRITE_POINTER | sc->ict_dma.paddr >> IWX_ICT_PADDR_SHIFT); /* Switch to ICT interrupt mode in driver. */ sc->sc_flags |= IWX_FLAG_USE_ICT; IWX_WRITE(sc, IWX_CSR_INT, ~0); iwx_enable_interrupts(sc); } #define IWX_HW_READY_TIMEOUT 50 int iwx_set_hw_ready(struct iwx_softc *sc) { int ready; IWX_SETBITS(sc, IWX_CSR_HW_IF_CONFIG_REG, IWX_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); ready = iwx_poll_bit(sc, IWX_CSR_HW_IF_CONFIG_REG, IWX_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, IWX_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, IWX_HW_READY_TIMEOUT); if (ready) IWX_SETBITS(sc, IWX_CSR_MBOX_SET_REG, IWX_CSR_MBOX_SET_REG_OS_ALIVE); return ready; } #undef IWX_HW_READY_TIMEOUT int iwx_prepare_card_hw(struct iwx_softc *sc) { int t = 0; if (iwx_set_hw_ready(sc)) return 0; IWX_SETBITS(sc, IWX_CSR_DBG_LINK_PWR_MGMT_REG, IWX_CSR_RESET_LINK_PWR_MGMT_DISABLED); DELAY(1000); /* If HW is not ready, prepare the conditions to check again */ IWX_SETBITS(sc, IWX_CSR_HW_IF_CONFIG_REG, IWX_CSR_HW_IF_CONFIG_REG_PREPARE); do { if (iwx_set_hw_ready(sc)) return 0; DELAY(200); t += 200; } while (t < 150000); return ETIMEDOUT; } void iwx_force_power_gating(struct iwx_softc *sc) { iwx_set_bits_prph(sc, IWX_HPM_HIPM_GEN_CFG, IWX_HPM_HIPM_GEN_CFG_CR_FORCE_ACTIVE); DELAY(20); iwx_set_bits_prph(sc, IWX_HPM_HIPM_GEN_CFG, IWX_HPM_HIPM_GEN_CFG_CR_PG_EN | IWX_HPM_HIPM_GEN_CFG_CR_SLP_EN); DELAY(20); iwx_clear_bits_prph(sc, IWX_HPM_HIPM_GEN_CFG, IWX_HPM_HIPM_GEN_CFG_CR_FORCE_ACTIVE); } void iwx_apm_config(struct iwx_softc *sc) { pcireg_t lctl, cap; /* * L0S states have been found to be unstable with our devices * and in newer hardware they are not officially supported at * all, so we must always set the L0S_DISABLED bit. */ IWX_SETBITS(sc, IWX_CSR_GIO_REG, IWX_CSR_GIO_REG_VAL_L0S_DISABLED); lctl = pci_conf_read(sc->sc_pct, sc->sc_pcitag, sc->sc_cap_off + PCI_PCIE_LCSR); sc->sc_pm_support = !(lctl & PCI_PCIE_LCSR_ASPM_L0S); cap = pci_conf_read(sc->sc_pct, sc->sc_pcitag, sc->sc_cap_off + PCI_PCIE_DCSR2); sc->sc_ltr_enabled = (cap & PCI_PCIE_DCSR2_LTREN) ? 1 : 0; DPRINTF(("%s: L1 %sabled - LTR %sabled\n", DEVNAME(sc), (lctl & PCI_PCIE_LCSR_ASPM_L1) ? "En" : "Dis", sc->sc_ltr_enabled ? "En" : "Dis")); } /* * Start up NIC's basic functionality after it has been reset * e.g. after platform boot or shutdown. * NOTE: This does not load uCode nor start the embedded processor */ int iwx_apm_init(struct iwx_softc *sc) { int err = 0; /* * Disable L0s without affecting L1; * don't wait for ICH L0s (ICH bug W/A) */ IWX_SETBITS(sc, IWX_CSR_GIO_CHICKEN_BITS, IWX_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* Set FH wait threshold to maximum (HW error during stress W/A) */ IWX_SETBITS(sc, IWX_CSR_DBG_HPET_MEM_REG, IWX_CSR_DBG_HPET_MEM_REG_VAL); /* * Enable HAP INTA (interrupt from management bus) to * wake device's PCI Express link L1a -> L0s */ IWX_SETBITS(sc, IWX_CSR_HW_IF_CONFIG_REG, IWX_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); iwx_apm_config(sc); /* * Set "initialization complete" bit to move adapter from * D0U* --> D0A* (powered-up active) state. */ IWX_SETBITS(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * Wait for clock stabilization; once stabilized, access to * device-internal resources is supported, e.g. iwx_write_prph() * and accesses to uCode SRAM. */ if (!iwx_poll_bit(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000)) { printf("%s: timeout waiting for clock stabilization\n", DEVNAME(sc)); err = ETIMEDOUT; goto out; } out: if (err) printf("%s: apm init error %d\n", DEVNAME(sc), err); return err; } void iwx_apm_stop(struct iwx_softc *sc) { IWX_SETBITS(sc, IWX_CSR_DBG_LINK_PWR_MGMT_REG, IWX_CSR_RESET_LINK_PWR_MGMT_DISABLED); IWX_SETBITS(sc, IWX_CSR_HW_IF_CONFIG_REG, IWX_CSR_HW_IF_CONFIG_REG_PREPARE | IWX_CSR_HW_IF_CONFIG_REG_ENABLE_PME); DELAY(1000); IWX_CLRBITS(sc, IWX_CSR_DBG_LINK_PWR_MGMT_REG, IWX_CSR_RESET_LINK_PWR_MGMT_DISABLED); DELAY(5000); /* stop device's busmaster DMA activity */ IWX_SETBITS(sc, IWX_CSR_RESET, IWX_CSR_RESET_REG_FLAG_STOP_MASTER); if (!iwx_poll_bit(sc, IWX_CSR_RESET, IWX_CSR_RESET_REG_FLAG_MASTER_DISABLED, IWX_CSR_RESET_REG_FLAG_MASTER_DISABLED, 100)) printf("%s: timeout waiting for master\n", DEVNAME(sc)); /* * Clear "initialization complete" bit to move adapter from * D0A* (powered-up Active) --> D0U* (Uninitialized) state. */ IWX_CLRBITS(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); } void iwx_init_msix_hw(struct iwx_softc *sc) { iwx_conf_msix_hw(sc, 0); if (!sc->sc_msix) return; sc->sc_fh_init_mask = ~IWX_READ(sc, IWX_CSR_MSIX_FH_INT_MASK_AD); sc->sc_fh_mask = sc->sc_fh_init_mask; sc->sc_hw_init_mask = ~IWX_READ(sc, IWX_CSR_MSIX_HW_INT_MASK_AD); sc->sc_hw_mask = sc->sc_hw_init_mask; } void iwx_conf_msix_hw(struct iwx_softc *sc, int stopped) { int vector = 0; if (!sc->sc_msix) { /* Newer chips default to MSIX. */ if (!stopped && iwx_nic_lock(sc)) { iwx_write_prph(sc, IWX_UREG_CHICK, IWX_UREG_CHICK_MSI_ENABLE); iwx_nic_unlock(sc); } return; } if (!stopped && iwx_nic_lock(sc)) { iwx_write_prph(sc, IWX_UREG_CHICK, IWX_UREG_CHICK_MSIX_ENABLE); iwx_nic_unlock(sc); } /* Disable all interrupts */ IWX_WRITE(sc, IWX_CSR_MSIX_FH_INT_MASK_AD, ~0); IWX_WRITE(sc, IWX_CSR_MSIX_HW_INT_MASK_AD, ~0); /* Map fallback-queue (command/mgmt) to a single vector */ IWX_WRITE_1(sc, IWX_CSR_MSIX_RX_IVAR(0), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); /* Map RSS queue (data) to the same vector */ IWX_WRITE_1(sc, IWX_CSR_MSIX_RX_IVAR(1), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); /* Enable the RX queues cause interrupts */ IWX_CLRBITS(sc, IWX_CSR_MSIX_FH_INT_MASK_AD, IWX_MSIX_FH_INT_CAUSES_Q0 | IWX_MSIX_FH_INT_CAUSES_Q1); /* Map non-RX causes to the same vector */ IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_D2S_CH0_NUM), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_D2S_CH1_NUM), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_S2D), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_FH_ERR), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_ALIVE), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_WAKEUP), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_IML), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_CT_KILL), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_RF_KILL), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_PERIODIC), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_SW_ERR), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_SCD), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_FH_TX), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_HW_ERR), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); IWX_WRITE_1(sc, IWX_CSR_MSIX_IVAR(IWX_MSIX_IVAR_CAUSE_REG_HAP), vector | IWX_MSIX_NON_AUTO_CLEAR_CAUSE); /* Enable non-RX causes interrupts */ IWX_CLRBITS(sc, IWX_CSR_MSIX_FH_INT_MASK_AD, IWX_MSIX_FH_INT_CAUSES_D2S_CH0_NUM | IWX_MSIX_FH_INT_CAUSES_D2S_CH1_NUM | IWX_MSIX_FH_INT_CAUSES_S2D | IWX_MSIX_FH_INT_CAUSES_FH_ERR); IWX_CLRBITS(sc, IWX_CSR_MSIX_HW_INT_MASK_AD, IWX_MSIX_HW_INT_CAUSES_REG_ALIVE | IWX_MSIX_HW_INT_CAUSES_REG_WAKEUP | IWX_MSIX_HW_INT_CAUSES_REG_IML | IWX_MSIX_HW_INT_CAUSES_REG_CT_KILL | IWX_MSIX_HW_INT_CAUSES_REG_RF_KILL | IWX_MSIX_HW_INT_CAUSES_REG_PERIODIC | IWX_MSIX_HW_INT_CAUSES_REG_SW_ERR | IWX_MSIX_HW_INT_CAUSES_REG_SCD | IWX_MSIX_HW_INT_CAUSES_REG_FH_TX | IWX_MSIX_HW_INT_CAUSES_REG_HW_ERR | IWX_MSIX_HW_INT_CAUSES_REG_HAP); } int iwx_start_hw(struct iwx_softc *sc) { int err; int t = 0; err = iwx_prepare_card_hw(sc); if (err) return err; /* Reset the entire device */ IWX_SETBITS(sc, IWX_CSR_RESET, IWX_CSR_RESET_REG_FLAG_SW_RESET); DELAY(5000); if (sc->sc_integrated) { IWX_SETBITS(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); DELAY(20); if (!iwx_poll_bit(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000)) { printf("%s: timeout waiting for clock stabilization\n", DEVNAME(sc)); return ETIMEDOUT; } iwx_force_power_gating(sc); /* Reset the entire device */ IWX_SETBITS(sc, IWX_CSR_RESET, IWX_CSR_RESET_REG_FLAG_SW_RESET); DELAY(5000); } err = iwx_apm_init(sc); if (err) return err; iwx_init_msix_hw(sc); while (t < 150000 && !iwx_set_hw_ready(sc)) { DELAY(200); t += 200; if (iwx_set_hw_ready(sc)) { break; } } if (t >= 150000) return ETIMEDOUT; iwx_enable_rfkill_int(sc); iwx_check_rfkill(sc); return 0; } void iwx_stop_device(struct iwx_softc *sc) { int qid; iwx_disable_interrupts(sc); sc->sc_flags &= ~IWX_FLAG_USE_ICT; iwx_disable_rx_dma(sc); iwx_reset_rx_ring(sc, &sc->rxq); for (qid = 0; qid < nitems(sc->txq); qid++) iwx_reset_tx_ring(sc, &sc->txq[qid]); /* Make sure (redundant) we've released our request to stay awake */ IWX_CLRBITS(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); if (sc->sc_nic_locks > 0) printf("%s: %d active NIC locks forcefully cleared\n", DEVNAME(sc), sc->sc_nic_locks); sc->sc_nic_locks = 0; /* Stop the device, and put it in low power state */ iwx_apm_stop(sc); /* Reset the on-board processor. */ IWX_SETBITS(sc, IWX_CSR_RESET, IWX_CSR_RESET_REG_FLAG_SW_RESET); DELAY(5000); /* * Upon stop, the IVAR table gets erased, so msi-x won't * work. This causes a bug in RF-KILL flows, since the interrupt * that enables radio won't fire on the correct irq, and the * driver won't be able to handle the interrupt. * Configure the IVAR table again after reset. */ iwx_conf_msix_hw(sc, 1); /* * Upon stop, the APM issues an interrupt if HW RF kill is set. * Clear the interrupt again. */ iwx_disable_interrupts(sc); /* Even though we stop the HW we still want the RF kill interrupt. */ iwx_enable_rfkill_int(sc); iwx_check_rfkill(sc); iwx_prepare_card_hw(sc); iwx_ctxt_info_free_paging(sc); } void iwx_nic_config(struct iwx_softc *sc) { uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; uint32_t mask, val, reg_val = 0; radio_cfg_type = (sc->sc_fw_phy_config & IWX_FW_PHY_CFG_RADIO_TYPE) >> IWX_FW_PHY_CFG_RADIO_TYPE_POS; radio_cfg_step = (sc->sc_fw_phy_config & IWX_FW_PHY_CFG_RADIO_STEP) >> IWX_FW_PHY_CFG_RADIO_STEP_POS; radio_cfg_dash = (sc->sc_fw_phy_config & IWX_FW_PHY_CFG_RADIO_DASH) >> IWX_FW_PHY_CFG_RADIO_DASH_POS; reg_val |= IWX_CSR_HW_REV_STEP(sc->sc_hw_rev) << IWX_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; reg_val |= IWX_CSR_HW_REV_DASH(sc->sc_hw_rev) << IWX_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; /* radio configuration */ reg_val |= radio_cfg_type << IWX_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; reg_val |= radio_cfg_step << IWX_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; reg_val |= radio_cfg_dash << IWX_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; mask = IWX_CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH | IWX_CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP | IWX_CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP | IWX_CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH | IWX_CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE | IWX_CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI | IWX_CSR_HW_IF_CONFIG_REG_BIT_MAC_SI; val = IWX_READ(sc, IWX_CSR_HW_IF_CONFIG_REG); val &= ~mask; val |= reg_val; IWX_WRITE(sc, IWX_CSR_HW_IF_CONFIG_REG, val); } int iwx_nic_rx_init(struct iwx_softc *sc) { IWX_WRITE_1(sc, IWX_CSR_INT_COALESCING, IWX_HOST_INT_TIMEOUT_DEF); /* * We don't configure the RFH; the firmware will do that. * Rx descriptors are set when firmware sends an ALIVE interrupt. */ return 0; } int iwx_nic_init(struct iwx_softc *sc) { int err; iwx_apm_init(sc); iwx_nic_config(sc); err = iwx_nic_rx_init(sc); if (err) return err; IWX_SETBITS(sc, IWX_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); return 0; } /* Map ieee80211_edca_ac categories to firmware Tx FIFO. */ const uint8_t iwx_ac_to_tx_fifo[] = { IWX_GEN2_EDCA_TX_FIFO_BE, IWX_GEN2_EDCA_TX_FIFO_BK, IWX_GEN2_EDCA_TX_FIFO_VI, IWX_GEN2_EDCA_TX_FIFO_VO, }; int iwx_enable_txq(struct iwx_softc *sc, int sta_id, int qid, int tid, int num_slots) { struct iwx_tx_queue_cfg_cmd cmd; struct iwx_rx_packet *pkt; struct iwx_tx_queue_cfg_rsp *resp; struct iwx_host_cmd hcmd = { .id = IWX_SCD_QUEUE_CFG, .flags = IWX_CMD_WANT_RESP, .resp_pkt_len = sizeof(*pkt) + sizeof(*resp), }; struct iwx_tx_ring *ring = &sc->txq[qid]; int err, fwqid; uint32_t wr_idx; size_t resp_len; iwx_reset_tx_ring(sc, ring); memset(&cmd, 0, sizeof(cmd)); cmd.sta_id = sta_id; cmd.tid = tid; cmd.flags = htole16(IWX_TX_QUEUE_CFG_ENABLE_QUEUE); cmd.cb_size = htole32(IWX_TFD_QUEUE_CB_SIZE(num_slots)); cmd.byte_cnt_addr = htole64(ring->bc_tbl.paddr); cmd.tfdq_addr = htole64(ring->desc_dma.paddr); hcmd.data[0] = &cmd; hcmd.len[0] = sizeof(cmd); err = iwx_send_cmd(sc, &hcmd); if (err) return err; pkt = hcmd.resp_pkt; if (!pkt || (pkt->hdr.flags & IWX_CMD_FAILED_MSK)) { DPRINTF(("SCD_QUEUE_CFG command failed\n")); err = EIO; goto out; } resp_len = iwx_rx_packet_payload_len(pkt); if (resp_len != sizeof(*resp)) { DPRINTF(("SCD_QUEUE_CFG returned %zu bytes, expected %zu bytes\n", resp_len, sizeof(*resp))); err = EIO; goto out; } resp = (void *)pkt->data; fwqid = le16toh(resp->queue_number); wr_idx = le16toh(resp->write_pointer); /* Unlike iwlwifi, we do not support dynamic queue ID assignment. */ if (fwqid != qid) { DPRINTF(("requested qid %d but %d was assigned\n", qid, fwqid)); err = EIO; goto out; } if (wr_idx != ring->cur) { DPRINTF(("fw write index is %d but ring is %d\n", wr_idx, ring->cur)); err = EIO; goto out; } out: iwx_free_resp(sc, &hcmd); return err; } void iwx_post_alive(struct iwx_softc *sc) { iwx_ict_reset(sc); } /* * For the high priority TE use a time event type that has similar priority to * the FW's action scan priority. */ #define IWX_ROC_TE_TYPE_NORMAL IWX_TE_P2P_DEVICE_DISCOVERABLE #define IWX_ROC_TE_TYPE_MGMT_TX IWX_TE_P2P_CLIENT_ASSOC int iwx_send_time_event_cmd(struct iwx_softc *sc, const struct iwx_time_event_cmd *cmd) { struct iwx_rx_packet *pkt; struct iwx_time_event_resp *resp; struct iwx_host_cmd hcmd = { .id = IWX_TIME_EVENT_CMD, .flags = IWX_CMD_WANT_RESP, .resp_pkt_len = sizeof(*pkt) + sizeof(*resp), }; uint32_t resp_len; int err; hcmd.data[0] = cmd; hcmd.len[0] = sizeof(*cmd); err = iwx_send_cmd(sc, &hcmd); if (err) return err; pkt = hcmd.resp_pkt; if (!pkt || (pkt->hdr.flags & IWX_CMD_FAILED_MSK)) { err = EIO; goto out; } resp_len = iwx_rx_packet_payload_len(pkt); if (resp_len != sizeof(*resp)) { err = EIO; goto out; } resp = (void *)pkt->data; if (le32toh(resp->status) == 0) sc->sc_time_event_uid = le32toh(resp->unique_id); else err = EIO; out: iwx_free_resp(sc, &hcmd); return err; } void iwx_protect_session(struct iwx_softc *sc, struct iwx_node *in, uint32_t duration, uint32_t max_delay) { struct iwx_time_event_cmd time_cmd; /* Do nothing if a time event is already scheduled. */ if (sc->sc_flags & IWX_FLAG_TE_ACTIVE) return; memset(&time_cmd, 0, sizeof(time_cmd)); time_cmd.action = htole32(IWX_FW_CTXT_ACTION_ADD); time_cmd.id_and_color = htole32(IWX_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); time_cmd.id = htole32(IWX_TE_BSS_STA_AGGRESSIVE_ASSOC); time_cmd.apply_time = htole32(0); time_cmd.max_frags = IWX_TE_V2_FRAG_NONE; time_cmd.max_delay = htole32(max_delay); /* TODO: why do we need to interval = bi if it is not periodic? */ time_cmd.interval = htole32(1); time_cmd.duration = htole32(duration); time_cmd.repeat = 1; time_cmd.policy = htole16(IWX_TE_V2_NOTIF_HOST_EVENT_START | IWX_TE_V2_NOTIF_HOST_EVENT_END | IWX_T2_V2_START_IMMEDIATELY); if (iwx_send_time_event_cmd(sc, &time_cmd) == 0) sc->sc_flags |= IWX_FLAG_TE_ACTIVE; DELAY(100); } void iwx_unprotect_session(struct iwx_softc *sc, struct iwx_node *in) { struct iwx_time_event_cmd time_cmd; /* Do nothing if the time event has already ended. */ if ((sc->sc_flags & IWX_FLAG_TE_ACTIVE) == 0) return; memset(&time_cmd, 0, sizeof(time_cmd)); time_cmd.action = htole32(IWX_FW_CTXT_ACTION_REMOVE); time_cmd.id_and_color = htole32(IWX_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); time_cmd.id = htole32(sc->sc_time_event_uid); if (iwx_send_time_event_cmd(sc, &time_cmd) == 0) sc->sc_flags &= ~IWX_FLAG_TE_ACTIVE; DELAY(100); } /* * NVM read access and content parsing. We do not support * external NVM or writing NVM. */ uint8_t iwx_fw_valid_tx_ant(struct iwx_softc *sc) { uint8_t tx_ant; tx_ant = ((sc->sc_fw_phy_config & IWX_FW_PHY_CFG_TX_CHAIN) >> IWX_FW_PHY_CFG_TX_CHAIN_POS); if (sc->sc_nvm.valid_tx_ant) tx_ant &= sc->sc_nvm.valid_tx_ant; return tx_ant; } uint8_t iwx_fw_valid_rx_ant(struct iwx_softc *sc) { uint8_t rx_ant; rx_ant = ((sc->sc_fw_phy_config & IWX_FW_PHY_CFG_RX_CHAIN) >> IWX_FW_PHY_CFG_RX_CHAIN_POS); if (sc->sc_nvm.valid_rx_ant) rx_ant &= sc->sc_nvm.valid_rx_ant; return rx_ant; } void iwx_init_channel_map(struct iwx_softc *sc, uint16_t *channel_profile_v3, uint32_t *channel_profile_v4, int nchan_profile) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_nvm_data *data = &sc->sc_nvm; int ch_idx; struct ieee80211_channel *channel; uint32_t ch_flags; int is_5ghz; int flags, hw_value; int nchan; const uint8_t *nvm_channels; if (sc->sc_uhb_supported) { nchan = nitems(iwx_nvm_channels_uhb); nvm_channels = iwx_nvm_channels_uhb; } else { nchan = nitems(iwx_nvm_channels_8000); nvm_channels = iwx_nvm_channels_8000; } for (ch_idx = 0; ch_idx < nchan && ch_idx < nchan_profile; ch_idx++) { if (channel_profile_v4) ch_flags = le32_to_cpup(channel_profile_v4 + ch_idx); else ch_flags = le16_to_cpup(channel_profile_v3 + ch_idx); is_5ghz = ch_idx >= IWX_NUM_2GHZ_CHANNELS; if (is_5ghz && !data->sku_cap_band_52GHz_enable) ch_flags &= ~IWX_NVM_CHANNEL_VALID; hw_value = nvm_channels[ch_idx]; channel = &ic->ic_channels[hw_value]; if (!(ch_flags & IWX_NVM_CHANNEL_VALID)) { channel->ic_freq = 0; channel->ic_flags = 0; continue; } if (!is_5ghz) { flags = IEEE80211_CHAN_2GHZ; channel->ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } else { flags = IEEE80211_CHAN_5GHZ; channel->ic_flags = IEEE80211_CHAN_A; } channel->ic_freq = ieee80211_ieee2mhz(hw_value, flags); if (!(ch_flags & IWX_NVM_CHANNEL_ACTIVE)) channel->ic_flags |= IEEE80211_CHAN_PASSIVE; if (data->sku_cap_11n_enable) channel->ic_flags |= IEEE80211_CHAN_HT; } } int iwx_mimo_enabled(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; return !sc->sc_nvm.sku_cap_mimo_disable && (ic->ic_userflags & IEEE80211_F_NOMIMO) == 0; } void iwx_setup_ht_rates(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; uint8_t rx_ant; /* TX is supported with the same MCS as RX. */ ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED; memset(ic->ic_sup_mcs, 0, sizeof(ic->ic_sup_mcs)); ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ if (!iwx_mimo_enabled(sc)) return; rx_ant = iwx_fw_valid_rx_ant(sc); if ((rx_ant & IWX_ANT_AB) == IWX_ANT_AB || (rx_ant & IWX_ANT_BC) == IWX_ANT_BC) ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */ } void iwx_init_reorder_buffer(struct iwx_reorder_buffer *reorder_buf, uint16_t ssn, uint16_t buf_size) { reorder_buf->head_sn = ssn; reorder_buf->num_stored = 0; reorder_buf->buf_size = buf_size; reorder_buf->last_amsdu = 0; reorder_buf->last_sub_index = 0; reorder_buf->removed = 0; reorder_buf->valid = 0; reorder_buf->consec_oldsn_drops = 0; reorder_buf->consec_oldsn_ampdu_gp2 = 0; reorder_buf->consec_oldsn_prev_drop = 0; } void iwx_clear_reorder_buffer(struct iwx_softc *sc, struct iwx_rxba_data *rxba) { int i; struct iwx_reorder_buffer *reorder_buf = &rxba->reorder_buf; struct iwx_reorder_buf_entry *entry; for (i = 0; i < reorder_buf->buf_size; i++) { entry = &rxba->entries[i]; ml_purge(&entry->frames); timerclear(&entry->reorder_time); } reorder_buf->removed = 1; timeout_del(&reorder_buf->reorder_timer); timerclear(&rxba->last_rx); timeout_del(&rxba->session_timer); rxba->baid = IWX_RX_REORDER_DATA_INVALID_BAID; } #define RX_REORDER_BUF_TIMEOUT_MQ_USEC (100000ULL) void iwx_rx_ba_session_expired(void *arg) { struct iwx_rxba_data *rxba = arg; struct iwx_softc *sc = rxba->sc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct timeval now, timeout, expiry; int s; s = splnet(); if ((sc->sc_flags & IWX_FLAG_SHUTDOWN) == 0 && ic->ic_state == IEEE80211_S_RUN && rxba->baid != IWX_RX_REORDER_DATA_INVALID_BAID) { getmicrouptime(&now); USEC_TO_TIMEVAL(RX_REORDER_BUF_TIMEOUT_MQ_USEC, &timeout); timeradd(&rxba->last_rx, &timeout, &expiry); if (timercmp(&now, &expiry, <)) { timeout_add_usec(&rxba->session_timer, rxba->timeout); } else { ic->ic_stats.is_ht_rx_ba_timeout++; ieee80211_delba_request(ic, ni, IEEE80211_REASON_TIMEOUT, 0, rxba->tid); } } splx(s); } void iwx_reorder_timer_expired(void *arg) { struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct iwx_reorder_buffer *buf = arg; struct iwx_rxba_data *rxba = iwx_rxba_data_from_reorder_buf(buf); struct iwx_reorder_buf_entry *entries = &rxba->entries[0]; struct iwx_softc *sc = rxba->sc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; int i, s; uint16_t sn = 0, index = 0; int expired = 0; int cont = 0; struct timeval now, timeout, expiry; if (!buf->num_stored || buf->removed) return; s = splnet(); getmicrouptime(&now); USEC_TO_TIMEVAL(RX_REORDER_BUF_TIMEOUT_MQ_USEC, &timeout); for (i = 0; i < buf->buf_size ; i++) { index = (buf->head_sn + i) % buf->buf_size; if (ml_empty(&entries[index].frames)) { /* * If there is a hole and the next frame didn't expire * we want to break and not advance SN. */ cont = 0; continue; } timeradd(&entries[index].reorder_time, &timeout, &expiry); if (!cont && timercmp(&now, &expiry, <)) break; expired = 1; /* continue until next hole after this expired frame */ cont = 1; sn = (buf->head_sn + (i + 1)) & 0xfff; } if (expired) { /* SN is set to the last expired frame + 1 */ iwx_release_frames(sc, ni, rxba, buf, sn, &ml); if_input(&sc->sc_ic.ic_if, &ml); ic->ic_stats.is_ht_rx_ba_window_gap_timeout++; } else { /* * If no frame expired and there are stored frames, index is now * pointing to the first unexpired frame - modify reorder timeout * accordingly. */ timeout_add_usec(&buf->reorder_timer, RX_REORDER_BUF_TIMEOUT_MQ_USEC); } splx(s); } #define IWX_MAX_RX_BA_SESSIONS 16 void iwx_sta_rx_agg(struct iwx_softc *sc, struct ieee80211_node *ni, uint8_t tid, uint16_t ssn, uint16_t winsize, int timeout_val, int start) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_add_sta_cmd cmd; struct iwx_node *in = (void *)ni; int err, s; uint32_t status; struct iwx_rxba_data *rxba = NULL; uint8_t baid = 0; s = splnet(); if (start && sc->sc_rx_ba_sessions >= IWX_MAX_RX_BA_SESSIONS) { ieee80211_addba_req_refuse(ic, ni, tid); splx(s); return; } memset(&cmd, 0, sizeof(cmd)); cmd.sta_id = IWX_STATION_ID; cmd.mac_id_n_color = htole32(IWX_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); cmd.add_modify = IWX_STA_MODE_MODIFY; if (start) { cmd.add_immediate_ba_tid = (uint8_t)tid; cmd.add_immediate_ba_ssn = htole16(ssn); cmd.rx_ba_window = htole16(winsize); } else { cmd.remove_immediate_ba_tid = (uint8_t)tid; } cmd.modify_mask = start ? IWX_STA_MODIFY_ADD_BA_TID : IWX_STA_MODIFY_REMOVE_BA_TID; status = IWX_ADD_STA_SUCCESS; err = iwx_send_cmd_pdu_status(sc, IWX_ADD_STA, sizeof(cmd), &cmd, &status); if (err || (status & IWX_ADD_STA_STATUS_MASK) != IWX_ADD_STA_SUCCESS) { if (start) ieee80211_addba_req_refuse(ic, ni, tid); splx(s); return; } /* Deaggregation is done in hardware. */ if (start) { if (!