/* $OpenBSD: if_lge.c,v 1.6 2001/11/06 19:53:19 miod Exp $ */ /* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2000, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/dev/lge/if_lge.c,v 1.6 2001/06/20 19:47:55 bmilekic Exp $ */ /* * Level 1 LXT1001 gigabit ethernet driver for FreeBSD. Public * documentation not available, but ask me nicely. * * Written by Bill Paul * Wind River Systems */ /* * The Level 1 chip is used on some D-Link, SMC and Addtron NICs. * It's a 64-bit PCI part that supports TCP/IP checksum offload, * VLAN tagging/insertion, GMII and TBI (1000baseX) ports. There * are three supported methods for data transfer between host and * NIC: programmed I/O, traditional scatter/gather DMA and Packet * Propulsion Technology (tm) DMA. The latter mechanism is a form * of double buffer DMA where the packet data is copied to a * pre-allocated DMA buffer who's physical address has been loaded * into a table at device initialization time. The rationale is that * the virtual to physical address translation needed for normal * scatter/gather DMA is more expensive than the data copy needed * for double buffering. This may be true in Windows NT and the like, * but it isn't true for us, at least on the x86 arch. This driver * uses the scatter/gather I/O method for both TX and RX. * * The LXT1001 only supports TCP/IP checksum offload on receive. * Also, the VLAN tagging is done using a 16-entry table which allows * the chip to perform hardware filtering based on VLAN tags. Sadly, * our vlan support doesn't currently play well with this kind of * hardware support. * * Special thanks to: * - Jeff James at Intel, for arranging to have the LXT1001 manual * released (at long last) * - Beny Chen at D-Link, for actually sending it to me * - Brad Short and Keith Alexis at SMC, for sending me sample * SMC9462SX and SMC9462TX adapters for testing * - Paul Saab at Y!, for not killing me (though it remains to be seen * if in fact he did me much of a favor) */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include #define LGE_USEIOSPACE #include int lge_probe __P((struct device *, void *, void *)); void lge_attach __P((struct device *, struct device *, void *)); int lge_alloc_jumbo_mem __P((struct lge_softc *)); void lge_free_jumbo_mem __P((struct lge_softc *)); void *lge_jalloc __P((struct lge_softc *)); void lge_jfree __P((caddr_t, u_int, void *)); int lge_newbuf __P((struct lge_softc *, struct lge_rx_desc *, struct mbuf *)); int lge_encap __P((struct lge_softc *, struct mbuf *, u_int32_t *)); void lge_rxeof __P((struct lge_softc *, int)); void lge_rxeoc __P((struct lge_softc *)); void lge_txeof __P((struct lge_softc *)); int lge_intr __P((void *)); void lge_tick __P((void *)); void lge_start __P((struct ifnet *)); int lge_ioctl __P((struct ifnet *, u_long, caddr_t)); void lge_init __P((void *)); void lge_stop __P((struct lge_softc *)); void lge_watchdog __P((struct ifnet *)); void lge_shutdown __P((void *)); int lge_ifmedia_upd __P((struct ifnet *)); void lge_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); void lge_eeprom_getword __P((struct lge_softc *, int, u_int16_t *)); void lge_read_eeprom __P((struct lge_softc *, caddr_t, int, int, int)); int lge_miibus_readreg __P((struct device *, int, int)); void lge_miibus_writereg __P((struct device *, int, int, int)); void lge_miibus_statchg __P((struct device *)); void lge_setmulti __P((struct lge_softc *)); u_int32_t lge_crc __P((struct lge_softc *, caddr_t)); void lge_reset __P((struct lge_softc *)); int lge_list_rx_init __P((struct lge_softc *)); int lge_list_tx_init __P((struct lge_softc *)); #ifdef LGE_USEIOSPACE #define LGE_RES SYS_RES_IOPORT #define LGE_RID LGE_PCI_LOIO #else #define LGE_RES SYS_RES_MEMORY #define LGE_RID LGE_PCI_LOMEM #endif #ifdef LGE_DEBUG #define DPRINTF(x) if (lgedebug) printf x #define DPRINTFN(n,x) if (lgedebug >= (n)) printf x int lgedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define LGE_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define LGE_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, LGE_MEAR, CSR_READ_4(sc, LGE_MEAR) & ~x) /* * Read a word of data stored in the EEPROM at address 'addr.' */ void lge_eeprom_getword(sc, addr, dest) struct lge_softc *sc; int addr; u_int16_t *dest; { register int i; u_int32_t val; CSR_WRITE_4(sc, LGE_EECTL, LGE_EECTL_CMD_READ| LGE_EECTL_SINGLEACCESS|((addr >> 1) << 8)); for (i = 0; i < LGE_TIMEOUT; i++) if (!