/* $OpenBSD: if_lii.c,v 1.43 2016/04/13 10:34:32 mpi Exp $ */ /* * Copyright (c) 2007 The NetBSD Foundation. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for Attansic/Atheros's L2 Fast Ethernet controller */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include /*#define LII_DEBUG*/ #ifdef LII_DEBUG #define DPRINTF(x) printf x #else #define DPRINTF(x) #endif struct lii_softc { struct device sc_dev; pci_chipset_tag_t sc_pc; pcitag_t sc_tag; bus_space_tag_t sc_mmiot; bus_space_handle_t sc_mmioh; bus_size_t sc_mmios; /* * We allocate a big chunk of DMA-safe memory for all data exchanges. * It is unfortunate that this chip doesn't seem to do scatter-gather. */ bus_dma_tag_t sc_dmat; bus_dmamap_t sc_ringmap; bus_dma_segment_t sc_ringseg; uint8_t *sc_ring; /* the whole area */ size_t sc_ringsize; struct rx_pkt *sc_rxp; /* the part used for RX */ struct tx_pkt_status *sc_txs; /* the parts used for TX */ bus_addr_t sc_txsp; char *sc_txdbase; bus_addr_t sc_txdp; unsigned int sc_rxcur; /* the active area is [ack; cur[ */ int sc_txs_cur; int sc_txs_ack; int sc_txd_cur; int sc_txd_ack; int sc_free_tx_slots; void *sc_ih; struct arpcom sc_ac; struct mii_data sc_mii; struct timeout sc_tick; int (*sc_memread)(struct lii_softc *, uint32_t, uint32_t *); }; #define DEVNAME(_s) ((_s)->sc_dev.dv_xname) int lii_match(struct device *, void *, void *); void lii_attach(struct device *, struct device *, void *); int lii_activate(struct device *, int); struct cfdriver lii_cd = { 0, "lii", DV_IFNET }; struct cfattach lii_ca = { sizeof(struct lii_softc), lii_match, lii_attach, NULL, lii_activate }; int lii_reset(struct lii_softc *); int lii_eeprom_present(struct lii_softc *); void lii_read_macaddr(struct lii_softc *, uint8_t *); int lii_eeprom_read(struct lii_softc *, uint32_t, uint32_t *); void lii_spi_configure(struct lii_softc *); int lii_spi_read(struct lii_softc *, uint32_t, uint32_t *); void lii_iff(struct lii_softc *); void lii_tick(void *); int lii_alloc_rings(struct lii_softc *); int lii_free_tx_space(struct lii_softc *); void lii_tx_put(struct lii_softc *, struct mbuf *); int lii_mii_readreg(struct device *, int, int); void lii_mii_writereg(struct device *, int, int, int); void lii_mii_statchg(struct device *); int lii_media_change(struct ifnet *); void lii_media_status(struct ifnet *, struct ifmediareq *); int lii_init(struct ifnet *); void lii_start(struct ifnet *); void lii_stop(struct ifnet *); void lii_watchdog(struct ifnet *); int lii_ioctl(struct ifnet *, u_long, caddr_t); int lii_intr(void *); void lii_rxintr(struct lii_softc *); void lii_txintr(struct lii_softc *); const struct pci_matchid lii_devices[] = { { PCI_VENDOR_ATTANSIC, PCI_PRODUCT_ATTANSIC_L2 } }; #define LII_READ_4(sc,reg) \ bus_space_read_4((sc)->sc_mmiot, (sc)->sc_mmioh, (reg)) #define LII_READ_2(sc,reg) \ bus_space_read_2((sc)->sc_mmiot, (sc)->sc_mmioh, (reg)) #define LII_READ_1(sc,reg) \ bus_space_read_1((sc)->sc_mmiot, (sc)->sc_mmioh, (reg)) #define LII_WRITE_4(sc,reg,val) \ bus_space_write_4((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val)) #define LII_WRITE_2(sc,reg,val) \ bus_space_write_2((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val)) #define LII_WRITE_1(sc,reg,val) \ bus_space_write_1((sc)->sc_mmiot, (sc)->sc_mmioh, (reg), (val)) /* * Those are the default Linux parameters. */ #define AT_TXD_NUM 64 #define AT_TXD_BUFFER_SIZE 8192 #define AT_RXD_NUM 64 /* Pad the RXD buffer so that the packets are on a 128-byte boundary. */ #define AT_RXD_PADDING 120 int lii_match(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, lii_devices, nitems(lii_devices))); } void lii_attach(struct device *parent, struct device *self, void *aux) { struct lii_softc *sc = (struct lii_softc *)self; struct pci_attach_args *pa = aux; struct ifnet *ifp = &sc->sc_ac.ac_if; pci_intr_handle_t ih; pcireg_t memtype; sc->sc_pc = pa->pa_pc; sc->sc_tag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; memtype = pci_mapreg_type(sc->sc_pc, sc->sc_tag, PCI_MAPREG_START); if (pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0, &sc->sc_mmiot, &sc->sc_mmioh, NULL, &sc->sc_mmios, 0)) { printf(": can't map mem space\n"); return; } if (lii_reset(sc)) goto unmap; lii_spi_configure(sc); if (lii_eeprom_present(sc)) sc->sc_memread = lii_eeprom_read; else sc->sc_memread = lii_spi_read; lii_read_macaddr(sc, sc->sc_ac.ac_enaddr); if (pci_intr_map(pa, &ih) != 0) { printf(": can't map interrupt\n"); goto unmap; } sc->sc_ih = pci_intr_establish(sc->sc_pc, ih, IPL_NET, lii_intr, sc, DEVNAME(sc)); if (sc->sc_ih == NULL) { printf(": can't establish interrupt\n"); goto unmap; } if (lii_alloc_rings(sc)) goto deintr; printf(": %s, address %s\n", pci_intr_string(sc->sc_pc, ih), ether_sprintf(sc->sc_ac.ac_enaddr)); timeout_set(&sc->sc_tick, lii_tick, sc); sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = lii_mii_readreg; sc->sc_mii.mii_writereg = lii_mii_writereg; sc->sc_mii.mii_statchg = lii_mii_statchg; ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, lii_media_change, lii_media_status); mii_attach(self, &sc->sc_mii, 0xffffffff, 1, MII_OFFSET_ANY, 0); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); strlcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_capabilities = IFCAP_VLAN_MTU; ifp->if_ioctl = lii_ioctl; ifp->if_start = lii_start; ifp->if_watchdog = lii_watchdog; if_attach(ifp); ether_ifattach(ifp); return; deintr: pci_intr_disestablish(sc->sc_pc, sc->sc_ih); unmap: bus_space_unmap(sc->sc_mmiot, sc->sc_mmioh, sc->sc_mmios); return; } int lii_activate(struct device *self, int act) { struct lii_softc *sc = (struct lii_softc *)self; struct ifnet *ifp = &sc->sc_ac.ac_if; int rv = 0; switch (act) { case DVACT_SUSPEND: if (ifp->if_flags & IFF_RUNNING) lii_stop(ifp); rv = config_activate_children(self, act); break; case DVACT_RESUME: if (ifp->if_flags & IFF_UP) lii_init(ifp); break; default: rv = config_activate_children(self, act); break; } return (rv); } int lii_reset(struct lii_softc *sc) { int i; DPRINTF(("lii_reset\n")); LII_WRITE_4(sc, LII_SMC, SMC_SOFT_RST); DELAY(1000); for (i = 0; i < 10; ++i) { if (LII_READ_4(sc, LII_BIS) == 0) break; DELAY(1000); } if (i == 10) { printf("%s: reset failed\n", DEVNAME(sc)); return 1; } LII_WRITE_4(sc, LII_PHYC, PHYC_ENABLE); DELAY(10); /* Init PCI-Express module */ /* Magic Numbers Warning */ LII_WRITE_4(sc, 0x12fc, 0x00006500); LII_WRITE_4(sc, 0x1008, 0x00008000 | LII_READ_4(sc, 0x1008)); return 0; } int lii_eeprom_present(struct lii_softc *sc) { uint32_t val; val = LII_READ_4(sc, LII_SFC); if (val & SFC_EN_VPD) LII_WRITE_4(sc, LII_SFC, val & ~(SFC_EN_VPD)); return pci_get_capability(sc->sc_pc, sc->sc_tag, PCI_CAP_VPD, NULL, NULL) == 1; } int lii_eeprom_read(struct lii_softc *sc, uint32_t reg, uint32_t *val) { return pci_vpd_read(sc->sc_pc, sc->sc_tag, reg, 1, (pcireg_t *)val); } void lii_spi_configure(struct lii_softc *sc) { /* * We don't offer a way to configure the SPI Flash vendor parameter, so * the table is given for reference */ static const struct lii_spi_flash_vendor { const char *sfv_name; const uint8_t sfv_opcodes[9]; } lii_sfv[] = { { "Atmel", { 0x00, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 } }, { "SST", { 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 } }, { "ST", { 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xab, 0xd8, 0xc7 } }, }; #define SF_OPCODE_WRSR 0 #define SF_OPCODE_READ 1 #define SF_OPCODE_PRGM 2 #define SF_OPCODE_WREN 3 #define SF_OPCODE_WRDI 4 #define SF_OPCODE_RDSR 5 #define SF_OPCODE_RDID 6 #define SF_OPCODE_SECT_ER 7 #define SF_OPCODE_CHIP_ER 8 #define SF_DEFAULT_VENDOR 0 static const uint8_t vendor = SF_DEFAULT_VENDOR; /* * Why isn't WRDI used? Heck if I know. */ LII_WRITE_1(sc, LII_SFOP_WRSR, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_WRSR]); LII_WRITE_1(sc, LII_SFOP_READ, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_READ]); LII_WRITE_1(sc, LII_SFOP_PROGRAM, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_PRGM]); LII_WRITE_1(sc, LII_SFOP_WREN, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_WREN]); LII_WRITE_1(sc, LII_SFOP_RDSR, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_RDSR]); LII_WRITE_1(sc, LII_SFOP_RDID, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_RDID]); LII_WRITE_1(sc, LII_SFOP_SC_ERASE, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_SECT_ER]); LII_WRITE_1(sc, LII_SFOP_CHIP_ERASE, lii_sfv[vendor].sfv_opcodes[SF_OPCODE_CHIP_ER]); } #define MAKE_SFC(cssetup, clkhi, clklo, cshold, cshi, ins) \ ( (((cssetup) & SFC_CS_SETUP_MASK) \ << SFC_CS_SETUP_SHIFT) \ | (((clkhi) & SFC_CLK_HI_MASK) \ << SFC_CLK_HI_SHIFT) \ | (((clklo) & SFC_CLK_LO_MASK) \ << SFC_CLK_LO_SHIFT) \ | (((cshold) & SFC_CS_HOLD_MASK) \ << SFC_CS_HOLD_SHIFT) \ | (((cshi) & SFC_CS_HI_MASK) \ << SFC_CS_HI_SHIFT) \ | (((ins) & SFC_INS_MASK) \ << SFC_INS_SHIFT)) #define CUSTOM_SPI_CS_SETUP 2 #define CUSTOM_SPI_CLK_HI 2 #define CUSTOM_SPI_CLK_LO 2 #define CUSTOM_SPI_CS_HOLD 2 #define CUSTOM_SPI_CS_HI 3 int lii_spi_read(struct lii_softc *sc, uint32_t reg, uint32_t *val) { uint32_t v; int i; LII_WRITE_4(sc, LII_SF_DATA, 0); LII_WRITE_4(sc, LII_SF_ADDR, reg); v = SFC_WAIT_READY | MAKE_SFC(CUSTOM_SPI_CS_SETUP, CUSTOM_SPI_CLK_HI, CUSTOM_SPI_CLK_LO, CUSTOM_SPI_CS_HOLD, CUSTOM_SPI_CS_HI, 1); LII_WRITE_4(sc, LII_SFC, v); v |= SFC_START; LII_WRITE_4(sc, LII_SFC, v); for (i = 0; i < 10; ++i) { DELAY(1000); if (!