(status & IWX_ADD_STA_BAID_VALID_MASK)) { ieee80211_addba_req_refuse(ic, ni, tid); splx(s); return; } baid = (status & IWX_ADD_STA_BAID_MASK) >> IWX_ADD_STA_BAID_SHIFT; if (baid == IWX_RX_REORDER_DATA_INVALID_BAID || baid >= nitems(sc->sc_rxba_data)) { ieee80211_addba_req_refuse(ic, ni, tid); splx(s); return; } rxba = &sc->sc_rxba_data[baid]; if (rxba->baid != IWX_RX_REORDER_DATA_INVALID_BAID) { ieee80211_addba_req_refuse(ic, ni, tid); splx(s); return; } rxba->sta_id = IWX_STATION_ID; rxba->tid = tid; rxba->baid = baid; rxba->timeout = timeout_val; getmicrouptime(&rxba->last_rx); iwx_init_reorder_buffer(&rxba->reorder_buf, ssn, winsize); if (timeout_val != 0) { struct ieee80211_rx_ba *ba; timeout_add_usec(&rxba->session_timer, timeout_val); /* XXX disable net80211's BA timeout handler */ ba = &ni->ni_rx_ba[tid]; ba->ba_timeout_val = 0; } } else { int i; for (i = 0; i < nitems(sc->sc_rxba_data); i++) { rxba = &sc->sc_rxba_data[i]; if (rxba->baid == IWX_RX_REORDER_DATA_INVALID_BAID) continue; if (rxba->tid != tid) continue; iwx_clear_reorder_buffer(sc, rxba); break; } } if (start) { sc->sc_rx_ba_sessions++; ieee80211_addba_req_accept(ic, ni, tid); } else if (sc->sc_rx_ba_sessions > 0) sc->sc_rx_ba_sessions--; splx(s); } void iwx_mac_ctxt_task(void *arg) { struct iwx_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; int err, s = splnet(); if (sc->sc_flags & IWX_FLAG_SHUTDOWN) { refcnt_rele_wake(&sc->task_refs); splx(s); return; } err = iwx_mac_ctxt_cmd(sc, in, IWX_FW_CTXT_ACTION_MODIFY, 1); if (err) printf("%s: failed to update MAC\n", DEVNAME(sc)); refcnt_rele_wake(&sc->task_refs); splx(s); } void iwx_updateprot(struct ieee80211com *ic) { struct iwx_softc *sc = ic->ic_softc; if (ic->ic_state == IEEE80211_S_RUN) iwx_add_task(sc, systq, &sc->mac_ctxt_task); } void iwx_updateslot(struct ieee80211com *ic) { struct iwx_softc *sc = ic->ic_softc; if (ic->ic_state == IEEE80211_S_RUN) iwx_add_task(sc, systq, &sc->mac_ctxt_task); } void iwx_updateedca(struct ieee80211com *ic) { struct iwx_softc *sc = ic->ic_softc; if (ic->ic_state == IEEE80211_S_RUN) iwx_add_task(sc, systq, &sc->mac_ctxt_task); } void iwx_ba_task(void *arg) { struct iwx_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; int s = splnet(); int tid; for (tid = 0; tid < IWX_MAX_TID_COUNT; tid++) { if (sc->sc_flags & IWX_FLAG_SHUTDOWN) break; if (sc->ba_start_tidmask & (1 << tid)) { iwx_sta_rx_agg(sc, ni, tid, sc->ba_ssn[tid], sc->ba_winsize[tid], sc->ba_timeout_val[tid], 1); sc->ba_start_tidmask &= ~(1 << tid); } else if (sc->ba_stop_tidmask & (1 << tid)) { iwx_sta_rx_agg(sc, ni, tid, 0, 0, 0, 0); sc->ba_stop_tidmask &= ~(1 << tid); } } refcnt_rele_wake(&sc->task_refs); splx(s); } /* * This function is called by upper layer when an ADDBA request is received * from another STA and before the ADDBA response is sent. */ int iwx_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; struct iwx_softc *sc = IC2IFP(ic)->if_softc; if (sc->sc_rx_ba_sessions >= IWX_MAX_RX_BA_SESSIONS || tid > IWX_MAX_TID_COUNT || (sc->ba_start_tidmask & (1 << tid))) return ENOSPC; sc->ba_start_tidmask |= (1 << tid); sc->ba_ssn[tid] = ba->ba_winstart; sc->ba_winsize[tid] = ba->ba_winsize; sc->ba_timeout_val[tid] = ba->ba_timeout_val; iwx_add_task(sc, systq, &sc->ba_task); return EBUSY; } /* * This function is called by upper layer on teardown of an HT-immediate * Block Ack agreement (eg. upon receipt of a DELBA frame). */ void iwx_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct iwx_softc *sc = IC2IFP(ic)->if_softc; if (tid > IWX_MAX_TID_COUNT || sc->ba_stop_tidmask & (1 << tid)) return; sc->ba_stop_tidmask = (1 << tid); iwx_add_task(sc, systq, &sc->ba_task); } /* Read the mac address from WFMP registers. */ int iwx_set_mac_addr_from_csr(struct iwx_softc *sc, struct iwx_nvm_data *data) { const uint8_t *hw_addr; uint32_t mac_addr0, mac_addr1; if (!iwx_nic_lock(sc)) return EBUSY; mac_addr0 = htole32(iwx_read_prph(sc, IWX_WFMP_MAC_ADDR_0)); mac_addr1 = htole32(iwx_read_prph(sc, IWX_WFMP_MAC_ADDR_1)); hw_addr = (const uint8_t *)&mac_addr0; data->hw_addr[0] = hw_addr[3]; data->hw_addr[1] = hw_addr[2]; data->hw_addr[2] = hw_addr[1]; data->hw_addr[3] = hw_addr[0]; hw_addr = (const uint8_t *)&mac_addr1; data->hw_addr[4] = hw_addr[1]; data->hw_addr[5] = hw_addr[0]; iwx_nic_unlock(sc); return 0; } int iwx_is_valid_mac_addr(const uint8_t *addr) { static const uint8_t reserved_mac[] = { 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 }; return (memcmp(reserved_mac, addr, ETHER_ADDR_LEN) != 0 && memcmp(etherbroadcastaddr, addr, sizeof(etherbroadcastaddr)) != 0 && memcmp(etheranyaddr, addr, sizeof(etheranyaddr)) != 0 && !ETHER_IS_MULTICAST(addr)); } int iwx_nvm_get(struct iwx_softc *sc) { struct iwx_nvm_get_info cmd = {}; struct iwx_nvm_data *nvm = &sc->sc_nvm; struct iwx_host_cmd hcmd = { .flags = IWX_CMD_WANT_RESP | IWX_CMD_SEND_IN_RFKILL, .data = { &cmd, }, .len = { sizeof(cmd) }, .id = IWX_WIDE_ID(IWX_REGULATORY_AND_NVM_GROUP, IWX_NVM_GET_INFO) }; int err; uint32_t mac_flags; /* * All the values in iwx_nvm_get_info_rsp v4 are the same as * in v3, except for the channel profile part of the * regulatory. So we can just access the new struct, with the * exception of the latter. */ struct iwx_nvm_get_info_rsp *rsp; struct iwx_nvm_get_info_rsp_v3 *rsp_v3; int v4 = isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_REGULATORY_NVM_INFO); size_t resp_len = v4 ? sizeof(*rsp) : sizeof(*rsp_v3); hcmd.resp_pkt_len = sizeof(struct iwx_rx_packet) + resp_len; err = iwx_send_cmd(sc, &hcmd); if (err) return err; if (iwx_rx_packet_payload_len(hcmd.resp_pkt) != resp_len) { err = EIO; goto out; } memset(nvm, 0, sizeof(*nvm)); iwx_set_mac_addr_from_csr(sc, nvm); if (!iwx_is_valid_mac_addr(nvm->hw_addr)) { printf("%s: no valid mac address was found\n", DEVNAME(sc)); err = EINVAL; goto out; } rsp = (void *)hcmd.resp_pkt->data; /* Initialize general data */ nvm->nvm_version = le16toh(rsp->general.nvm_version); nvm->n_hw_addrs = rsp->general.n_hw_addrs; /* Initialize MAC sku data */ mac_flags = le32toh(rsp->mac_sku.mac_sku_flags); nvm->sku_cap_11ac_enable = !!(mac_flags & IWX_NVM_MAC_SKU_FLAGS_802_11AC_ENABLED); nvm->sku_cap_11n_enable = !!(mac_flags & IWX_NVM_MAC_SKU_FLAGS_802_11N_ENABLED); nvm->sku_cap_11ax_enable = !!(mac_flags & IWX_NVM_MAC_SKU_FLAGS_802_11AX_ENABLED); nvm->sku_cap_band_24GHz_enable = !!(mac_flags & IWX_NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED); nvm->sku_cap_band_52GHz_enable = !!(mac_flags & IWX_NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED); nvm->sku_cap_mimo_disable = !!(mac_flags & IWX_NVM_MAC_SKU_FLAGS_MIMO_DISABLED); /* Initialize PHY sku data */ nvm->valid_tx_ant = (uint8_t)le32toh(rsp->phy_sku.tx_chains); nvm->valid_rx_ant = (uint8_t)le32toh(rsp->phy_sku.rx_chains); if (le32toh(rsp->regulatory.lar_enabled) && isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_LAR_SUPPORT)) { nvm->lar_enabled = 1; } if (v4) { iwx_init_channel_map(sc, NULL, rsp->regulatory.channel_profile, IWX_NUM_CHANNELS); } else { rsp_v3 = (void *)rsp; iwx_init_channel_map(sc, rsp_v3->regulatory.channel_profile, NULL, IWX_NUM_CHANNELS_V1); } out: iwx_free_resp(sc, &hcmd); return err; } int iwx_load_firmware(struct iwx_softc *sc) { struct iwx_fw_sects *fws; int err, w; sc->sc_uc.uc_intr = 0; fws = &sc->sc_fw.fw_sects[IWX_UCODE_TYPE_REGULAR]; err = iwx_ctxt_info_init(sc, fws); if (err) { printf("%s: could not init context info\n", DEVNAME(sc)); return err; } /* wait for the firmware to load */ for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) { err = tsleep_nsec(&sc->sc_uc, 0, "iwxuc", MSEC_TO_NSEC(100)); } if (err || !sc->sc_uc.uc_ok) printf("%s: could not load firmware\n", DEVNAME(sc)); iwx_ctxt_info_free_fw_img(sc); if (!sc->sc_uc.uc_ok) return EINVAL; return err; } int iwx_start_fw(struct iwx_softc *sc) { int err; IWX_WRITE(sc, IWX_CSR_INT, ~0); iwx_disable_interrupts(sc); /* make sure rfkill handshake bits are cleared */ IWX_WRITE(sc, IWX_CSR_UCODE_DRV_GP1_CLR, IWX_CSR_UCODE_SW_BIT_RFKILL); IWX_WRITE(sc, IWX_CSR_UCODE_DRV_GP1_CLR, IWX_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable firwmare load interrupt */ IWX_WRITE(sc, IWX_CSR_INT, ~0); err = iwx_nic_init(sc); if (err) { printf("%s: unable to init nic\n", DEVNAME(sc)); return err; } iwx_enable_fwload_interrupt(sc); return iwx_load_firmware(sc); } int iwx_send_tx_ant_cfg(struct iwx_softc *sc, uint8_t valid_tx_ant) { struct iwx_tx_ant_cfg_cmd tx_ant_cmd = { .valid = htole32(valid_tx_ant), }; return iwx_send_cmd_pdu(sc, IWX_TX_ANT_CONFIGURATION_CMD, 0, sizeof(tx_ant_cmd), &tx_ant_cmd); } int iwx_send_phy_cfg_cmd(struct iwx_softc *sc) { struct iwx_phy_cfg_cmd phy_cfg_cmd; phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config); phy_cfg_cmd.calib_control.event_trigger = sc->sc_default_calib[IWX_UCODE_TYPE_REGULAR].event_trigger; phy_cfg_cmd.calib_control.flow_trigger = sc->sc_default_calib[IWX_UCODE_TYPE_REGULAR].flow_trigger; return iwx_send_cmd_pdu(sc, IWX_PHY_CONFIGURATION_CMD, 0, sizeof(phy_cfg_cmd), &phy_cfg_cmd); } int iwx_send_dqa_cmd(struct iwx_softc *sc) { struct iwx_dqa_enable_cmd dqa_cmd = { .cmd_queue = htole32(IWX_DQA_CMD_QUEUE), }; uint32_t cmd_id; cmd_id = iwx_cmd_id(IWX_DQA_ENABLE_CMD, IWX_DATA_PATH_GROUP, 0); return iwx_send_cmd_pdu(sc, cmd_id, 0, sizeof(dqa_cmd), &dqa_cmd); } int iwx_load_ucode_wait_alive(struct iwx_softc *sc) { int err; err = iwx_read_firmware(sc); if (err) return err; err = iwx_start_fw(sc); if (err) return err; iwx_post_alive(sc); return 0; } int iwx_run_init_mvm_ucode(struct iwx_softc *sc, int readnvm) { const int wait_flags = IWX_INIT_COMPLETE; struct iwx_nvm_access_complete_cmd nvm_complete = {}; struct iwx_init_extended_cfg_cmd init_cfg = { .init_flags = htole32(IWX_INIT_NVM), }; int err; if ((sc->sc_flags & IWX_FLAG_RFKILL) && !readnvm) { printf("%s: radio is disabled by hardware switch\n", DEVNAME(sc)); return EPERM; } sc->sc_init_complete = 0; err = iwx_load_ucode_wait_alive(sc); if (err) { printf("%s: failed to load init firmware\n", DEVNAME(sc)); return err; } /* * Send init config command to mark that we are sending NVM * access commands */ err = iwx_send_cmd_pdu(sc, IWX_WIDE_ID(IWX_SYSTEM_GROUP, IWX_INIT_EXTENDED_CFG_CMD), 0, sizeof(init_cfg), &init_cfg); if (err) return err; err = iwx_send_cmd_pdu(sc, IWX_WIDE_ID(IWX_REGULATORY_AND_NVM_GROUP, IWX_NVM_ACCESS_COMPLETE), 0, sizeof(nvm_complete), &nvm_complete); if (err) return err; /* Wait for the init complete notification from the firmware. */ while ((sc->sc_init_complete & wait_flags) != wait_flags) { err = tsleep_nsec(&sc->sc_init_complete, 0, "iwxinit", SEC_TO_NSEC(2)); if (err) return err; } if (readnvm) { err = iwx_nvm_get(sc); if (err) { printf("%s: failed to read nvm\n", DEVNAME(sc)); return err; } if (IEEE80211_ADDR_EQ(etheranyaddr, sc->sc_ic.ic_myaddr)) IEEE80211_ADDR_COPY(sc->sc_ic.ic_myaddr, sc->sc_nvm.hw_addr); } return 0; } int iwx_config_ltr(struct iwx_softc *sc) { struct iwx_ltr_config_cmd cmd = { .flags = htole32(IWX_LTR_CFG_FLAG_FEATURE_ENABLE), }; if (!sc->sc_ltr_enabled) return 0; return iwx_send_cmd_pdu(sc, IWX_LTR_CONFIG, 0, sizeof(cmd), &cmd); } void iwx_update_rx_desc(struct iwx_softc *sc, struct iwx_rx_ring *ring, int idx) { struct iwx_rx_data *data = &ring->data[idx]; ((uint64_t *)ring->desc)[idx] = htole64(data->map->dm_segs[0].ds_addr | (idx & 0x0fff)); bus_dmamap_sync(sc->sc_dmat, ring->free_desc_dma.map, idx * sizeof(uint64_t), sizeof(uint64_t), BUS_DMASYNC_PREWRITE); } int iwx_rx_addbuf(struct iwx_softc *sc, int size, int idx) { struct iwx_rx_ring *ring = &sc->rxq; struct iwx_rx_data *data = &ring->data[idx]; struct mbuf *m; int err; int fatal = 0; m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; if (size <= MCLBYTES) { MCLGET(m, M_DONTWAIT); } else { MCLGETL(m, M_DONTWAIT, IWX_RBUF_SIZE); } if ((m->m_flags & M_EXT) == 0) { m_freem(m); return ENOBUFS; } if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); fatal = 1; } m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_READ|BUS_DMA_NOWAIT); if (err) { /* XXX */ if (fatal) panic("%s: could not load RX mbuf", DEVNAME(sc)); m_freem(m); return err; } data->m = m; bus_dmamap_sync(sc->sc_dmat, data->map, 0, size, BUS_DMASYNC_PREREAD); /* Update RX descriptor. */ iwx_update_rx_desc(sc, ring, idx); return 0; } int iwx_rxmq_get_signal_strength(struct iwx_softc *sc, struct iwx_rx_mpdu_desc *desc) { int energy_a, energy_b; energy_a = desc->v1.energy_a; energy_b = desc->v1.energy_b; energy_a = energy_a ? -energy_a : -256; energy_b = energy_b ? -energy_b : -256; return MAX(energy_a, energy_b); } void iwx_rx_rx_phy_cmd(struct iwx_softc *sc, struct iwx_rx_packet *pkt, struct iwx_rx_data *data) { struct iwx_rx_phy_info *phy_info = (void *)pkt->data; bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt), sizeof(*phy_info), BUS_DMASYNC_POSTREAD); memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); } /* * Retrieve the average noise (in dBm) among receivers. */ int iwx_get_noise(const struct iwx_statistics_rx_non_phy *stats) { int i, total, nbant, noise; total = nbant = noise = 0; for (i = 0; i < 3; i++) { noise = letoh32(stats->beacon_silence_rssi[i]) & 0xff; if (noise) { total += noise; nbant++; } } /* There should be at least one antenna but check anyway. */ return (nbant == 0) ? -127 : (total / nbant) - 107; } int iwx_ccmp_decap(struct iwx_softc *sc, struct mbuf *m, struct ieee80211_node *ni, struct ieee80211_rxinfo *rxi) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_key *k; struct ieee80211_frame *wh; uint64_t pn, *prsc; uint8_t *ivp; uint8_t tid; int hdrlen, hasqos; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); ivp = (uint8_t *)wh + hdrlen; /* find key for decryption */ k = ieee80211_get_rxkey(ic, m, ni); if (k == NULL || k->k_cipher != IEEE80211_CIPHER_CCMP) return 1; /* Check that ExtIV bit is be set. */ if (!(ivp[3] & IEEE80211_WEP_EXTIV)) return 1; hasqos = ieee80211_has_qos(wh); tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0; prsc = &k->k_rsc[tid]; /* Extract the 48-bit PN from the CCMP header. */ pn = (uint64_t)ivp[0] | (uint64_t)ivp[1] << 8 | (uint64_t)ivp[4] << 16 | (uint64_t)ivp[5] << 24 | (uint64_t)ivp[6] << 32 | (uint64_t)ivp[7] << 40; if (rxi->rxi_flags & IEEE80211_RXI_HWDEC_SAME_PN) { if (pn < *prsc) { ic->ic_stats.is_ccmp_replays++; return 1; } } else if (pn <= *prsc) { ic->ic_stats.is_ccmp_replays++; return 1; } /* Last seen packet number is updated in ieee80211_inputm(). */ /* * Some firmware versions strip the MIC, and some don't. It is not * clear which of the capability flags could tell us what to expect. * For now, keep things simple and just leave the MIC in place if * it is present. * * The IV will be stripped by ieee80211_inputm(). */ return 0; } int iwx_rx_hwdecrypt(struct iwx_softc *sc, struct mbuf *m, uint32_t rx_pkt_status, struct ieee80211_rxinfo *rxi) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); struct ieee80211_frame *wh; struct ieee80211_node *ni; int ret = 0; uint8_t type, subtype; wh = mtod(m, struct ieee80211_frame *); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; if (type == IEEE80211_FC0_TYPE_CTL) return 0; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (ieee80211_has_qos(wh) && (subtype & IEEE80211_FC0_SUBTYPE_NODATA)) return 0; ni = ieee80211_find_rxnode(ic, wh); /* Handle hardware decryption. */ if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) && (ni->ni_flags & IEEE80211_NODE_RXPROT) && ((!IEEE80211_IS_MULTICAST(wh->i_addr1) && ni->ni_rsncipher == IEEE80211_CIPHER_CCMP) || (IEEE80211_IS_MULTICAST(wh->i_addr1) && ni->ni_rsngroupcipher == IEEE80211_CIPHER_CCMP))) { if ((rx_pkt_status & IWX_RX_MPDU_RES_STATUS_SEC_ENC_MSK) != IWX_RX_MPDU_RES_STATUS_SEC_CCM_ENC) { ic->ic_stats.is_ccmp_dec_errs++; ret = 1; goto out; } /* Check whether decryption was successful or not. */ if ((rx_pkt_status & (IWX_RX_MPDU_RES_STATUS_DEC_DONE | IWX_RX_MPDU_RES_STATUS_MIC_OK)) != (IWX_RX_MPDU_RES_STATUS_DEC_DONE | IWX_RX_MPDU_RES_STATUS_MIC_OK)) { ic->ic_stats.is_ccmp_dec_errs++; ret = 1; goto out; } rxi->rxi_flags |= IEEE80211_RXI_HWDEC; } out: if (ret) ifp->if_ierrors++; ieee80211_release_node(ic, ni); return ret; } void iwx_rx_frame(struct iwx_softc *sc, struct mbuf *m, int chanidx, uint32_t rx_pkt_status, int is_shortpre, int rate_n_flags, uint32_t device_timestamp, struct ieee80211_rxinfo *rxi, struct mbuf_list *ml) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); struct ieee80211_frame *wh; struct ieee80211_node *ni; struct ieee80211_channel *bss_chan; uint8_t saved_bssid[IEEE80211_ADDR_LEN] = { 0 }; if (chanidx < 0 || chanidx >= nitems(ic->ic_channels)) chanidx = ieee80211_chan2ieee(ic, ic->ic_ibss_chan); wh = mtod(m, struct ieee80211_frame *); ni = ieee80211_find_rxnode(ic, wh); if (ni == ic->ic_bss) { /* * We may switch ic_bss's channel during scans. * Record the current channel so we can restore it later. */ bss_chan = ni->ni_chan; IEEE80211_ADDR_COPY(&saved_bssid, ni->ni_macaddr); } ni->ni_chan = &ic->ic_channels[chanidx]; if ((rxi->rxi_flags & IEEE80211_RXI_HWDEC) && iwx_ccmp_decap(sc, m, ni, rxi) != 0) { ifp->if_ierrors++; m_freem(m); ieee80211_release_node(ic, ni); return; } #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct iwx_rx_radiotap_header *tap = &sc->sc_rxtap; uint16_t chan_flags; tap->wr_flags = 0; if (is_shortpre) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_chan_freq = htole16(ic->ic_channels[chanidx].ic_freq); chan_flags = ic->ic_channels[chanidx].ic_flags; if (ic->ic_curmode != IEEE80211_MODE_11N) chan_flags &= ~IEEE80211_CHAN_HT; tap->wr_chan_flags = htole16(chan_flags); tap->wr_dbm_antsignal = (int8_t)rxi->rxi_rssi; tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; tap->wr_tsft = device_timestamp; if (rate_n_flags & IWX_RATE_MCS_HT_MSK) { uint8_t mcs = (rate_n_flags & (IWX_RATE_HT_MCS_RATE_CODE_MSK | IWX_RATE_HT_MCS_NSS_MSK)); tap->wr_rate = (0x80 | mcs); } else { uint8_t rate = (rate_n_flags & IWX_RATE_LEGACY_RATE_MSK); switch (rate) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } } bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_DIRECTION_IN); } #endif ieee80211_inputm(IC2IFP(ic), m, ni, rxi, ml); /* * ieee80211_inputm() might have changed our BSS. * Restore ic_bss's channel if we are still in the same BSS. */ if (ni == ic->ic_bss && IEEE80211_ADDR_EQ(saved_bssid, ni->ni_macaddr)) ni->ni_chan = bss_chan; ieee80211_release_node(ic, ni); } /* * Drop duplicate 802.11 retransmissions * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") * and handle pseudo-duplicate frames which result from deaggregation * of A-MSDU frames in hardware. */ int iwx_detect_duplicate(struct iwx_softc *sc, struct mbuf *m, struct iwx_rx_mpdu_desc *desc, struct ieee80211_rxinfo *rxi) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; struct iwx_rxq_dup_data *dup_data = &in->dup_data; uint8_t tid = IWX_MAX_TID_COUNT, subframe_idx; struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); uint8_t type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; int hasqos = ieee80211_has_qos(wh); uint16_t seq; if (type == IEEE80211_FC0_TYPE_CTL || (hasqos && (subtype & IEEE80211_FC0_SUBTYPE_NODATA)) || IEEE80211_IS_MULTICAST(wh->i_addr1)) return 0; if (hasqos) { tid = (ieee80211_get_qos(wh) & IEEE80211_QOS_TID); if (tid > IWX_MAX_TID_COUNT) tid = IWX_MAX_TID_COUNT; } /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ subframe_idx = desc->amsdu_info & IWX_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; seq = letoh16(*(u_int16_t *)wh->i_seq) >> IEEE80211_SEQ_SEQ_SHIFT; if ((wh->i_fc[1] & IEEE80211_FC1_RETRY) && dup_data->last_seq[tid] == seq && dup_data->last_sub_frame[tid] >= subframe_idx) return 1; /* * Allow the same frame sequence number for all A-MSDU subframes * following the first subframe. * Otherwise these subframes would be discarded as replays. */ if (dup_data->last_seq[tid] == seq && subframe_idx > dup_data->last_sub_frame[tid] && (desc->mac_flags2 & IWX_RX_MPDU_MFLG2_AMSDU)) { rxi->rxi_flags |= IEEE80211_RXI_SAME_SEQ; } dup_data->last_seq[tid] = seq; dup_data->last_sub_frame[tid] = subframe_idx; return 0; } /* * Returns true if sn2 - buffer_size < sn1 < sn2. * To be used only in order to compare reorder buffer head with NSSN. * We fully trust NSSN unless it is behind us due to reorder timeout. * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. */ int iwx_is_sn_less(uint16_t sn1, uint16_t sn2, uint16_t buffer_size) { return SEQ_LT(sn1, sn2) && !SEQ_LT(sn1, sn2 - buffer_size); } void iwx_release_frames(struct iwx_softc *sc, struct ieee80211_node *ni, struct iwx_rxba_data *rxba, struct iwx_reorder_buffer *reorder_buf, uint16_t nssn, struct mbuf_list *ml) { struct iwx_reorder_buf_entry *entries = &rxba->entries[0]; uint16_t ssn = reorder_buf->head_sn; /* ignore nssn smaller than head sn - this can happen due to timeout */ if (iwx_is_sn_less(nssn, ssn, reorder_buf->buf_size)) goto set_timer; while (iwx_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { int index = ssn % reorder_buf->buf_size; struct mbuf *m; int chanidx, is_shortpre; uint32_t rx_pkt_status, rate_n_flags, device_timestamp; struct ieee80211_rxinfo *rxi; /* This data is the same for all A-MSDU subframes. */ chanidx = entries[index].chanidx; rx_pkt_status = entries[index].rx_pkt_status; is_shortpre = entries[index].is_shortpre; rate_n_flags = entries[index].rate_n_flags; device_timestamp = entries[index].device_timestamp; rxi = &entries[index].rxi; /* * Empty the list. Will have more than one frame for A-MSDU. * Empty list is valid as well since nssn indicates frames were * received. */ while ((m = ml_dequeue(&entries[index].frames)) != NULL) { iwx_rx_frame(sc, m, chanidx, rx_pkt_status, is_shortpre, rate_n_flags, device_timestamp, rxi, ml); reorder_buf->num_stored--; /* * Allow the same frame sequence number and CCMP PN for * all A-MSDU subframes following the first subframe. * Otherwise they would be discarded as replays. */ rxi->rxi_flags |= IEEE80211_RXI_SAME_SEQ; rxi->rxi_flags |= IEEE80211_RXI_HWDEC_SAME_PN; } ssn = (ssn + 1) & 0xfff; } reorder_buf->head_sn = nssn; set_timer: if (reorder_buf->num_stored && !reorder_buf->removed) { timeout_add_usec(&reorder_buf->reorder_timer, RX_REORDER_BUF_TIMEOUT_MQ_USEC); } else timeout_del(&reorder_buf->reorder_timer); } int iwx_oldsn_workaround(struct iwx_softc *sc, struct ieee80211_node *ni, int tid, struct iwx_reorder_buffer *buffer, uint32_t reorder_data, uint32_t gp2) { struct ieee80211com *ic = &sc->sc_ic; if (gp2 != buffer->consec_oldsn_ampdu_gp2) { /* we have a new (A-)MPDU ... */ /* * reset counter to 0 if we didn't have any oldsn in * the last A-MPDU (as detected by GP2 being identical) */ if (!buffer->consec_oldsn_prev_drop) buffer->consec_oldsn_drops = 0; /* either way, update our tracking state */ buffer->consec_oldsn_ampdu_gp2 = gp2; } else if (buffer->consec_oldsn_prev_drop) { /* * tracking state didn't change, and we had an old SN * indication before - do nothing in this case, we * already noted this one down and are waiting for the * next A-MPDU (by GP2) */ return 0; } /* return unless this MPDU has old SN */ if (!