(CSR_READ_4(sc, LGE_EECTL) & LGE_EECTL_CMD_READ)) break; if (i == LGE_TIMEOUT) { printf("%s: EEPROM read timed out\n", sc->sc_dv.dv_xname); return; } val = CSR_READ_4(sc, LGE_EEDATA); if (addr & 1) *dest = (val >> 16) & 0xFFFF; else *dest = val & 0xFFFF; return; } /* * Read a sequence of words from the EEPROM. */ void lge_read_eeprom(sc, dest, off, cnt, swap) struct lge_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { lge_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } int lge_miibus_readreg(dev, phy, reg) struct device * dev; int phy, reg; { struct lge_softc *sc = (struct lge_softc *)dev; int i; /* * If we have a non-PCS PHY, pretend that the internal * autoneg stuff at PHY address 0 isn't there so that * the miibus code will find only the GMII PHY. */ if (sc->lge_pcs == 0 && phy == 0) return(0); CSR_WRITE_4(sc, LGE_GMIICTL, (phy << 8) | reg | LGE_GMIICMD_READ); for (i = 0; i < LGE_TIMEOUT; i++) if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) break; if (i == LGE_TIMEOUT) { printf("%s: PHY read timed out\n", sc->sc_dv.dv_xname); return(0); } return(CSR_READ_4(sc, LGE_GMIICTL) >> 16); } void lge_miibus_writereg(dev, phy, reg, data) struct device * dev; int phy, reg, data; { struct lge_softc *sc = (struct lge_softc *)dev; int i; CSR_WRITE_4(sc, LGE_GMIICTL, (data << 16) | (phy << 8) | reg | LGE_GMIICMD_WRITE); for (i = 0; i < LGE_TIMEOUT; i++) if (!(CSR_READ_4(sc, LGE_GMIICTL) & LGE_GMIICTL_CMDBUSY)) break; if (i == LGE_TIMEOUT) { printf("%s: PHY write timed out\n", sc->sc_dv.dv_xname); } } void lge_miibus_statchg(dev) struct device * dev; { struct lge_softc *sc = (struct lge_softc *)dev; struct mii_data *mii = &sc->lge_mii; LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_SPEED); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_TX: case IFM_1000_SX: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); break; case IFM_100_TX: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_100); break; case IFM_10_T: LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_10); break; default: /* * Choose something, even if it's wrong. Clearing * all the bits will hose autoneg on the internal * PHY. */ LGE_SETBIT(sc, LGE_GMIIMODE, LGE_SPEED_1000); break; } if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { LGE_SETBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); } else { LGE_CLRBIT(sc, LGE_GMIIMODE, LGE_GMIIMODE_FDX); } return; } u_int32_t lge_crc(sc, addr) struct lge_softc *sc; caddr_t addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* * return the filter bit position */ return((crc >> 26) & 0x0000003F); } void lge_setmulti(sc) struct lge_softc *sc; { struct arpcom *ac = &sc->arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; u_int32_t h = 0, hashes[2] = { 0, 0 }; /* Make sure multicast hash table is enabled. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_MCAST); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, LGE_MAR1, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, LGE_MAR0, 0); CSR_WRITE_4(sc, LGE_MAR1, 0); /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) != 0) continue; h = lge_crc(sc, LLADDR((struct sockaddr_dl *)enm->enm_addrlo)); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, LGE_MAR0, hashes[0]); CSR_WRITE_4(sc, LGE_MAR1, hashes[1]); return; } void lge_reset(sc) struct lge_softc *sc; { register int i; LGE_SETBIT(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_SOFTRST); for (i = 0; i < LGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, LGE_MODE1) & LGE_MODE1_SOFTRST)) break; } if (i == LGE_TIMEOUT) printf("%s: reset never completed\n", sc->sc_dv.dv_xname); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for a Level 1 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int lge_probe(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_LEVEL1 && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_LEVEL1_LXT1001) return (1); return (0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void lge_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct lge_softc *sc = (struct lge_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_addr_t iobase; bus_size_t iosize; bus_dma_segment_t seg; bus_dmamap_t dmamap; int s, rseg; u_char eaddr[ETHER_ADDR_LEN]; u_int32_t command; struct ifnet *ifp; int error = 0; caddr_t kva; s = splimp(); bzero(sc, sizeof(struct lge_softc)); /* * Handle power management nonsense. */ DPRINTFN(5, ("Preparing for conf read\n")); command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, LGE_PCI_PWRMGMTCTRL); if (command & LGE_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOIO); membase = pci_conf_read(pc, pa->pa_tag, LGE_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, LGE_PCI_INTLINE); /* Reset the power state. */ printf("%s: chip is in D%d power mode " "-- setting to D0\n", sc->sc_dv.dv_xname, command & LGE_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, LGE_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOIO, iobase); pci_conf_write(pc, pa->pa_tag, LGE_PCI_LOMEM, membase); pci_conf_write(pc, pa->pa_tag, LGE_PCI_INTLINE, irq); } } /* * Map control/status registers. */ DPRINTFN(5, ("Map control/status regs\n")); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef LGE_USEIOSPACE if (!(command & PCI_COMMAND_IO_ENABLE)) { printf("%s: failed to enable I/O ports!\n", sc->sc_dv.dv_xname); error = ENXIO;; goto fail; } /* * Map control/status registers. */ DPRINTFN(5, ("pci_io_find\n")); if (pci_io_find(pc, pa->pa_tag, LGE_PCI_LOIO, &iobase, &iosize)) { printf(": can't find i/o space\n"); goto fail; } DPRINTFN(5, ("bus_space_map\n")); if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->lge_bhandle)) { printf(": can't map i/o space\n"); goto fail; } sc->lge_btag = pa->pa_iot; #else if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf("%s: failed to enable memory mapping!\n", sc->sc_dv.dv_xname); error = ENXIO; goto fail; } DPRINTFN(5, ("pci_mem_find\n")); if (pci_mem_find(pc, pa->pa_tag, LGE_PCI_LOMEM, &iobase, &iosize, NULL)) { printf(": can't find mem space\n"); goto fail; } DPRINTFN(5, ("bus_space_map\n")); if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->lge_bhandle)) { printf(": can't map mem space\n"); goto fail; } sc->lge_btag = pa->pa_memt; #endif DPRINTFN(5, ("pci_intr_map\n")); if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail; } DPRINTFN(5, ("pci_intr_string\n")); intrstr = pci_intr_string(pc, ih); DPRINTFN(5, ("pci_intr_establish\n")); sc->lge_intrhand = pci_intr_establish(pc, ih, IPL_NET, lge_intr, sc, sc->sc_dv.dv_xname); if (sc->lge_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } printf(": %s", intrstr); /* Reset the adapter. */ DPRINTFN(5, ("lge_reset\n")); lge_reset(sc); /* * Get station address from the EEPROM. */ DPRINTFN(5, ("lge_read_eeprom\n")); lge_read_eeprom(sc, (caddr_t)&eaddr[0], LGE_EE_NODEADDR_0, 1, 0); lge_read_eeprom(sc, (caddr_t)&eaddr[2], LGE_EE_NODEADDR_1, 1, 0); lge_read_eeprom(sc, (caddr_t)&eaddr[4], LGE_EE_NODEADDR_2, 1, 0); /* * A Level 1 chip was detected. Inform the world. */ printf(": Ethernet address: %s\n", ether_sprintf(eaddr)); bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); sc->sc_dmatag = pa->pa_dmat; DPRINTFN(5, ("bus_dmamem_alloc\n")); if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct lge_list_data), PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname); goto fail; } DPRINTFN(5, ("bus_dmamem_map\n")); if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, sizeof(struct lge_list_data), &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc->sc_dv.dv_xname, sizeof(struct