(LII_READ_4(sc, LII_SFC) & SFC_START)) break; } if (i == 10) return EBUSY; *val = LII_READ_4(sc, LII_SF_DATA); return 0; } void lii_read_macaddr(struct lii_softc *sc, uint8_t *ea) { uint32_t offset = 0x100; uint32_t val, val1, addr0 = 0, addr1 = 0; uint8_t found = 0; while ((*sc->sc_memread)(sc, offset, &val) == 0) { offset += 4; /* Each chunk of data starts with a signature */ if ((val & 0xff) != 0x5a) break; if ((*sc->sc_memread)(sc, offset, &val1)) break; offset += 4; val >>= 16; switch (val) { case LII_MAC_ADDR_0: addr0 = val1; ++found; break; case LII_MAC_ADDR_1: addr1 = val1; ++found; break; default: continue; } } #ifdef LII_DEBUG if (found < 2) printf(": error reading MAC address, using registers...\n"); #endif addr0 = htole32(addr0); addr1 = htole32(addr1); if ((addr0 == 0xffffff && (addr1 & 0xffff) == 0xffff) || (addr0 == 0 && (addr1 & 0xffff) == 0)) { addr0 = htole32(LII_READ_4(sc, LII_MAC_ADDR_0)); addr1 = htole32(LII_READ_4(sc, LII_MAC_ADDR_1)); } ea[0] = (addr1 & 0x0000ff00) >> 8; ea[1] = (addr1 & 0x000000ff); ea[2] = (addr0 & 0xff000000) >> 24; ea[3] = (addr0 & 0x00ff0000) >> 16; ea[4] = (addr0 & 0x0000ff00) >> 8; ea[5] = (addr0 & 0x000000ff); } int lii_mii_readreg(struct device *dev, int phy, int reg) { struct lii_softc *sc = (struct lii_softc *)dev; uint32_t val; int i; val = (reg & MDIOC_REG_MASK) << MDIOC_REG_SHIFT; val |= MDIOC_START | MDIOC_SUP_PREAMBLE; val |= MDIOC_CLK_25_4 << MDIOC_CLK_SEL_SHIFT; val |= MDIOC_READ; LII_WRITE_4(sc, LII_MDIOC, val); for (i = 0; i < MDIO_WAIT_TIMES; ++i) { DELAY(2); val = LII_READ_4(sc, LII_MDIOC); if ((val & (MDIOC_START | MDIOC_BUSY)) == 0) break; } if (i == MDIO_WAIT_TIMES) { printf("%s: timeout reading PHY %d reg %d\n", DEVNAME(sc), phy, reg); } return (val & 0x0000ffff); } void lii_mii_writereg(struct device *dev, int phy, int reg, int data) { struct lii_softc *sc = (struct lii_softc *)dev; uint32_t val; int i; val = (reg & MDIOC_REG_MASK) << MDIOC_REG_SHIFT; val |= (data & MDIOC_DATA_MASK) << MDIOC_DATA_SHIFT; val |= MDIOC_START | MDIOC_SUP_PREAMBLE; val |= MDIOC_CLK_25_4 << MDIOC_CLK_SEL_SHIFT; /* val |= MDIOC_WRITE; */ LII_WRITE_4(sc, LII_MDIOC, val); for (i = 0; i < MDIO_WAIT_TIMES; ++i) { DELAY(2); val = LII_READ_4(sc, LII_MDIOC); if ((val & (MDIOC_START | MDIOC_BUSY)) == 0) break; } if (i == MDIO_WAIT_TIMES) { printf("%s: timeout writing PHY %d reg %d\n", DEVNAME(sc), phy, reg); } } void lii_mii_statchg(struct device *dev) { struct lii_softc *sc = (struct lii_softc *)dev; uint32_t val; DPRINTF(("lii_mii_statchg\n")); val = LII_READ_4(sc, LII_MACC); if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX) val |= MACC_FDX; else val &= ~MACC_FDX; LII_WRITE_4(sc, LII_MACC, val); } int