/* $OpenBSD: if_msk.c,v 1.65 2008/09/10 14:01:22 blambert Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $ */ /* * Copyright (c) 2003 Nathan L. Binkert * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports * the SK-984x series adapters, both single port and dual port. * References: * The XaQti XMAC II datasheet, * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * The SysKonnect GEnesis manual, http://www.syskonnect.com * * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the * XMAC II datasheet online. I have put my copy at people.freebsd.org as a * convenience to others until Vitesse corrects this problem: * * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * * Written by Bill Paul * Department of Electrical Engineering * Columbia University, New York City */ /* * The SysKonnect gigabit ethernet adapters consist of two main * components: the SysKonnect GEnesis controller chip and the XaQti Corp. * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC * components and a PHY while the GEnesis controller provides a PCI * interface with DMA support. Each card may have between 512K and * 2MB of SRAM on board depending on the configuration. * * The SysKonnect GEnesis controller can have either one or two XMAC * chips connected to it, allowing single or dual port NIC configurations. * SysKonnect has the distinction of being the only vendor on the market * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, * dual DMA queues, packet/MAC/transmit arbiters and direct access to the * XMAC registers. This driver takes advantage of these features to allow * both XMACs to operate as independent interfaces. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #include #include #endif #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include int mskc_probe(struct device *, void *, void *); void mskc_attach(struct device *, struct device *self, void *aux); int mskc_detach(struct device *, int); void mskc_reset(struct sk_softc *); void mskc_shutdown(void *); int msk_probe(struct device *, void *, void *); void msk_attach(struct device *, struct device *self, void *aux); int msk_detach(struct device *, int); void msk_reset(struct sk_if_softc *); int mskcprint(void *, const char *); int msk_intr(void *); void msk_intr_yukon(struct sk_if_softc *); static __inline int msk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t); void msk_rxeof(struct sk_if_softc *, u_int16_t, u_int32_t); void msk_txeof(struct sk_if_softc *); int msk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *); void msk_start(struct ifnet *); int msk_ioctl(struct ifnet *, u_long, caddr_t); void msk_init(void *); void msk_init_yukon(struct sk_if_softc *); void msk_stop(struct sk_if_softc *); void msk_watchdog(struct ifnet *); int msk_ifmedia_upd(struct ifnet *); void msk_ifmedia_sts(struct ifnet *, struct ifmediareq *); int msk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t); int msk_alloc_jumbo_mem(struct sk_if_softc *); void *msk_jalloc(struct sk_if_softc *); void msk_jfree(caddr_t, u_int, void *); int msk_init_rx_ring(struct sk_if_softc *); int msk_init_tx_ring(struct sk_if_softc *); int msk_miibus_readreg(struct device *, int, int); void msk_miibus_writereg(struct device *, int, int, int); void msk_miibus_statchg(struct device *); void msk_setmulti(struct sk_if_softc *); void msk_setpromisc(struct sk_if_softc *); void msk_tick(void *); #ifdef MSK_DEBUG #define DPRINTF(x) if (mskdebug) printf x #define DPRINTFN(n,x) if (mskdebug >= (n)) printf x int mskdebug = 0; void msk_dump_txdesc(struct msk_tx_desc *, int); void msk_dump_mbuf(struct mbuf *); void msk_dump_bytes(const char *, int); #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif /* supported device vendors */ const struct pci_matchid mskc_devices[] = { { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550SX }, { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T_B1 }, { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560SX }, { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE560T }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C032 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C033 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C034 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C036 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_C042 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8021CU }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8021X }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8022CU }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8022X }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8035 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8036 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8038 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8039 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8040T }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8042 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8048 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8050 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8052 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8053 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8055_2 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8056 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8058 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8061CU }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8061X }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8062CU }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8062X }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8070 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8071 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8072 }, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_YUKON_8075 }, { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9Sxx }, { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9Exx } }; static inline u_int32_t sk_win_read_4(struct sk_softc *sc, u_int32_t reg) { return CSR_READ_4(sc, reg); } static inline u_int16_t sk_win_read_2(struct sk_softc *sc, u_int32_t reg) { return CSR_READ_2(sc, reg); } static inline u_int8_t sk_win_read_1(struct sk_softc *sc, u_int32_t reg) { return CSR_READ_1(sc, reg); } static inline void sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x) { CSR_WRITE_4(sc, reg, x); } static inline void sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x) { CSR_WRITE_2(sc, reg, x); } static inline void sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x) { CSR_WRITE_1(sc, reg, x); } int msk_miibus_readreg(struct device *dev, int phy, int reg) { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; u_int16_t val; int i; SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); val = SK_YU_READ_2(sc_if, YUKON_SMICR); if (val & YU_SMICR_READ_VALID) break; } if (i == SK_TIMEOUT) { printf("%s: phy failed to come ready\n", sc_if->sk_dev.dv_xname); return (0); } DPRINTFN(9, ("msk_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT)); val = SK_YU_READ_2(sc_if, YUKON_SMIDR); DPRINTFN(9, ("msk_miibus_readreg phy=%d, reg=%#x, val=%#x\n", phy, reg, val)); return (val); } void msk_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; int i; DPRINTFN(9, ("msk_miibus_writereg phy=%d reg=%#x val=%#x\n", phy, reg, val)); SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (!(SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY)) break; } if (i == SK_TIMEOUT) printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname); } void msk_miibus_statchg(struct device *dev) { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; struct mii_data *mii = &sc_if->sk_mii; struct ifmedia_entry *ife = mii->mii_media.ifm_cur; int gpcr; gpcr = SK_YU_READ_2(sc_if, YUKON_GPCR); gpcr &= (YU_GPCR_TXEN | YU_GPCR_RXEN); if (IFM_SUBTYPE(ife->ifm_media) != IFM_AUTO) { /* Set speed. */ gpcr |= YU_GPCR_SPEED_DIS; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_SX: case IFM_1000_LX: case IFM_1000_CX: case IFM_1000_T: gpcr |= (YU_GPCR_GIG | YU_GPCR_SPEED); break; case IFM_100_TX: gpcr |= YU_GPCR_SPEED; break; } /* Set duplex. */ gpcr |= YU_GPCR_DPLX_DIS; if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) gpcr |= YU_GPCR_DUPLEX; /* Disable flow control. */ gpcr |= YU_GPCR_FCTL_DIS; gpcr |= (YU_GPCR_FCTL_TX_DIS | YU_GPCR_FCTL_RX_DIS); } SK_YU_WRITE_2(sc_if, YUKON_GPCR, gpcr); DPRINTFN(9, ("msk_miibus_statchg: gpcr=%x\n", SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR))); } void msk_setmulti(struct sk_if_softc *sc_if) { struct ifnet *ifp= &sc_if->arpcom.ac_if; u_int32_t hashes[2] = { 0, 0 }; int h; struct arpcom *ac = &sc_if->arpcom; struct ether_multi *enm; struct ether_multistep step; /* First, zot all the existing filters. */ SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); /* Now program new ones. */ allmulti: if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { /* First find the tail of the list. */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & ((1 << SK_HASH_BITS) - 1); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } } SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); } void msk_setpromisc(struct sk_if_softc *sc_if) { struct ifnet *ifp = &sc_if->arpcom.ac_if; if (ifp->if_flags & IFF_PROMISC) SK_YU_CLRBIT_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN); else SK_YU_SETBIT_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN); } int msk_init_rx_ring(struct sk_if_softc *sc_if) { struct msk_chain_data *cd = &sc_if->sk_cdata; struct msk_ring_data *rd = sc_if->sk_rdata; int i, nexti; bzero((char *)rd->sk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT); for (i = 0; i < MSK_RX_RING_CNT; i++) { cd->sk_rx_chain[i].sk_le = &rd->sk_rx_ring[i]; if (i == (MSK_RX_RING_CNT - 1)) nexti = 0; else nexti = i + 1; cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[nexti]; } for (i = 0; i < MSK_RX_RING_CNT; i++) { if (msk_newbuf(sc_if, i, NULL, sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) { printf("%s: failed alloc of %dth mbuf\n", sc_if->sk_dev.dv_xname, i); return (ENOBUFS); } } sc_if->sk_cdata.sk_rx_prod = MSK_RX_RING_CNT - 1; sc_if->sk_cdata.sk_rx_cons = 0; return (0); } int msk_init_tx_ring(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; struct msk_chain_data *cd = &sc_if->sk_cdata; struct msk_ring_data *rd = sc_if->sk_rdata; bus_dmamap_t dmamap; struct sk_txmap_entry *entry; int i, nexti; bzero((char *)sc_if->sk_rdata->sk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT); SIMPLEQ_INIT(&sc_if->sk_txmap_head); for (i = 0; i < MSK_TX_RING_CNT; i++) { cd->sk_tx_chain[i].sk_le = &rd->sk_tx_ring[i]; if (i == (MSK_TX_RING_CNT - 1)) nexti = 0; else nexti = i + 1; cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[nexti]; if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG, SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) return (ENOBUFS); entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT); if (!entry) { bus_dmamap_destroy(sc->sc_dmatag, dmamap); return (ENOBUFS); } entry->dmamap = dmamap; SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link); } sc_if->sk_cdata.sk_tx_prod = 0; sc_if->sk_cdata.sk_tx_cons = 0; sc_if->sk_cdata.sk_tx_cnt = 0; MSK_CDTXSYNC(sc_if, 0, MSK_TX_RING_CNT, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); return (0); } int msk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m, bus_dmamap_t dmamap) { struct mbuf *m_new = NULL; struct sk_chain *c; struct msk_rx_desc *r; if (m == NULL) { caddr_t buf = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return (ENOBUFS); /* Allocate the jumbo buffer */ buf = msk_jalloc(sc_if); if (buf == NULL) { m_freem(m_new); DPRINTFN(1, ("%s jumbo allocation failed -- packet " "dropped!\n", sc_if->arpcom.ac_if.if_xname)); return (ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; MEXTADD(m_new, buf, SK_JLEN, 0, msk_jfree, sc_if); } else { /* * We're re-using a previously allocated mbuf; * be sure to re-init pointers and lengths to * default values. */ m_new = m; m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); c = &sc_if->sk_cdata.sk_rx_chain[i]; r = c->sk_le; c->sk_mbuf = m_new; r->sk_addr = htole32(dmamap->dm_segs[0].ds_addr + (((vaddr_t)m_new->m_data - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf))); r->sk_len = htole16(SK_JLEN); r->sk_ctl = 0; r->sk_opcode = SK_Y2_RXOPC_PACKET | SK_Y2_RXOPC_OWN; MSK_CDRXSYNC(sc_if, i, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); return (0); } /* * Memory management for jumbo frames. */ int msk_alloc_jumbo_mem(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; caddr_t ptr, kva; bus_dma_segment_t seg; int i, rseg, state, error; struct sk_jpool_entry *entry; state = error = 0; /* Grab a big chunk o' storage. */ if (bus_dmamem_alloc(sc->sc_dmatag, MSK_JMEM, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf(": can't alloc rx buffers"); return (ENOBUFS); } state = 1; if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, MSK_JMEM, &kva, BUS_DMA_NOWAIT)) { printf(": can't map dma buffers (%d bytes)", MSK_JMEM); error = ENOBUFS; goto out; } state = 2; if (bus_dmamap_create(sc->sc_dmatag, MSK_JMEM, 1, MSK_JMEM, 0, BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) { printf(": can't create dma map"); error = ENOBUFS; goto out; } state = 3; if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map, kva, MSK_JMEM, NULL, BUS_DMA_NOWAIT)) { printf(": can't load dma map"); error = ENOBUFS; goto out; } state = 4; sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva; DPRINTFN(1,("msk_jumbo_buf = 0x%08X\n", sc_if->sk_cdata.sk_jumbo_buf)); LIST_INIT(&sc_if->sk_jfree_listhead); LIST_INIT(&sc_if->sk_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc_if->sk_cdata.sk_jumbo_buf; for (i = 0; i < MSK_JSLOTS; i++) { sc_if->sk_cdata.sk_jslots[i] = ptr; ptr += SK_JLEN; entry = malloc(sizeof(struct sk_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { sc_if->sk_cdata.sk_jumbo_buf = NULL; printf(": no memory for jumbo buffer queue!"); error = ENOBUFS; goto out; } entry->slot = i; LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); } out: if (error != 0) { switch (state) { case 4: bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); case 3: bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); case 2: bus_dmamem_unmap(sc->sc_dmatag, kva, MSK_JMEM); case 1: bus_dmamem_free(sc->sc_dmatag, &seg, rseg); break; default: break; } } return (error); } /* * Allocate a jumbo buffer. */ void * msk_jalloc(struct sk_if_softc *sc_if) { struct sk_jpool_entry *entry; entry = LIST_FIRST(&sc_if->sk_jfree_listhead); if (entry == NULL) return (NULL); LIST_REMOVE(entry, jpool_entries); LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); return (sc_if->sk_cdata.sk_jslots[entry->slot]); } /* * Release a jumbo buffer. */ void msk_jfree(caddr_t buf, u_int size, void *arg) { struct sk_jpool_entry *entry; struct sk_if_softc *sc; int i; /* Extract the softc struct pointer. */ sc = (struct sk_if_softc *)arg; if (sc == NULL) panic("msk_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vaddr_t)buf - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN; if ((i < 0) || (i >= MSK_JSLOTS)) panic("msk_jfree: asked to free buffer that we don't manage!"); entry = LIST_FIRST(&sc->sk_jinuse_listhead); if (entry == NULL) panic("msk_jfree: buffer not in use!"); entry->slot = i; LIST_REMOVE(entry, jpool_entries); LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries); } /* * Set media options. */ int msk_ifmedia_upd(struct ifnet *ifp) { struct sk_if_softc *sc_if = ifp->if_softc; mii_mediachg(&sc_if->sk_mii); return (0); } /* * Report current media status. */ void msk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct sk_if_softc *sc_if = ifp->if_softc; mii_pollstat(&sc_if->sk_mii); ifmr->ifm_active = sc_if->sk_mii.mii_media_active; ifmr->ifm_status = sc_if->sk_mii.mii_media_status; } int msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct sk_if_softc *sc_if = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *) data; struct mii_data *mii; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc_if->arpcom, command, data)) > 0) { splx(s); return (error); } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) msk_init(sc_if); #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc_if->arpcom, ifa); #endif /* INET */ break; case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && (sc_if->sk_if_flags ^ ifp->if_flags) & IFF_PROMISC) { msk_setpromisc(sc_if); msk_setmulti(sc_if); } else { if (!(ifp->if_flags & IFF_RUNNING)) msk_init(sc_if); } } else { if (ifp->if_flags & IFF_RUNNING) msk_stop(sc_if); } sc_if->sk_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc_if->arpcom) : ether_delmulti(ifr, &sc_if->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ if (ifp->if_flags & IFF_RUNNING) msk_setmulti(sc_if); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc_if->sk_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = ENOTTY; break; } splx(s); return (error); } /* * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int mskc_probe(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, mskc_devices, sizeof(mskc_devices)/sizeof(mskc_devices[0]))); } /* * Force the GEnesis into reset, then bring it out of reset. */ void mskc_reset(struct sk_softc *sc) { u_int32_t imtimer_ticks, reg1; int reg; DPRINTFN(2, ("mskc_reset\n")); CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_RESET); CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_RESET); DELAY(1000); CSR_WRITE_1(sc, SK_CSR, SK_CSR_SW_UNRESET); DELAY(2); CSR_WRITE_1(sc, SK_CSR, SK_CSR_MASTER_UNRESET); sk_win_write_1(sc, SK_TESTCTL1, 2); reg1 = sk_win_read_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1)); if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1) reg1 |= (SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA); else reg1 &= ~(SK_Y2_REG1_PHY1_COMA | SK_Y2_REG1_PHY2_COMA); sk_win_write_4(sc, SK_Y2_PCI_REG(SK_PCI_OURREG1), reg1); if (sc->sk_type == SK_YUKON_XL && sc->sk_rev > SK_YUKON_XL_REV_A1) sk_win_write_1(sc, SK_Y2_CLKGATE, SK_Y2_CLKGATE_LINK1_GATE_DIS | SK_Y2_CLKGATE_LINK2_GATE_DIS | SK_Y2_CLKGATE_LINK1_CORE_DIS | SK_Y2_CLKGATE_LINK2_CORE_DIS | SK_Y2_CLKGATE_LINK1_PCI_DIS | SK_Y2_CLKGATE_LINK2_PCI_DIS); else sk_win_write_1(sc, SK_Y2_CLKGATE, 0); CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_SET); DELAY(1000); CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); CSR_WRITE_2(sc, SK_LINK_CTRL + SK_WIN_LEN, SK_LINK_RESET_CLEAR); sk_win_write_1(sc, SK_TESTCTL1, 1); DPRINTFN(2, ("mskc_reset: sk_csr=%x\n", CSR_READ_1(sc, SK_CSR))); DPRINTFN(2, ("mskc_reset: sk_link_ctrl=%x\n", CSR_READ_2(sc, SK_LINK_CTRL))); /* Disable ASF */ CSR_WRITE_1(sc, SK_Y2_ASF_CSR, SK_Y2_ASF_RESET); CSR_WRITE_2(sc, SK_CSR, SK_CSR_ASF_OFF); /* Clear I2C IRQ noise */ CSR_WRITE_4(sc, SK_I2CHWIRQ, 1); /* Disable hardware timer */ CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_STOP); CSR_WRITE_1(sc, SK_TIMERCTL, SK_IMCTL_IRQ_CLEAR); /* Disable descriptor polling */ CSR_WRITE_4(sc, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP); /* Disable time stamps */ CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_STOP); CSR_WRITE_1(sc, SK_TSTAMP_CTL, SK_TSTAMP_IRQ_CLEAR); /* Enable RAM interface */ sk_win_write_1(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); for (reg = SK_TO0;reg <= SK_TO11; reg++) sk_win_write_1(sc, reg, 36); sk_win_write_1(sc, SK_RAMCTL + (SK_WIN_LEN / 2), SK_RAMCTL_UNRESET); for (reg = SK_TO0;reg <= SK_TO11; reg++) sk_win_write_1(sc, reg + (SK_WIN_LEN / 2), 36); /* * Configure interrupt moderation. The moderation timer * defers interrupts specified in the interrupt moderation * timer mask based on the timeout specified in the interrupt * moderation timer init register. Each bit in the timer * register represents one tick, so to specify a timeout in * microseconds, we have to multiply by the correct number of * ticks-per-microsecond. */ switch (sc->sk_type) { case SK_YUKON_EC: case SK_YUKON_XL: case SK_YUKON_FE: imtimer_ticks = SK_IMTIMER_TICKS_YUKON_EC; break; default: imtimer_ticks = SK_IMTIMER_TICKS_YUKON; } /* Reset status ring. */ bzero((char *)sc->sk_status_ring, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); sc->sk_status_idx = 0; sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_RESET); sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_UNRESET); sk_win_write_2(sc, SK_STAT_BMU_LIDX, MSK_STATUS_RING_CNT - 1); sk_win_write_4(sc, SK_STAT_BMU_ADDRLO, sc->sk_status_map->dm_segs[0].ds_addr); sk_win_write_4(sc, SK_STAT_BMU_ADDRHI, (u_int64_t)sc->sk_status_map->dm_segs[0].ds_addr >> 32); sk_win_write_2(sc, SK_STAT_BMU_TX_THRESH, 10); sk_win_write_1(sc, SK_STAT_BMU_FIFOWM, 16); sk_win_write_1(sc, SK_STAT_BMU_FIFOIWM, 16); #if 0 sk_win_write_4(sc, SK_Y2_LEV_TIMERINIT, SK_IM_USECS(100)); sk_win_write_4(sc, 0x0ec0, SK_IM_USECS(1000)); sk_win_write_4(sc, 0x0ed0, SK_IM_USECS(20)); #else sk_win_write_4(sc, SK_Y2_ISR_ITIMERINIT, SK_IM_USECS(4)); #endif sk_win_write_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_ON); sk_win_write_1(sc, SK_Y2_LEV_ITIMERCTL, SK_IMCTL_START); sk_win_write_1(sc, SK_Y2_TX_ITIMERCTL, SK_IMCTL_START); sk_win_write_1(sc, SK_Y2_ISR_ITIMERCTL, SK_IMCTL_START); } int msk_probe(struct device *parent, void *match, void *aux) { struct skc_attach_args *sa = aux; if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B) return (0); switch (sa->skc_type) { case SK_YUKON_XL: case SK_YUKON_EC_U: case SK_YUKON_EX: case SK_YUKON_EC: case SK_YUKON_FE: case SK_YUKON_FE_P: case SK_YUKON_SUPR: return (1); } return (0); } void msk_reset(struct sk_if_softc *sc_if) { /* GMAC and GPHY Reset */ SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); DELAY(1000); SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); } /* * Each XMAC chip is attached as a separate logical IP interface. * Single port cards will have only one logical interface of course. */ void msk_attach(struct device *parent, struct device *self, void *aux) { struct sk_if_softc *sc_if = (struct sk_if_softc *)self; struct sk_softc *sc = (struct sk_softc *)parent; struct skc_attach_args *sa = aux; struct ifnet *ifp; caddr_t kva; bus_dma_segment_t seg; int i, rseg; u_int32_t chunk; int mii_flags; sc_if->sk_port = sa->skc_port; sc_if->sk_softc = sc; sc->sk_if[sa->skc_port] = sc_if; DPRINTFN(2, ("begin msk_attach: port=%d\n", sc_if->sk_port)); /* * Get station address for this interface. Note that * dual port cards actually come with three station * addresses: one for each port, plus an extra. The * extra one is used by the SysKonnect driver software * as a 'virtual' station address for when both ports * are operating in failover mode. Currently we don't * use this extra address. */ for (i = 0; i < ETHER_ADDR_LEN; i++) sc_if->arpcom.ac_enaddr[i] = sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i); printf(": address %s\n", ether_sprintf(sc_if->arpcom.ac_enaddr)); /* * Set up RAM buffer addresses. The Yukon2 has a small amount * of SRAM on it, somewhere between 4K and 48K. We need to * divide this up between the transmitter and receiver. We * give the receiver 2/3 of the memory (rounded down), and the * transmitter whatever remains. */ chunk = (2 * (sc->sk_ramsize / sizeof(u_int64_t)) / 3) & ~0xff; sc_if->sk_rx_ramstart = 0; sc_if->sk_rx_ramend = sc_if->sk_rx_ramstart + chunk - 1; chunk = (sc->sk_ramsize / sizeof(u_int64_t)) - chunk; sc_if->sk_tx_ramstart = sc_if->sk_rx_ramend + 1; sc_if->sk_tx_ramend = sc_if->sk_tx_ramstart + chunk - 1; DPRINTFN(2, ("msk_attach: rx_ramstart=%#x rx_ramend=%#x\n" " tx_ramstart=%#x tx_ramend=%#x\n", sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend, sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend)); /* Allocate the descriptor queues. */ if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct msk_ring_data), PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf(": can't alloc rx buffers\n"); goto fail; } if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, sizeof(struct msk_ring_data), &kva, BUS_DMA_NOWAIT)) { printf(": can't map dma buffers (%lu bytes)\n", (ulong)sizeof(struct msk_ring_data)); goto fail_1; } if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct msk_ring_data), 1, sizeof(struct msk_ring_data), 0, BUS_DMA_NOWAIT, &sc_if->sk_ring_map)) { printf(": can't create dma map\n"); goto fail_2; } if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva, sizeof(struct msk_ring_data), NULL, BUS_DMA_NOWAIT)) { printf(": can't load dma map\n"); goto fail_3; } sc_if->sk_rdata = (struct msk_ring_data *)kva; bzero(sc_if->sk_rdata, sizeof(struct msk_ring_data)); /* Try to allocate memory for jumbo buffers. */ if (msk_alloc_jumbo_mem(sc_if)) { printf(": jumbo buffer allocation failed\n"); goto fail_3; } ifp = &sc_if->arpcom.ac_if; ifp->if_softc = sc_if; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = msk_ioctl; ifp->if_start = msk_start; ifp->if_watchdog = msk_watchdog; ifp->if_baudrate = 1000000000; if (sc->sk_type != SK_YUKON_FE && sc->sk_type != SK_YUKON_FE_P) ifp->if_hardmtu = SK_JUMBO_MTU; IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; msk_reset(sc_if); /* * Do miibus setup. */ msk_init_yukon(sc_if); DPRINTFN(2, ("msk_attach: 1\n")); sc_if->sk_mii.mii_ifp = ifp; sc_if->sk_mii.mii_readreg = msk_miibus_readreg; sc_if->sk_mii.mii_writereg = msk_miibus_writereg; sc_if->sk_mii.mii_statchg = msk_miibus_statchg; ifmedia_init(&sc_if->sk_mii.mii_media, 0, msk_ifmedia_upd, msk_ifmedia_sts); mii_flags = MIIF_DOPAUSE; if (sc->sk_fibertype) mii_flags |= MIIF_HAVEFIBER; mii_attach(self, &sc_if->sk_mii, 0xffffffff, 0, MII_OFFSET_ANY, mii_flags); if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname); ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO); timeout_set(&sc_if->sk_tick_ch, msk_tick, sc_if); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); sc_if->sk_sdhook = shutdownhook_establish(mskc_shutdown, sc); DPRINTFN(2, ("msk_attach: end\n")); return; fail_3: bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); fail_2: bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct msk_ring_data)); fail_1: bus_dmamem_free(sc->sc_dmatag, &seg, rseg); fail: sc->sk_if[sa->skc_port] = NULL; } int msk_detach(struct device *self, int flags) { struct sk_if_softc *sc_if = (struct sk_if_softc *)self; struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp= &sc_if->arpcom.ac_if; if (sc->sk_if[sc_if->sk_port] == NULL) return (0); timeout_del(&sc_if->sk_tick_ch); /* Detach any PHYs we might have. */ if (LIST_FIRST(&sc_if->sk_mii.mii_phys) != NULL) mii_detach(&sc_if->sk_mii, MII_PHY_ANY, MII_OFFSET_ANY); /* Delete any remaining media. */ ifmedia_delete_instance(&sc_if->sk_mii.mii_media, IFM_INST_ANY); if (sc_if->sk_sdhook != NULL) shutdownhook_disestablish(sc_if->sk_sdhook); ether_ifdetach(ifp); if_detach(ifp); bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc_if->sk_rdata, sizeof(struct msk_ring_data)); bus_dmamem_free(sc->sc_dmatag, &sc_if->sk_ring_seg, sc_if->sk_ring_nseg); sc->sk_if[sc_if->sk_port] = NULL; return (0); } int mskcprint(void *aux, const char *pnp) { struct skc_attach_args *sa = aux; if (pnp) printf("sk port %c at %s", (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp); else printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B'); return (UNCONF); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void mskc_attach(struct device *parent, struct device *self, void *aux) { struct sk_softc *sc = (struct sk_softc *)self; struct pci_attach_args *pa = aux; struct skc_attach_args skca; pci_chipset_tag_t pc = pa->pa_pc; pcireg_t command, memtype; pci_intr_handle_t ih; const char *intrstr = NULL; u_int8_t hw, pmd; char *revstr = NULL; caddr_t kva; DPRINTFN(2, ("begin mskc_attach\n")); /* * Handle power management nonsense. */ command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL); if (command & SK_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO); membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE); /* Reset the power state. */ printf("%s chip is in D%d power mode " "-- setting to D0\n", sc->sk_dev.dv_xname, command & SK_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase); pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase); pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq); } } /* * Map control/status registers. */ memtype = pci_mapreg_type(pc, pa->pa_tag, SK_PCI_LOMEM); if (pci_mapreg_map(pa, SK_PCI_LOMEM, memtype, 0, &sc->sk_btag, &sc->sk_bhandle, NULL, &sc->sk_bsize, 0)) { printf(": can't map mem space\n"); return; } sc->sc_dmatag = pa->pa_dmat; sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4); /* bail out here if chip is not recognized */ if (!(SK_IS_YUKON2(sc))) { printf(": unknown chip type: %d\n", sc->sk_type); goto fail_1; } DPRINTFN(2, ("mskc_attach: allocate interrupt\n")); /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail_1; } intrstr = pci_intr_string(pc, ih); sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, msk_intr, sc, self->dv_xname); if (sc->sk_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail_1; } sc->sk_pc = pc; if (bus_dmamem_alloc(sc->sc_dmatag, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), PAGE_SIZE, 0, &sc->sk_status_seg, 1, &sc->sk_status_nseg, BUS_DMA_NOWAIT)) { printf(": can't alloc status buffers\n"); goto fail_2; } if (bus_dmamem_map(sc->sc_dmatag, &sc->sk_status_seg, sc->sk_status_nseg, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), &kva, BUS_DMA_NOWAIT)) { printf(": can't map dma buffers (%lu bytes)\n", (ulong)(MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc))); goto fail_3; } if (bus_dmamap_create(sc->sc_dmatag, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 1, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), 0, BUS_DMA_NOWAIT, &sc->sk_status_map)) { printf(": can't create dma map\n"); goto fail_4; } if (bus_dmamap_load(sc->sc_dmatag, sc->sk_status_map, kva, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc), NULL, BUS_DMA_NOWAIT)) { printf(": can't load dma map\n"); goto fail_5; } sc->sk_status_ring = (struct msk_status_desc *)kva; bzero(sc->sk_status_ring, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); /* Reset the adapter. */ mskc_reset(sc); sc->sk_ramsize = sk_win_read_1(sc, SK_EPROM0) * 4096; DPRINTFN(2, ("mskc_attach: ramsize=%dK\n", sc->sk_ramsize / 1024)); pmd = sk_win_read_1(sc, SK_PMDTYPE); if (pmd == 'L' || pmd == 'S' || pmd == 'P') sc->sk_fibertype = 1; switch (sc->sk_type) { case SK_YUKON_XL: sc->sk_name = "Yukon-2 XL"; break; case SK_YUKON_EC_U: sc->sk_name = "Yukon-2 EC Ultra"; break; case SK_YUKON_EX: sc->sk_name = "Yukon-2 Extreme"; break; case SK_YUKON_EC: sc->sk_name = "Yukon-2 EC"; break; case SK_YUKON_FE: sc->sk_name = "Yukon-2 FE"; break; case SK_YUKON_FE_P: sc->sk_name = "Yukon-2 FE+"; break; case SK_YUKON_SUPR: sc->sk_name = "Yukon-2 Supreme"; break; default: sc->sk_name = "Yukon (Unknown)"; } if (sc->sk_type == SK_YUKON_XL) { switch (sc->sk_rev) { case SK_YUKON_XL_REV_A0: revstr = "A0"; break; case SK_YUKON_XL_REV_A1: revstr = "A1"; break; case SK_YUKON_XL_REV_A2: revstr = "A2"; break; case SK_YUKON_XL_REV_A3: revstr = "A3"; break; default: ; } } if (sc->sk_type == SK_YUKON_EC) { switch (sc->sk_rev) { case SK_YUKON_EC_REV_A1: revstr = "A1"; break; case SK_YUKON_EC_REV_A2: revstr = "A2"; break; case SK_YUKON_EC_REV_A3: revstr = "A3"; break; default: ; } } if (sc->sk_type == SK_YUKON_EC_U) { switch (sc->sk_rev) { case SK_YUKON_EC_U_REV_A0: revstr = "A0"; break; case SK_YUKON_EC_U_REV_A1: revstr = "A1"; break; default: ; } } /* Announce the product name. */ printf(", %s", sc->sk_name); if (revstr != NULL) printf(" rev. %s", revstr); printf(" (0x%x): %s\n", sc->sk_rev, intrstr); sc->sk_macs = 1; hw = sk_win_read_1(sc, SK_Y2_HWRES); if ((hw & SK_Y2_HWRES_LINK_MASK) == SK_Y2_HWRES_LINK_DUAL) { if ((sk_win_read_1(sc, SK_Y2_CLKGATE) & SK_Y2_CLKGATE_LINK2_INACTIVE) == 0) sc->sk_macs++; } skca.skc_port = SK_PORT_A; skca.skc_type = sc->sk_type; skca.skc_rev = sc->sk_rev; (void)config_found(&sc->sk_dev, &skca, mskcprint); if (sc->sk_macs > 1) { skca.skc_port = SK_PORT_B; skca.skc_type = sc->sk_type; skca.skc_rev = sc->sk_rev; (void)config_found(&sc->sk_dev, &skca, mskcprint); } /* Turn on