lge_list_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } DPRINTFN(5, ("bus_dmamem_create\n")); if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct lge_list_data), 1, sizeof(struct lge_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) { printf("%s: can't create dma map\n", sc->sc_dv.dv_xname); bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct lge_list_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } DPRINTFN(5, ("bus_dmamem_load\n")); if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, sizeof(struct lge_list_data), NULL, BUS_DMA_NOWAIT)) { bus_dmamap_destroy(sc->sc_dmatag, dmamap); bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct lge_list_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } DPRINTFN(5, ("bzero\n")); sc->lge_ldata = (struct lge_list_data *)kva; bzero(sc->lge_ldata, sizeof(struct lge_list_data)); /* Try to allocate memory for jumbo buffers. */ DPRINTFN(5, ("lge_alloc_jumbo_mem\n")); if (lge_alloc_jumbo_mem(sc)) { printf("%s: jumbo buffer allocation failed\n", sc->sc_dv.dv_xname); goto fail; } ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = lge_ioctl; ifp->if_output = ether_output; ifp->if_start = lge_start; ifp->if_watchdog = lge_watchdog; ifp->if_baudrate = 1000000000; ifp->if_snd.ifq_maxlen = LGE_TX_LIST_CNT - 1; DPRINTFN(5, ("bcopy\n")); bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ); if (CSR_READ_4(sc, LGE_GMIIMODE) & LGE_GMIIMODE_PCSENH) sc->lge_pcs = 1; else sc->lge_pcs = 0; /* * Do MII setup. */ DPRINTFN(5, ("mii setup\n")); sc->lge_mii.mii_ifp = ifp; sc->lge_mii.mii_readreg = lge_miibus_readreg; sc->lge_mii.mii_writereg = lge_miibus_writereg; sc->lge_mii.mii_statchg = lge_miibus_statchg; ifmedia_init(&sc->lge_mii.mii_media, 0, lge_ifmedia_upd, lge_ifmedia_sts); mii_attach(&sc->sc_dv, &sc->lge_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->lge_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dv.dv_xname); ifmedia_add(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc->lge_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Call MI attach routine. */ DPRINTFN(5, ("if_attach\n")); if_attach(ifp); DPRINTFN(5, ("ether_ifattach\n")); ether_ifattach(ifp); DPRINTFN(5, ("timeout_set\n")); timeout_set(&sc->lge_timeout, lge_tick, sc); timeout_add(&sc->lge_timeout, hz); fail: splx(s); } /* * Initialize the transmit descriptors. */ int lge_list_tx_init(sc) struct lge_softc *sc; { struct lge_list_data *ld; struct lge_ring_data *cd; int i; cd = &sc->lge_cdata; ld = sc->lge_ldata; for (i = 0; i < LGE_TX_LIST_CNT; i++) { ld->lge_tx_list[i].lge_mbuf = NULL; ld->lge_tx_list[i].lge_ctl = 0; } cd->lge_tx_prod = cd->lge_tx_cons = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arralge the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int lge_list_rx_init(sc) struct lge_softc *sc; { struct lge_list_data *ld; struct lge_ring_data *cd; int i; ld = sc->lge_ldata; cd = &sc->lge_cdata; cd->lge_rx_prod = cd->lge_rx_cons = 0; CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); for (i = 0; i < LGE_RX_LIST_CNT; i++) { if (CSR_READ_1(sc, LGE_RXCMDFREE_8BIT) == 0) break; if (lge_newbuf(sc, &ld->lge_rx_list[i], NULL) == ENOBUFS) return(ENOBUFS); } /* Clear possible 'rx command queue empty' interrupt. */ CSR_READ_4(sc, LGE_ISR); return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int lge_newbuf(sc, c, m) struct lge_softc *sc; struct lge_rx_desc *c; struct mbuf *m; { struct mbuf *m_new = NULL; caddr_t *buf = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for rx list " "-- packet dropped!\n", sc->sc_dv.dv_xname); return(ENOBUFS); } /* Allocate the jumbo buffer */ buf = lge_jalloc(sc); if (buf == NULL) { #ifdef LGE_VERBOSE printf("%s: jumbo allocation failed " "-- packet dropped!