lii_media_change(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; DPRINTF(("lii_media_change\n")); if (ifp->if_flags & IFF_UP) mii_mediachg(&sc->sc_mii); return 0; } void lii_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct lii_softc *sc = ifp->if_softc; DPRINTF(("lii_media_status\n")); mii_pollstat(&sc->sc_mii); imr->ifm_status = sc->sc_mii.mii_media_status; imr->ifm_active = sc->sc_mii.mii_media_active; } int lii_init(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; uint32_t val; int error; DPRINTF(("lii_init\n")); lii_stop(ifp); memset(sc->sc_ring, 0, sc->sc_ringsize); /* Disable all interrupts */ LII_WRITE_4(sc, LII_ISR, 0xffffffff); LII_WRITE_4(sc, LII_DESC_BASE_ADDR_HI, 0); /* XXX sc->sc_ringmap->dm_segs[0].ds_addr >> 32); */ LII_WRITE_4(sc, LII_RXD_BASE_ADDR_LO, (sc->sc_ringmap->dm_segs[0].ds_addr & 0xffffffff) + AT_RXD_PADDING); LII_WRITE_4(sc, LII_TXS_BASE_ADDR_LO, sc->sc_txsp & 0xffffffff); LII_WRITE_4(sc, LII_TXD_BASE_ADDR_LO, sc->sc_txdp & 0xffffffff); LII_WRITE_2(sc, LII_TXD_BUFFER_SIZE, AT_TXD_BUFFER_SIZE / 4); LII_WRITE_2(sc, LII_TXS_NUM_ENTRIES, AT_TXD_NUM); LII_WRITE_2(sc, LII_RXD_NUM_ENTRIES, AT_RXD_NUM); /* * Inter Paket Gap Time = 0x60 (IPGT) * Minimum inter-frame gap for RX = 0x50 (MIFG) * 64-bit Carrier-Sense window = 0x40 (IPGR1) * 96-bit IPG window = 0x60 (IPGR2) */ LII_WRITE_4(sc, LII_MIPFG, 0x60405060); /* * Collision window = 0x37 (LCOL) * Maximum # of retrans = 0xf (RETRY) * Maximum binary expansion # = 0xa (ABEBT) * IPG to start jam = 0x7 (JAMIPG) */ LII_WRITE_4(sc, LII_MHDC, 0x07a0f037 | MHDC_EXC_DEF_EN); /* 100 means 200us */ LII_WRITE_2(sc, LII_IMTIV, 100); LII_WRITE_2(sc, LII_SMC, SMC_ITIMER_EN); /* 500000 means 100ms */ LII_WRITE_2(sc, LII_IALTIV, 50000); LII_WRITE_4(sc, LII_MTU, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN); /* unit unknown for TX cur-through threshold */ LII_WRITE_4(sc, LII_TX_CUT_THRESH, 0x177); LII_WRITE_2(sc, LII_PAUSE_ON_TH, AT_RXD_NUM * 7 / 8); LII_WRITE_2(sc, LII_PAUSE_OFF_TH, AT_RXD_NUM / 12); sc->sc_rxcur = 0; sc->sc_txs_cur = sc->sc_txs_ack = 0; sc->sc_txd_cur = sc->sc_txd_ack = 0; sc->sc_free_tx_slots = 1; LII_WRITE_2(sc, LII_MB_TXD_WR_IDX, sc->sc_txd_cur); LII_WRITE_2(sc, LII_MB_RXD_RD_IDX, sc->sc_rxcur); LII_WRITE_1(sc, LII_DMAR, DMAR_EN); LII_WRITE_1(sc, LII_DMAW, DMAW_EN); LII_WRITE_4(sc, LII_SMC, LII_READ_4(sc, LII_SMC) | SMC_MANUAL_INT); error = ((LII_READ_4(sc, LII_ISR) & ISR_PHY_LINKDOWN) != 0); LII_WRITE_4(sc, LII_ISR, 0x3fffffff); LII_WRITE_4(sc, LII_ISR, 0); if (error) { printf("%s: init failed\n", DEVNAME(sc)); goto out; } /* * Initialise MAC. */ val = LII_READ_4(sc, LII_MACC) & MACC_FDX; val |= MACC_RX_EN | MACC_TX_EN | MACC_MACLP_CLK_PHY | MACC_TX_FLOW_EN | MACC_RX_FLOW_EN | MACC_ADD_CRC | MACC_PAD; val |= 7 << MACC_PREAMBLE_LEN_SHIFT; val |= 2 << MACC_HDX_LEFT_BUF_SHIFT; LII_WRITE_4(sc, LII_MACC, val); /* Set the hardware MAC address. */ LII_WRITE_4(sc, LII_MAC_ADDR_0, letoh32((sc->sc_ac.ac_enaddr[2] << 24) | (sc->sc_ac.ac_enaddr[3] << 16) | (sc->sc_ac.ac_enaddr[4] << 