(reorder_data & IWX_RX_MPDU_REORDER_BA_OLD_SN)) return 0; /* update state */ buffer->consec_oldsn_prev_drop = 1; buffer->consec_oldsn_drops++; /* if limit is reached, send del BA and reset state */ if (buffer->consec_oldsn_drops == IWX_AMPDU_CONSEC_DROPS_DELBA) { ieee80211_delba_request(ic, ni, IEEE80211_REASON_UNSPECIFIED, 0, tid); buffer->consec_oldsn_prev_drop = 0; buffer->consec_oldsn_drops = 0; return 1; } return 0; } /* * Handle re-ordering of frames which were de-aggregated in hardware. * Returns 1 if the MPDU was consumed (buffered or dropped). * Returns 0 if the MPDU should be passed to upper layer. */ int iwx_rx_reorder(struct iwx_softc *sc, struct mbuf *m, int chanidx, struct iwx_rx_mpdu_desc *desc, int is_shortpre, int rate_n_flags, uint32_t device_timestamp, struct ieee80211_rxinfo *rxi, struct mbuf_list *ml) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct iwx_rxba_data *rxba; struct iwx_reorder_buffer *buffer; uint32_t reorder_data = le32toh(desc->reorder_data); int is_amsdu = (desc->mac_flags2 & IWX_RX_MPDU_MFLG2_AMSDU); int last_subframe = (desc->amsdu_info & IWX_RX_MPDU_AMSDU_LAST_SUBFRAME); uint8_t tid; uint8_t subframe_idx = (desc->amsdu_info & IWX_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK); struct iwx_reorder_buf_entry *entries; int index; uint16_t nssn, sn; uint8_t baid, type, subtype; int hasqos; wh = mtod(m, struct ieee80211_frame *); hasqos = ieee80211_has_qos(wh); tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0; type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; ni = ieee80211_find_rxnode(ic, wh); /* * We are only interested in Block Ack requests and unicast QoS data. */ if (IEEE80211_IS_MULTICAST(wh->i_addr1)) return 0; if (hasqos) { if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) return 0; } else { if (type != IEEE80211_FC0_TYPE_CTL || subtype != IEEE80211_FC0_SUBTYPE_BAR) return 0; } baid = (reorder_data & IWX_RX_MPDU_REORDER_BAID_MASK) >> IWX_RX_MPDU_REORDER_BAID_SHIFT; if (baid == IWX_RX_REORDER_DATA_INVALID_BAID || baid >= nitems(sc->sc_rxba_data)) return 0; rxba = &sc->sc_rxba_data[baid]; if (rxba == NULL || tid != rxba->tid || rxba->sta_id != IWX_STATION_ID) return 0; /* Bypass A-MPDU re-ordering in net80211. */ rxi->rxi_flags |= IEEE80211_RXI_AMPDU_DONE; nssn = reorder_data & IWX_RX_MPDU_REORDER_NSSN_MASK; sn = (reorder_data & IWX_RX_MPDU_REORDER_SN_MASK) >> IWX_RX_MPDU_REORDER_SN_SHIFT; buffer = &rxba->reorder_buf; entries = &rxba->entries[0]; if (!buffer->valid) { if (reorder_data & IWX_RX_MPDU_REORDER_BA_OLD_SN) return 0; buffer->valid = 1; } if (type == IEEE80211_FC0_TYPE_CTL && subtype == IEEE80211_FC0_SUBTYPE_BAR) { iwx_release_frames(sc, ni, rxba, buffer, nssn, ml); goto drop; } /* * If there was a significant jump in the nssn - adjust. * If the SN is smaller than the NSSN it might need to first go into * the reorder buffer, in which case we just release up to it and the * rest of the function will take care of storing it and releasing up to * the nssn. */ if (!iwx_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, buffer->buf_size) || !SEQ_LT(sn, buffer->head_sn + buffer->buf_size)) { uint16_t min_sn = SEQ_LT(sn, nssn) ? sn : nssn; ic->ic_stats.is_ht_rx_frame_above_ba_winend++; iwx_release_frames(sc, ni, rxba, buffer, min_sn, ml); } if (iwx_oldsn_workaround(sc, ni, tid, buffer, reorder_data, device_timestamp)) { /* BA session will be torn down. */ ic->ic_stats.is_ht_rx_ba_window_jump++; goto drop; } /* drop any outdated packets */ if (SEQ_LT(sn, buffer->head_sn)) { ic->ic_stats.is_ht_rx_frame_below_ba_winstart++; goto drop; } /* release immediately if allowed by nssn and no stored frames */ if (!buffer->num_stored && SEQ_LT(sn, nssn)) { if (iwx_is_sn_less(buffer->head_sn, nssn, buffer->buf_size) && (!is_amsdu || last_subframe)) buffer->head_sn = nssn; return 0; } /* * release immediately if there are no stored frames, and the sn is * equal to the head. * This can happen due to reorder timer, where NSSN is behind head_sn. * When we released everything, and we got the next frame in the * sequence, according to the NSSN we can't release immediately, * while technically there is no hole and we can move forward. */ if (!buffer->num_stored && sn == buffer->head_sn) { if (!is_amsdu || last_subframe) buffer->head_sn = (buffer->head_sn + 1) & 0xfff; return 0; } index = sn % buffer->buf_size; /* * Check if we already stored this frame * As AMSDU is either received or not as whole, logic is simple: * If we have frames in that position in the buffer and the last frame * originated from AMSDU had a different SN then it is a retransmission. * If it is the same SN then if the subframe index is incrementing it * is the same AMSDU - otherwise it is a retransmission. */ if (!ml_empty(&entries[index].frames)) { if (!is_amsdu) { ic->ic_stats.is_ht_rx_ba_no_buf++; goto drop; } else if (sn != buffer->last_amsdu || buffer->last_sub_index >= subframe_idx) { ic->ic_stats.is_ht_rx_ba_no_buf++; goto drop; } } else { /* This data is the same for all A-MSDU subframes. */ entries[index].chanidx = chanidx; entries[index].is_shortpre = is_shortpre; entries[index].rate_n_flags = rate_n_flags; entries[index].device_timestamp = device_timestamp; memcpy(&entries[index].rxi, rxi, sizeof(entries[index].rxi)); } /* put in reorder buffer */ ml_enqueue(&entries[index].frames, m); buffer->num_stored++; getmicrouptime(&entries[index].reorder_time); if (is_amsdu) { buffer->last_amsdu = sn; buffer->last_sub_index = subframe_idx; } /* * We cannot trust NSSN for AMSDU sub-frames that are not the last. * The reason is that NSSN advances on the first sub-frame, and may * cause the reorder buffer to advance before all the sub-frames arrive. * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with * SN 1. NSSN for first sub frame will be 3 with the result of driver * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is * already ahead and it will be dropped. * If the last sub-frame is not on this queue - we will get frame * release notification with up to date NSSN. */ if (!is_amsdu || last_subframe) iwx_release_frames(sc, ni, rxba, buffer, nssn, ml); return 1; drop: m_freem(m); return 1; } void iwx_rx_mpdu_mq(struct iwx_softc *sc, struct mbuf *m, void *pktdata, size_t maxlen, struct mbuf_list *ml) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_rxinfo rxi; struct iwx_rx_mpdu_desc *desc; uint32_t len, hdrlen, rate_n_flags, device_timestamp; int rssi; uint8_t chanidx; uint16_t phy_info; desc = (struct iwx_rx_mpdu_desc *)pktdata; if (!(desc->status & htole16(IWX_RX_MPDU_RES_STATUS_CRC_OK)) || !(desc->status & htole16(IWX_RX_MPDU_RES_STATUS_OVERRUN_OK))) { m_freem(m); return; /* drop */ } len = le16toh(desc->mpdu_len); if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* Allow control frames in monitor mode. */ if (len < sizeof(struct ieee80211_frame_cts)) { ic->ic_stats.is_rx_tooshort++; IC2IFP(ic)->if_ierrors++; m_freem(m); return; } } else if (len < sizeof(struct ieee80211_frame)) { ic->ic_stats.is_rx_tooshort++; IC2IFP(ic)->if_ierrors++; m_freem(m); return; } if (len > maxlen - sizeof(*desc)) { IC2IFP(ic)->if_ierrors++; m_freem(m); return; } m->m_data = pktdata + sizeof(*desc); m->m_pkthdr.len = m->m_len = len; /* Account for padding following the frame header. */ if (desc->mac_flags2 & IWX_RX_MPDU_MFLG2_PAD) { struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; if (type == IEEE80211_FC0_TYPE_CTL) { switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) { case IEEE80211_FC0_SUBTYPE_CTS: hdrlen = sizeof(struct ieee80211_frame_cts); break; case IEEE80211_FC0_SUBTYPE_ACK: hdrlen = sizeof(struct ieee80211_frame_ack); break; default: hdrlen = sizeof(struct ieee80211_frame_min); break; } } else hdrlen = ieee80211_get_hdrlen(wh); if ((le16toh(desc->status) & IWX_RX_MPDU_RES_STATUS_SEC_ENC_MSK) == IWX_RX_MPDU_RES_STATUS_SEC_CCM_ENC) { /* Padding is inserted after the IV. */ hdrlen += IEEE80211_CCMP_HDRLEN; } memmove(m->m_data + 2, m->m_data, hdrlen); m_adj(m, 2); } memset(&rxi, 0, sizeof(rxi)); /* * Hardware de-aggregates A-MSDUs and copies the same MAC header * in place for each subframe. But it leaves the 'A-MSDU present' * bit set in the frame header. We need to clear this bit ourselves. * (XXX This workaround is not required on AX200/AX201 devices that * have been tested by me, but it's unclear when this problem was * fixed in the hardware. It definitely affects the 9k generation. * Leaving this in place for now since some 9k/AX200 hybrids seem * to exist that we may eventually add support for.) * * And we must allow the same CCMP PN for subframes following the * first subframe. Otherwise they would be discarded as replays. */ if (desc->mac_flags2 & IWX_RX_MPDU_MFLG2_AMSDU) { struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); uint8_t subframe_idx = (desc->amsdu_info & IWX_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK); if (subframe_idx > 0) rxi.rxi_flags |= IEEE80211_RXI_HWDEC_SAME_PN; if (ieee80211_has_qos(wh) && ieee80211_has_addr4(wh) && m->m_len >= sizeof(struct ieee80211_qosframe_addr4)) { struct ieee80211_qosframe_addr4 *qwh4 = mtod(m, struct ieee80211_qosframe_addr4 *); qwh4->i_qos[0] &= htole16(~IEEE80211_QOS_AMSDU); } else if (ieee80211_has_qos(wh) && m->m_len >= sizeof(struct ieee80211_qosframe)) { struct ieee80211_qosframe *qwh = mtod(m, struct ieee80211_qosframe *); qwh->i_qos[0] &= htole16(~IEEE80211_QOS_AMSDU); } } /* * Verify decryption before duplicate detection. The latter uses * the TID supplied in QoS frame headers and this TID is implicitly * verified as part of the CCMP nonce. */ if (iwx_rx_hwdecrypt(sc, m, le16toh(desc->status), &rxi)) { m_freem(m); return; } if (iwx_detect_duplicate(sc, m, desc, &rxi)) { m_freem(m); return; } phy_info = le16toh(desc->phy_info); rate_n_flags = le32toh(desc->v1.rate_n_flags); chanidx = desc->v1.channel; device_timestamp = desc->v1.gp2_on_air_rise; rssi = iwx_rxmq_get_signal_strength(sc, desc); rssi = (0 - IWX_MIN_DBM) + rssi; /* normalize */ rssi = MIN(rssi, ic->ic_max_rssi); /* clip to max. 100% */ rxi.rxi_rssi = rssi; rxi.rxi_tstamp = le64toh(desc->v1.tsf_on_air_rise); if (iwx_rx_reorder(sc, m, chanidx, desc, (phy_info & IWX_RX_MPDU_PHY_SHORT_PREAMBLE), rate_n_flags, device_timestamp, &rxi, ml)) return; iwx_rx_frame(sc, m, chanidx, le16toh(desc->status), (phy_info & IWX_RX_MPDU_PHY_SHORT_PREAMBLE), rate_n_flags, device_timestamp, &rxi, ml); } void iwx_rx_tx_cmd_single(struct iwx_softc *sc, struct iwx_rx_packet *pkt, struct iwx_node *in) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); struct iwx_tx_resp *tx_resp = (void *)pkt->data; int status = le16toh(tx_resp->status.status) & IWX_TX_STATUS_MSK; int txfail; KASSERT(tx_resp->frame_count == 1); txfail = (status != IWX_TX_STATUS_SUCCESS && status != IWX_TX_STATUS_DIRECT_DONE); if (txfail) ifp->if_oerrors++; } void iwx_txd_done(struct iwx_softc *sc, struct iwx_tx_data *txd) { struct ieee80211com *ic = &sc->sc_ic; bus_dmamap_sync(sc->sc_dmat, txd->map, 0, txd->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txd->map); m_freem(txd->m); txd->m = NULL; KASSERT(txd->in); ieee80211_release_node(ic, &txd->in->in_ni); txd->in = NULL; } void iwx_rx_tx_cmd(struct iwx_softc *sc, struct iwx_rx_packet *pkt, struct iwx_rx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); struct iwx_cmd_header *cmd_hdr = &pkt->hdr; int idx = cmd_hdr->idx; int qid = cmd_hdr->qid; struct iwx_tx_ring *ring = &sc->txq[qid]; struct iwx_tx_data *txd; bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWX_RBUF_SIZE, BUS_DMASYNC_POSTREAD); sc->sc_tx_timer = 0; txd = &ring->data[idx]; if (txd->m == NULL) return; iwx_rx_tx_cmd_single(sc, pkt, txd->in); iwx_txd_done(sc, txd); iwx_tx_update_byte_tbl(ring, idx, 0, 0); /* * XXX Sometimes we miss Tx completion interrupts. * We cannot check Tx success/failure for affected frames; just free * the associated mbuf and release the associated node reference. */ while (ring->tail != idx) { txd = &ring->data[ring->tail]; if (txd->m != NULL) { DPRINTF(("%s: missed Tx completion: tail=%d idx=%d\n", __func__, ring->tail, idx)); iwx_txd_done(sc, txd); iwx_tx_update_byte_tbl(ring, idx, 0, 0); ring->queued--; } ring->tail = (ring->tail + 1) % IWX_TX_RING_COUNT; } if (--ring->queued < IWX_TX_RING_LOMARK) { sc->qfullmsk &= ~(1 << ring->qid); if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) { ifq_clr_oactive(&ifp->if_snd); /* * Well, we're in interrupt context, but then again * I guess net80211 does all sorts of stunts in * interrupt context, so maybe this is no biggie. */ (*ifp->if_start)(ifp); } } } void iwx_rx_bmiss(struct iwx_softc *sc, struct iwx_rx_packet *pkt, struct iwx_rx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_missed_beacons_notif *mbn = (void *)pkt->data; uint32_t missed; if ((ic->ic_opmode != IEEE80211_M_STA) || (ic->ic_state != IEEE80211_S_RUN)) return; bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt), sizeof(*mbn), BUS_DMASYNC_POSTREAD); missed = le32toh(mbn->consec_missed_beacons_since_last_rx); if (missed > ic->ic_bmissthres && ic->ic_mgt_timer == 0) { if (ic->ic_if.if_flags & IFF_DEBUG) printf("%s: receiving no beacons from %s; checking if " "this AP is still responding to probe requests\n", DEVNAME(sc), ether_sprintf(ic->ic_bss->ni_macaddr)); /* * Rather than go directly to scan state, try to send a * directed probe request first. If that fails then the * state machine will drop us into scanning after timing * out waiting for a probe response. */ IEEE80211_SEND_MGMT(ic, ic->ic_bss, IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0); } } int iwx_binding_cmd(struct iwx_softc *sc, struct iwx_node *in, uint32_t action) { struct iwx_binding_cmd cmd; struct iwx_phy_ctxt *phyctxt = in->in_phyctxt; uint32_t mac_id = IWX_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color); int i, err, active = (sc->sc_flags & IWX_FLAG_BINDING_ACTIVE); uint32_t status; if (action == IWX_FW_CTXT_ACTION_ADD && active) panic("binding already added"); if (action == IWX_FW_CTXT_ACTION_REMOVE && !active) panic("binding already removed"); if (phyctxt == NULL) /* XXX race with iwx_stop() */ return EINVAL; memset(&cmd, 0, sizeof(cmd)); cmd.id_and_color = htole32(IWX_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color)); cmd.action = htole32(action); cmd.phy = htole32(IWX_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color)); cmd.macs[0] = htole32(mac_id); for (i = 1; i < IWX_MAX_MACS_IN_BINDING; i++) cmd.macs[i] = htole32(IWX_FW_CTXT_INVALID); if (IEEE80211_IS_CHAN_2GHZ(phyctxt->channel) || !isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_CDB_SUPPORT)) cmd.lmac_id = htole32(IWX_LMAC_24G_INDEX); else cmd.lmac_id = htole32(IWX_LMAC_5G_INDEX); status = 0; err = iwx_send_cmd_pdu_status(sc, IWX_BINDING_CONTEXT_CMD, sizeof(cmd), &cmd, &status); if (err == 0 && status != 0) err = EIO; return err; } int iwx_phy_ctxt_cmd_uhb(struct iwx_softc *sc, struct iwx_phy_ctxt *ctxt, uint8_t chains_static, uint8_t chains_dynamic, uint32_t action, uint32_t apply_time) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_phy_context_cmd_uhb cmd; uint8_t active_cnt, idle_cnt; struct ieee80211_channel *chan = ctxt->channel; memset(&cmd, 0, sizeof(cmd)); cmd.id_and_color = htole32(IWX_FW_CMD_ID_AND_COLOR(ctxt->id, ctxt->color)); cmd.action = htole32(action); cmd.apply_time = htole32(apply_time); cmd.ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ? IWX_PHY_BAND_24 : IWX_PHY_BAND_5; cmd.ci.channel = htole32(ieee80211_chan2ieee(ic, chan)); cmd.ci.width = IWX_PHY_VHT_CHANNEL_MODE20; cmd.ci.ctrl_pos = IWX_PHY_VHT_CTRL_POS_1_BELOW; idle_cnt = chains_static; active_cnt = chains_dynamic; cmd.rxchain_info = htole32(iwx_fw_valid_rx_ant(sc) << IWX_PHY_RX_CHAIN_VALID_POS); cmd.rxchain_info |= htole32(idle_cnt << IWX_PHY_RX_CHAIN_CNT_POS); cmd.rxchain_info |= htole32(active_cnt << IWX_PHY_RX_CHAIN_MIMO_CNT_POS); cmd.txchain_info = htole32(iwx_fw_valid_tx_ant(sc)); return iwx_send_cmd_pdu(sc, IWX_PHY_CONTEXT_CMD, 0, sizeof(cmd), &cmd); } int iwx_phy_ctxt_cmd(struct iwx_softc *sc, struct iwx_phy_ctxt *ctxt, uint8_t chains_static, uint8_t chains_dynamic, uint32_t action, uint32_t apply_time) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_phy_context_cmd cmd; uint8_t active_cnt, idle_cnt; struct ieee80211_channel *chan = ctxt->channel; /* * Intel increased the size of the fw_channel_info struct and neglected * to bump the phy_context_cmd struct, which contains an fw_channel_info * member in the middle. * To keep things simple we use a separate function to handle the larger * variant of the phy context command. */ if (isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_ULTRA_HB_CHANNELS)) return iwx_phy_ctxt_cmd_uhb(sc, ctxt, chains_static, chains_dynamic, action, apply_time); memset(&cmd, 0, sizeof(cmd)); cmd.id_and_color = htole32(IWX_FW_CMD_ID_AND_COLOR(ctxt->id, ctxt->color)); cmd.action = htole32(action); cmd.apply_time = htole32(apply_time); cmd.ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ? IWX_PHY_BAND_24 : IWX_PHY_BAND_5; cmd.ci.channel = ieee80211_chan2ieee(ic, chan); cmd.ci.width = IWX_PHY_VHT_CHANNEL_MODE20; cmd.ci.ctrl_pos = IWX_PHY_VHT_CTRL_POS_1_BELOW; idle_cnt = chains_static; active_cnt = chains_dynamic; cmd.rxchain_info = htole32(iwx_fw_valid_rx_ant(sc) << IWX_PHY_RX_CHAIN_VALID_POS); cmd.rxchain_info |= htole32(idle_cnt << IWX_PHY_RX_CHAIN_CNT_POS); cmd.rxchain_info |= htole32(active_cnt << IWX_PHY_RX_CHAIN_MIMO_CNT_POS); cmd.txchain_info = htole32(iwx_fw_valid_tx_ant(sc)); return iwx_send_cmd_pdu(sc, IWX_PHY_CONTEXT_CMD, 0, sizeof(cmd), &cmd); } int iwx_send_cmd(struct iwx_softc *sc, struct iwx_host_cmd *hcmd) { struct iwx_tx_ring *ring = &sc->txq[IWX_DQA_CMD_QUEUE]; struct iwx_tfh_tfd *desc; struct iwx_tx_data *txdata; struct iwx_device_cmd *cmd; struct mbuf *m; bus_addr_t paddr; uint64_t addr; int err = 0, i, paylen, off, s; int idx, code, async, group_id; size_t hdrlen, datasz; uint8_t *data; int generation = sc->sc_generation; code = hcmd->id; async = hcmd->flags & IWX_CMD_ASYNC; idx = ring->cur; for (i = 0, paylen = 0; i < nitems(hcmd->len); i++) { paylen += hcmd->len[i]; } /* If this command waits for a response, allocate response buffer. */ hcmd->resp_pkt = NULL; if (hcmd->flags & IWX_CMD_WANT_RESP) { uint8_t *resp_buf; KASSERT(!async); KASSERT(hcmd->resp_pkt_len >= sizeof(struct iwx_rx_packet)); KASSERT(hcmd->resp_pkt_len <= IWX_CMD_RESP_MAX); if (sc->sc_cmd_resp_pkt[idx] != NULL) return ENOSPC; resp_buf = malloc(hcmd->resp_pkt_len, M_DEVBUF, M_NOWAIT | M_ZERO); if (resp_buf == NULL) return ENOMEM; sc->sc_cmd_resp_pkt[idx] = resp_buf; sc->sc_cmd_resp_len[idx] = hcmd->resp_pkt_len; } else { sc->sc_cmd_resp_pkt[idx] = NULL; } s = splnet(); desc = &ring->desc[idx]; txdata = &ring->data[idx]; group_id = iwx_cmd_groupid(code); if (group_id != 0) { hdrlen = sizeof(cmd->hdr_wide); datasz = sizeof(cmd->data_wide); } else { hdrlen = sizeof(cmd->hdr); datasz = sizeof(cmd->data); } if (paylen > datasz) { /* Command is too large to fit in pre-allocated space. */ size_t totlen = hdrlen + paylen; if (paylen > IWX_MAX_CMD_PAYLOAD_SIZE) { printf("%s: firmware command too long (%zd bytes)\n", DEVNAME(sc), totlen); err = EINVAL; goto out; } m = MCLGETL(NULL, M_DONTWAIT, totlen); if (m == NULL) { printf("%s: could not get fw cmd mbuf (%zd bytes)\n", DEVNAME(sc), totlen); err = ENOMEM; goto out; } cmd = mtod(m, struct iwx_device_cmd *); err = bus_dmamap_load(sc->sc_dmat, txdata->map, cmd, totlen, NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (err) { printf("%s: could not load fw cmd mbuf (%zd bytes)\n", DEVNAME(sc), totlen); m_freem(m); goto out; } txdata->m = m; /* mbuf will be freed in iwx_cmd_done() */ paddr = txdata->map->dm_segs[0].ds_addr; } else { cmd = &ring->cmd[idx]; paddr = txdata->cmd_paddr; } if (group_id != 0) { cmd->hdr_wide.opcode = iwx_cmd_opcode(code); cmd->hdr_wide.group_id = group_id; cmd->hdr_wide.qid = ring->qid; cmd->hdr_wide.idx = idx; cmd->hdr_wide.length = htole16(paylen); cmd->hdr_wide.version = iwx_cmd_version(code); data = cmd->data_wide; } else { cmd->hdr.code = code; cmd->hdr.flags = 0; cmd->hdr.qid = ring->qid; cmd->hdr.idx = idx; data = cmd->data; } for (i = 0, off = 0; i < nitems(hcmd->data); i++) { if (hcmd->len[i] == 0) continue; memcpy(data + off, hcmd->data[i], hcmd->len[i]); off += hcmd->len[i]; } KASSERT(off == paylen); desc->tbs[0].tb_len = htole16(hdrlen + paylen); addr = htole64((uint64_t)paddr); memcpy(&desc->tbs[0].addr, &addr, sizeof(addr)); desc->num_tbs = 1; if (paylen > datasz) { bus_dmamap_sync(sc->sc_dmat, txdata->map, 0, hdrlen + paylen, BUS_DMASYNC_PREWRITE); } else { bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, hdrlen + paylen, BUS_DMASYNC_PREWRITE); } bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, sizeof (*desc), BUS_DMASYNC_PREWRITE); /* Kick command ring. */ DPRINTF(("%s: sending command 0x%x\n", __func__, code)); ring->queued++; ring->cur = (ring->cur + 1) % IWX_TX_RING_COUNT; IWX_WRITE(sc, IWX_HBUS_TARG_WRPTR, ring->qid << 16 | ring->cur); if (!async) { err = tsleep_nsec(desc, PCATCH, "iwxcmd", SEC_TO_NSEC(1)); if (err == 0) { /* if hardware is no longer up, return error */ if (generation != sc->sc_generation) { err = ENXIO; goto out; } /* Response buffer will be freed in iwx_free_resp(). */ hcmd->resp_pkt = (void *)sc->sc_cmd_resp_pkt[idx]; sc->sc_cmd_resp_pkt[idx] = NULL; } else if (generation == sc->sc_generation) { free(sc->sc_cmd_resp_pkt[idx], M_DEVBUF, sc->sc_cmd_resp_len[idx]); sc->sc_cmd_resp_pkt[idx] = NULL; } } out: splx(s); return err; } int iwx_send_cmd_pdu(struct iwx_softc *sc, uint32_t id, uint32_t flags, uint16_t len, const void *data) { struct iwx_host_cmd cmd = { .id = id, .len = { len, }, .data = { data, }, .flags = flags, }; return iwx_send_cmd(sc, &cmd); } int iwx_send_cmd_status(struct iwx_softc *sc, struct iwx_host_cmd *cmd, uint32_t *status) { struct iwx_rx_packet *pkt; struct iwx_cmd_response *resp; int err, resp_len; KASSERT((cmd->flags & IWX_CMD_WANT_RESP) == 0); cmd->flags |= IWX_CMD_WANT_RESP; cmd->resp_pkt_len = sizeof(*pkt) + sizeof(*resp); err = iwx_send_cmd(sc, cmd); if (err) return err; pkt = cmd->resp_pkt; if (pkt == NULL || (pkt->hdr.flags & IWX_CMD_FAILED_MSK)) return EIO; resp_len = iwx_rx_packet_payload_len(pkt); if (resp_len != sizeof(*resp)) { iwx_free_resp(sc, cmd); return EIO; } resp = (void *)pkt->data; *status = le32toh(resp->status); iwx_free_resp(sc, cmd); return err; } int iwx_send_cmd_pdu_status(struct iwx_softc *sc, uint32_t id, uint16_t len, const void *data, uint32_t *status) { struct iwx_host_cmd cmd = { .id = id, .len = { len, }, .data = { data, }, }; return iwx_send_cmd_status(sc, &cmd, status); } void iwx_free_resp(struct iwx_softc *sc, struct iwx_host_cmd *hcmd) { KASSERT((hcmd->flags & (IWX_CMD_WANT_RESP)) == IWX_CMD_WANT_RESP); free(hcmd->resp_pkt, M_DEVBUF, hcmd->resp_pkt_len); hcmd->resp_pkt = NULL; } void iwx_cmd_done(struct iwx_softc *sc, int qid, int idx, int code) { struct iwx_tx_ring *ring = &sc->txq[IWX_DQA_CMD_QUEUE]; struct iwx_tx_data *data; if (qid != IWX_DQA_CMD_QUEUE) { return; /* Not a command ack. */ } data = &ring->data[idx]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->desc[idx]); DPRINTF(("%s: command 0x%x done\n", __func__, code)); if (ring->queued == 0) { DPRINTF(("%s: unexpected firmware response to command 0x%x\n", DEVNAME(sc), code)); } else if (ring->queued > 0) ring->queued--; } /* * Fill in various bit for management frames, and leave them * unfilled for data frames (firmware takes care of that). * Return the selected TX rate. */ const struct iwx_rate * iwx_tx_fill_cmd(struct iwx_softc *sc, struct iwx_node *in, struct ieee80211_frame *wh, struct iwx_tx_cmd_gen2 *tx) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = &in->in_ni; struct ieee80211_rateset *rs = &ni->ni_rates; const struct iwx_rate *rinfo; int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; int min_ridx = iwx_rval2ridx(ieee80211_min_basic_rate(ic)); int ridx, rate_flags; uint32_t flags = 0; if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) { /* for non-data, use the lowest supported rate */ ridx = min_ridx; flags |= IWX_TX_FLAGS_CMD_RATE; } else if (ic->ic_fixed_mcs != -1) { ridx = sc->sc_fixed_ridx; flags |= IWX_TX_FLAGS_CMD_RATE; } else if (ic->ic_fixed_rate != -1) { ridx = sc->sc_fixed_ridx; flags |= IWX_TX_FLAGS_CMD_RATE; } else if (ni->ni_flags & IEEE80211_NODE_HT) { ridx = iwx_mcs2ridx[ni->ni_txmcs]; } else { uint8_t rval; rval = (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL); ridx = iwx_rval2ridx(rval); if (ridx < min_ridx) ridx = min_ridx; } if ((ic->ic_flags & IEEE80211_F_RSNON) && ni->ni_rsn_supp_state == RSNA_SUPP_PTKNEGOTIATING) flags |= IWX_TX_FLAGS_HIGH_PRI; tx->flags = htole32(flags); rinfo = &iwx_rates[ridx]; if (iwx_is_mimo_ht_plcp(rinfo->ht_plcp)) rate_flags = IWX_RATE_MCS_ANT_AB_MSK; else rate_flags = IWX_RATE_MCS_ANT_A_MSK; if (IWX_RIDX_IS_CCK(ridx)) rate_flags |= IWX_RATE_MCS_CCK_MSK; if ((ni->ni_flags & IEEE80211_NODE_HT) && rinfo->ht_plcp != IWX_RATE_HT_SISO_MCS_INV_PLCP) { rate_flags |= IWX_RATE_MCS_HT_MSK; if (ieee80211_node_supports_ht_sgi20(ni)) rate_flags |= IWX_RATE_MCS_SGI_MSK; tx->rate_n_flags = htole32(rate_flags | rinfo->ht_plcp); } else tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); return rinfo; } void iwx_tx_update_byte_tbl(struct iwx_tx_ring *txq, int idx, uint16_t byte_cnt, uint16_t num_tbs) { uint8_t filled_tfd_size, num_fetch_chunks; uint16_t len = byte_cnt; uint16_t bc_ent; struct iwx_agn_scd_bc_tbl *scd_bc_tbl = txq->bc_tbl.vaddr; filled_tfd_size = offsetof(struct iwx_tfh_tfd, tbs) + num_tbs * sizeof(struct iwx_tfh_tb); /* * filled_tfd_size contains the number of filled bytes in the TFD. * Dividing it by 64 will give the number of chunks to fetch * to SRAM- 0 for one chunk, 1 for 2 and so on. * If, for example, TFD contains only 3 TBs then 32 bytes * of the TFD are used, and only one chunk of 64 bytes should * be fetched */ num_fetch_chunks = howmany(filled_tfd_size, 64) - 1; /* Before AX210, the HW expects DW */ len = howmany(len, 4); bc_ent = htole16(len | (num_fetch_chunks << 12)); scd_bc_tbl->tfd_offset[idx] = bc_ent; } int iwx_tx(struct iwx_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ni; struct iwx_tx_ring *ring; struct iwx_tx_data *data; struct iwx_tfh_tfd *desc; struct iwx_device_cmd *cmd; struct iwx_tx_cmd_gen2 *tx; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; const struct iwx_rate *rinfo; uint64_t paddr; u_int hdrlen; bus_dma_segment_t *seg; uint16_t num_tbs; uint8_t type; int i, totlen, err, pad; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_get_hdrlen(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; /* * Map EDCA categories to Tx data queues. * * We use static data queue assignments even in DQA mode. We do not * need to share Tx queues between stations because we only implement * client mode; the firmware's station table contains only one entry * which represents our access point. * * Tx aggregation will require additional queues (one queue per TID * for which aggregation is enabled) but we do not implement this yet. */ ring = &sc->txq[ac + IWX_DQA_AUX_QUEUE + 1]; desc = &ring->desc[ring->cur]; memset(desc, 0, sizeof(*desc)); data = &ring->data[ring->cur]; cmd = &ring->cmd[ring->cur]; cmd->hdr.code = IWX_TX_CMD; cmd->hdr.flags = 0; cmd->hdr.qid = ring->qid; cmd->hdr.idx = ring->cur; tx = (void *)cmd->data; memset(tx, 0, sizeof(*tx)); rinfo = iwx_tx_fill_cmd(sc, in, wh, tx); #if NBPFILTER > 0 if (sc->sc_drvbpf != NULL) { struct iwx_tx_radiotap_header *tap = &sc->sc_txtap; uint16_t chan_flags; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); chan_flags = ni->ni_chan->ic_flags; if (ic->ic_curmode != IEEE80211_MODE_11N) chan_flags &= ~IEEE80211_CHAN_HT; tap->wt_chan_flags = htole16(chan_flags); if ((ni->ni_flags & IEEE80211_NODE_HT) && !IEEE80211_IS_MULTICAST(wh->i_addr1) && type == IEEE80211_FC0_TYPE_DATA && rinfo->ht_plcp != IWX_RATE_HT_SISO_MCS_INV_PLCP) { tap->wt_rate = (0x80 | rinfo->ht_plcp); } else tap->wt_rate = rinfo->rate; if ((ic->ic_flags & IEEE80211_F_WEPON) && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED)) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_DIRECTION_OUT); } #endif if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { k = ieee80211_get_txkey(ic, wh, ni); if (k->k_cipher != IEEE80211_CIPHER_CCMP) { if ((m = ieee80211_encrypt(ic, m, k)) == NULL) return ENOBUFS; /* 802.11 header may have moved. */ wh = mtod(m, struct ieee80211_frame *); tx->flags |= htole32(IWX_TX_FLAGS_ENCRYPT_DIS); } else { k->k_tsc++; /* Hardware increments PN internally and adds IV. */ } } else tx->flags |= htole32(IWX_TX_FLAGS_ENCRYPT_DIS); totlen = m->m_pkthdr.len; if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ pad = 4 - (hdrlen & 3); tx->offload_assist |= htole16(IWX_TX_CMD_OFFLD_PAD); } else pad = 0; tx->len = htole16(totlen); /* Copy 802.11 header in TX command. */ memcpy(((uint8_t *)tx) + sizeof(*tx), wh, hdrlen); /* Trim 802.11 header. */ m_adj(m, hdrlen); err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (err && err != EFBIG) { printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc), err); m_freem(m); return err; } if (err) { /* Too many DMA segments, linearize mbuf. */ if (m_defrag(m, M_DONTWAIT)) { m_freem(m); return ENOBUFS; } err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (err) { printf("%s: can't map mbuf (error %d)\n", DEVNAME(sc), err); m_freem(m); return err; } } data->m = m; data->in = in; /* Fill TX descriptor. */ num_tbs = 2 + data->map->dm_nsegs; desc->num_tbs = htole16(num_tbs); desc->tbs[0].tb_len = htole16(IWX_FIRST_TB_SIZE); paddr = htole64(data->cmd_paddr); memcpy(&desc->tbs[0].addr, &paddr, sizeof(paddr)); if (data->cmd_paddr >> 32 != (data->cmd_paddr + le32toh(desc->tbs[0].tb_len)) >> 32) DPRINTF(("%s: TB0 crosses 32bit boundary\n", __func__)); desc->tbs[1].tb_len = htole16(sizeof(struct iwx_cmd_header) + sizeof(*tx) + hdrlen + pad - IWX_FIRST_TB_SIZE); paddr = htole64(data->cmd_paddr + IWX_FIRST_TB_SIZE); memcpy(&desc->tbs[1].addr, &paddr, sizeof(paddr)); if (data->cmd_paddr >> 32 != (data->cmd_paddr + le32toh(desc->tbs[1].tb_len)) >> 32) DPRINTF(("%s: TB1 crosses 32bit boundary\n", __func__)); /* Other DMA segments are for data payload. */ seg = data->map->dm_segs; for (i = 0; i < data->map->dm_nsegs; i++, seg++) { desc->tbs[i + 2].tb_len = htole16(seg->ds_len); paddr = htole64(seg->ds_addr); memcpy(&desc->tbs[i + 2].addr, &paddr, sizeof(paddr)); if (data->cmd_paddr >> 32 != (data->cmd_paddr + le32toh(desc->tbs[i + 2].tb_len)) >> 32) DPRINTF(("%s: TB%d crosses 32bit boundary\n", __func__, i + 2)); } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, (char *)(void *)cmd - (char *)(void *)ring->cmd_dma.vaddr, sizeof (*cmd), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, (char *)(void *)desc - (char *)(void *)ring->desc_dma.vaddr, sizeof (*desc), BUS_DMASYNC_PREWRITE); iwx_tx_update_byte_tbl(ring, ring->cur, totlen, num_tbs); /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWX_TX_RING_COUNT; IWX_WRITE(sc, IWX_HBUS_TARG_WRPTR, ring->qid << 16 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWX_TX_RING_HIMARK) { sc->qfullmsk |= 1 << ring->qid; } return 0; } int iwx_flush_tx_path(struct iwx_softc *sc) { struct iwx_tx_path_flush_cmd flush_cmd = { .sta_id = htole32(IWX_STATION_ID), .tid_mask = htole16(0xffff), }; int err; err = iwx_send_cmd_pdu(sc, IWX_TXPATH_FLUSH, 0, sizeof(flush_cmd), &flush_cmd); if (err) printf("%s: Flushing tx queue failed: %d\n", DEVNAME(sc), err); return err; } #define IWX_POWER_KEEP_ALIVE_PERIOD_SEC 25 int iwx_beacon_filter_send_cmd(struct iwx_softc *sc, struct iwx_beacon_filter_cmd *cmd) { size_t len; if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_BEACON_FILTER_V4)) len = sizeof(struct iwx_beacon_filter_cmd); else len = offsetof(struct iwx_beacon_filter_cmd, bf_threshold_absolute_low); return iwx_send_cmd_pdu(sc, IWX_REPLY_BEACON_FILTERING_CMD, 0, len, cmd); } int iwx_update_beacon_abort(struct iwx_softc *sc, struct iwx_node *in, int enable) { struct iwx_beacon_filter_cmd cmd = { IWX_BF_CMD_CONFIG_DEFAULTS, .bf_enable_beacon_filter = htole32(1), .ba_enable_beacon_abort = htole32(enable), }; if (!sc->sc_bf.bf_enabled) return 0; sc->sc_bf.ba_enabled = enable; return iwx_beacon_filter_send_cmd(sc, &cmd); } void iwx_power_build_cmd(struct iwx_softc *sc, struct iwx_node *in, struct iwx_mac_power_cmd *cmd) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = &in->in_ni; int dtim_period, dtim_msec, keep_alive; cmd->id_and_color = htole32(IWX_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); if (ni->ni_dtimperiod) dtim_period = ni->ni_dtimperiod; else dtim_period = 1; /* * Regardless of power management state the driver must set * keep alive period. FW will use it for sending keep alive NDPs * immediately after association. Check that keep alive period * is at least 3 * DTIM. */ dtim_msec = dtim_period * ni->ni_intval; keep_alive = MAX(3 * dtim_msec, 1000 * IWX_POWER_KEEP_ALIVE_PERIOD_SEC); keep_alive = roundup(keep_alive, 1000) / 1000; cmd->keep_alive_seconds = htole16(keep_alive); if (ic->ic_opmode != IEEE80211_M_MONITOR) cmd->flags = htole16(IWX_POWER_FLAGS_POWER_SAVE_ENA_MSK); } int iwx_power_mac_update_mode(struct iwx_softc *sc, struct iwx_node *in) { int err; int ba_enable; struct iwx_mac_power_cmd cmd; memset(&cmd, 0, sizeof(cmd)); iwx_power_build_cmd(sc, in, &cmd); err = iwx_send_cmd_pdu(sc, IWX_MAC_PM_POWER_TABLE, 0, sizeof(cmd), &cmd); if (err != 0) return err; ba_enable = !!(cmd.flags & htole16(IWX_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK)); return iwx_update_beacon_abort(sc, in, ba_enable); } int iwx_power_update_device(struct iwx_softc *sc) { struct iwx_device_power_cmd cmd = { }; struct ieee80211com *ic = &sc->sc_ic; if (ic->ic_opmode != IEEE80211_M_MONITOR) cmd.flags = htole16(IWX_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK); return iwx_send_cmd_pdu(sc, IWX_POWER_TABLE_CMD, 0, sizeof(cmd), &cmd); } int iwx_enable_beacon_filter(struct iwx_softc *sc, struct iwx_node *in) { struct iwx_beacon_filter_cmd cmd = { IWX_BF_CMD_CONFIG_DEFAULTS, .bf_enable_beacon_filter = htole32(1), .ba_enable_beacon_abort = htole32(sc->sc_bf.ba_enabled), }; int err; err = iwx_beacon_filter_send_cmd(sc, &cmd); if (err == 0) sc->sc_bf.bf_enabled = 1; return err; } int iwx_disable_beacon_filter(struct iwx_softc *sc) { struct iwx_beacon_filter_cmd cmd; int err; memset(&cmd, 0, sizeof(cmd)); err = iwx_beacon_filter_send_cmd(sc, &cmd); if (err == 0) sc->sc_bf.bf_enabled = 0; return err; } int iwx_add_sta_cmd(struct iwx_softc *sc, struct iwx_node *in, int update) { struct iwx_add_sta_cmd add_sta_cmd; int err; uint32_t status; struct ieee80211com *ic = &sc->sc_ic; if (!update && (sc->sc_flags & IWX_FLAG_STA_ACTIVE)) panic("STA already added"); memset(&add_sta_cmd, 0, sizeof(add_sta_cmd)); if (ic->ic_opmode == IEEE80211_M_MONITOR) { add_sta_cmd.sta_id = IWX_MONITOR_STA_ID; add_sta_cmd.station_type = IWX_STA_GENERAL_PURPOSE; } else { add_sta_cmd.sta_id = IWX_STATION_ID; add_sta_cmd.station_type = IWX_STA_LINK; } add_sta_cmd.mac_id_n_color = htole32(IWX_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); if (!update) { if (ic->ic_opmode == IEEE80211_M_MONITOR) IEEE80211_ADDR_COPY(&add_sta_cmd.addr, etheranyaddr); else IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid); } add_sta_cmd.add_modify = update ? 1 : 0; add_sta_cmd.station_flags_msk |= htole32(IWX_STA_FLG_FAT_EN_MSK | IWX_STA_FLG_MIMO_EN_MSK); add_sta_cmd.tid_disable_tx = htole16(0xffff); if (update) add_sta_cmd.modify_mask |= (IWX_STA_MODIFY_TID_DISABLE_TX); if (in->in_ni.ni_flags & IEEE80211_NODE_HT) { add_sta_cmd.station_flags_msk |= htole32(IWX_STA_FLG_MAX_AGG_SIZE_MSK | IWX_STA_FLG_AGG_MPDU_DENS_MSK); add_sta_cmd.station_flags |= htole32(IWX_STA_FLG_MAX_AGG_SIZE_64K); switch (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) { case IEEE80211_AMPDU_PARAM_SS_2: add_sta_cmd.station_flags |= htole32(IWX_STA_FLG_AGG_MPDU_DENS_2US); break; case IEEE80211_AMPDU_PARAM_SS_4: add_sta_cmd.station_flags |= htole32(IWX_STA_FLG_AGG_MPDU_DENS_4US); break; case IEEE80211_AMPDU_PARAM_SS_8: add_sta_cmd.station_flags |= htole32(IWX_STA_FLG_AGG_MPDU_DENS_8US); break; case IEEE80211_AMPDU_PARAM_SS_16: add_sta_cmd.station_flags |= htole32(IWX_STA_FLG_AGG_MPDU_DENS_16US); break; default: break; } } status = IWX_ADD_STA_SUCCESS; err = iwx_send_cmd_pdu_status(sc, IWX_ADD_STA, sizeof(add_sta_cmd), &add_sta_cmd, &status); if (!err && (status & IWX_ADD_STA_STATUS_MASK) != IWX_ADD_STA_SUCCESS) err = EIO; return err; } int iwx_add_aux_sta(struct iwx_softc *sc) { struct iwx_add_sta_cmd cmd; int err, qid = IWX_DQA_AUX_QUEUE; uint32_t status; memset(&cmd, 0, sizeof(cmd)); cmd.sta_id = IWX_AUX_STA_ID; cmd.station_type = IWX_STA_AUX_ACTIVITY; cmd.mac_id_n_color = htole32(IWX_FW_CMD_ID_AND_COLOR(IWX_MAC_INDEX_AUX, 0)); cmd.tid_disable_tx = htole16(0xffff); status = IWX_ADD_STA_SUCCESS; err = iwx_send_cmd_pdu_status(sc, IWX_ADD_STA, sizeof(cmd), &cmd, &status); if (!err && (status & IWX_ADD_STA_STATUS_MASK) != IWX_ADD_STA_SUCCESS) return EIO; return iwx_enable_txq(sc, IWX_AUX_STA_ID, qid, IWX_MGMT_TID, IWX_TX_RING_COUNT); } int iwx_rm_sta_cmd(struct iwx_softc *sc, struct iwx_node *in) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_rm_sta_cmd rm_sta_cmd; int err; if ((sc->sc_flags & IWX_FLAG_STA_ACTIVE) == 0) panic("sta already removed"); memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd)); if (ic->ic_opmode == IEEE80211_M_MONITOR) rm_sta_cmd.sta_id = IWX_MONITOR_STA_ID; else rm_sta_cmd.sta_id = IWX_STATION_ID; err = iwx_send_cmd_pdu(sc, IWX_REMOVE_STA, 0, sizeof(rm_sta_cmd), &rm_sta_cmd); return err; } uint8_t iwx_umac_scan_fill_channels(struct iwx_softc *sc, struct iwx_scan_channel_cfg_umac *chan, int n_ssids, int bgscan) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c; uint8_t nchan; for (nchan = 0, c = &ic->ic_channels[1]; c <= &ic->ic_channels[IEEE80211_CHAN_MAX] && nchan < sc->sc_capa_n_scan_channels; c++) { uint8_t channel_num; if (c->ic_flags == 0) continue; channel_num = ieee80211_mhz2ieee(c->ic_freq, 0); if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_SCAN_EXT_CHAN_VER)) { chan->v2.channel_num = channel_num; if (IEEE80211_IS_CHAN_2GHZ(c)) chan->v2.band = IWX_PHY_BAND_24; else chan->v2.band = IWX_PHY_BAND_5; chan->v2.iter_count = 1; chan->v2.iter_interval = 0; } else { chan->v1.channel_num = channel_num; chan->v1.iter_count = 1; chan->v1.iter_interval = htole16(0); } if (n_ssids != 0 && !bgscan) chan->flags = htole32(1 << 0); /* select SSID 0 */ chan++; nchan++; } return nchan; } int iwx_fill_probe_req_v1(struct iwx_softc *sc, struct iwx_scan_probe_req_v1 *preq1) { struct iwx_scan_probe_req preq2; int err, i; err = iwx_fill_probe_req(sc, &preq2); if (err) return err; preq1->mac_header = preq2.mac_header; for (i = 0; i < nitems(preq1->band_data); i++) preq1->band_data[i] = preq2.band_data[i]; preq1->common_data = preq2.common_data; memcpy(preq1->buf, preq2.buf, sizeof(preq1->buf)); return 0; } int iwx_fill_probe_req(struct iwx_softc *sc, struct iwx_scan_probe_req *preq) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh = (struct ieee80211_frame *)preq->buf; struct ieee80211_rateset *rs; size_t remain = sizeof(preq->buf); uint8_t *frm, *pos; memset(preq, 0, sizeof(*preq)); if (remain < sizeof(*wh) + 2 + ic->ic_des_esslen) return ENOBUFS; /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ frm = (uint8_t *)(wh + 1); *frm++ = IEEE80211_ELEMID_SSID; *frm++ = 0; /* hardware inserts SSID */ /* Tell the firmware where the MAC header is. */ preq->mac_header.offset = 0; preq->mac_header.len = htole16(frm - (uint8_t *)wh); remain -= frm - (uint8_t *)wh; /* Fill in 2GHz IEs and tell firmware where they are. */ rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; if (rs->rs_nrates > IEEE80211_RATE_SIZE) { if (remain < 4 + rs->rs_nrates) return ENOBUFS; } else if (remain < 2 + rs->rs_nrates) return ENOBUFS; preq->band_data[0].offset = htole16(frm - (uint8_t *)wh); pos = frm; frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); remain -= frm - pos; if (isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) { if (remain < 3) return ENOBUFS; *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = 0; remain -= 3; } preq->band_data[0].len = htole16(frm - pos); if (sc->sc_nvm.sku_cap_band_52GHz_enable) { /* Fill in 5GHz IEs. */ rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; if (rs->rs_nrates > IEEE80211_RATE_SIZE) { if (remain < 4 + rs->rs_nrates) return ENOBUFS; } else if (remain < 2 + rs->rs_nrates) return ENOBUFS; preq->band_data[1].offset = htole16(frm - (uint8_t *)wh); pos = frm; frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); preq->band_data[1].len = htole16(frm - pos); remain -= frm - pos; } /* Send 11n IEs on both 2GHz and 5GHz bands. */ preq->common_data.offset = htole16(frm - (uint8_t *)wh); pos = frm; if (ic->ic_flags & IEEE80211_F_HTON) { if (remain < 28) return ENOBUFS; frm = ieee80211_add_htcaps(frm, ic); /* XXX add WME info? */ } preq->common_data.len = htole16(frm - pos); return 0; } int iwx_config_umac_scan(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_scan_config *scan_config; int err, nchan; size_t cmd_size; struct ieee80211_channel *c; struct iwx_host_cmd hcmd = { .id = iwx_cmd_id(IWX_SCAN_CFG_CMD, IWX_LONG_GROUP, 0), .flags = 0, }; static const uint32_t rates = (IWX_SCAN_CONFIG_RATE_1M | IWX_SCAN_CONFIG_RATE_2M | IWX_SCAN_CONFIG_RATE_5M | IWX_SCAN_CONFIG_RATE_11M | IWX_SCAN_CONFIG_RATE_6M | IWX_SCAN_CONFIG_RATE_9M | IWX_SCAN_CONFIG_RATE_12M | IWX_SCAN_CONFIG_RATE_18M | IWX_SCAN_CONFIG_RATE_24M | IWX_SCAN_CONFIG_RATE_36M | IWX_SCAN_CONFIG_RATE_48M | IWX_SCAN_CONFIG_RATE_54M); cmd_size = sizeof(*scan_config) + sc->sc_capa_n_scan_channels; scan_config = malloc(cmd_size, M_DEVBUF, M_WAIT | M_CANFAIL | M_ZERO); if (scan_config == NULL) return ENOMEM; scan_config->tx_chains = htole32(iwx_fw_valid_tx_ant(sc)); scan_config->rx_chains = htole32(iwx_fw_valid_rx_ant(sc)); scan_config->legacy_rates = htole32(rates | IWX_SCAN_CONFIG_SUPPORTED_RATE(rates)); /* These timings correspond to iwlwifi's UNASSOC scan. */ scan_config->dwell.active = 10; scan_config->dwell.passive = 110; scan_config->dwell.fragmented = 44; scan_config->dwell.extended = 90; scan_config->out_of_channel_time[IWX_SCAN_LB_LMAC_IDX] = htole32(0); scan_config->out_of_channel_time[IWX_SCAN_HB_LMAC_IDX] = htole32(0); scan_config->suspend_time[IWX_SCAN_LB_LMAC_IDX] = htole32(0); scan_config->suspend_time[IWX_SCAN_HB_LMAC_IDX] = htole32(0); IEEE80211_ADDR_COPY(scan_config->mac_addr, sc->sc_ic.ic_myaddr); scan_config->bcast_sta_id = IWX_AUX_STA_ID; scan_config->channel_flags = 0; for (c = &ic->ic_channels[1], nchan = 0; c <= &ic->ic_channels[IEEE80211_CHAN_MAX] && nchan < sc->sc_capa_n_scan_channels; c++) { if (c->ic_flags == 0) continue; scan_config->channel_array[nchan++] = ieee80211_mhz2ieee(c->ic_freq, 0); } scan_config->flags = htole32(IWX_SCAN_CONFIG_FLAG_ACTIVATE | IWX_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS | IWX_SCAN_CONFIG_FLAG_SET_TX_CHAINS | IWX_SCAN_CONFIG_FLAG_SET_RX_CHAINS | IWX_SCAN_CONFIG_FLAG_SET_AUX_STA_ID | IWX_SCAN_CONFIG_FLAG_SET_ALL_TIMES | IWX_SCAN_CONFIG_FLAG_SET_LEGACY_RATES | IWX_SCAN_CONFIG_FLAG_SET_MAC_ADDR | IWX_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS| IWX_SCAN_CONFIG_N_CHANNELS(nchan) | IWX_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED); hcmd.data[0] = scan_config; hcmd.len[0] = cmd_size; err = iwx_send_cmd(sc, &hcmd); free(scan_config, M_DEVBUF, cmd_size); return err; } int iwx_umac_scan_size(struct iwx_softc *sc) { int base_size = IWX_SCAN_REQ_UMAC_SIZE_V1; int tail_size; if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) base_size = IWX_SCAN_REQ_UMAC_SIZE_V8; else if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL)) base_size = IWX_SCAN_REQ_UMAC_SIZE_V7; #ifdef notyet else if (sc->sc_device_family >= IWX_DEVICE_FAMILY_22000) base_size = IWX_SCAN_REQ_UMAC_SIZE_V6; #endif if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_SCAN_EXT_CHAN_VER)) tail_size = sizeof(struct iwx_scan_req_umac_tail_v2); else tail_size = sizeof(struct iwx_scan_req_umac_tail_v1); return base_size + sizeof(struct iwx_scan_channel_cfg_umac) * sc->sc_capa_n_scan_channels + tail_size; } struct iwx_scan_umac_chan_param * iwx_get_scan_req_umac_chan_param(struct iwx_softc *sc, struct iwx_scan_req_umac *req) { if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) return &req->v8.channel; if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL)) return &req->v7.channel; #ifdef notyet if (sc->sc_device_family >= IWX_DEVICE_FAMILY_22000) return &req->v6.channel; #endif return &req->v1.channel; } void * iwx_get_scan_req_umac_data(struct iwx_softc *sc, struct iwx_scan_req_umac *req) { if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) return (void *)&req->v8.data; if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL)) return (void *)&req->v7.data; #ifdef notyet if (sc->sc_device_family >= IWX_DEVICE_FAMILY_22000) return (void *)&req->v6.data; #endif return (void *)&req->v1.data; } /* adaptive dwell max budget time [TU] for full scan */ #define IWX_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN 300 /* adaptive dwell max budget time [TU] for directed scan */ #define IWX_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN 100 /* adaptive dwell default high band APs number */ #define IWX_SCAN_ADWELL_DEFAULT_HB_N_APS 8 /* adaptive dwell default low band APs number */ #define IWX_SCAN_ADWELL_DEFAULT_LB_N_APS 2 /* adaptive dwell default APs number in social channels (1, 6, 11) */ #define IWX_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL 10 int iwx_umac_scan(struct iwx_softc *sc, int bgscan) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_host_cmd hcmd = { .id = iwx_cmd_id(IWX_SCAN_REQ_UMAC, IWX_LONG_GROUP, 0), .len = { 0, }, .data = { NULL, }, .flags = 0, }; struct iwx_scan_req_umac *req; void *cmd_data, *tail_data; struct iwx_scan_req_umac_tail_v2 *tail; struct iwx_scan_req_umac_tail_v1 *tailv1; struct iwx_scan_umac_chan_param *chanparam; size_t req_len; int err, async = bgscan; req_len = iwx_umac_scan_size(sc); if ((req_len < IWX_SCAN_REQ_UMAC_SIZE_V1 + sizeof(struct iwx_scan_req_umac_tail_v1)) || req_len > IWX_MAX_CMD_PAYLOAD_SIZE) return ERANGE; req = malloc(req_len, M_DEVBUF, (async ? M_NOWAIT : M_WAIT) | M_CANFAIL | M_ZERO); if (req == NULL) return ENOMEM; hcmd.len[0] = (uint16_t)req_len; hcmd.data[0] = (void *)req; hcmd.flags |= async ? IWX_CMD_ASYNC : 0; if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL)) { req->v7.adwell_default_n_aps_social = IWX_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL; req->v7.adwell_default_n_aps = IWX_SCAN_ADWELL_DEFAULT_LB_N_APS; if (ic->ic_des_esslen != 0) req->v7.adwell_max_budget = htole16(IWX_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN); else req->v7.adwell_max_budget = htole16(IWX_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN); req->v7.scan_priority = htole32(IWX_SCAN_PRIORITY_HIGH); req->v7.max_out_time[IWX_SCAN_LB_LMAC_IDX] = 0; req->v7.suspend_time[IWX_SCAN_LB_LMAC_IDX] = 0; if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) { req->v8.active_dwell[IWX_SCAN_LB_LMAC_IDX] = 10; req->v8.passive_dwell[IWX_SCAN_LB_LMAC_IDX] = 110; } else { req->v7.active_dwell = 10; req->v7.passive_dwell = 110; req->v7.fragmented_dwell = 44; } } else { /* These timings correspond to iwlwifi's UNASSOC scan. */ req->v1.active_dwell = 10; req->v1.passive_dwell = 110; req->v1.fragmented_dwell = 44; req->v1.extended_dwell = 90; req->v1.scan_priority = htole32(IWX_SCAN_PRIORITY_HIGH); } if (bgscan) { const uint32_t timeout = htole32(120); if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) { req->v8.max_out_time[IWX_SCAN_LB_LMAC_IDX] = timeout; req->v8.suspend_time[IWX_SCAN_LB_LMAC_IDX] = timeout; } else if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL)) { req->v7.max_out_time[IWX_SCAN_LB_LMAC_IDX] = timeout; req->v7.suspend_time[IWX_SCAN_LB_LMAC_IDX] = timeout; } else { req->v1.max_out_time = timeout; req->v1.suspend_time = timeout; } } req->ooc_priority = htole32(IWX_SCAN_PRIORITY_HIGH); cmd_data = iwx_get_scan_req_umac_data(sc, req); chanparam = iwx_get_scan_req_umac_chan_param(sc, req); chanparam->count = iwx_umac_scan_fill_channels(sc, (struct iwx_scan_channel_cfg_umac *)cmd_data, ic->ic_des_esslen != 0, bgscan); chanparam->flags = 0; tail_data = cmd_data + sizeof(struct iwx_scan_channel_cfg_umac) * sc->sc_capa_n_scan_channels; tail = tail_data; /* tail v1 layout differs in preq and direct_scan member fields. */ tailv1 = tail_data; req->general_flags = htole32(IWX_UMAC_SCAN_GEN_FLAGS_PASS_ALL | IWX_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE); if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL_V2)) { req->v8.general_flags2 = IWX_UMAC_SCAN_GEN_FLAGS2_ALLOW_CHNL_REORDER; } #if 0 /* XXX Active scan causes firmware errors after association. */ /* Check if we're doing an active directed scan. */ if (ic->ic_des_esslen != 0) { if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_SCAN_EXT_CHAN_VER)) { tail->direct_scan[0].id = IEEE80211_ELEMID_SSID; tail->direct_scan[0].len = ic->ic_des_esslen; memcpy(tail->direct_scan[0].ssid, ic->ic_des_essid, ic->ic_des_esslen); } else { tailv1->direct_scan[0].id = IEEE80211_ELEMID_SSID; tailv1->direct_scan[0].len = ic->ic_des_esslen; memcpy(tailv1->direct_scan[0].ssid, ic->ic_des_essid, ic->ic_des_esslen); } req->general_flags |= htole32(IWX_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT); } else #endif req->general_flags |= htole32(IWX_UMAC_SCAN_GEN_FLAGS_PASSIVE); if (isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) req->general_flags |= htole32(IWX_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED); if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_ADAPTIVE_DWELL)) { req->general_flags |= htole32(IWX_UMAC_SCAN_GEN_FLAGS_ADAPTIVE_DWELL); } else { req->general_flags |= htole32(IWX_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL); } if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_SCAN_EXT_CHAN_VER)) err = iwx_fill_probe_req(sc, &tail->preq); else err = iwx_fill_probe_req_v1(sc, &tailv1->preq); if (err) { free(req, M_DEVBUF, req_len); return err; } /* Specify the scan plan: We'll do one iteration. */ tail->schedule[0].interval = 0; tail->schedule[0].iter_count = 1; err = iwx_send_cmd(sc, &hcmd); free(req, M_DEVBUF, req_len); return err; } void iwx_mcc_update(struct iwx_softc *sc, struct iwx_mcc_chub_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); char alpha2[3]; snprintf(alpha2, sizeof(alpha2), "%c%c", (le16toh(notif->mcc) & 0xff00) >> 8, le16toh(notif->mcc) & 0xff); if (ifp->if_flags & IFF_DEBUG) { printf("%s: firmware has detected regulatory domain '%s' " "(0x%x)\n", DEVNAME(sc), alpha2, le16toh(notif->mcc)); } /* TODO: Schedule a task to send MCC_UPDATE_CMD? */ } uint8_t iwx_ridx2rate(struct ieee80211_rateset *rs, int ridx) { int i; uint8_t rval; for (i = 0; i < rs->rs_nrates; i++) { rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); if (rval == iwx_rates[ridx].rate) return rs->rs_rates[i]; } return 0; } int iwx_rval2ridx(int rval) { int ridx; for (ridx = 0; ridx < nitems(iwx_rates); ridx++) { if (iwx_rates[ridx].plcp == IWX_RATE_INVM_PLCP) continue; if (rval == iwx_rates[ridx].rate) break; } return ridx; } void iwx_ack_rates(struct iwx_softc *sc, struct iwx_node *in, int *cck_rates, int *ofdm_rates) { struct ieee80211_node *ni = &in->in_ni; struct ieee80211_rateset *rs = &ni->ni_rates; int lowest_present_ofdm = -1; int lowest_present_cck = -1; uint8_t cck = 0; uint8_t ofdm = 0; int i; if (ni->ni_chan == IEEE80211_CHAN_ANYC || IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { for (i = IWX_FIRST_CCK_RATE; i < IWX_FIRST_OFDM_RATE; i++) { if ((iwx_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0) continue; cck |= (1 << i); if (lowest_present_cck == -1 || lowest_present_cck > i) lowest_present_cck = i; } } for (i = IWX_FIRST_OFDM_RATE; i <= IWX_LAST_NON_HT_RATE; i++) { if ((iwx_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0) continue; ofdm |= (1 << (i - IWX_FIRST_OFDM_RATE)); if (lowest_present_ofdm == -1 || lowest_present_ofdm > i) lowest_present_ofdm = i; } /* * Now we've got the basic rates as bitmaps in the ofdm and cck * variables. This isn't sufficient though, as there might not * be all the right rates in the bitmap. E.g. if the only basic * rates are 5.5 Mbps and 11 Mbps, we still need to add 1 Mbps * and 6 Mbps because the 802.11-2007 standard says in 9.6: * * [...] a STA responding to a received frame shall transmit * its Control Response frame [...] at the highest rate in the * BSSBasicRateSet parameter that is less than or equal to the * rate of the immediately previous frame in the frame exchange * sequence ([...]) and that is of the same modulation class * ([...]) as the received frame. If no rate contained in the * BSSBasicRateSet parameter meets these conditions, then the * control frame sent in response to a received frame shall be * transmitted at the highest mandatory rate of the PHY that is * less than or equal to the rate of the received frame, and * that is of the same modulation class as the received frame. * * As a consequence, we need to add all mandatory rates that are * lower than all of the basic rates to these bitmaps. */ if (IWX_RATE_24M_INDEX < lowest_present_ofdm) ofdm |= IWX_RATE_BIT_MSK(24) >> IWX_FIRST_OFDM_RATE; if (IWX_RATE_12M_INDEX < lowest_present_ofdm) ofdm |= IWX_RATE_BIT_MSK(12) >> IWX_FIRST_OFDM_RATE; /* 6M already there or needed so always add */ ofdm |= IWX_RATE_BIT_MSK(6) >> IWX_FIRST_OFDM_RATE; /* * CCK is a bit more complex with DSSS vs. HR/DSSS vs. ERP. * Note, however: * - if no CCK rates are basic, it must be ERP since there must * be some basic rates at all, so they're OFDM => ERP PHY * (or we're in 5 GHz, and the cck bitmap will never be used) * - if 11M is a basic rate, it must be ERP as well, so add 5.5M * - if 5.5M is basic, 1M and 2M are mandatory * - if 2M is basic, 1M is mandatory * - if 1M is basic, that's the only valid ACK rate. * As a consequence, it's not as complicated as it sounds, just add * any lower rates to the ACK rate bitmap. */ if (IWX_RATE_11M_INDEX < lowest_present_cck) cck |= IWX_RATE_BIT_MSK(11) >> IWX_FIRST_CCK_RATE; if (IWX_RATE_5M_INDEX < lowest_present_cck) cck |= IWX_RATE_BIT_MSK(5) >> IWX_FIRST_CCK_RATE; if (IWX_RATE_2M_INDEX < lowest_present_cck) cck |= IWX_RATE_BIT_MSK(2) >> IWX_FIRST_CCK_RATE; /* 1M already there or needed so always add */ cck |= IWX_RATE_BIT_MSK(1) >> IWX_FIRST_CCK_RATE; *cck_rates = cck; *ofdm_rates = ofdm; } void iwx_mac_ctxt_cmd_common(struct iwx_softc *sc, struct iwx_node *in, struct iwx_mac_ctx_cmd *cmd, uint32_t action) { #define IWX_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; int cck_ack_rates, ofdm_ack_rates; int i; cmd->id_and_color = htole32(IWX_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); cmd->action = htole32(action); if (action == IWX_FW_CTXT_ACTION_REMOVE) return; if (ic->ic_opmode == IEEE80211_M_MONITOR) cmd->mac_type = htole32(IWX_FW_MAC_TYPE_LISTENER); else if (ic->ic_opmode == IEEE80211_M_STA) cmd->mac_type = htole32(IWX_FW_MAC_TYPE_BSS_STA); else panic("unsupported operating mode %d\n", ic->ic_opmode); cmd->tsf_id = htole32(IWX_TSF_ID_A); IEEE80211_ADDR_COPY(cmd->node_addr, ic->ic_myaddr); if (ic->ic_opmode == IEEE80211_M_MONITOR) { IEEE80211_ADDR_COPY(cmd->bssid_addr, etherbroadcastaddr); return; } IEEE80211_ADDR_COPY(cmd->bssid_addr, ni->ni_bssid); iwx_ack_rates(sc, in, &cck_ack_rates, &ofdm_ack_rates); cmd->cck_rates = htole32(cck_ack_rates); cmd->ofdm_rates = htole32(ofdm_ack_rates); cmd->cck_short_preamble = htole32((ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? IWX_MAC_FLG_SHORT_PREAMBLE : 0); cmd->short_slot = htole32((ic->ic_flags & IEEE80211_F_SHSLOT) ? IWX_MAC_FLG_SHORT_SLOT : 0); for (i = 0; i < EDCA_NUM_AC; i++) { struct ieee80211_edca_ac_params *ac = &ic->ic_edca_ac[i]; int txf = iwx_ac_to_tx_fifo[i]; cmd->ac[txf].cw_min = htole16(IWX_EXP2(ac->ac_ecwmin)); cmd->ac[txf].cw_max = htole16(IWX_EXP2(ac->ac_ecwmax)); cmd->ac[txf].aifsn = ac->ac_aifsn; cmd->ac[txf].fifos_mask = (1 << txf); cmd->ac[txf].edca_txop = htole16(ac->ac_txoplimit * 32); } if (ni->ni_flags & IEEE80211_NODE_QOS) cmd->qos_flags |= htole32(IWX_MAC_QOS_FLG_UPDATE_EDCA); if (ni->ni_flags & IEEE80211_NODE_HT) { enum ieee80211_htprot htprot = (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK); switch (htprot) { case IEEE80211_HTPROT_NONE: break; case IEEE80211_HTPROT_NONMEMBER: case IEEE80211_HTPROT_NONHT_MIXED: cmd->protection_flags |= htole32(IWX_MAC_PROT_FLG_HT_PROT); if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) cmd->protection_flags |= htole32(IWX_MAC_PROT_FLG_SELF_CTS_EN); break; case IEEE80211_HTPROT_20MHZ: if (ic->ic_htcaps & IEEE80211_HTCAP_CBW20_40) { /* XXX ... and if our channel is 40 MHz ... */ cmd->protection_flags |= htole32(IWX_MAC_PROT_FLG_HT_PROT | IWX_MAC_PROT_FLG_FAT_PROT); if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) cmd->protection_flags |= htole32( IWX_MAC_PROT_FLG_SELF_CTS_EN); } break; default: break; } cmd->qos_flags |= htole32(IWX_MAC_QOS_FLG_TGN); } if (ic->ic_flags & IEEE80211_F_USEPROT) cmd->protection_flags |= htole32(IWX_MAC_PROT_FLG_TGG_PROTECT); cmd->filter_flags = htole32(IWX_MAC_FILTER_ACCEPT_GRP); #undef IWX_EXP2 } void iwx_mac_ctxt_cmd_fill_sta(struct iwx_softc *sc, struct iwx_node *in, struct iwx_mac_data_sta *sta, int assoc) { struct ieee80211_node *ni = &in->in_ni; uint32_t dtim_off; uint64_t tsf; dtim_off = ni->ni_dtimcount * ni->ni_intval * IEEE80211_DUR_TU; memcpy(&tsf, ni->ni_tstamp, sizeof(tsf)); tsf = letoh64(tsf); sta->is_assoc = htole32(assoc); sta->dtim_time = htole32(ni->ni_rstamp + dtim_off); sta->dtim_tsf = htole64(tsf + dtim_off); sta->bi = htole32(ni->ni_intval); sta->bi_reciprocal = htole32(iwx_reciprocal(ni->ni_intval)); sta->dtim_interval = htole32(ni->ni_intval * ni->ni_dtimperiod); sta->dtim_reciprocal = htole32(iwx_reciprocal(sta->dtim_interval)); sta->listen_interval = htole32(10); sta->assoc_id = htole32(ni->ni_associd); sta->assoc_beacon_arrive_time = htole32(ni->ni_rstamp); } int iwx_mac_ctxt_cmd(struct iwx_softc *sc, struct iwx_node *in, uint32_t action, int assoc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = &in->in_ni; struct iwx_mac_ctx_cmd cmd; int active = (sc->sc_flags & IWX_FLAG_MAC_ACTIVE); if (action == IWX_FW_CTXT_ACTION_ADD && active) panic("MAC already added"); if (action == IWX_FW_CTXT_ACTION_REMOVE && !active) panic("MAC already removed"); memset(&cmd, 0, sizeof(cmd)); iwx_mac_ctxt_cmd_common(sc, in, &cmd, action); if (action == IWX_FW_CTXT_ACTION_REMOVE) { return iwx_send_cmd_pdu(sc, IWX_MAC_CONTEXT_CMD, 0, sizeof(cmd), &cmd); } if (ic->ic_opmode == IEEE80211_M_MONITOR) { cmd.filter_flags |= htole32(IWX_MAC_FILTER_IN_PROMISC | IWX_MAC_FILTER_IN_CONTROL_AND_MGMT | IWX_MAC_FILTER_ACCEPT_GRP | IWX_MAC_FILTER_IN_BEACON | IWX_MAC_FILTER_IN_PROBE_REQUEST | IWX_MAC_FILTER_IN_CRC32); } else if (!assoc || !ni->ni_associd || !ni->ni_dtimperiod) /* * Allow beacons to pass through as long as we are not * associated or we do not have dtim period information. */ cmd.filter_flags |= htole32(IWX_MAC_FILTER_IN_BEACON); else iwx_mac_ctxt_cmd_fill_sta(sc, in, &cmd.sta, assoc); return iwx_send_cmd_pdu(sc, IWX_MAC_CONTEXT_CMD, 0, sizeof(cmd), &cmd); } int iwx_clear_statistics(struct iwx_softc *sc) { struct iwx_statistics_cmd scmd = { .flags = htole32(IWX_STATISTICS_FLG_CLEAR) }; struct iwx_host_cmd cmd = { .id = IWX_STATISTICS_CMD, .len[0] = sizeof(scmd), .data[0] = &scmd, .flags = IWX_CMD_WANT_RESP, .resp_pkt_len = sizeof(struct iwx_notif_statistics), }; int err; err = iwx_send_cmd(sc, &cmd); if (err) return err; iwx_free_resp(sc, &cmd); return 0; } int iwx_update_quotas(struct iwx_softc *sc, struct iwx_node *in, int running) { struct iwx_time_quota_cmd cmd; int i, idx, num_active_macs, quota, quota_rem; int colors[IWX_MAX_BINDINGS] = { -1, -1, -1, -1, }; int n_ifs[IWX_MAX_BINDINGS] = {0, }; uint16_t id; memset(&cmd, 0, sizeof(cmd)); /* currently, PHY ID == binding ID */ if (in && in->in_phyctxt) { id = in->in_phyctxt->id; KASSERT(id < IWX_MAX_BINDINGS); colors[id] = in->in_phyctxt->color; if (running) n_ifs[id] = 1; } /* * The FW's scheduling session consists of * IWX_MAX_QUOTA fragments. Divide these fragments * equally between all the bindings that require quota */ num_active_macs = 0; for (i = 0; i < IWX_MAX_BINDINGS; i++) { cmd.quotas[i].id_and_color = htole32(IWX_FW_CTXT_INVALID); num_active_macs += n_ifs[i]; } quota = 0; quota_rem = 0; if (num_active_macs) { quota = IWX_MAX_QUOTA / num_active_macs; quota_rem = IWX_MAX_QUOTA % num_active_macs; } for (idx = 0, i = 0; i < IWX_MAX_BINDINGS; i++) { if (colors[i] < 0) continue; cmd.quotas[idx].id_and_color = htole32(IWX_FW_CMD_ID_AND_COLOR(i, colors[i])); if (n_ifs[i] <= 0) { cmd.quotas[idx].quota = htole32(0); cmd.quotas[idx].max_duration = htole32(0); } else { cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); cmd.quotas[idx].max_duration = htole32(0); } idx++; } /* Give the remainder of the session to the first binding */ cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); return iwx_send_cmd_pdu(sc, IWX_TIME_QUOTA_CMD, 0, sizeof(cmd), &cmd); } void iwx_add_task(struct iwx_softc *sc, struct taskq *taskq, struct task *task) { int s = splnet(); if (sc->sc_flags & IWX_FLAG_SHUTDOWN) { splx(s); return; } refcnt_take(&sc->task_refs); if (!task_add(taskq, task)) refcnt_rele_wake(&sc->task_refs); splx(s); } void iwx_del_task(struct iwx_softc *sc, struct taskq *taskq, struct task *task) { if (task_del(taskq, task)) refcnt_rele(&sc->task_refs); } int iwx_scan(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); int err; if (sc->sc_flags & IWX_FLAG_BGSCAN) { err = iwx_scan_abort(sc); if (err) { printf("%s: could not abort background scan\n", DEVNAME(sc)); return err; } } err = iwx_umac_scan(sc, 0); if (err) { printf("%s: could not initiate scan\n", DEVNAME(sc)); return err; } /* * The current mode might have been fixed during association. * Ensure all channels get scanned. */ if (IFM_MODE(ic->ic_media.ifm_cur->ifm_media) == IFM_AUTO) ieee80211_setmode(ic, IEEE80211_MODE_AUTO); sc->sc_flags |= IWX_FLAG_SCANNING; if (ifp->if_flags & IFF_DEBUG) printf("%s: %s -> %s\n", ifp->if_xname, ieee80211_state_name[ic->ic_state], ieee80211_state_name[IEEE80211_S_SCAN]); if ((sc->sc_flags & IWX_FLAG_BGSCAN) == 0) { ieee80211_set_link_state(ic, LINK_STATE_DOWN); ieee80211_node_cleanup(ic, ic->ic_bss); } ic->ic_state = IEEE80211_S_SCAN; wakeup(&ic->ic_state); /* wake iwx_init() */ return 0; } int iwx_bgscan(struct ieee80211com *ic) { struct iwx_softc *sc = IC2IFP(ic)->if_softc; int err; if (sc->sc_flags & IWX_FLAG_SCANNING) return 0; err = iwx_umac_scan(sc, 1); if (err) { printf("%s: could not initiate scan\n", DEVNAME(sc)); return err; } sc->sc_flags |= IWX_FLAG_BGSCAN; return 0; } int iwx_umac_scan_abort(struct iwx_softc *sc) { struct iwx_umac_scan_abort cmd = { 0 }; return iwx_send_cmd_pdu(sc, IWX_WIDE_ID(IWX_LONG_GROUP, IWX_SCAN_ABORT_UMAC), 