\n", sc->sc_dv.dv_xname); #endif m_freem(m_new); return(ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_data = m_new->m_ext.ext_buf = (void *)buf; m_new->m_flags |= M_EXT; m_new->m_ext.ext_size = m_new->m_pkthdr.len = m_new->m_len = LGE_JLEN; m_new->m_ext.ext_free = lge_jfree; m_new->m_ext.ext_arg = sc; MCLINITREFERENCE(m_new); } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = LGE_JUMBO_FRAMELEN; m_new->m_data = m_new->m_ext.ext_buf; } /* * Adjust alignment so packet payload begins on a * longword boundary. Mandatory for Alpha, useful on * x86 too. */ m_adj(m_new, ETHER_ALIGN); c->lge_mbuf = m_new; c->lge_fragptr_hi = 0; c->lge_fragptr_lo = vtophys(mtod(m_new, caddr_t)); c->lge_fraglen = m_new->m_len; c->lge_ctl = m_new->m_len | LGE_RXCTL_WANTINTR | LGE_FRAGCNT(1); c->lge_sts = 0; /* * Put this buffer in the RX command FIFO. To do this, * we just write the physical address of the descriptor * into the RX descriptor address registers. Note that * there are two registers, one high DWORD and one low * DWORD, which lets us specify a 64-bit address if * desired. We only use a 32-bit address for now. * Writing to the low DWORD register is what actually * causes the command to be issued, so we do that * last. */ CSR_WRITE_4(sc, LGE_RXDESC_ADDR_LO, vtophys(c)); LGE_INC(sc->lge_cdata.lge_rx_prod, LGE_RX_LIST_CNT); return(0); } int lge_alloc_jumbo_mem(sc) struct lge_softc *sc; { caddr_t ptr, kva; bus_dma_segment_t seg; bus_dmamap_t dmamap; int i, rseg; struct lge_jpool_entry *entry; /* Grab a big chunk o' storage. */ if (bus_dmamem_alloc(sc->sc_dmatag, LGE_JMEM, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname); return (ENOBUFS); } if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, LGE_JMEM, &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc->sc_dv.dv_xname, LGE_JMEM); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); return (ENOBUFS); } if (bus_dmamap_create(sc->sc_dmatag, LGE_JMEM, 1, LGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) { printf("%s: can't create dma map\n", sc->sc_dv.dv_xname); bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); return (ENOBUFS); } if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, LGE_JMEM, NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc->sc_dv.dv_xname); bus_dmamap_destroy(sc->sc_dmatag, dmamap); bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); return (ENOBUFS); } sc->lge_cdata.lge_jumbo_buf = (caddr_t)kva; DPRINTFN(1,("lge_jumbo_buf = 0x%08X\n", sc->lge_cdata.lge_jumbo_buf)); DPRINTFN(1,("LGE_JLEN = 0x%08X\n", LGE_JLEN)); LIST_INIT(&sc->lge_jfree_listhead); LIST_INIT(&sc->lge_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc->lge_cdata.lge_jumbo_buf; for (i = 0; i < LGE_JSLOTS; i++) { sc->lge_cdata.lge_jslots[i] = ptr; ptr += LGE_JLEN; entry = malloc(sizeof(struct lge_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { bus_dmamap_unload(sc->sc_dmatag, dmamap); bus_dmamap_destroy(sc->sc_dmatag, dmamap); bus_dmamem_unmap(sc->sc_dmatag, kva, LGE_JMEM); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); sc->lge_cdata.lge_jumbo_buf = NULL; printf("%s: no memory for jumbo buffer queue!\n", sc->sc_dv.dv_xname); return(ENOBUFS); } entry->slot = i; LIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); } return(0); } /* * Allocate a jumbo buffer. */ void *lge_jalloc(sc) struct lge_softc *sc; { struct lge_jpool_entry *entry; entry = LIST_FIRST(&sc->lge_jfree_listhead); if (entry == NULL) { #ifdef LGE_VERBOSE printf("%s: no free jumbo buffers\n", sc->sc_dv.dv_xname); #endif return(NULL); } LIST_REMOVE(entry, jpool_entries); LIST_INSERT_HEAD(&sc->lge_jinuse_listhead, entry, jpool_entries); return(sc->lge_cdata.lge_jslots[entry->slot]); } /* * Release a jumbo buffer. */ void lge_jfree(buf, size, arg) caddr_t buf; u_int size; void *arg; { struct lge_softc *sc; int i; struct lge_jpool_entry *entry; /* Extract the softc struct pointer. */ sc = (struct lge_softc *)arg; if (sc == NULL) panic("lge_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vaddr_t)buf - (vaddr_t)sc->lge_cdata.lge_jumbo_buf) / LGE_JLEN; if ((i < 0) || (i >= LGE_JSLOTS)) panic("lge_jfree: asked to free buffer that we don't manage!"); entry = LIST_FIRST(&sc->lge_jinuse_listhead); if (entry == NULL) panic("lge_jfree: buffer