8) | sc->sc_ac.ac_enaddr[5])); LII_WRITE_4(sc, LII_MAC_ADDR_1, letoh32((sc->sc_ac.ac_enaddr[0] << 8) | sc->sc_ac.ac_enaddr[1])); /* Program promiscuous mode and multicast filters. */ lii_iff(sc); mii_mediachg(&sc->sc_mii); LII_WRITE_4(sc, LII_IMR, IMR_NORMAL_MASK); timeout_add_sec(&sc->sc_tick, 1); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); out: return error; } void lii_tx_put(struct lii_softc *sc, struct mbuf *m) { int left; struct tx_pkt_header *tph = (struct tx_pkt_header *)(sc->sc_txdbase + sc->sc_txd_cur); memset(tph, 0, sizeof *tph); tph->txph_size = m->m_pkthdr.len; sc->sc_txd_cur = (sc->sc_txd_cur + 4) % AT_TXD_BUFFER_SIZE; /* * We already know we have enough space, so if there is a part of the * space ahead of txd_cur that is active, it doesn't matter because * left will be large enough even without it. */ left = AT_TXD_BUFFER_SIZE - sc->sc_txd_cur; if (left > m->m_pkthdr.len) { m_copydata(m, 0, m->m_pkthdr.len, sc->sc_txdbase + sc->sc_txd_cur); sc->sc_txd_cur += m->m_pkthdr.len; } else { m_copydata(m, 0, left, sc->sc_txdbase + sc->sc_txd_cur); m_copydata(m, left, m->m_pkthdr.len - left, sc->sc_txdbase); sc->sc_txd_cur = m->m_pkthdr.len - left; } /* Round to a 32-bit boundary */ sc->sc_txd_cur = ((sc->sc_txd_cur + 3) & ~3) % AT_TXD_BUFFER_SIZE; if (sc->sc_txd_cur == sc->sc_txd_ack) sc->sc_free_tx_slots = 0; } int lii_free_tx_space(struct lii_softc *sc) { int space; if (sc->sc_txd_cur >= sc->sc_txd_ack) space = (AT_TXD_BUFFER_SIZE - sc->sc_txd_cur) + sc->sc_txd_ack; else space = sc->sc_txd_ack - sc->sc_txd_cur; /* Account for the tx_pkt_header */ return (space - 4); } void lii_start(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; struct mbuf *m0; DPRINTF(("lii_start\n")); if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) return; for (;;) { m0 = ifq_deq_begin(&ifp->if_snd); if (m0 == NULL) break; if (!sc->sc_free_tx_slots || lii_free_tx_space(sc) < m0->m_pkthdr.len) { ifq_deq_rollback(&ifp->if_snd, m0); ifq_set_oactive(&ifp->if_snd); break; } lii_tx_put(sc, m0); DPRINTF(("lii_start: put %d\n", sc->sc_txs_cur)); sc->sc_txs[sc->sc_txs_cur].txps_update = 0; sc->sc_txs_cur = (sc->sc_txs_cur + 1) % AT_TXD_NUM; if (sc->sc_txs_cur == sc->sc_txs_ack) sc->sc_free_tx_slots = 0; LII_WRITE_2(sc, LII_MB_TXD_WR_IDX, sc->sc_txd_cur/4); ifq_deq_commit(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif m_freem(m0); } } void lii_stop(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; timeout_del(&sc->sc_tick); ifp->if_timer = 0; ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); mii_down(&sc->sc_mii); lii_reset(sc); LII_WRITE_4(sc, LII_IMR, 0); } int lii_intr(void *v) { struct lii_softc *sc = v; uint32_t status; status = LII_READ_4(sc, LII_ISR); if (status == 0) return 0; DPRINTF(("lii_intr (%x)\n", status)); /* Clear the interrupt and disable them */ LII_WRITE_4(sc, LII_ISR, status | ISR_DIS_INT); if (status & (ISR_PHY | ISR_MANUAL)) { /* Ack PHY interrupt. Magic register */ if (status & ISR_PHY) (void)lii_mii_readreg(&sc->sc_dev, 1, 19); mii_mediachg(&sc->sc_mii); } if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST | ISR_PHY_LINKDOWN)) { lii_init(&sc->sc_ac.ac_if); return 1; } if (status & ISR_RX_EVENT) { #ifdef LII_DEBUG if (!