0, sizeof(cmd), &cmd); } int iwx_scan_abort(struct iwx_softc *sc) { int err; err = iwx_umac_scan_abort(sc); if (err == 0) sc->sc_flags &= ~(IWX_FLAG_SCANNING | IWX_FLAG_BGSCAN); return err; } int iwx_enable_data_tx_queues(struct iwx_softc *sc) { int err, ac; for (ac = 0; ac < EDCA_NUM_AC; ac++) { int qid = ac + IWX_DQA_AUX_QUEUE + 1; /* * Regular data frames use the "MGMT" TID and queue. * Other TIDs and queues are reserved for frame aggregation. */ err = iwx_enable_txq(sc, IWX_STATION_ID, qid, IWX_TID_NON_QOS, IWX_TX_RING_COUNT); if (err) { printf("%s: could not enable Tx queue %d (error %d)\n", DEVNAME(sc), ac, err); return err; } } return 0; } int iwx_rs_rval2idx(uint8_t rval) { /* Firmware expects indices which match our 11g rate set. */ const struct ieee80211_rateset *rs = &ieee80211_std_rateset_11g; int i; for (i = 0; i < rs->rs_nrates; i++) { if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == rval) return i; } return -1; } uint16_t iwx_rs_ht_rates(struct iwx_softc *sc, struct ieee80211_node *ni, int rsidx) { struct ieee80211com *ic = &sc->sc_ic; const struct ieee80211_ht_rateset *rs; uint16_t htrates = 0; int mcs; rs = &ieee80211_std_ratesets_11n[rsidx]; for (mcs = rs->min_mcs; mcs <= rs->max_mcs; mcs++) { if (!isset(ni->ni_rxmcs, mcs) || !isset(ic->ic_sup_mcs, mcs)) continue; htrates |= (1 << (mcs - rs->min_mcs)); } return htrates; } int iwx_rs_init(struct iwx_softc *sc, struct iwx_node *in) { struct ieee80211_node *ni = &in->in_ni; struct ieee80211_rateset *rs = &ni->ni_rates; struct iwx_tlc_config_cmd cfg_cmd; uint32_t cmd_id; int i; memset(&cfg_cmd, 0, sizeof(cfg_cmd)); for (i = 0; i < rs->rs_nrates; i++) { uint8_t rval = rs->rs_rates[i] & IEEE80211_RATE_VAL; int idx = iwx_rs_rval2idx(rval); if (idx == -1) return EINVAL; cfg_cmd.non_ht_rates |= (1 << idx); } if (ni->ni_flags & IEEE80211_NODE_HT) { cfg_cmd.mode = IWX_TLC_MNG_MODE_HT; cfg_cmd.ht_rates[IWX_TLC_NSS_1][IWX_TLC_HT_BW_NONE_160] = iwx_rs_ht_rates(sc, ni, IEEE80211_HT_RATESET_SISO); cfg_cmd.ht_rates[IWX_TLC_NSS_2][IWX_TLC_HT_BW_NONE_160] = iwx_rs_ht_rates(sc, ni, IEEE80211_HT_RATESET_MIMO2); } else cfg_cmd.mode = IWX_TLC_MNG_MODE_NON_HT; cfg_cmd.sta_id = IWX_STATION_ID; cfg_cmd.max_ch_width = IWX_RATE_MCS_CHAN_WIDTH_20; cfg_cmd.chains = IWX_TLC_MNG_CHAIN_A_MSK | IWX_TLC_MNG_CHAIN_B_MSK; cfg_cmd.max_mpdu_len = IEEE80211_MAX_LEN; if (ieee80211_node_supports_ht_sgi20(ni)) cfg_cmd.sgi_ch_width_supp = (1 << IWX_TLC_MNG_CH_WIDTH_20MHZ); cmd_id = iwx_cmd_id(IWX_TLC_MNG_CONFIG_CMD, IWX_DATA_PATH_GROUP, 0); return iwx_send_cmd_pdu(sc, cmd_id, IWX_CMD_ASYNC, sizeof(cfg_cmd), &cfg_cmd); } void iwx_rs_update(struct iwx_softc *sc, struct iwx_tlc_update_notif *notif) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct ieee80211_rateset *rs = &ni->ni_rates; uint32_t rate_n_flags; int i; if (notif->sta_id != IWX_STATION_ID || (le32toh(notif->flags) & IWX_TLC_NOTIF_FLAG_RATE) == 0) return; rate_n_flags = le32toh(notif->rate); if (rate_n_flags & IWX_RATE_MCS_HT_MSK) { ni->ni_txmcs = (rate_n_flags & (IWX_RATE_HT_MCS_RATE_CODE_MSK | IWX_RATE_HT_MCS_NSS_MSK)); } else { uint8_t plcp = (rate_n_flags & IWX_RATE_LEGACY_RATE_MSK); uint8_t rval = 0; for (i = IWX_RATE_1M_INDEX; i < nitems(iwx_rates); i++) { if (iwx_rates[i].plcp == plcp) { rval = iwx_rates[i].rate; break; } } if (rval) { uint8_t rv; for (i = 0; i < rs->rs_nrates; i++) { rv = rs->rs_rates[i] & IEEE80211_RATE_VAL; if (rv == rval) { ni->ni_txrate = i; break; } } } } } int iwx_auth(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; uint32_t duration; int generation = sc->sc_generation, err; splassert(IPL_NET); if (ic->ic_opmode == IEEE80211_M_MONITOR) sc->sc_phyctxt[0].channel = ic->ic_ibss_chan; else sc->sc_phyctxt[0].channel = in->in_ni.ni_chan; err = iwx_phy_ctxt_cmd(sc, &sc->sc_phyctxt[0], 1, 1, IWX_FW_CTXT_ACTION_MODIFY, 0); if (err) { printf("%s: could not update PHY context (error %d)\n", DEVNAME(sc), err); return err; } in->in_phyctxt = &sc->sc_phyctxt[0]; err = iwx_mac_ctxt_cmd(sc, in, IWX_FW_CTXT_ACTION_ADD, 0); if (err) { printf("%s: could not add MAC context (error %d)\n", DEVNAME(sc), err); return err; } sc->sc_flags |= IWX_FLAG_MAC_ACTIVE; err = iwx_binding_cmd(sc, in, IWX_FW_CTXT_ACTION_ADD); if (err) { printf("%s: could not add binding (error %d)\n", DEVNAME(sc), err); goto rm_mac_ctxt; } sc->sc_flags |= IWX_FLAG_BINDING_ACTIVE; err = iwx_add_sta_cmd(sc, in, 0); if (err) { printf("%s: could not add sta (error %d)\n", DEVNAME(sc), err); goto rm_binding; } sc->sc_flags |= IWX_FLAG_STA_ACTIVE; if (ic->ic_opmode == IEEE80211_M_MONITOR) { err = iwx_enable_txq(sc, IWX_MONITOR_STA_ID, IWX_DQA_INJECT_MONITOR_QUEUE, IWX_MGMT_TID, IWX_TX_RING_COUNT); if (err) goto rm_sta; return 0; } err = iwx_enable_data_tx_queues(sc); if (err) goto rm_sta; err = iwx_clear_statistics(sc); if (err) goto rm_sta; /* * Prevent the FW from wandering off channel during association * by "protecting" the session with a time event. */ if (in->in_ni.ni_intval) duration = in->in_ni.ni_intval * 2; else duration = IEEE80211_DUR_TU; iwx_protect_session(sc, in, duration, in->in_ni.ni_intval / 2); return 0; rm_sta: if (generation == sc->sc_generation) { iwx_rm_sta_cmd(sc, in); sc->sc_flags &= ~IWX_FLAG_STA_ACTIVE; } rm_binding: if (generation == sc->sc_generation) { iwx_binding_cmd(sc, in, IWX_FW_CTXT_ACTION_REMOVE); sc->sc_flags &= ~IWX_FLAG_BINDING_ACTIVE; } rm_mac_ctxt: if (generation == sc->sc_generation) { iwx_mac_ctxt_cmd(sc, in, IWX_FW_CTXT_ACTION_REMOVE, 0); sc->sc_flags &= ~IWX_FLAG_MAC_ACTIVE; } return err; } int iwx_deauth(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; int err; splassert(IPL_NET); iwx_unprotect_session(sc, in); if (sc->sc_flags & IWX_FLAG_STA_ACTIVE) { err = iwx_flush_tx_path(sc); if (err) { printf("%s: could not flush Tx path (error %d)\n", DEVNAME(sc), err); return err; } err = iwx_rm_sta_cmd(sc, in); if (err) { printf("%s: could not remove STA (error %d)\n", DEVNAME(sc), err); return err; } sc->sc_flags &= ~IWX_FLAG_STA_ACTIVE; sc->sc_rx_ba_sessions = 0; } if (sc->sc_flags & IWX_FLAG_BINDING_ACTIVE) { err = iwx_binding_cmd(sc, in, IWX_FW_CTXT_ACTION_REMOVE); if (err) { printf("%s: could not remove binding (error %d)\n", DEVNAME(sc), err); return err; } sc->sc_flags &= ~IWX_FLAG_BINDING_ACTIVE; } if (sc->sc_flags & IWX_FLAG_MAC_ACTIVE) { err = iwx_mac_ctxt_cmd(sc, in, IWX_FW_CTXT_ACTION_REMOVE, 0); if (err) { printf("%s: could not remove MAC context (error %d)\n", DEVNAME(sc), err); return err; } sc->sc_flags &= ~IWX_FLAG_MAC_ACTIVE; } return 0; } int iwx_assoc(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; int update_sta = (sc->sc_flags & IWX_FLAG_STA_ACTIVE); int err; splassert(IPL_NET); err = iwx_add_sta_cmd(sc, in, update_sta); if (err) { printf("%s: could not %s STA (error %d)\n", DEVNAME(sc), update_sta ? "update" : "add", err); return err; } if (!update_sta) err = iwx_enable_data_tx_queues(sc); return err; } int iwx_disassoc(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; int err; splassert(IPL_NET); if (sc->sc_flags & IWX_FLAG_STA_ACTIVE) { err = iwx_rm_sta_cmd(sc, in); if (err) { printf("%s: could not remove STA (error %d)\n", DEVNAME(sc), err); return err; } sc->sc_flags &= ~IWX_FLAG_STA_ACTIVE; sc->sc_rx_ba_sessions = 0; sc->ba_start_tidmask = 0; sc->ba_stop_tidmask = 0; sc->ba_start_tidmask = 0; sc->ba_stop_tidmask = 0; } return 0; } int iwx_run(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; int err; splassert(IPL_NET); if (ic->ic_opmode == IEEE80211_M_MONITOR) { /* Add a MAC context and a sniffing STA. */ err = iwx_auth(sc); if (err) return err; } /* Configure Rx chains for MIMO. */ if ((ic->ic_opmode == IEEE80211_M_MONITOR || (in->in_ni.ni_flags & IEEE80211_NODE_HT)) && iwx_mimo_enabled(sc)) { err = iwx_phy_ctxt_cmd(sc, &sc->sc_phyctxt[0], 2, 2, IWX_FW_CTXT_ACTION_MODIFY, 0); if (err) { printf("%s: failed to update PHY\n", DEVNAME(sc)); return err; } } /* We have now been assigned an associd by the AP. */ err = iwx_mac_ctxt_cmd(sc, in, IWX_FW_CTXT_ACTION_MODIFY, 1); if (err) { printf("%s: failed to update MAC\n", DEVNAME(sc)); return err; } err = iwx_sf_config(sc, IWX_SF_FULL_ON); if (err) { printf("%s: could not set sf full on (error %d)\n", DEVNAME(sc), err); return err; } err = iwx_allow_mcast(sc); if (err) { printf("%s: could not allow mcast (error %d)\n", DEVNAME(sc), err); return err; } err = iwx_power_update_device(sc); if (err) { printf("%s: could not send power command (error %d)\n", DEVNAME(sc), err); return err; } #ifdef notyet /* * Disabled for now. Default beacon filter settings * prevent net80211 from getting ERP and HT protection * updates from beacons. */ err = iwx_enable_beacon_filter(sc, in); if (err) { printf("%s: could not enable beacon filter\n", DEVNAME(sc)); return err; } #endif err = iwx_power_mac_update_mode(sc, in); if (err) { printf("%s: could not update MAC power (error %d)\n", DEVNAME(sc), err); return err; } if (!isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) { err = iwx_update_quotas(sc, in, 1); if (err) { printf("%s: could not update quotas (error %d)\n", DEVNAME(sc), err); return err; } } if (ic->ic_opmode == IEEE80211_M_MONITOR) return 0; /* Start at lowest available bit-rate. Firmware will raise. */ in->in_ni.ni_txrate = 0; in->in_ni.ni_txmcs = 0; err = iwx_rs_init(sc, in); if (err) { printf("%s: could not init rate scaling (error %d)\n", DEVNAME(sc), err); return err; } return 0; } int iwx_run_stop(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; int err; splassert(IPL_NET); err = iwx_sf_config(sc, IWX_SF_INIT_OFF); if (err) return err; err = iwx_disable_beacon_filter(sc); if (err) { printf("%s: could not disable beacon filter (error %d)\n", DEVNAME(sc), err); return err; } if (!isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) { err = iwx_update_quotas(sc, in, 0); if (err) { printf("%s: could not update quotas (error %d)\n", DEVNAME(sc), err); return err; } } err = iwx_mac_ctxt_cmd(sc, in, IWX_FW_CTXT_ACTION_MODIFY, 0); if (err) { printf("%s: failed to update MAC\n", DEVNAME(sc)); return err; } /* Reset Tx chains in case MIMO was enabled. */ if ((in->in_ni.ni_flags & IEEE80211_NODE_HT) && iwx_mimo_enabled(sc)) { err = iwx_phy_ctxt_cmd(sc, &sc->sc_phyctxt[0], 1, 1, IWX_FW_CTXT_ACTION_MODIFY, 0); if (err) { printf("%s: failed to update PHY\n", DEVNAME(sc)); return err; } } return 0; } struct ieee80211_node * iwx_node_alloc(struct ieee80211com *ic) { return malloc(sizeof (struct iwx_node), M_DEVBUF, M_NOWAIT | M_ZERO); } int iwx_set_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct iwx_softc *sc = ic->ic_softc; struct iwx_add_sta_key_cmd cmd; if (k->k_cipher != IEEE80211_CIPHER_CCMP) { /* Fallback to software crypto for other ciphers. */ return (ieee80211_set_key(ic, ni, k)); } memset(&cmd, 0, sizeof(cmd)); cmd.common.key_flags = htole16(IWX_STA_KEY_FLG_CCM | IWX_STA_KEY_FLG_WEP_KEY_MAP | ((k->k_id << IWX_STA_KEY_FLG_KEYID_POS) & IWX_STA_KEY_FLG_KEYID_MSK)); if (k->k_flags & IEEE80211_KEY_GROUP) { cmd.common.key_offset = 1; cmd.common.key_flags |= htole16(IWX_STA_KEY_MULTICAST); } else cmd.common.key_offset = 0; memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len)); cmd.common.sta_id = IWX_STATION_ID; cmd.transmit_seq_cnt = htole64(k->k_tsc); return iwx_send_cmd_pdu(sc, IWX_ADD_STA_KEY, IWX_CMD_ASYNC, sizeof(cmd), &cmd); } void iwx_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_key *k) { struct iwx_softc *sc = ic->ic_softc; struct iwx_add_sta_key_cmd cmd; if (k->k_cipher != IEEE80211_CIPHER_CCMP) { /* Fallback to software crypto for other ciphers. */ ieee80211_delete_key(ic, ni, k); return; } memset(&cmd, 0, sizeof(cmd)); cmd.common.key_flags = htole16(IWX_STA_KEY_NOT_VALID | IWX_STA_KEY_FLG_NO_ENC | IWX_STA_KEY_FLG_WEP_KEY_MAP | ((k->k_id << IWX_STA_KEY_FLG_KEYID_POS) & IWX_STA_KEY_FLG_KEYID_MSK)); memcpy(cmd.common.key, k->k_key, MIN(sizeof(cmd.common.key), k->k_len)); if (k->k_flags & IEEE80211_KEY_GROUP) cmd.common.key_offset = 1; else cmd.common.key_offset = 0; cmd.common.sta_id = IWX_STATION_ID; iwx_send_cmd_pdu(sc, IWX_ADD_STA_KEY, IWX_CMD_ASYNC, sizeof(cmd), &cmd); } int iwx_media_change(struct ifnet *ifp) { struct iwx_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int err; err = ieee80211_media_change(ifp); if (err != ENETRESET) return err; if (ic->ic_fixed_mcs != -1) sc->sc_fixed_ridx = iwx_mcs2ridx[ic->ic_fixed_mcs]; else if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; /* Map 802.11 rate to HW rate index. */ for (ridx = 0; ridx <= IWX_RIDX_MAX; ridx++) if (iwx_rates[ridx].rate == rate) break; sc->sc_fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwx_stop(ifp); err = iwx_init(ifp); } return err; } void iwx_newstate_task(void *psc) { struct iwx_softc *sc = (struct iwx_softc *)psc; struct ieee80211com *ic = &sc->sc_ic; enum ieee80211_state nstate = sc->ns_nstate; enum ieee80211_state ostate = ic->ic_state; int arg = sc->ns_arg; int err = 0, s = splnet(); if (sc->sc_flags & IWX_FLAG_SHUTDOWN) { /* iwx_stop() is waiting for us. */ refcnt_rele_wake(&sc->task_refs); splx(s); return; } if (ostate == IEEE80211_S_SCAN) { if (nstate == ostate) { if (sc->sc_flags & IWX_FLAG_SCANNING) { refcnt_rele_wake(&sc->task_refs); splx(s); return; } /* Firmware is no longer scanning. Do another scan. */ goto next_scan; } } if (nstate <= ostate) { switch (ostate) { case IEEE80211_S_RUN: err = iwx_run_stop(sc); if (err) goto out; /* FALLTHROUGH */ case IEEE80211_S_ASSOC: if (nstate <= IEEE80211_S_ASSOC) { err = iwx_disassoc(sc); if (err) goto out; } /* FALLTHROUGH */ case IEEE80211_S_AUTH: if (nstate <= IEEE80211_S_AUTH) { err = iwx_deauth(sc); if (err) goto out; } /* FALLTHROUGH */ case IEEE80211_S_SCAN: case IEEE80211_S_INIT: break; } /* Die now if iwx_stop() was called while we were sleeping. */ if (sc->sc_flags & IWX_FLAG_SHUTDOWN) { refcnt_rele_wake(&sc->task_refs); splx(s); return; } } switch (nstate) { case IEEE80211_S_INIT: break; case IEEE80211_S_SCAN: next_scan: err = iwx_scan(sc); if (err) break; refcnt_rele_wake(&sc->task_refs); splx(s); return; case IEEE80211_S_AUTH: err = iwx_auth(sc); break; case IEEE80211_S_ASSOC: err = iwx_assoc(sc); break; case IEEE80211_S_RUN: err = iwx_run(sc); break; } out: if ((sc->sc_flags & IWX_FLAG_SHUTDOWN) == 0) { if (err) task_add(systq, &sc->init_task); else sc->sc_newstate(ic, nstate, arg); } refcnt_rele_wake(&sc->task_refs); splx(s); } int iwx_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = IC2IFP(ic); struct iwx_softc *sc = ifp->if_softc; int i; if (ic->ic_state == IEEE80211_S_RUN) { iwx_del_task(sc, systq, &sc->ba_task); iwx_del_task(sc, systq, &sc->mac_ctxt_task); for (i = 0; i < nitems(sc->sc_rxba_data); i++) { struct iwx_rxba_data *rxba = &sc->sc_rxba_data[i]; iwx_clear_reorder_buffer(sc, rxba); } } sc->ns_nstate = nstate; sc->ns_arg = arg; iwx_add_task(sc, sc->sc_nswq, &sc->newstate_task); return 0; } void iwx_endscan(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; if ((sc->sc_flags & (IWX_FLAG_SCANNING | IWX_FLAG_BGSCAN)) == 0) return; sc->sc_flags &= ~(IWX_FLAG_SCANNING | IWX_FLAG_BGSCAN); ieee80211_end_scan(&ic->ic_if); } /* * Aging and idle timeouts for the different possible scenarios * in default configuration */ static const uint32_t iwx_sf_full_timeout_def[IWX_SF_NUM_SCENARIO][IWX_SF_NUM_TIMEOUT_TYPES] = { { htole32(IWX_SF_SINGLE_UNICAST_AGING_TIMER_DEF), htole32(IWX_SF_SINGLE_UNICAST_IDLE_TIMER_DEF) }, { htole32(IWX_SF_AGG_UNICAST_AGING_TIMER_DEF), htole32(IWX_SF_AGG_UNICAST_IDLE_TIMER_DEF) }, { htole32(IWX_SF_MCAST_AGING_TIMER_DEF), htole32(IWX_SF_MCAST_IDLE_TIMER_DEF) }, { htole32(IWX_SF_BA_AGING_TIMER_DEF), htole32(IWX_SF_BA_IDLE_TIMER_DEF) }, { htole32(IWX_SF_TX_RE_AGING_TIMER_DEF), htole32(IWX_SF_TX_RE_IDLE_TIMER_DEF) }, }; /* * Aging and idle timeouts for the different possible scenarios * in single BSS MAC configuration. */ static const uint32_t iwx_sf_full_timeout[IWX_SF_NUM_SCENARIO][IWX_SF_NUM_TIMEOUT_TYPES] = { { htole32(IWX_SF_SINGLE_UNICAST_AGING_TIMER), htole32(IWX_SF_SINGLE_UNICAST_IDLE_TIMER) }, { htole32(IWX_SF_AGG_UNICAST_AGING_TIMER), htole32(IWX_SF_AGG_UNICAST_IDLE_TIMER) }, { htole32(IWX_SF_MCAST_AGING_TIMER), htole32(IWX_SF_MCAST_IDLE_TIMER) }, { htole32(IWX_SF_BA_AGING_TIMER), htole32(IWX_SF_BA_IDLE_TIMER) }, { htole32(IWX_SF_TX_RE_AGING_TIMER), htole32(IWX_SF_TX_RE_IDLE_TIMER) }, }; void iwx_fill_sf_command(struct iwx_softc *sc, struct iwx_sf_cfg_cmd *sf_cmd, struct ieee80211_node *ni) { int i, j, watermark; sf_cmd->watermark[IWX_SF_LONG_DELAY_ON] = htole32(IWX_SF_W_MARK_SCAN); /* * If we are in association flow - check antenna configuration * capabilities of the AP station, and choose the watermark accordingly. */ if (ni) { if (ni->ni_flags & IEEE80211_NODE_HT) { if (ni->ni_rxmcs[1] != 0) watermark = IWX_SF_W_MARK_MIMO2; else watermark = IWX_SF_W_MARK_SISO; } else { watermark = IWX_SF_W_MARK_LEGACY; } /* default watermark value for unassociated mode. */ } else { watermark = IWX_SF_W_MARK_MIMO2; } sf_cmd->watermark[IWX_SF_FULL_ON] = htole32(watermark); for (i = 0; i < IWX_SF_NUM_SCENARIO; i++) { for (j = 0; j < IWX_SF_NUM_TIMEOUT_TYPES; j++) { sf_cmd->long_delay_timeouts[i][j] = htole32(IWX_SF_LONG_DELAY_AGING_TIMER); } } if (ni) { memcpy(sf_cmd->full_on_timeouts, iwx_sf_full_timeout, sizeof(iwx_sf_full_timeout)); } else { memcpy(sf_cmd->full_on_timeouts, iwx_sf_full_timeout_def, sizeof(iwx_sf_full_timeout_def)); } } int iwx_sf_config(struct iwx_softc *sc, int new_state) { struct ieee80211com *ic = &sc->sc_ic; struct iwx_sf_cfg_cmd sf_cmd = { .state = htole32(new_state), }; int err = 0; switch (new_state) { case IWX_SF_UNINIT: case IWX_SF_INIT_OFF: iwx_fill_sf_command(sc, &sf_cmd, NULL); break; case IWX_SF_FULL_ON: iwx_fill_sf_command(sc, &sf_cmd, ic->ic_bss); break; default: return EINVAL; } err = iwx_send_cmd_pdu(sc, IWX_REPLY_SF_CFG_CMD, IWX_CMD_ASYNC, sizeof(sf_cmd), &sf_cmd); return err; } int iwx_send_bt_init_conf(struct iwx_softc *sc) { struct iwx_bt_coex_cmd bt_cmd; bt_cmd.mode = htole32(IWX_BT_COEX_WIFI); bt_cmd.enabled_modules = 0; return iwx_send_cmd_pdu(sc, IWX_BT_CONFIG, 0, sizeof(bt_cmd), &bt_cmd); } int iwx_send_soc_conf(struct iwx_softc *sc) { struct iwx_soc_configuration_cmd cmd; int err; uint32_t cmd_id, flags = 0; memset(&cmd, 0, sizeof(cmd)); /* * In VER_1 of this command, the discrete value is considered * an integer; In VER_2, it's a bitmask. Since we have only 2 * values in VER_1, this is backwards-compatible with VER_2, * as long as we don't set any other flag bits. */ if (!sc->sc_integrated) { /* VER_1 */ flags = IWX_SOC_CONFIG_CMD_FLAGS_DISCRETE; } else { /* VER_2 */ uint8_t scan_cmd_ver; if (sc->sc_ltr_delay != IWX_SOC_FLAGS_LTR_APPLY_DELAY_NONE) flags |= (sc->sc_ltr_delay & IWX_SOC_FLAGS_LTR_APPLY_DELAY_MASK); scan_cmd_ver = iwx_lookup_cmd_ver(sc, IWX_LONG_GROUP, IWX_SCAN_REQ_UMAC); if (scan_cmd_ver >= 2 && sc->sc_low_latency_xtal) flags |= IWX_SOC_CONFIG_CMD_FLAGS_LOW_LATENCY; } cmd.flags = htole32(flags); cmd.latency = htole32(sc->sc_xtal_latency); cmd_id = iwx_cmd_id(IWX_SOC_CONFIGURATION_CMD, IWX_SYSTEM_GROUP, 0); err = iwx_send_cmd_pdu(sc, cmd_id, 0, sizeof(cmd), &cmd); if (err) printf("%s: failed to set soc latency: %d\n", DEVNAME(sc), err); return err; } int iwx_send_update_mcc_cmd(struct iwx_softc *sc, const char *alpha2) { struct iwx_mcc_update_cmd mcc_cmd; struct iwx_host_cmd hcmd = { .id = IWX_MCC_UPDATE_CMD, .flags = IWX_CMD_WANT_RESP, .data = { &mcc_cmd }, }; struct iwx_rx_packet *pkt; struct iwx_mcc_update_resp *resp; size_t resp_len; int err; memset(&mcc_cmd, 0, sizeof(mcc_cmd)); mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]); if (isset(sc->sc_ucode_api, IWX_UCODE_TLV_API_WIFI_MCC_UPDATE) || isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_LAR_MULTI_MCC)) mcc_cmd.source_id = IWX_MCC_SOURCE_GET_CURRENT; else mcc_cmd.source_id = IWX_MCC_SOURCE_OLD_FW; hcmd.len[0] = sizeof(struct iwx_mcc_update_cmd); hcmd.resp_pkt_len = IWX_CMD_RESP_MAX; err = iwx_send_cmd(sc, &hcmd); if (err) return err; pkt = hcmd.resp_pkt; if (!pkt || (pkt->hdr.flags & IWX_CMD_FAILED_MSK)) { err = EIO; goto out; } resp_len = iwx_rx_packet_payload_len(pkt); if (resp_len < sizeof(*resp)) { err = EIO; goto out; } resp = (void *)pkt->data; if (resp_len != sizeof(*resp) + resp->n_channels * sizeof(resp->channels[0])) { err = EIO; goto out; } DPRINTF(("MCC status=0x%x mcc=0x%x cap=0x%x time=0x%x geo_info=0x%x source_id=0x%d n_channels=%u\n", resp->status, resp->mcc, resp->cap, resp->time, resp->geo_info, resp->source_id, resp->n_channels)); /* Update channel map for net80211 and our scan configuration. */ iwx_init_channel_map(sc, NULL, resp->channels, resp->n_channels); out: iwx_free_resp(sc, &hcmd); return err; } int iwx_send_temp_report_ths_cmd(struct iwx_softc *sc) { struct iwx_temp_report_ths_cmd cmd; int err; /* * In order to give responsibility for critical-temperature-kill * and TX backoff to FW we need to send an empty temperature * reporting command at init time. */ memset(&cmd, 0, sizeof(cmd)); err = iwx_send_cmd_pdu(sc, IWX_WIDE_ID(IWX_PHY_OPS_GROUP, IWX_TEMP_REPORTING_THRESHOLDS_CMD), 0, sizeof(cmd), &cmd); if (err) printf("%s: TEMP_REPORT_THS_CMD command failed (error %d)\n", DEVNAME(sc), err); return err; } int iwx_init_hw(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int err, i; err = iwx_preinit(sc); if (err) return err; err = iwx_start_hw(sc); if (err) { printf("%s: could not initialize hardware\n", DEVNAME(sc)); return err; } err = iwx_run_init_mvm_ucode(sc, 0); if (err) return err; if (!iwx_nic_lock(sc)) return EBUSY; err = iwx_send_tx_ant_cfg(sc, iwx_fw_valid_tx_ant(sc)); if (err) { printf("%s: could not init tx ant config (error %d)\n", DEVNAME(sc), err); goto err; } if (sc->sc_tx_with_siso_diversity) { err = iwx_send_phy_cfg_cmd(sc); if (err) { printf("%s: could not send phy config (error %d)\n", DEVNAME(sc), err); goto err; } } err = iwx_send_bt_init_conf(sc); if (err) { printf("%s: could not init bt coex (error %d)\n", DEVNAME(sc), err); return err; } err = iwx_send_soc_conf(sc); if (err) return err; err = iwx_send_dqa_cmd(sc); if (err) return err; /* Add auxiliary station for scanning */ err = iwx_add_aux_sta(sc); if (err) { printf("%s: could not add aux station (error %d)\n", DEVNAME(sc), err); goto err; } for (i = 0; i < 1; i++) { /* * The channel used here isn't relevant as it's * going to be overwritten in the other flows. * For now use the first channel we have. */ sc->sc_phyctxt[i].channel = &ic->ic_channels[1]; err = iwx_phy_ctxt_cmd(sc, &sc->sc_phyctxt[i], 1, 1, IWX_FW_CTXT_ACTION_ADD, 0); if (err) { printf("%s: could not add phy context %d (error %d)\n", DEVNAME(sc), i, err); goto err; } } err = iwx_config_ltr(sc); if (err) { printf("%s: PCIe LTR configuration failed (error %d)\n", DEVNAME(sc), err); } if (isset(sc->sc_enabled_capa, IWX_UCODE_TLV_CAPA_CT_KILL_BY_FW)) { err = iwx_send_temp_report_ths_cmd(sc); if (err) goto err; } err = iwx_power_update_device(sc); if (err) { printf("%s: could not send power command (error %d)\n", DEVNAME(sc), err); goto err; } if (sc->sc_nvm.lar_enabled) { err = iwx_send_update_mcc_cmd(sc, "ZZ"); if (err) { printf("%s: could not init LAR (error %d)\n", DEVNAME(sc), err); goto err; } } err = iwx_config_umac_scan(sc); if (err) { printf("%s: could not configure scan (error %d)\n", DEVNAME(sc), err); goto err; } err = iwx_disable_beacon_filter(sc); if (err) { printf("%s: could not disable beacon filter (error %d)\n", DEVNAME(sc), err); goto err; } err: iwx_nic_unlock(sc); return err; } /* Allow multicast from our BSSID. */ int iwx_allow_mcast(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct iwx_mcast_filter_cmd *cmd; size_t size; int err; size = roundup(sizeof(*cmd), 4); cmd = malloc(size, M_DEVBUF, M_NOWAIT | M_ZERO); if (cmd == NULL) return ENOMEM; cmd->filter_own = 1; cmd->port_id = 0; cmd->count = 0; cmd->pass_all = 1; IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); err = iwx_send_cmd_pdu(sc, IWX_MCAST_FILTER_CMD, 0, size, cmd); free(cmd, M_DEVBUF, size); return err; } int iwx_init(struct ifnet *ifp) { struct iwx_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int err, generation; rw_assert_wrlock(&sc->ioctl_rwl); generation = ++sc->sc_generation; KASSERT(sc->task_refs.refs == 0); refcnt_init(&sc->task_refs); err = iwx_init_hw(sc); if (err) { if (generation == sc->sc_generation) iwx_stop(ifp); return err; } if (sc->sc_nvm.sku_cap_11n_enable) iwx_setup_ht_rates(sc); ifq_clr_oactive(&ifp->if_snd); ifp->if_flags |= IFF_RUNNING; if (ic->ic_opmode == IEEE80211_M_MONITOR) { ic->ic_bss->ni_chan = ic->ic_ibss_chan; ieee80211_new_state(ic, IEEE80211_S_RUN, -1); return 0; } ieee80211_begin_scan(ifp); /* * ieee80211_begin_scan() ends up scheduling iwx_newstate_task(). * Wait until the transition to SCAN state has completed. */ do { err = tsleep_nsec(&ic->ic_state, PCATCH, "iwxinit", SEC_TO_NSEC(1)); if (generation != sc->sc_generation) return ENXIO; if (err) return err; } while (ic->ic_state != IEEE80211_S_SCAN); return 0; } void iwx_start(struct ifnet *ifp) { struct iwx_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct ether_header *eh; struct mbuf *m; int ac = EDCA_AC_BE; /* XXX */ if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) return; for (;;) { /* why isn't this done per-queue? */ if (sc->qfullmsk != 0) { ifq_set_oactive(&ifp->if_snd); break; } /* need to send management frames even if we're not RUNning */ m = mq_dequeue(&ic->ic_mgtq); if (m) { ni = m->m_pkthdr.ph_cookie; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN || (ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY)) break; m = ifq_dequeue(&ifp->if_snd); if (!m) break; if (m->m_len < sizeof (*eh) && (m = m_pullup(m, sizeof (*eh))) == NULL) { ifp->if_oerrors++; continue; } #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) { ifp->if_oerrors++; continue; } sendit: #if NBPFILTER > 0 if (ic->ic_rawbpf != NULL) bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); #endif if (iwx_tx(sc, m, ni, ac) != 0) { ieee80211_release_node(ic, ni); ifp->if_oerrors++; continue; } if (ifp->if_flags & IFF_UP) { sc->sc_tx_timer = 15; ifp->if_timer = 1; } } return; } void iwx_stop(struct ifnet *ifp) { struct iwx_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct iwx_node *in = (void *)ic->ic_bss; int i, s = splnet(); rw_assert_wrlock(&sc->ioctl_rwl); sc->sc_flags |= IWX_FLAG_SHUTDOWN; /* Disallow new tasks. */ /* Cancel scheduled tasks and let any stale tasks finish up. */ task_del(systq, &sc->init_task); iwx_del_task(sc, sc->sc_nswq, &sc->newstate_task); iwx_del_task(sc, systq, &sc->ba_task); iwx_del_task(sc, systq, &sc->mac_ctxt_task); KASSERT(sc->task_refs.refs >= 1); refcnt_finalize(&sc->task_refs, "iwxstop"); iwx_stop_device(sc); /* Reset soft state. */ sc->sc_generation++; for (i = 0; i < nitems(sc->sc_cmd_resp_pkt); i++) { free(sc->sc_cmd_resp_pkt[i], M_DEVBUF, sc->sc_cmd_resp_len[i]); sc->sc_cmd_resp_pkt[i] = NULL; sc->sc_cmd_resp_len[i] = 0; } ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); in->in_phyctxt = NULL; sc->sc_flags &= ~(IWX_FLAG_SCANNING | IWX_FLAG_BGSCAN); sc->sc_flags &= ~IWX_FLAG_MAC_ACTIVE; sc->sc_flags &= ~IWX_FLAG_BINDING_ACTIVE; sc->sc_flags &= ~IWX_FLAG_STA_ACTIVE; sc->sc_flags &= ~IWX_FLAG_TE_ACTIVE; sc->sc_flags &= ~IWX_FLAG_HW_ERR; sc->sc_flags &= ~IWX_FLAG_SHUTDOWN; sc->sc_rx_ba_sessions = 0; sc->ba_start_tidmask = 0; sc->ba_stop_tidmask = 0; memset(sc->ba_ssn, 0, sizeof(sc->ba_ssn)); memset(sc->ba_winsize, 0, sizeof(sc->ba_winsize)); memset(sc->ba_timeout_val, 0, sizeof(sc->ba_timeout_val)); sc->sc_newstate(ic, IEEE80211_S_INIT, -1); for (i = 0; i < nitems(sc->sc_rxba_data); i++) { struct iwx_rxba_data *rxba = &sc->sc_rxba_data[i]; iwx_clear_reorder_buffer(sc, rxba); } ifp->if_timer = sc->sc_tx_timer = 0; splx(s); } void iwx_watchdog(struct ifnet *ifp) { struct iwx_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", DEVNAME(sc)); #ifdef IWX_DEBUG iwx_nic_error(sc); #endif if ((sc->sc_flags & IWX_FLAG_SHUTDOWN) == 0) task_add(systq, &sc->init_task); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(ifp); } int iwx_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct iwx_softc *sc = ifp->if_softc; int s, err = 0, generation = sc->sc_generation; /* * Prevent processes from entering this function while another * process is tsleep'ing in it. */ err = rw_enter(&sc->ioctl_rwl, RW_WRITE | RW_INTR); if (err == 0 && generation != sc->sc_generation) { rw_exit(&sc->ioctl_rwl); return ENXIO; } if (err) return err; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) { err = iwx_init(ifp); } } else { if (ifp->if_flags & IFF_RUNNING) iwx_stop(ifp); } break; default: err = ieee80211_ioctl(ifp, cmd, data); } if (err == ENETRESET) { err = 0; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwx_stop(ifp); err = iwx_init(ifp); } } splx(s); rw_exit(&sc->ioctl_rwl); return err; } #if 1 /* usually #ifdef IWX_DEBUG but always enabled for now */ /* * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with uint32_t-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwx_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t trm_hw_status0; /* TRM HW status */ uint32_t trm_hw_status1; /* TRM HW status */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t bcon_time; /* beacon timer */ uint32_t tsf_low; /* network timestamp function timer */ uint32_t tsf_hi; /* network timestamp function timer */ uint32_t gp1; /* GP1 timer register */ uint32_t gp2; /* GP2 timer register */ uint32_t fw_rev_type; /* firmware revision type */ uint32_t major; /* uCode version major */ uint32_t minor; /* uCode version minor */ uint32_t hw_ver; /* HW Silicon version */ uint32_t brd_ver; /* HW board version */ uint32_t log_pc; /* log program counter */ uint32_t frame_ptr; /* frame pointer */ uint32_t stack_ptr; /* stack pointer */ uint32_t hcmd; /* last host command header */ uint32_t isr0; /* isr status register LMPM_NIC_ISR0: * rxtx_flag */ uint32_t isr1; /* isr status register LMPM_NIC_ISR1: * host_flag */ uint32_t isr2; /* isr status register LMPM_NIC_ISR2: * enc_flag */ uint32_t isr3; /* isr status register LMPM_NIC_ISR3: * time_flag */ uint32_t isr4; /* isr status register LMPM_NIC_ISR4: * wico interrupt */ uint32_t last_cmd_id; /* last HCMD id handled by the firmware */ uint32_t wait_event; /* wait event() caller address */ uint32_t l2p_control; /* L2pControlField */ uint32_t l2p_duration; /* L2pDurationField */ uint32_t l2p_mhvalid; /* L2pMhValidBits */ uint32_t l2p_addr_match; /* L2pAddrMatchStat */ uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on * (LMPM_PMG_SEL) */ uint32_t u_timestamp; /* indicate when the date and time of the * compilation */ uint32_t flow_handler; /* FH read/write pointers, RX credit */ } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; /* * UMAC error struct - relevant starting from family 8000 chip. * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with u32-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwx_umac_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t blink1; /* branch link */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t umac_major; uint32_t umac_minor; uint32_t frame_pointer; /* core register 27*/ uint32_t stack_pointer; /* core register 28 */ uint32_t cmd_header; /* latest host cmd sent to UMAC */ uint32_t nic_isr_pref; /* ISR status register */ } __packed; #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) void iwx_nic_umac_error(struct iwx_softc *sc) { struct iwx_umac_error_event_table table; uint32_t base; base = sc->sc_uc.uc_umac_error_event_table; if (base < 0x800000) { printf("%s: Invalid error log pointer 0x%08x\n", DEVNAME(sc), base); return; } if (iwx_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { printf("%s: reading errlog failed\n", DEVNAME(sc)); return; } if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { printf("%s: Start UMAC Error Log Dump:\n", DEVNAME(sc)); printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc), sc->sc_flags, table.valid); } printf("%s: 0x%08X | %s\n", DEVNAME(sc), table.error_id, iwx_desc_lookup(table.error_id)); printf("%s: 0x%08X | umac branchlink1\n", DEVNAME(sc), table.blink1); printf("%s: 0x%08X | umac branchlink2\n", DEVNAME(sc), table.blink2); printf("%s: 0x%08X | umac interruptlink1\n", DEVNAME(sc), table.ilink1); printf("%s: 0x%08X | umac interruptlink2\n", DEVNAME(sc), table.ilink2); printf("%s: 0x%08X | umac data1\n", DEVNAME(sc), table.data1); printf("%s: 0x%08X | umac data2\n", DEVNAME(sc), table.data2); printf("%s: 0x%08X | umac data3\n", DEVNAME(sc), table.data3); printf("%s: 0x%08X | umac major\n", DEVNAME(sc), table.umac_major); printf("%s: 0x%08X | umac minor\n", DEVNAME(sc), table.umac_minor); printf("%s: 0x%08X | frame pointer\n", DEVNAME(sc), table.frame_pointer); printf("%s: 0x%08X | stack pointer\n", DEVNAME(sc), table.stack_pointer); printf("%s: 0x%08X | last host cmd\n", DEVNAME(sc), table.cmd_header); printf("%s: 0x%08X | isr status reg\n", DEVNAME(sc), table.nic_isr_pref); } #define IWX_FW_SYSASSERT_CPU_MASK 0xf0000000 static struct { const char *name; uint8_t num; } advanced_lookup[] = { { "NMI_INTERRUPT_WDG", 0x34 }, { "SYSASSERT", 0x35 }, { "UCODE_VERSION_MISMATCH", 0x37 }, { "BAD_COMMAND", 0x38 }, { "BAD_COMMAND", 0x39 }, { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, { "FATAL_ERROR", 0x3D }, { "NMI_TRM_HW_ERR", 0x46 }, { "NMI_INTERRUPT_TRM", 0x4C }, { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, { "NMI_INTERRUPT_HOST", 0x66 }, { "NMI_INTERRUPT_LMAC_FATAL", 0x70 }, { "NMI_INTERRUPT_UMAC_FATAL", 0x71 }, { "NMI_INTERRUPT_OTHER_LMAC_FATAL", 0x73 }, { "NMI_INTERRUPT_ACTION_PT", 0x7C }, { "NMI_INTERRUPT_UNKNOWN", 0x84 }, { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, { "ADVANCED_SYSASSERT", 0 }, }; const char * iwx_desc_lookup(uint32_t num) { int i; for (i = 0; i < nitems(advanced_lookup) - 1; i++) if (advanced_lookup[i].num == (num & ~IWX_FW_SYSASSERT_CPU_MASK)) return advanced_lookup[i].name; /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ return advanced_lookup[i].name; } /* * Support for dumping the error log seemed like a good idea ... * but it's mostly hex junk and the only sensible thing is the * hw/ucode revision (which we know anyway). Since it's here, * I'll just leave it in, just in case e.g. the Intel guys want to * help us decipher some "ADVANCED_SYSASSERT" later. */ void iwx_nic_error(struct iwx_softc *sc) { struct iwx_error_event_table table; uint32_t base; printf("%s: dumping device error log\n", DEVNAME(sc)); base = sc->sc_uc.uc_lmac_error_event_table[0]; if (base < 0x800000) { printf("%s: Invalid error log pointer 0x%08x\n", DEVNAME(sc), base); return; } if (iwx_read_mem(sc, base, &table, sizeof(table)/sizeof(uint32_t))) { printf("%s: reading errlog failed\n", DEVNAME(sc)); return; } if (!table.valid) { printf("%s: errlog not found, skipping\n", DEVNAME(sc)); return; } if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) { printf("%s: Start Error Log Dump:\n", DEVNAME(sc)); printf("%s: Status: 0x%x, count: %d\n", DEVNAME(sc), sc->sc_flags, table.valid); } printf("%s: 0x%08X | %-28s\n", DEVNAME(sc), table.error_id, iwx_desc_lookup(table.error_id)); printf("%s: %08X | trm_hw_status0\n", DEVNAME(sc), table.trm_hw_status0); printf("%s: %08X | trm_hw_status1\n", DEVNAME(sc), table.trm_hw_status1); printf("%s: %08X | branchlink2\n", DEVNAME(sc), table.blink2); printf("%s: %08X | interruptlink1\n", DEVNAME(sc), table.ilink1); printf("%s: %08X | interruptlink2\n", DEVNAME(sc), table.ilink2); printf("%s: %08X | data1\n", DEVNAME(sc), table.data1); printf("%s: %08X | data2\n", DEVNAME(sc), table.data2); printf("%s: %08X | data3\n", DEVNAME(sc), table.data3); printf("%s: %08X | beacon time\n", DEVNAME(sc), table.bcon_time); printf("%s: %08X | tsf low\n", DEVNAME(sc), table.tsf_low); printf("%s: %08X | tsf hi\n", DEVNAME(sc), table.tsf_hi); printf("%s: %08X | time gp1\n", DEVNAME(sc), table.gp1); printf("%s: %08X | time gp2\n", DEVNAME(sc), table.gp2); printf("%s: %08X | uCode revision type\n", DEVNAME(sc), table.fw_rev_type); printf("%s: %08X | uCode version major\n", DEVNAME(sc), table.major); printf("%s: %08X | uCode version minor\n", DEVNAME(sc), table.minor); printf("%s: %08X | hw version\n", DEVNAME(sc), table.hw_ver); printf("%s: %08X | board version\n", DEVNAME(sc), table.brd_ver); printf("%s: %08X | hcmd\n", DEVNAME(sc), table.hcmd); printf("%s: %08X | isr0\n", DEVNAME(sc), table.isr0); printf("%s: %08X | isr1\n", DEVNAME(sc), table.isr1); printf("%s: %08X | isr2\n", DEVNAME(sc), table.isr2); printf("%s: %08X | isr3\n", DEVNAME(sc), table.isr3); printf("%s: %08X | isr4\n", DEVNAME(sc), table.isr4); printf("%s: %08X | last cmd Id\n", DEVNAME(sc), table.last_cmd_id); printf("%s: %08X | wait_event\n", DEVNAME(sc), table.wait_event); printf("%s: %08X | l2p_control\n", DEVNAME(sc), table.l2p_control); printf("%s: %08X | l2p_duration\n", DEVNAME(sc), table.l2p_duration); printf("%s: %08X | l2p_mhvalid\n", DEVNAME(sc), table.l2p_mhvalid); printf("%s: %08X | l2p_addr_match\n", DEVNAME(sc), table.l2p_addr_match); printf("%s: %08X | lmpm_pmg_sel\n", DEVNAME(sc), table.lmpm_pmg_sel); printf("%s: %08X | timestamp\n", DEVNAME(sc), table.u_timestamp); printf("%s: %08X | flow_handler\n", DEVNAME(sc), table.flow_handler); if (sc->sc_uc.uc_umac_error_event_table) iwx_nic_umac_error(sc); } #endif #define SYNC_RESP_STRUCT(_var_, _pkt_) \ do { \ bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \ sizeof(*(_var_)), BUS_DMASYNC_POSTREAD); \ _var_ = (void *)((_pkt_)+1); \ } while (/*CONSTCOND*/0) #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \ do { \ bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \ sizeof(len), BUS_DMASYNC_POSTREAD); \ _ptr_ = (void *)((_pkt_)+1); \ } while (/*CONSTCOND*/0) int iwx_rx_pkt_valid(struct iwx_rx_packet *pkt) { int qid, idx, code; qid = pkt->hdr.qid & ~0x80; idx = pkt->hdr.idx; code = IWX_WIDE_ID(pkt->hdr.flags, pkt->hdr.code); return (!(qid == 0 && idx == 0 && code == 0) && pkt->len_n_flags != htole32(IWX_FH_RSCSR_FRAME_INVALID)); } void iwx_rx_pkt(struct iwx_softc *sc, struct iwx_rx_data *data, struct mbuf_list *ml) { struct ifnet *ifp = IC2IFP(&sc->sc_ic); struct iwx_rx_packet *pkt, *nextpkt; uint32_t offset = 0, nextoff = 0, nmpdu = 0, len; struct mbuf *m0, *m; const size_t minsz = sizeof(pkt->len_n_flags) + sizeof(pkt->hdr); int qid, idx, code, handled = 1; bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWX_RBUF_SIZE, BUS_DMASYNC_POSTREAD); m0 = data->m; while (m0 && offset + minsz < IWX_RBUF_SIZE) { pkt = (struct iwx_rx_packet *)(m0->m_data + offset); qid = pkt->hdr.qid; idx = pkt->hdr.idx; code = IWX_WIDE_ID(pkt->hdr.flags, pkt->hdr.code); if (!iwx_rx_pkt_valid(pkt)) break; len = sizeof(pkt->len_n_flags) + iwx_rx_packet_len(pkt); if (len < sizeof(pkt->hdr) || len > (IWX_RBUF_SIZE - offset - minsz)) break; if (code == IWX_REPLY_RX_MPDU_CMD && ++nmpdu == 1) { /* Take mbuf m0 off the RX ring. */ if (iwx_rx_addbuf(sc, IWX_RBUF_SIZE, sc->rxq.cur)) { ifp->if_ierrors++; break; } KASSERT(data->m != m0); } switch (code) { case IWX_REPLY_RX_PHY_CMD: iwx_rx_rx_phy_cmd(sc, pkt, data); break; case IWX_REPLY_RX_MPDU_CMD: { size_t maxlen = IWX_RBUF_SIZE - offset - minsz; nextoff = offset + roundup(len, IWX_FH_RSCSR_FRAME_ALIGN); nextpkt = (struct iwx_rx_packet *) (m0->m_data + nextoff); if (nextoff + minsz >= IWX_RBUF_SIZE || !iwx_rx_pkt_valid(nextpkt)) { /* No need to copy last frame in buffer. */ if (offset > 0) m_adj(m0, offset); iwx_rx_mpdu_mq(sc, m0, pkt->data, maxlen, ml); m0 = NULL; /* stack owns m0 now; abort loop */ } else { /* * Create an mbuf which points to the current * packet. Always copy from offset zero to * preserve m_pkthdr. */ m = m_copym(m0, 0, M_COPYALL, M_DONTWAIT); if (m == NULL) { ifp->if_ierrors++; m_freem(m0); m0 = NULL; break; } m_adj(m, offset); iwx_rx_mpdu_mq(sc, m, pkt->data, maxlen, ml); } break; } case IWX_TX_CMD: iwx_rx_tx_cmd(sc, pkt, data); break; case IWX_MISSED_BEACONS_NOTIFICATION: iwx_rx_bmiss(sc, pkt, data); break; case IWX_MFUART_LOAD_NOTIFICATION: break; case IWX_ALIVE: { struct iwx_alive_resp_v4 *resp4; DPRINTF(("%s: firmware alive\n", __func__)); if (iwx_rx_packet_payload_len(pkt) == sizeof(*resp4)) { SYNC_RESP_STRUCT(resp4, pkt); sc->sc_uc.uc_lmac_error_event_table[0] = le32toh( resp4->lmac_data[0].dbg_ptrs.error_event_table_ptr); sc->sc_uc.uc_lmac_error_event_table[1] = le32toh( resp4->lmac_data[1].dbg_ptrs.error_event_table_ptr); sc->sc_uc.uc_log_event_table = le32toh( resp4->lmac_data[0].dbg_ptrs.log_event_table_ptr); sc->sched_base = le32toh( resp4->lmac_data[0].dbg_ptrs.scd_base_ptr); sc->sc_uc.uc_umac_error_event_table = le32toh( resp4->umac_data.dbg_ptrs.error_info_addr); if (resp4->status == IWX_ALIVE_STATUS_OK) sc->sc_uc.uc_ok = 1; else sc->sc_uc.uc_ok = 0; } sc->sc_uc.uc_intr = 1; wakeup(&sc->sc_uc); break; } case IWX_STATISTICS_NOTIFICATION: { struct iwx_notif_statistics *stats; SYNC_RESP_STRUCT(stats, pkt); memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); sc->sc_noise = iwx_get_noise(&stats->rx.general); break; } case IWX_DTS_MEASUREMENT_NOTIFICATION: case IWX_WIDE_ID(IWX_PHY_OPS_GROUP, IWX_DTS_MEASUREMENT_NOTIF_WIDE): case IWX_WIDE_ID(IWX_PHY_OPS_GROUP, IWX_TEMP_REPORTING_THRESHOLDS_CMD): break; case IWX_WIDE_ID(IWX_PHY_OPS_GROUP, IWX_CT_KILL_NOTIFICATION): { struct iwx_ct_kill_notif *notif; SYNC_RESP_STRUCT(notif, pkt); printf("%s: device at critical temperature (%u degC), " "stopping device\n", DEVNAME(sc), le16toh(notif->temperature)); sc->sc_flags |= IWX_FLAG_HW_ERR; task_add(systq, &sc->init_task); break; } case IWX_WIDE_ID(IWX_REGULATORY_AND_NVM_GROUP, IWX_NVM_GET_INFO): case IWX_ADD_STA_KEY: case IWX_PHY_CONFIGURATION_CMD: case IWX_TX_ANT_CONFIGURATION_CMD: case IWX_ADD_STA: case IWX_MAC_CONTEXT_CMD: case IWX_REPLY_SF_CFG_CMD: case IWX_POWER_TABLE_CMD: case IWX_LTR_CONFIG: case IWX_PHY_CONTEXT_CMD: case IWX_BINDING_CONTEXT_CMD: case IWX_WIDE_ID(IWX_LONG_GROUP, IWX_SCAN_CFG_CMD): case IWX_WIDE_ID(IWX_LONG_GROUP, IWX_SCAN_REQ_UMAC): case IWX_WIDE_ID(IWX_LONG_GROUP, IWX_SCAN_ABORT_UMAC): case IWX_REPLY_BEACON_FILTERING_CMD: case IWX_MAC_PM_POWER_TABLE: case IWX_TIME_QUOTA_CMD: case IWX_REMOVE_STA: case IWX_TXPATH_FLUSH: case IWX_BT_CONFIG: case IWX_MCC_UPDATE_CMD: case IWX_TIME_EVENT_CMD: case IWX_STATISTICS_CMD: case IWX_SCD_QUEUE_CFG: { size_t pkt_len; if (sc->sc_cmd_resp_pkt[idx] == NULL) break; bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof(*pkt), BUS_DMASYNC_POSTREAD); pkt_len = sizeof(pkt->len_n_flags) + iwx_rx_packet_len(pkt); if ((pkt->hdr.flags & IWX_CMD_FAILED_MSK) || pkt_len < sizeof(*pkt) || pkt_len > sc->sc_cmd_resp_len[idx]) { free(sc->sc_cmd_resp_pkt[idx], M_DEVBUF, sc->sc_cmd_resp_len[idx]); sc->sc_cmd_resp_pkt[idx] = NULL; break; } bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt), pkt_len - sizeof(*pkt), BUS_DMASYNC_POSTREAD); memcpy(sc->sc_cmd_resp_pkt[idx], pkt, pkt_len); break; } case IWX_INIT_COMPLETE_NOTIF: sc->sc_init_complete |= IWX_INIT_COMPLETE; wakeup(&sc->sc_init_complete); break; case IWX_SCAN_COMPLETE_UMAC: { struct iwx_umac_scan_complete *notif; SYNC_RESP_STRUCT(notif, pkt); iwx_endscan(sc); break; } case IWX_SCAN_ITERATION_COMPLETE_UMAC: { struct iwx_umac_scan_iter_complete_notif *notif; SYNC_RESP_STRUCT(notif, pkt); iwx_endscan(sc); break; } case IWX_MCC_CHUB_UPDATE_CMD: { struct iwx_mcc_chub_notif *notif; SYNC_RESP_STRUCT(notif, pkt); iwx_mcc_update(sc, notif); break; } case IWX_REPLY_ERROR: { struct iwx_error_resp *resp; SYNC_RESP_STRUCT(resp, pkt); printf("%s: firmware error 0x%x, cmd 0x%x\n", DEVNAME(sc), le32toh(resp->error_type), resp->cmd_id); break; } case IWX_TIME_EVENT_NOTIFICATION: { struct iwx_time_event_notif *notif; uint32_t action; SYNC_RESP_STRUCT(notif, pkt); if (sc->sc_time_event_uid != le32toh(notif->unique_id)) break; action = le32toh(notif->action); if (action & IWX_TE_V2_NOTIF_HOST_EVENT_END) sc->sc_flags &= ~IWX_FLAG_TE_ACTIVE; break; } case IWX_WIDE_ID(IWX_SYSTEM_GROUP, IWX_FSEQ_VER_MISMATCH_NOTIFICATION): break; /* * Firmware versions 21 and 22 generate some DEBUG_LOG_MSG * messages. Just ignore them for now. */ case IWX_DEBUG_LOG_MSG: break; case IWX_MCAST_FILTER_CMD: break; case IWX_WIDE_ID(IWX_DATA_PATH_GROUP, IWX_DQA_ENABLE_CMD): break; case IWX_WIDE_ID(IWX_SYSTEM_GROUP, IWX_SOC_CONFIGURATION_CMD): break; case IWX_WIDE_ID(IWX_SYSTEM_GROUP, IWX_INIT_EXTENDED_CFG_CMD): break; case IWX_WIDE_ID(IWX_REGULATORY_AND_NVM_GROUP, IWX_NVM_ACCESS_COMPLETE): break; case IWX_WIDE_ID(IWX_DATA_PATH_GROUP, IWX_RX_NO_DATA_NOTIF): break; /* happens in monitor mode; ignore for now */ case IWX_WIDE_ID(IWX_DATA_PATH_GROUP, IWX_TLC_MNG_CONFIG_CMD): break; case IWX_WIDE_ID(IWX_DATA_PATH_GROUP, IWX_TLC_MNG_UPDATE_NOTIF): { struct iwx_tlc_update_notif *notif; SYNC_RESP_STRUCT(notif, pkt); if (iwx_rx_packet_payload_len(pkt) == sizeof(*notif)) iwx_rs_update(sc, notif); break; } default: handled = 0; printf("%s: unhandled firmware response 0x%x/0x%x " "rx ring %d[%d]\n", DEVNAME(sc), code, pkt->len_n_flags, (qid & ~0x80), idx); break; } /* * uCode sets bit 0x80 when it originates the notification, * i.e. when the notification is not a direct response to a * command sent by the driver. * For example, uCode issues IWX_REPLY_RX when it sends a * received frame to the driver. */ if (handled && !