not in use!"); entry->slot = i; LIST_REMOVE(entry, jpool_entries); LIST_INSERT_HEAD(&sc->lge_jfree_listhead, entry, jpool_entries); return; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void lge_rxeof(sc, cnt) struct lge_softc *sc; int cnt; { struct mbuf *m; struct ifnet *ifp; struct lge_rx_desc *cur_rx; int c, i, total_len = 0; u_int32_t rxsts, rxctl; ifp = &sc->arpcom.ac_if; /* Find out how many frames were processed. */ c = cnt; i = sc->lge_cdata.lge_rx_cons; /* Suck them in. */ while(c) { struct mbuf *m0 = NULL; cur_rx = &sc->lge_ldata->lge_rx_list[i]; rxctl = cur_rx->lge_ctl; rxsts = cur_rx->lge_sts; m = cur_rx->lge_mbuf; cur_rx->lge_mbuf = NULL; total_len = LGE_RXBYTES(cur_rx); LGE_INC(i, LGE_RX_LIST_CNT); c--; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxctl & LGE_RXCTL_ERRMASK) { ifp->if_ierrors++; lge_newbuf(sc, &LGE_RXTAIL(sc), m); continue; } if (lge_newbuf(sc, &LGE_RXTAIL(sc), NULL) == ENOBUFS) { m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp, NULL); lge_newbuf(sc, &LGE_RXTAIL(sc), m); if (m0 == NULL) { printf("%s: no receive buffers " "available -- packet dropped!\n", sc->sc_dv.dv_xname); ifp->if_ierrors++; continue; } m = m0; } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } ifp->if_ipackets++; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Do IP checksum checking. */ #if 0 if (rxsts & LGE_RXSTS_ISIP) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(rxsts & LGE_RXSTS_IPCSUMERR)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; if ((rxsts & LGE_RXSTS_ISTCP && !(rxsts & LGE_RXSTS_TCPCSUMERR)) || (rxsts & LGE_RXSTS_ISUDP && !(rxsts & LGE_RXSTS_UDPCSUMERR))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } #endif if (rxsts & LGE_RXSTS_ISIP) { if (rxsts & LGE_RXSTS_IPCSUMERR) m->m_pkthdr.csum |= M_IPV4_CSUM_IN_BAD; else m->m_pkthdr.csum |= M_IPV4_CSUM_IN_OK; } if (rxsts & LGE_RXSTS_ISTCP) { if (rxsts & LGE_RXSTS_TCPCSUMERR) m->m_pkthdr.csum |= M_TCP_CSUM_IN_BAD; else m->m_pkthdr.csum |= M_TCP_CSUM_IN_OK; } if (rxsts & LGE_RXSTS_ISUDP) { if (rxsts & LGE_RXSTS_UDPCSUMERR) m->m_pkthdr.csum |= M_UDP_CSUM_IN_BAD; else m->m_pkthdr.csum |= M_UDP_CSUM_IN_OK; } ether_input_mbuf(ifp, m); } sc->lge_cdata.lge_rx_cons = i; return; } void lge_rxeoc(sc) struct lge_softc *sc; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_flags &= ~IFF_RUNNING; lge_init(sc); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void lge_txeof(sc) struct lge_softc *sc; { struct lge_tx_desc *cur_tx = NULL; struct ifnet *ifp; u_int32_t idx, txdone; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->lge_cdata.lge_tx_cons; txdone = CSR_READ_1(sc, LGE_TXDMADONE_8BIT); while (idx != sc->lge_cdata.lge_tx_prod && txdone) { cur_tx = &sc->lge_ldata->lge_tx_list[idx]; ifp->if_opackets++; if (cur_tx->lge_mbuf != NULL) { m_freem(cur_tx->lge_mbuf); cur_tx->lge_mbuf = NULL; } cur_tx->lge_ctl = 0; txdone--; LGE_INC(idx, LGE_TX_LIST_CNT); ifp->if_timer = 0; } sc->lge_cdata.lge_tx_cons = idx; if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; return; } void lge_tick(xsc) void *xsc; { struct lge_softc *sc = xsc; struct mii_data *mii = &sc->lge_mii; struct ifnet *ifp = &sc->arpcom.ac_if; int s; s = splimp(); CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_SINGLE_COLL_PKTS); ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); CSR_WRITE_4(sc, LGE_STATSIDX, LGE_STATS_MULTI_COLL_PKTS); ifp->if_collisions += CSR_READ_4(sc, LGE_STATSVAL); if (!sc->lge_link) { mii_tick(mii); mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->lge_link++; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX|| IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_TX) printf("%s: gigabit link up\n", sc->sc_dv.dv_xname); if (ifp->if_snd.ifq_head != NULL) lge_start(ifp); } } timeout_add(&sc->lge_timeout, hz); splx(s); return; } int lge_intr(arg) void *arg; { struct lge_softc *sc; struct ifnet *ifp; u_int32_t status; int claimed = 0; sc = arg; ifp = &sc->arpcom.ac_if; /* Supress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { lge_stop(sc); return (0); } for (;;) { /* * Reading the ISR register clears all interrupts, and * clears the 'interrupts enabled' bit in the IMR * register. */ status = CSR_READ_4(sc, LGE_ISR); if ((status & LGE_INTRS) == 0) break; claimed = 1; if ((status & (LGE_ISR_TXCMDFIFO_EMPTY|LGE_ISR_TXDMA_DONE))) lge_txeof(sc); if (status & LGE_ISR_RXDMA_DONE) lge_rxeof(sc, LGE_RX_DMACNT(status)); if (status & LGE_ISR_RXCMDFIFO_EMPTY) lge_rxeoc(sc); if (status & LGE_ISR_PHY_INTR) { sc->lge_link = 0; timeout_del(&sc->lge_timeout); lge_tick(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0|LGE_IMR_INTR_ENB); if (ifp->if_snd.ifq_head != NULL) lge_start(ifp); return claimed; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int lge_encap(sc, m_head, txidx) struct lge_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct lge_frag *f = NULL; struct lge_tx_desc *cur_tx; struct mbuf *m; int frag = 0, tot_len = 0; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; cur_tx = &sc->lge_ldata->lge_tx_list[*txidx]; frag = 0; for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { tot_len += m->m_len; f = &cur_tx->lge_frags[frag]; f->lge_fraglen = m->m_len; f->lge_fragptr_lo = vtophys(mtod(m, vm_offset_t)); f->lge_fragptr_hi = 0; frag++; } } if (m != NULL) return(ENOBUFS); cur_tx->lge_mbuf = m_head; cur_tx->lge_ctl = LGE_TXCTL_WANTINTR|LGE_FRAGCNT(frag)|tot_len; LGE_INC((*txidx), LGE_TX_LIST_CNT); /* Queue for transmit */ CSR_WRITE_4(sc, LGE_TXDESC_ADDR_LO, vtophys(cur_tx)); return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void lge_start(ifp) struct ifnet *ifp; { struct lge_softc *sc; struct mbuf *m_head = NULL; u_int32_t idx; sc = ifp->if_softc; if (!sc->lge_link) return; idx = sc->lge_cdata.lge_tx_prod; if (ifp->if_flags & IFF_OACTIVE) return; while(sc->lge_ldata->lge_tx_list[idx].lge_mbuf == NULL) { if (CSR_READ_1(sc, LGE_TXCMDFREE_8BIT) == 0) break; IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (lge_encap(sc, m_head, &idx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif } sc->lge_cdata.lge_tx_prod = idx; /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } void lge_init(xsc) void *xsc; { struct lge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s; if (ifp->if_flags & IFF_RUNNING) return; s = splimp(); /* * Cancel pending I/O and free all RX/TX buffers. */ lge_stop(sc); lge_reset(sc); /* Set MAC address */ CSR_WRITE_4(sc, LGE_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); CSR_WRITE_4(sc, LGE_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); /* Init circular RX list. */ if (lge_list_rx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no " "memory for rx buffers\n", sc->sc_dv.dv_xname); lge_stop(sc); (void)splx(s); return; } /* * Init tx descriptors. */ lge_list_tx_init(sc); /* Set initial value for MODE1 register. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_UCAST| LGE_MODE1_TX_CRC|LGE_MODE1_TXPAD| LGE_MODE1_RX_FLOWCTL|LGE_MODE1_SETRST_CTL0| LGE_MODE1_SETRST_CTL1|LGE_MODE1_SETRST_CTL2); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_PROMISC); } else { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); } /* * Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_BCAST); } else { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_BCAST); } /* Packet padding workaround? */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RMVPAD); /* No error frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ERRPKTS); /* Receive large frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_GIANTS); /* Workaround: disable RX/TX flow control */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_TX_FLOWCTL); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_FLOWCTL); /* Make sure to strip CRC from received frames */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_CRC); /* Turn off magic packet mode */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_MPACK_ENB); /* Turn off all VLAN stuff */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_VLAN_RX|LGE_MODE1_VLAN_TX| LGE_MODE1_VLAN_STRIP|LGE_MODE1_VLAN_INSERT); /* Workarond: FIFO overflow */ CSR_WRITE_2(sc, LGE_RXFIFO_HIWAT, 0x3FFF); CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL1|LGE_IMR_RXFIFO_WAT); /* * Load the multicast filter. */ lge_setmulti(sc); /* * Enable hardware checksum validation for all received IPv4 * packets, do not reject packets with bad checksums. */ CSR_WRITE_4(sc, LGE_MODE2, LGE_MODE2_RX_IPCSUM| LGE_MODE2_RX_TCPCSUM|LGE_MODE2_RX_UDPCSUM| LGE_MODE2_RX_ERRCSUM); /* * Enable the delivery of PHY interrupts based on * link/speed/duplex status chalges. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL0|LGE_MODE1_GMIIPOLL); /* Enable receiver and transmitter. */ CSR_WRITE_4(sc, LGE_RXDESC_ADDR_HI, 0); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_RX_ENB); CSR_WRITE_4(sc, LGE_TXDESC_ADDR_HI, 0); CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1|LGE_MODE1_TX_ENB); /* * Enable interrupts. */ CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_SETRST_CTL0| LGE_IMR_SETRST_CTL1|LGE_IMR_INTR_ENB|LGE_INTRS); lge_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); timeout_add(&sc->lge_timeout, hz); return; } /* * Set media options. */ int lge_ifmedia_upd(ifp) struct ifnet *ifp; { struct lge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->lge_mii; sc->lge_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ void lge_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct lge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->lge_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } int lge_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct lge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; struct mii_data *mii; int s, error = 0; s = splimp(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: lge_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: lge_init(sc); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > LGE_JUMBO_MTU) error = EINVAL; else ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->lge_if_flags & IFF_PROMISC)) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_SETRST_CTL1| LGE_MODE1_RX_PROMISC); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->lge_if_flags & IFF_PROMISC) { CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_PROMISC); } else { ifp->if_flags &= ~IFF_RUNNING; lge_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) lge_stop(sc); } sc->lge_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) lge_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc->lge_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } void lge_watchdog(ifp) struct ifnet *ifp; { struct lge_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname); lge_stop(sc); lge_reset(sc); ifp->if_flags &= ~IFF_RUNNING; lge_init(sc); if (ifp->if_snd.ifq_head != NULL) lge_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void lge_stop(sc) struct lge_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->lge_timeout); CSR_WRITE_4(sc, LGE_IMR, LGE_IMR_INTR_ENB); /* Disable receiver and transmitter. */ CSR_WRITE_4(sc, LGE_MODE1, LGE_MODE1_RX_ENB|LGE_MODE1_TX_ENB); sc->lge_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < LGE_RX_LIST_CNT; i++) { if (sc->lge_ldata->lge_rx_list[i].lge_mbuf != NULL) { m_freem(sc->lge_ldata->lge_rx_list[i].lge_mbuf); sc->lge_ldata->lge_rx_list[i].lge_mbuf = NULL; } } bzero((char *)&sc->lge_ldata->lge_rx_list, sizeof(sc->lge_ldata->lge_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < LGE_TX_LIST_CNT; i++) { if (sc->lge_ldata->lge_tx_list[i].lge_mbuf != NULL) { m_freem(sc->lge_ldata->lge_tx_list[i].lge_mbuf); sc->lge_ldata->lge_tx_list[i].lge_mbuf = NULL; } } bzero((char *)&sc->lge_ldata->lge_tx_list, sizeof(sc->lge_ldata->lge_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ void lge_shutdown(xsc) void *xsc; { struct lge_softc *sc = (struct lge_softc *)xsc; lge_reset(sc); lge_stop(sc); return; } struct cfattach lge_ca = { sizeof(struct lge_softc), lge_probe, lge_attach }; struct cfdriver lge_cd = { 0, "lge", DV_IFNET };