(status & ISR_RS_UPDATE)) printf("rxintr %08x\n", status); #endif lii_rxintr(sc); } if (status & ISR_TX_EVENT) lii_txintr(sc); /* Re-enable interrupts */ LII_WRITE_4(sc, LII_ISR, 0); return 1; } void lii_rxintr(struct lii_softc *sc) { struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct ifnet *ifp = &sc->sc_ac.ac_if; struct rx_pkt *rxp; struct mbuf *m; uint16_t size; DPRINTF(("lii_rxintr\n")); for (;;) { rxp = &sc->sc_rxp[sc->sc_rxcur]; if (rxp->rxp_update == 0) break; DPRINTF(("lii_rxintr: getting %u (%u) [%x]\n", sc->sc_rxcur, rxp->rxp_size, rxp->rxp_flags)); sc->sc_rxcur = (sc->sc_rxcur + 1) % AT_RXD_NUM; rxp->rxp_update = 0; if (!(rxp->rxp_flags & LII_RXF_SUCCESS)) { ++ifp->if_ierrors; continue; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ++ifp->if_ierrors; continue; } size = rxp->rxp_size - ETHER_CRC_LEN; if (size > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); ++ifp->if_ierrors; continue; } } /* Copy the packet withhout the FCS */ m->m_pkthdr.len = m->m_len = size; memcpy(mtod(m, void *), &rxp->rxp_data[0], size); ml_enqueue(&ml, m); } if_input(ifp, &ml); LII_WRITE_4(sc, LII_MB_RXD_RD_IDX, sc->sc_rxcur); } void lii_txintr(struct lii_softc *sc) { struct ifnet *ifp = &sc->sc_ac.ac_if; struct tx_pkt_status *txs; struct tx_pkt_header *txph; DPRINTF(("lii_txintr\n")); for (;;) { txs = &sc->sc_txs[sc->sc_txs_ack]; if (txs->txps_update == 0) break; DPRINTF(("lii_txintr: ack'd %d\n", sc->sc_txs_ack)); sc->sc_txs_ack = (sc->sc_txs_ack + 1) % AT_TXD_NUM; sc->sc_free_tx_slots = 1; txs->txps_update = 0; txph = (struct tx_pkt_header *) (sc->sc_txdbase + sc->sc_txd_ack); if (txph->txph_size != txs->txps_size) { printf("%s: mismatched status and packet\n", DEVNAME(sc)); } /* * Move ack by the packet size, taking the packet header in * account and round to the next 32-bit boundary * (7 = sizeof(header) + 3) */ sc->sc_txd_ack = (sc->sc_txd_ack + txph->txph_size + 7 ) & ~3; sc->sc_txd_ack %= AT_TXD_BUFFER_SIZE; if (txs->txps_flags & LII_TXF_SUCCESS) ++ifp->if_opackets; else ++ifp->if_oerrors; ifq_clr_oactive(&ifp->if_snd); } if (sc->sc_free_tx_slots) lii_start(ifp); } int lii_alloc_rings(struct lii_softc *sc) { int nsegs; bus_size_t bs; /* * We need a big chunk of DMA-friendly memory because descriptors * are not separate from data on that crappy hardware, which means * we'll have to copy data from and to that memory zone to and from * the mbufs. * * How lame is that? Using the default values from the Linux driver, * we allocate space for receiving up to 64 full-size Ethernet frames, * and only 8kb for transmitting up to 64 Ethernet frames. */ sc->sc_ringsize = bs = AT_RXD_PADDING + AT_RXD_NUM * sizeof(struct rx_pkt) + AT_TXD_NUM * sizeof(struct tx_pkt_status) + AT_TXD_BUFFER_SIZE; if (bus_dmamap_create(sc->sc_dmat, bs, 1, bs, (1<<30), BUS_DMA_NOWAIT, &sc->sc_ringmap) != 