(qid & (1 << 7))) { iwx_cmd_done(sc, qid, idx, code); } offset += roundup(len, IWX_FH_RSCSR_FRAME_ALIGN); } if (m0 && m0 != data->m) m_freem(m0); } void iwx_notif_intr(struct iwx_softc *sc) { struct mbuf_list ml = MBUF_LIST_INITIALIZER(); uint16_t hw; bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; hw &= (IWX_RX_MQ_RING_COUNT - 1); while (sc->rxq.cur != hw) { struct iwx_rx_data *data = &sc->rxq.data[sc->rxq.cur]; iwx_rx_pkt(sc, data, &ml); sc->rxq.cur = (sc->rxq.cur + 1) % IWX_RX_MQ_RING_COUNT; } if_input(&sc->sc_ic.ic_if, &ml); /* * Tell the firmware what we have processed. * Seems like the hardware gets upset unless we align the write by 8?? */ hw = (hw == 0) ? IWX_RX_MQ_RING_COUNT - 1 : hw - 1; IWX_WRITE(sc, IWX_RFH_Q0_FRBDCB_WIDX_TRG, hw & ~7); } int iwx_intr(void *arg) { struct iwx_softc *sc = arg; int handled = 0; int r1, r2, rv = 0; IWX_WRITE(sc, IWX_CSR_INT_MASK, 0); if (sc->sc_flags & IWX_FLAG_USE_ICT) { uint32_t *ict = sc->ict_dma.vaddr; int tmp; tmp = htole32(ict[sc->ict_cur]); if (!tmp) goto out_ena; /* * ok, there was something. keep plowing until we have all. */ r1 = r2 = 0; while (tmp) { r1 |= tmp; ict[sc->ict_cur] = 0; sc->ict_cur = (sc->ict_cur+1) % IWX_ICT_COUNT; tmp = htole32(ict[sc->ict_cur]); } /* this is where the fun begins. don't ask */ if (r1 == 0xffffffff) r1 = 0; /* i am not expected to understand this */ if (r1 & 0xc0000) r1 |= 0x8000; r1 = (0xff & r1) | ((0xff00 & r1) << 16); } else { r1 = IWX_READ(sc, IWX_CSR_INT); if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) goto out; r2 = IWX_READ(sc, IWX_CSR_FH_INT_STATUS); } if (r1 == 0 && r2 == 0) { goto out_ena; } IWX_WRITE(sc, IWX_CSR_INT, r1 | ~sc->sc_intmask); if (r1 & IWX_CSR_INT_BIT_ALIVE) { int i; /* Firmware has now configured the RFH. */ for (i = 0; i < IWX_RX_MQ_RING_COUNT; i++) iwx_update_rx_desc(sc, &sc->rxq, i); IWX_WRITE(sc, IWX_RFH_Q0_FRBDCB_WIDX_TRG, 8); } handled |= (r1 & (IWX_CSR_INT_BIT_ALIVE /*| IWX_CSR_INT_BIT_SCD*/)); if (r1 & IWX_CSR_INT_BIT_RF_KILL) { handled |= IWX_CSR_INT_BIT_RF_KILL; iwx_check_rfkill(sc); task_add(systq, &sc->init_task); rv = 1; goto out_ena; } if (r1 & IWX_CSR_INT_BIT_SW_ERR) { #if 1 /* usually #ifdef IWX_DEBUG but always enabled for now */ int i; iwx_nic_error(sc); /* Dump driver status (TX and RX rings) while we're here. */ printf("driver status:\n"); for (i = 0; i < IWX_MAX_QUEUES; i++) { struct iwx_tx_ring *ring = &sc->txq[i]; printf(" tx ring %2d: qid=%-2d cur=%-3d " "queued=%-3d\n", i, ring->qid, ring->cur, ring->queued); } printf(" rx ring: cur=%d\n", sc->rxq.cur); printf(" 802.11 state %s\n", ieee80211_state_name[sc->sc_ic.ic_state]); #endif printf("%s: fatal firmware error\n", DEVNAME(sc)); if ((sc->sc_flags & IWX_FLAG_SHUTDOWN) == 0) task_add(systq, &sc->init_task); rv = 1; goto out; } if (r1 & IWX_CSR_INT_BIT_HW_ERR) { handled |= IWX_CSR_INT_BIT_HW_ERR; printf("%s: hardware error, stopping device \n", DEVNAME(sc)); if ((sc->sc_flags & IWX_FLAG_SHUTDOWN) == 0) { sc->sc_flags |= IWX_FLAG_HW_ERR; task_add(systq, &sc->init_task); } rv = 1; goto out; } /* firmware chunk loaded */ if (r1 & IWX_CSR_INT_BIT_FH_TX) { IWX_WRITE(sc, IWX_CSR_FH_INT_STATUS, IWX_CSR_FH_INT_TX_MASK); handled |= IWX_CSR_INT_BIT_FH_TX; sc->sc_fw_chunk_done = 1; wakeup(&sc->sc_fw); } if (r1 & (IWX_CSR_INT_BIT_FH_RX | IWX_CSR_INT_BIT_SW_RX | IWX_CSR_INT_BIT_RX_PERIODIC)) { if (r1 & (IWX_CSR_INT_BIT_FH_RX | IWX_CSR_INT_BIT_SW_RX)) { handled |= (IWX_CSR_INT_BIT_FH_RX | IWX_CSR_INT_BIT_SW_RX); IWX_WRITE(sc, IWX_CSR_FH_INT_STATUS, IWX_CSR_FH_INT_RX_MASK); } if (r1 & IWX_CSR_INT_BIT_RX_PERIODIC) { handled |= IWX_CSR_INT_BIT_RX_PERIODIC; IWX_WRITE(sc, IWX_CSR_INT, IWX_CSR_INT_BIT_RX_PERIODIC); } /* Disable periodic interrupt; we use it as just a one-shot. */ IWX_WRITE_1(sc, IWX_CSR_INT_PERIODIC_REG, IWX_CSR_INT_PERIODIC_DIS); /* * Enable periodic interrupt in 8 msec only if we received * real RX interrupt (instead of just periodic int), to catch * any dangling Rx interrupt. If it was just the periodic * interrupt, there was no dangling Rx activity, and no need * to extend the periodic interrupt; one-shot is enough. */ if (r1 & (IWX_CSR_INT_BIT_FH_RX | IWX_CSR_INT_BIT_SW_RX)) IWX_WRITE_1(sc, IWX_CSR_INT_PERIODIC_REG, IWX_CSR_INT_PERIODIC_ENA); iwx_notif_intr(sc); } rv = 1; out_ena: iwx_restore_interrupts(sc); out: return rv; } int iwx_intr_msix(void *arg) { struct iwx_softc *sc = arg; uint32_t inta_fh, inta_hw; int vector = 0; inta_fh = IWX_READ(sc, IWX_CSR_MSIX_FH_INT_CAUSES_AD); inta_hw = IWX_READ(sc, IWX_CSR_MSIX_HW_INT_CAUSES_AD); IWX_WRITE(sc, IWX_CSR_MSIX_FH_INT_CAUSES_AD, inta_fh); IWX_WRITE(sc, IWX_CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); inta_fh &= sc->sc_fh_mask; inta_hw &= sc->sc_hw_mask; if (inta_fh & IWX_MSIX_FH_INT_CAUSES_Q0 || inta_fh & IWX_MSIX_FH_INT_CAUSES_Q1) { iwx_notif_intr(sc); } /* firmware chunk loaded */ if (inta_fh & IWX_MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { sc->sc_fw_chunk_done = 1; wakeup(&sc->sc_fw); } if ((inta_fh & IWX_MSIX_FH_INT_CAUSES_FH_ERR) || (inta_hw & IWX_MSIX_HW_INT_CAUSES_REG_SW_ERR) || (inta_hw & IWX_MSIX_HW_INT_CAUSES_REG_SW_ERR_V2)) { #if 1 /* usually #ifdef IWX_DEBUG but always enabled for now */ int i; iwx_nic_error(sc); /* Dump driver status (TX and RX rings) while we're here. */ printf("driver status:\n"); for (i = 0; i < IWX_MAX_QUEUES; i++) { struct iwx_tx_ring *ring = &sc->txq[i]; printf(" tx ring %2d: qid=%-2d cur=%-3d " "queued=%-3d\n", i, ring->qid, ring->cur, ring->queued); } printf(" rx ring: cur=%d\n", sc->rxq.cur); printf(" 802.11 state %s\n", ieee80211_state_name[sc->sc_ic.ic_state]); #endif printf("%s: fatal firmware error\n", DEVNAME(sc)); if ((sc->sc_flags & IWX_FLAG_SHUTDOWN) == 0) task_add(systq, &sc->init_task); return 1; } if (inta_hw & IWX_MSIX_HW_INT_CAUSES_REG_RF_KILL) { iwx_check_rfkill(sc); task_add(systq, &sc->init_task); } if (inta_hw & IWX_MSIX_HW_INT_CAUSES_REG_HW_ERR) { printf("%s: hardware error, stopping device \n", DEVNAME(sc)); if ((sc->sc_flags & IWX_FLAG_SHUTDOWN) == 0) { sc->sc_flags |= IWX_FLAG_HW_ERR; task_add(systq, &sc->init_task); } return 1; } if (inta_hw & IWX_MSIX_HW_INT_CAUSES_REG_ALIVE) { int i; /* Firmware has now configured the RFH. */ for (i = 0; i < IWX_RX_MQ_RING_COUNT; i++) iwx_update_rx_desc(sc, &sc->rxq, i); IWX_WRITE(sc, IWX_RFH_Q0_FRBDCB_WIDX_TRG, 8); } /* * Before sending the interrupt the HW disables it to prevent * a nested interrupt. This is done by writing 1 to the corresponding * bit in the mask register. After handling the interrupt, it should be * re-enabled by clearing this bit. This register is defined as * write 1 clear (W1C) register, meaning that it's being clear * by writing 1 to the bit. */ IWX_WRITE(sc, IWX_CSR_MSIX_AUTOMASK_ST_AD, 1 << vector); return 1; } typedef void *iwx_match_t; static const struct pci_matchid iwx_devices[] = { { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_22500_1 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_22500_2 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_22500_3 }, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_22500_4,}, { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_22500_5,}, }; static const struct pci_matchid iwx_subsystem_id_ax201[] = { { PCI_VENDOR_INTEL, 0x0070 }, { PCI_VENDOR_INTEL, 0x0074 }, { PCI_VENDOR_INTEL, 0x0078 }, { PCI_VENDOR_INTEL, 0x007c }, { PCI_VENDOR_INTEL, 0x0310 }, { PCI_VENDOR_INTEL, 0x2074 }, { PCI_VENDOR_INTEL, 0x4070 }, /* TODO: There are more ax201 devices with "main" product ID 0x06f0 */ }; int iwx_match(struct device *parent, iwx_match_t match __unused, void *aux) { struct pci_attach_args *pa = aux; pcireg_t subid; pci_vendor_id_t svid; pci_product_id_t spid; int i; if (!pci_matchbyid(pa, iwx_devices, nitems(iwx_devices))) return 0; /* * Some PCI product IDs are shared among devices which use distinct * chips or firmware. We need to match the subsystem ID as well to * ensure that we have in fact found a supported device. */ subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); svid = PCI_VENDOR(subid); spid = PCI_PRODUCT(subid); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_INTEL_WL_22500_1: /* AX200 */ return 1; /* match any device */ case PCI_PRODUCT_INTEL_WL_22500_2: /* AX201 */ case PCI_PRODUCT_INTEL_WL_22500_3: /* AX201 */ case PCI_PRODUCT_INTEL_WL_22500_4: /* AX201 */ case PCI_PRODUCT_INTEL_WL_22500_5: /* AX201 */ for (i = 0; i < nitems(iwx_subsystem_id_ax201); i++) { if (svid == iwx_subsystem_id_ax201[i].pm_vid && spid == iwx_subsystem_id_ax201[i].pm_pid) return 1; } break; default: break; } return 0; } int iwx_preinit(struct iwx_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); int err; static int attached; err = iwx_prepare_card_hw(sc); if (err) { printf("%s: could not initialize hardware\n", DEVNAME(sc)); return err; } if (attached) { /* Update MAC in case the upper layers changed it. */ IEEE80211_ADDR_COPY(sc->sc_ic.ic_myaddr, ((struct arpcom *)ifp)->ac_enaddr); return 0; } err = iwx_start_hw(sc); if (err) { printf("%s: could not initialize hardware\n", DEVNAME(sc)); return err; } err = iwx_run_init_mvm_ucode(sc, 1); iwx_stop_device(sc); if (err) return err; /* Print version info and MAC address on first successful fw load. */ attached = 1; printf("%s: hw rev 0x%x, fw ver %s, address %s\n", DEVNAME(sc), sc->sc_hw_rev & IWX_CSR_HW_REV_TYPE_MSK, sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr)); if (sc->sc_nvm.sku_cap_11n_enable) iwx_setup_ht_rates(sc); /* not all hardware can do 5GHz band */ if (!sc->sc_nvm.sku_cap_band_52GHz_enable) memset(&ic->ic_sup_rates[IEEE80211_MODE_11A], 0, sizeof(ic->ic_sup_rates[IEEE80211_MODE_11A])); /* Configure channel information obtained from firmware. */ ieee80211_channel_init(ifp); /* Configure MAC address. */ err = if_setlladdr(ifp, ic->ic_myaddr); if (err) printf("%s: could not set MAC address (error %d)\n", DEVNAME(sc), err); ieee80211_media_init(ifp, iwx_media_change, ieee80211_media_status); return 0; } void iwx_attach_hook(struct device *self) { struct iwx_softc *sc = (void *)self; KASSERT(!cold); iwx_preinit(sc); } void iwx_attach(struct device *parent, struct device *self, void *aux) { struct iwx_softc *sc = (void *)self; struct pci_attach_args *pa = aux; pci_intr_handle_t ih; pcireg_t reg, memtype; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &ic->ic_if; const char *intrstr; int err; int txq_i, i, j; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; rw_init(&sc->ioctl_rwl, "iwxioctl"); err = pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); if (err == 0) { printf("%s: PCIe capability structure not found!\n", DEVNAME(sc)); return; } /* Clear device-specific "PCI retry timeout" register (41h). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); /* Enable bus-mastering and hardware bug workaround. */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); reg |= PCI_COMMAND_MASTER_ENABLE; /* if !MSI */ if (reg & PCI_COMMAND_INTERRUPT_DISABLE) { reg &= ~PCI_COMMAND_INTERRUPT_DISABLE; } pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START); err = pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz, 0); if (err) { printf("%s: can't map mem space\n", DEVNAME(sc)); return; } if (pci_intr_map_msix(pa, 0, &ih) == 0) { sc->sc_msix = 1; } else if (pci_intr_map_msi(pa, &ih) && pci_intr_map(pa, &ih)) { printf("%s: can't map interrupt\n", DEVNAME(sc)); return; } intrstr = pci_intr_string(sc->sc_pct, ih); if (sc->sc_msix) sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwx_intr_msix, sc, DEVNAME(sc)); else sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwx_intr, sc, DEVNAME(sc)); if (sc->sc_ih == NULL) { printf("\n"); printf("%s: can't establish interrupt", DEVNAME(sc)); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(", %s\n", intrstr); /* Clear pending interrupts. */ IWX_WRITE(sc, IWX_CSR_INT_MASK, 0); IWX_WRITE(sc, IWX_CSR_INT, ~0); IWX_WRITE(sc, IWX_CSR_FH_INT_STATUS, ~0); sc->sc_hw_rev = IWX_READ(sc, IWX_CSR_HW_REV); /* * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have * changed, and now the revision step also includes bit 0-1 (no more * "dash" value). To keep hw_rev backwards compatible - we'll store it * in the old format. */ sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) | (IWX_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_INTEL_WL_22500_1: sc->sc_fwname = "iwx-cc-a0-48"; sc->sc_device_family = IWX_DEVICE_FAMILY_22000; sc->sc_fwdmasegsz = IWX_FWDMASEGSZ_8000; sc->sc_integrated = 1; sc->sc_ltr_delay = IWX_SOC_FLAGS_LTR_APPLY_DELAY_NONE; sc->sc_low_latency_xtal = 0; sc->sc_xtal_latency = 0; sc->sc_tx_with_siso_diversity = 0; sc->sc_uhb_supported = 0; break; case PCI_PRODUCT_INTEL_WL_22500_2: case PCI_PRODUCT_INTEL_WL_22500_3: case PCI_PRODUCT_INTEL_WL_22500_5: if (sc->sc_hw_rev != IWX_CSR_HW_REV_TYPE_QUZ) { printf("%s: unsupported AX201 adapter\n", DEVNAME(sc)); return; } sc->sc_fwname = "iwx-QuZ-a0-hr-b0-48"; sc->sc_device_family = IWX_DEVICE_FAMILY_22000; sc->sc_fwdmasegsz = IWX_FWDMASEGSZ_8000; sc->sc_integrated = 1; sc->sc_ltr_delay = IWX_SOC_FLAGS_LTR_APPLY_DELAY_200; sc->sc_low_latency_xtal = 0; sc->sc_xtal_latency = 5000; sc->sc_tx_with_siso_diversity = 0; sc->sc_uhb_supported = 0; break; case PCI_PRODUCT_INTEL_WL_22500_4: sc->sc_fwname = "iwx-Qu-c0-hr-b0-48"; sc->sc_device_family = IWX_DEVICE_FAMILY_22000; sc->sc_fwdmasegsz = IWX_FWDMASEGSZ_8000; sc->sc_integrated = 1; sc->sc_ltr_delay = IWX_SOC_FLAGS_LTR_APPLY_DELAY_200; sc->sc_low_latency_xtal = 0; sc->sc_xtal_latency = 5000; sc->sc_tx_with_siso_diversity = 0; sc->sc_uhb_supported = 0; break; default: printf("%s: unknown adapter type\n", DEVNAME(sc)); return; } if (iwx_prepare_card_hw(sc) != 0) { printf("%s: could not initialize hardware\n", DEVNAME(sc)); return; } /* * In order to recognize C step the driver should read the * chip version id located at the AUX bus MISC address. */ IWX_SETBITS(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); DELAY(2); err = iwx_poll_bit(sc, IWX_CSR_GP_CNTRL, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, IWX_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (!err) { printf("%s: Failed to wake up the nic\n", DEVNAME(sc)); return; } if (iwx_nic_lock(sc)) { uint32_t hw_step = iwx_read_prph(sc, IWX_WFPM_CTRL_REG); hw_step |= IWX_ENABLE_WFPM; iwx_write_prph(sc, IWX_WFPM_CTRL_REG, hw_step); hw_step = iwx_read_prph(sc, IWX_AUX_MISC_REG); hw_step = (hw_step >> IWX_HW_STEP_LOCATION_BITS) & 0xF; if (hw_step == 0x3) sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) | (IWX_SILICON_C_STEP << 2); iwx_nic_unlock(sc); } else { printf("%s: Failed to lock the nic\n", DEVNAME(sc)); return; } /* Allocate DMA memory for loading firmware. */ err = iwx_dma_contig_alloc(sc->sc_dmat, &sc->ctxt_info_dma, sizeof(struct iwx_context_info), 0); if (err) { printf("%s: could not allocate memory for loading firmware\n", DEVNAME(sc)); return; } /* * Allocate DMA memory for firmware transfers. * Must be aligned on a 16-byte boundary. */ err = iwx_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, sc->sc_fwdmasegsz, 16); if (err) { printf("%s: could not allocate memory for firmware transfers\n", DEVNAME(sc)); goto fail0; } /* Allocate interrupt cause table (ICT).*/ err = iwx_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, IWX_ICT_SIZE, 1<sc_dmat, &sc->sched_dma, nitems(sc->txq) * sizeof(struct iwx_agn_scd_bc_tbl), 1024); if (err) { printf("%s: could not allocate TX scheduler rings\n", DEVNAME(sc)); goto fail3; } for (txq_i = 0; txq_i < nitems(sc->txq); txq_i++) { err = iwx_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i); if (err) { printf("%s: could not allocate TX ring %d\n", DEVNAME(sc), txq_i); goto fail4; } } err = iwx_alloc_rx_ring(sc, &sc->rxq); if (err) { printf("%s: could not allocate RX ring\n", DEVNAME(sc)); goto fail4; } sc->sc_nswq = taskq_create("iwxns", 1, IPL_NET, 0); if (sc->sc_nswq == NULL) goto fail4; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_WEP | /* WEP */ IEEE80211_C_RSN | /* WPA/RSN */ IEEE80211_C_SCANALL | /* device scans all channels at once */ IEEE80211_C_SCANALLBAND | /* device scans all bands at once */ IEEE80211_C_MONITOR | /* monitor mode supported */ IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_SHPREAMBLE; /* short preamble supported */ ic->ic_htcaps = IEEE80211_HTCAP_SGI20; ic->ic_htcaps |= (IEEE80211_HTCAP_SMPS_DIS << IEEE80211_HTCAP_SMPS_SHIFT); ic->ic_htxcaps = 0; ic->ic_txbfcaps = 0; ic->ic_aselcaps = 0; ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */); ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; for (i = 0; i < nitems(sc->sc_phyctxt); i++) { sc->sc_phyctxt[i].id = i; } /* IBSS channel undefined for now. */ ic->ic_ibss_chan = &ic->ic_channels[1]; ic->ic_max_rssi = IWX_MAX_DBM - IWX_MIN_DBM; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = iwx_ioctl; ifp->if_start = iwx_start; ifp->if_watchdog = iwx_watchdog; memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ); if_attach(ifp); ieee80211_ifattach(ifp); ieee80211_media_init(ifp, iwx_media_change, ieee80211_media_status); #if NBPFILTER > 0 iwx_radiotap_attach(sc); #endif for (i = 0; i < nitems(sc->sc_rxba_data); i++) { struct iwx_rxba_data *rxba = &sc->sc_rxba_data[i]; rxba->baid = IWX_RX_REORDER_DATA_INVALID_BAID; rxba->sc = sc; timeout_set(&rxba->session_timer, iwx_rx_ba_session_expired, rxba); timeout_set(&rxba->reorder_buf.reorder_timer, iwx_reorder_timer_expired, &rxba->reorder_buf); for (j = 0; j < nitems(rxba->entries); j++) ml_init(&rxba->entries[j].frames); } task_set(&sc->init_task, iwx_init_task, sc); task_set(&sc->newstate_task, iwx_newstate_task, sc); task_set(&sc->ba_task, iwx_ba_task, sc); task_set(&sc->mac_ctxt_task, iwx_mac_ctxt_task, sc); ic->ic_node_alloc = iwx_node_alloc; ic->ic_bgscan_start = iwx_bgscan; ic->ic_set_key = iwx_set_key; ic->ic_delete_key = iwx_delete_key; /* Override 802.11 state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwx_newstate; ic->ic_updateprot = iwx_updateprot; ic->ic_updateslot = iwx_updateslot; ic->ic_updateedca = iwx_updateedca; ic->ic_ampdu_rx_start = iwx_ampdu_rx_start; ic->ic_ampdu_rx_stop = iwx_ampdu_rx_stop; #ifdef notyet ic->ic_ampdu_tx_start = iwx_ampdu_tx_start; ic->ic_ampdu_tx_stop = iwx_ampdu_tx_stop; #endif /* * We cannot read the MAC address without loading the * firmware from disk. Postpone until mountroot is done. */ config_mountroot(self, iwx_attach_hook); return; fail4: while (--txq_i >= 0) iwx_free_tx_ring(sc, &sc->txq[txq_i]); iwx_free_rx_ring(sc, &sc->rxq); iwx_dma_contig_free(&sc->sched_dma); fail3: if (sc->ict_dma.vaddr != NULL) iwx_dma_contig_free(&sc->ict_dma); fail1: iwx_dma_contig_free(&sc->fw_dma); fail0: iwx_dma_contig_free(&sc->ctxt_info_dma); return; } #if NBPFILTER > 0 void iwx_radiotap_attach(struct iwx_softc *sc) { bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWX_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWX_TX_RADIOTAP_PRESENT); } #endif void iwx_init_task(void *arg1) { struct iwx_softc *sc = arg1; struct ifnet *ifp = &sc->sc_ic.ic_if; int s = splnet(); int generation = sc->sc_generation; int fatal = (sc->sc_flags & (IWX_FLAG_HW_ERR | IWX_FLAG_RFKILL)); rw_enter_write(&sc->ioctl_rwl); if (generation != sc->sc_generation) { rw_exit(&sc->ioctl_rwl); splx(s); return; } if (ifp->if_flags & IFF_RUNNING) iwx_stop(ifp); else sc->sc_flags &= ~IWX_FLAG_HW_ERR; if (!fatal && (ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP) iwx_init(ifp); rw_exit(&sc->ioctl_rwl); splx(s); } int iwx_resume(struct iwx_softc *sc) { pcireg_t reg; /* Clear device-specific "PCI retry timeout" register (41h). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); /* reconfigure the MSI-X mapping to get the correct IRQ for rfkill */ iwx_conf_msix_hw(sc, 0); iwx_enable_rfkill_int(sc); iwx_check_rfkill(sc); return iwx_prepare_card_hw(sc); } int iwx_activate(struct device *self, int act) { struct iwx_softc *sc = (struct iwx_softc *)self; struct ifnet *ifp = &sc->sc_ic.ic_if; int err = 0; switch (act) { case DVACT_QUIESCE: if (ifp->if_flags & IFF_RUNNING) { rw_enter_write(&sc->ioctl_rwl); iwx_stop(ifp); rw_exit(&sc->ioctl_rwl); } break; case DVACT_RESUME: err = iwx_resume(sc); if (err) printf("%s: could not initialize hardware\n", DEVNAME(sc)); break; case DVACT_WAKEUP: /* Hardware should be up at this point. */ if (iwx_set_hw_ready(sc)) task_add(systq, &sc->init_task); break; } return 0; } struct cfdriver iwx_cd = { NULL, "iwx", DV_IFNET }; struct cfattach iwx_ca = { sizeof(struct iwx_softc), iwx_match, iwx_attach, NULL, iwx_activate };