the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); return; fail_5: bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map); fail_4: bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); fail_3: bus_dmamem_free(sc->sc_dmatag, &sc->sk_status_seg, sc->sk_status_nseg); sc->sk_status_nseg = 0; fail_2: pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand); sc->sk_intrhand = NULL; fail_1: bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize); sc->sk_bsize = 0; } int mskc_detach(struct device *self, int flags) { struct sk_softc *sc = (struct sk_softc *)self; int rv; rv = config_detach_children(self, flags); if (rv != 0) return (rv); if (sc->sk_status_nseg > 0) { bus_dmamap_destroy(sc->sc_dmatag, sc->sk_status_map); bus_dmamem_unmap(sc->sc_dmatag, (caddr_t)sc->sk_status_ring, MSK_STATUS_RING_CNT * sizeof(struct msk_status_desc)); bus_dmamem_free(sc->sc_dmatag, &sc->sk_status_seg, sc->sk_status_nseg); } if (sc->sk_intrhand) pci_intr_disestablish(sc->sk_pc, sc->sk_intrhand); if (sc->sk_bsize > 0) bus_space_unmap(sc->sk_btag, sc->sk_bhandle, sc->sk_bsize); return(0); } int msk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx) { struct sk_softc *sc = sc_if->sk_softc; struct msk_tx_desc *f = NULL; u_int32_t frag, cur; int i; struct sk_txmap_entry *entry; bus_dmamap_t txmap; DPRINTFN(2, ("msk_encap\n")); entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head); if (entry == NULL) { DPRINTFN(2, ("msk_encap: no txmap available\n")); return (ENOBUFS); } txmap = entry->dmamap; cur = frag = *txidx; #ifdef MSK_DEBUG if (mskdebug >= 2) msk_dump_mbuf(m_head); #endif /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head, BUS_DMA_NOWAIT)) { DPRINTFN(2, ("msk_encap: dmamap failed\n")); return (ENOBUFS); } if (txmap->dm_nsegs > (MSK_TX_RING_CNT - sc_if->sk_cdata.sk_tx_cnt - 2)) { DPRINTFN(2, ("msk_encap: too few descriptors free\n")); bus_dmamap_unload(sc->sc_dmatag, txmap); return (ENOBUFS); } DPRINTFN(2, ("msk_encap: dm_nsegs=%d\n", txmap->dm_nsegs)); /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmatag, txmap, 0, txmap->dm_mapsize, BUS_DMASYNC_PREWRITE); for (i = 0; i < txmap->dm_nsegs; i++) { f = &sc_if->sk_rdata->sk_tx_ring[frag]; f->sk_addr = htole32(txmap->dm_segs[i].ds_addr); f->sk_len = htole16(txmap->dm_segs[i].ds_len); f->sk_ctl = 0; if (i == 0) f->sk_opcode = SK_Y2_TXOPC_PACKET; else f->sk_opcode = SK_Y2_TXOPC_BUFFER | SK_Y2_TXOPC_OWN; cur = frag; SK_INC(frag, MSK_TX_RING_CNT); } sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link); sc_if->sk_cdata.sk_tx_map[cur] = entry; sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_Y2_TXCTL_LASTFRAG; /* Sync descriptors before handing to chip */ MSK_CDTXSYNC(sc_if, *txidx, txmap->dm_nsegs, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc_if->sk_rdata->sk_tx_ring[*txidx].sk_opcode |= SK_Y2_TXOPC_OWN; /* Sync first descriptor to hand it off */ MSK_CDTXSYNC(sc_if, *txidx, 1, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); sc_if->sk_cdata.sk_tx_cnt += txmap->dm_nsegs; #ifdef MSK_DEBUG if (mskdebug >= 2) { struct msk_tx_desc *le; u_int32_t idx; for (idx = *txidx; idx != frag; SK_INC(idx, MSK_TX_RING_CNT)) { le = &sc_if->sk_rdata->sk_tx_ring[idx]; msk_dump_txdesc(le, idx); } } #endif *txidx = frag; DPRINTFN(2, ("msk_encap: completed successfully\n")); return (0); } void msk_start(struct ifnet *ifp) { struct sk_if_softc *sc_if = ifp->if_softc; struct mbuf *m_head = NULL; u_int32_t idx = sc_if->sk_cdata.sk_tx_prod; int pkts = 0; DPRINTFN(2, ("msk_start\n")); while (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (msk_encap(sc_if, m_head, &idx)) { ifp->if_flags |= IFF_OACTIVE; break; } /* now we are committed to transmit the packet */ IFQ_DEQUEUE(&ifp->if_snd, m_head); pkts++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif } if (pkts == 0) return; /* Transmit */ if (idx != sc_if->sk_cdata.sk_tx_prod) { sc_if->sk_cdata.sk_tx_prod = idx; SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_PUTIDX, idx); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } } void msk_watchdog(struct ifnet *ifp) { struct sk_if_softc *sc_if = ifp->if_softc; /* * Reclaim first as there is a possibility of losing Tx completion * interrupts. */ msk_txeof(sc_if); if (sc_if->sk_cdata.sk_tx_cnt != 0) { printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname); ifp->if_oerrors++; /* XXX Resets both ports; we shouldn't do that. */ mskc_reset(sc_if->sk_softc); msk_reset(sc_if); msk_init(sc_if); } } void mskc_shutdown(void *v) { struct sk_softc *sc = v; DPRINTFN(2, ("msk_shutdown\n")); /* Turn off the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); /* * Reset the GEnesis controller. Doing this should also * assert the resets on the attached XMAC(s). */ mskc_reset(sc); } static __inline int msk_rxvalid(struct sk_softc *sc, u_int32_t stat, u_int32_t len) { if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR | YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_JABBER)) != 0 || (stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK || YU_RXSTAT_BYTES(stat) != len) return (0); return (1); } void msk_rxeof(struct sk_if_softc *sc_if, u_int16_t len, u_int32_t rxstat) { struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp = &sc_if->arpcom.ac_if; struct mbuf *m; struct sk_chain *cur_rx; int cur, total_len = len; bus_dmamap_t dmamap; DPRINTFN(2, ("msk_rxeof\n")); cur = sc_if->sk_cdata.sk_rx_cons; SK_INC(sc_if->sk_cdata.sk_rx_cons, MSK_RX_RING_CNT); SK_INC(sc_if->sk_cdata.sk_rx_prod, MSK_RX_RING_CNT); /* Sync the descriptor */ MSK_CDRXSYNC(sc_if, cur, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur]; dmamap = sc_if->sk_cdata.sk_rx_jumbo_map; bus_dmamap_sync(sc_if->sk_softc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); m = cur_rx->sk_mbuf; cur_rx->sk_mbuf = NULL; if (total_len < SK_MIN_FRAMELEN || total_len > SK_JUMBO_FRAMELEN || msk_rxvalid(sc, rxstat, total_len) == 0) { ifp->if_ierrors++; msk_newbuf(sc_if, cur, m, dmamap); return; } /* * Try to allocate a new jumbo buffer. If that fails, copy the * packet to mbufs and put the jumbo buffer back in the ring * so it can be re-used. If allocating mbufs fails, then we * have to drop the packet. */ if (msk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) { struct mbuf *m0; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); msk_newbuf(sc_if, cur, m, dmamap); if (m0 == NULL) { ifp->if_ierrors++; return; } m_adj(m0, ETHER_ALIGN); m = m0; } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } ifp->if_ipackets++; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* pass it on. */ ether_input_mbuf(ifp, m); } void msk_txeof(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; struct msk_tx_desc *cur_tx; struct ifnet *ifp = &sc_if->arpcom.ac_if; u_int32_t idx, reg, sk_ctl; struct sk_txmap_entry *entry; DPRINTFN(2, ("msk_txeof\n")); if (sc_if->sk_port == SK_PORT_A) reg = SK_STAT_BMU_TXA1_RIDX; else reg = SK_STAT_BMU_TXA2_RIDX; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ idx = sc_if->sk_cdata.sk_tx_cons; while (idx != sk_win_read_2(sc, reg)) { MSK_CDTXSYNC(sc_if, idx, 1, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; sk_ctl = cur_tx->sk_ctl; #ifdef MSK_DEBUG if (mskdebug >= 2) msk_dump_txdesc(cur_tx, idx); #endif if (sk_ctl & SK_Y2_TXCTL_LASTFRAG) ifp->if_opackets++; if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { entry = sc_if->sk_cdata.sk_tx_map[idx]; m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0, entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, entry->dmamap); SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry, link); sc_if->sk_cdata.sk_tx_map[idx] = NULL; } sc_if->sk_cdata.sk_tx_cnt--; SK_INC(idx, MSK_TX_RING_CNT); } ifp->if_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0; if (sc_if->sk_cdata.sk_tx_cnt < MSK_TX_RING_CNT - 2) ifp->if_flags &= ~IFF_OACTIVE; sc_if->sk_cdata.sk_tx_cons = idx; } void msk_tick(void *xsc_if) { struct sk_if_softc *sc_if = xsc_if; struct mii_data *mii = &sc_if->sk_mii; int s; s = splnet(); mii_tick(mii); splx(s); timeout_add_sec(&sc_if->sk_tick_ch, 1); } void msk_intr_yukon(struct sk_if_softc *sc_if) { u_int8_t status; status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR); /* RX overrun */ if ((status & SK_GMAC_INT_RX_OVER) != 0) { SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RX_FIFO_OVER); } /* TX underrun */ if ((status & SK_GMAC_INT_TX_UNDER) != 0) { SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_TX_FIFO_UNDER); } DPRINTFN(2, ("msk_intr_yukon status=%#x\n", status)); } int msk_intr(void *xsc) { struct sk_softc *sc = xsc; struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A]; struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B]; struct ifnet *ifp0 = NULL, *ifp1 = NULL; int claimed = 0; u_int32_t status; struct msk_status_desc *cur_st; status = CSR_READ_4(sc, SK_Y2_ISSR2); if (status == 0) { CSR_WRITE_4(sc, SK_Y2_ICR, 2); return (0); } status = CSR_READ_4(sc, SK_ISR); if (sc_if0 != NULL) ifp0 = &sc_if0->arpcom.ac_if; if (sc_if1 != NULL) ifp1 = &sc_if1->arpcom.ac_if; if (sc_if0 && (status & SK_Y2_IMR_MAC1) && (ifp0->if_flags & IFF_RUNNING)) { msk_intr_yukon(sc_if0); } if (sc_if1 && (status & SK_Y2_IMR_MAC2) && (ifp1->if_flags & IFF_RUNNING)) { msk_intr_yukon(sc_if1); } MSK_CDSTSYNC(sc, sc->sk_status_idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cur_st = &sc->sk_status_ring[sc->sk_status_idx]; while (cur_st->sk_opcode & SK_Y2_STOPC_OWN) { cur_st->sk_opcode &= ~SK_Y2_STOPC_OWN; switch (cur_st->sk_opcode) { case SK_Y2_STOPC_RXSTAT: msk_rxeof(sc->sk_if[cur_st->sk_link], letoh16(cur_st->sk_len), letoh32(cur_st->sk_status)); SK_IF_WRITE_2(sc->sk_if[cur_st->sk_link], 0, SK_RXQ1_Y2_PREF_PUTIDX, sc->sk_if[cur_st->sk_link]->sk_cdata.sk_rx_prod); break; case SK_Y2_STOPC_TXSTAT: if (sc_if0) msk_txeof(sc_if0); if (sc_if1) msk_txeof(sc_if1); break; default: printf("opcode=0x%x\n", cur_st->sk_opcode); break; } SK_INC(sc->sk_status_idx, MSK_STATUS_RING_CNT); MSK_CDSTSYNC(sc, sc->sk_status_idx, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); cur_st = &sc->sk_status_ring[sc->sk_status_idx]; } if (status & SK_Y2_IMR_BMU) { CSR_WRITE_4(sc, SK_STAT_BMU_CSR, SK_STAT_BMU_IRQ_CLEAR); claimed = 1; } CSR_WRITE_4(sc, SK_Y2_ICR, 2); if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd)) msk_start(ifp0); if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd)) msk_start(ifp1); return (claimed); } void msk_init_yukon(struct sk_if_softc *sc_if) { u_int32_t v; u_int16_t reg; struct sk_softc *sc; int i; sc = sc_if->sk_softc; DPRINTFN(2, ("msk_init_yukon: start: sk_csr=%#x\n", CSR_READ_4(sc_if->sk_softc, SK_CSR))); DPRINTFN(6, ("msk_init_yukon: 1\n")); DPRINTFN(3, ("msk_init_yukon: gmac_ctrl=%#x\n", SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL))); DPRINTFN(6, ("msk_init_yukon: 3\n")); /* unused read of the interrupt source register */ DPRINTFN(6, ("msk_init_yukon: 4\n")); SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); DPRINTFN(6, ("msk_init_yukon: 4a\n")); reg = SK_YU_READ_2(sc_if, YUKON_PAR); DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg)); /* MIB Counter Clear Mode set */ reg |= YU_PAR_MIB_CLR; DPRINTFN(6, ("msk_init_yukon: YUKON_PAR=%#x\n", reg)); DPRINTFN(6, ("msk_init_yukon: 4b\n")); SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); /* MIB Counter Clear Mode clear */ DPRINTFN(6, ("msk_init_yukon: 5\n")); reg &= ~YU_PAR_MIB_CLR; SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); /* receive control reg */ DPRINTFN(6, ("msk_init_yukon: 7\n")); SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR); /* transmit parameter register */ DPRINTFN(6, ("msk_init_yukon: 8\n")); SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); /* serial mode register */ DPRINTFN(6, ("msk_init_yukon: 9\n")); reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e); if (sc->sk_type != SK_YUKON_FE && sc->sk_type != SK_YUKON_FE_P) reg |= YU_SMR_MFL_JUMBO; SK_YU_WRITE_2(sc_if, YUKON_SMR, reg); DPRINTFN(6, ("msk_init_yukon: 10\n")); /* Setup Yukon's address */ for (i = 0; i < 3; i++) { /* Write Source Address 1 (unicast filter) */ SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, sc_if->arpcom.ac_enaddr[i * 2] | sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8); } for (i = 0; i < 3; i++) { reg = sk_win_read_2(sc_if->sk_softc, SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); } /* Set promiscuous mode */ msk_setpromisc(sc_if); /* Set multicast filter */ DPRINTFN(6, ("msk_init_yukon: 11\n")); msk_setmulti(sc_if); /* enable interrupt mask for counter overflows */ DPRINTFN(6, ("msk_init_yukon: 12\n")); SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); /* Configure RX MAC FIFO Flush Mask */ v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT | YU_RXSTAT_JABBER; SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v); /* Configure RX MAC FIFO */ SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON); /* Increase