0) { printf(": failed to create DMA map\n"); return 1; } if (bus_dmamem_alloc(sc->sc_dmat, bs, PAGE_SIZE, (1<<30), &sc->sc_ringseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0) { printf(": failed to allocate DMA memory\n"); goto destroy; } if (bus_dmamem_map(sc->sc_dmat, &sc->sc_ringseg, nsegs, bs, (caddr_t *)&sc->sc_ring, BUS_DMA_NOWAIT) != 0) { printf(": failed to map DMA memory\n"); goto free; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_ringmap, sc->sc_ring, bs, NULL, BUS_DMA_NOWAIT) != 0) { printf(": failed to load DMA memory\n"); goto unmap; } sc->sc_rxp = (void *)(sc->sc_ring + AT_RXD_PADDING); sc->sc_txs = (void *)(sc->sc_ring + AT_RXD_PADDING + AT_RXD_NUM * sizeof(struct rx_pkt)); sc->sc_txdbase = ((char *)sc->sc_txs) + AT_TXD_NUM * sizeof(struct tx_pkt_status); sc->sc_txsp = sc->sc_ringmap->dm_segs[0].ds_addr + ((char *)sc->sc_txs - (char *)sc->sc_ring); sc->sc_txdp = sc->sc_ringmap->dm_segs[0].ds_addr + ((char *)sc->sc_txdbase - (char *)sc->sc_ring); return 0; unmap: bus_dmamem_unmap(sc->sc_dmat, sc->sc_ring, bs); free: bus_dmamem_free(sc->sc_dmat, &sc->sc_ringseg, nsegs); destroy: bus_dmamap_destroy(sc->sc_dmat, sc->sc_ringmap); return 1; } void lii_watchdog(struct ifnet *ifp) { struct lii_softc *sc = ifp->if_softc; printf("%s: watchdog timeout\n", DEVNAME(sc)); ++ifp->if_oerrors; lii_init(ifp); } int lii_ioctl(struct ifnet *ifp, u_long cmd, caddr_t addr) { struct lii_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)addr; int s, error = 0; s = splnet(); switch(cmd) { case SIOCSIFADDR: SET(ifp->if_flags, IFF_UP); /* FALLTHROUGH */ case SIOCSIFFLAGS: if (ISSET(ifp->if_flags, IFF_UP)) { if (ISSET(ifp->if_flags, IFF_RUNNING)) error = ENETRESET; else lii_init(ifp); } else { if (ISSET(ifp->if_flags, IFF_RUNNING)) lii_stop(ifp); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; default: error = ether_ioctl(ifp, &sc->sc_ac, cmd, addr); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) lii_iff(sc); error = 0; } splx(s); return error; } void lii_iff(struct lii_softc *sc) { struct ifnet *ifp = &sc->sc_ac.ac_if; struct arpcom *ac = &sc->sc_ac; struct ether_multi *enm; struct ether_multistep step; uint32_t hashes[2]; uint32_t crc, val; val = LII_READ_4(sc, LII_MACC); val &= ~(MACC_ALLMULTI_EN | MACC_BCAST_EN | MACC_PROMISC_EN); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept broadcast frames. */ val |= MACC_BCAST_EN; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) val |= MACC_PROMISC_EN; else val |= MACC_ALLMULTI_EN; hashes[0] = hashes[1] = 0xFFFFFFFF; } else { /* Program new filter. */ bzero(hashes, sizeof(hashes)); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); hashes[((crc >> 31) & 0x1)] |= (1 << ((crc >> 26) & 0x1f)); ETHER_NEXT_MULTI(step, enm); } } LII_WRITE_4(sc, LII_MHT, hashes[0]); LII_WRITE_4(sc, LII_MHT + 4, hashes[1]); LII_WRITE_4(sc, LII_MACC, val); } void lii_tick(void *v) { struct lii_softc *sc = v; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); timeout_add_sec(&sc->sc_tick, 1); }