flush threshould to 64 bytes */ SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD, SK_RFCTL_FIFO_THRESHOLD + 1); /* Configure TX MAC FIFO */ SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); #if 1 SK_YU_WRITE_2(sc_if, YUKON_GPCR, YU_GPCR_TXEN | YU_GPCR_RXEN); #endif DPRINTFN(6, ("msk_init_yukon: end\n")); } /* * Note that to properly initialize any part of the GEnesis chip, * you first have to take it out of reset mode. */ void msk_init(void *xsc_if) { struct sk_if_softc *sc_if = xsc_if; struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp = &sc_if->arpcom.ac_if; struct mii_data *mii = &sc_if->sk_mii; int s; DPRINTFN(2, ("msk_init\n")); s = splnet(); /* Cancel pending I/O and free all RX/TX buffers. */ msk_stop(sc_if); /* Configure I2C registers */ /* Configure XMAC(s) */ msk_init_yukon(sc_if); mii_mediachg(mii); /* Configure transmit arbiter(s) */ SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON); #if 0 SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); #endif /* Configure RAMbuffers */ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_STORENFWD_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_START, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_WR_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_RD_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_END, sc_if->sk_tx_ramend); SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_ON); /* Configure BMUs */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000016); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000d28); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, 0x00000080); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_WATERMARK, 0x00000600); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000016); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000d28); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, 0x00000080); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_WATERMARK, 0x00000600); /* Make sure the sync transmit queue is disabled. */ SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET); /* Init descriptors */ if (msk_init_rx_ring(sc_if) == ENOBUFS) { printf("%s: initialization failed: no " "memory for rx buffers\n", sc_if->sk_dev.dv_xname); msk_stop(sc_if); splx(s); return; } if (msk_init_tx_ring(sc_if) == ENOBUFS) { printf("%s: initialization failed: no " "memory for tx buffers\n", sc_if->sk_dev.dv_xname); msk_stop(sc_if); splx(s); return; } /* Initialize prefetch engine. */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000002); SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_LIDX, MSK_RX_RING_CNT - 1); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRLO, MSK_RX_RING_ADDR(sc_if, 0)); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_ADDRHI, (u_int64_t)MSK_RX_RING_ADDR(sc_if, 0) >> 32); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000008); SK_IF_READ_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000002); SK_IF_WRITE_2(sc_if, 1, SK_TXQA1_Y2_PREF_LIDX, MSK_TX_RING_CNT - 1); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRLO, MSK_TX_RING_ADDR(sc_if, 0)); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_ADDRHI, (u_int64_t)MSK_TX_RING_ADDR(sc_if, 0) >> 32); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000008); SK_IF_READ_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR); SK_IF_WRITE_2(sc_if, 0, SK_RXQ1_Y2_PREF_PUTIDX, sc_if->sk_cdata.sk_rx_prod); /* Configure interrupt handling */ if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask |= SK_Y2_INTRS1; else sc->sk_intrmask |= SK_Y2_INTRS2; sc->sk_intrmask |= SK_Y2_IMR_BMU; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; timeout_add_sec(&sc_if->sk_tick_ch, 1); splx(s); } void msk_stop(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp = &sc_if->arpcom.ac_if; struct sk_txmap_entry *dma; int i; DPRINTFN(2, ("msk_stop\n")); timeout_del(&sc_if->sk_tick_ch); ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); /* Stop transfer of Tx descriptors */ /* Stop transfer of Rx descriptors */ /* Turn off various components of this interface. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_BMU_CSR, SK_TXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXRBA1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_Y2_PREF_CSR, 0x00000001); SK_IF_WRITE_4(sc_if, 1, SK_TXQA1_Y2_PREF_CSR, 0x00000001); /* Disable interrupts */ if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask &= ~SK_Y2_INTRS1; else sc->sk_intrmask &= ~SK_Y2_INTRS2; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); SK_XM_READ_2(sc_if, XM_ISR); SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Free RX and TX mbufs still in the queues. */ for (i = 0; i < MSK_RX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; } } for (i = 0; i < MSK_TX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, sc_if->sk_cdata.sk_tx_map[i], link); sc_if->sk_cdata.sk_tx_map[i] = 0; } } while ((dma = SIMPLEQ_FIRST(&sc_if->sk_txmap_head))) { SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link); bus_dmamap_destroy(sc->sc_dmatag, dma->dmamap); free(dma, M_DEVBUF); } } struct cfattach mskc_ca = { sizeof(struct sk_softc), mskc_probe, mskc_attach, mskc_detach }; struct cfdriver mskc_cd = { 0, "mskc", DV_DULL }; struct cfattach msk_ca = { sizeof(struct sk_if_softc), msk_probe, msk_attach, msk_detach }; struct cfdriver msk_cd = { 0, "msk", DV_IFNET }; #ifdef MSK_DEBUG void msk_dump_txdesc(struct msk_tx_desc *le, int idx) { #define DESC_PRINT(X) \ if (X) \ printf("txdesc[%d]." #X "=%#x\n", \ idx, X); DESC_PRINT(letoh32(le->sk_addr)); DESC_PRINT(letoh16(le->sk_len)); DESC_PRINT(le->sk_ctl); DESC_PRINT(le->sk_opcode); #undef DESC_PRINT } void msk_dump_bytes(const char *data, int len) { int c, i, j; for (i = 0; i < len; i += 16) { printf("%08x ", i); c = len - i; if (c > 16) c = 16; for (j = 0; j < c; j++) { printf("%02x ", data[i + j] & 0xff); if ((j & 0xf) == 7 && j > 0) printf(" "); } for (; j < 16; j++) printf(" "); printf(" "); for (j = 0; j < c; j++) { int ch = data[i + j] & 0xff; printf("%c", ' ' <= ch && ch <= '~' ? ch : ' '); } printf("\n"); if (c < 16) break; } } void msk_dump_mbuf(struct mbuf *m) { int count = m->m_pkthdr.len; printf("m=%#lx, m->m_pkthdr.len=%#d\n", m, m->m_pkthdr.len); while (count > 0 && m) { printf("m=%#lx, m->m_data=%#lx, m->m_len=%d\n", m, m->m_data, m->m_len); msk_dump_bytes(mtod(m, char *), m->m_len); count -= m->m_len; m = m->m_next; } } #endif