/* $OpenBSD: if_mx.c,v 1.5 1999/03/03 22:51:46 jason Exp $ */ /* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_mx.c,v 1.11 1999/02/01 21:25:51 wpaul Exp $ */ /* * Macronix PMAC fast ethernet PCI NIC driver * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Macronix 98713, 98715 and 98725 chips are still more tulip clones. * The 98713 has an internal transceiver and an MII bus for external PHYs. * The other two chips have only the internal transceiver. All have * support for built-in autonegotiation. Additionally, there are 98713A * and 98715A chips which support power management. The 98725 chip * supports power management as well. * * Datasheets for the Macronix parts can be obtained from www.macronix.com. * Note however that the datasheets do not describe the TX and RX * descriptor structures or the setup frame format(s). For this, you should * obtain a DEC 21x4x datasheet from developer.intel.com. The Macronix * chips look to be fairly straightforward tulip clones, except for * the NWAY support. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif /* INET */ #include #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include /* for vtophys */ #include #include #include #define MX_USEIOSPACE /* #define MX_BACKGROUND_AUTONEG */ #include static int mx_probe __P((struct device *, void *, void *)); static void mx_attach __P((struct device *, struct device *self, void *aux)); static int mx_newbuf __P((struct mx_softc *, struct mx_chain_onefrag *)); static int mx_encap __P((struct mx_softc *, struct mx_chain *, struct mbuf *)); static void mx_rxeof __P((struct mx_softc *)); static void mx_rxeoc __P((struct mx_softc *)); static void mx_txeof __P((struct mx_softc *)); static void mx_txeoc __P((struct mx_softc *)); static int mx_intr __P((void *)); static void mx_start __P((struct ifnet *)); static int mx_ioctl __P((struct ifnet *, u_long, caddr_t)); static void mx_init __P((void *)); static void mx_stop __P((struct mx_softc *)); static void mx_watchdog __P((struct ifnet *)); static void mx_shutdown __P((void *)); static int mx_ifmedia_upd __P((struct ifnet *)); static void mx_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); static void mx_delay __P((struct mx_softc *)); static void mx_eeprom_idle __P((struct mx_softc *)); static void mx_eeprom_putbyte __P((struct mx_softc *, u_int8_t)); static void mx_eeprom_getword __P((struct mx_softc *, u_int8_t, u_int16_t *)); static void mx_read_eeprom __P((struct mx_softc *, caddr_t, int, int, int)); static void mx_mii_writebit __P((struct mx_softc *, int)); static int mx_mii_readbit __P((struct mx_softc *)); static void mx_mii_sync __P((struct mx_softc *)); static void mx_mii_send __P((struct mx_softc *, u_int32_t, int)); static int mx_mii_readreg __P((struct mx_softc *, struct mx_mii_frame *)); static int mx_mii_writereg __P((struct mx_softc *, struct mx_mii_frame *)); static u_int16_t mx_phy_readreg __P((struct mx_softc *, int)); static void mx_phy_writereg __P((struct mx_softc *, u_int16_t, u_int16_t)); static void mx_autoneg_xmit __P((struct mx_softc *)); static void mx_autoneg_mii __P((struct mx_softc *, int, int)); static void mx_autoneg __P((struct mx_softc *, int, int)); static void mx_setmode_mii __P((struct mx_softc *, int)); static void mx_setmode __P((struct mx_softc *, int, int)); static void mx_getmode_mii __P((struct mx_softc *)); static void mx_setcfg __P((struct mx_softc *, u_int16_t)); static u_int32_t mx_calchash __P((u_int8_t *)); static void mx_setfilt __P((struct mx_softc *)); static void mx_reset __P((struct mx_softc *)); static int mx_list_rx_init __P((struct mx_softc *)); static int mx_list_tx_init __P((struct mx_softc *)); #define MX_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | x) #define MX_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~x) #define SIO_SET(x) \ CSR_WRITE_4(sc, MX_SIO, \ CSR_READ_4(sc, MX_SIO) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, MX_SIO, \ CSR_READ_4(sc, MX_SIO) & ~x) static void mx_delay(sc) struct mx_softc *sc; { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, MX_BUSCTL); } static void mx_eeprom_idle(sc) struct mx_softc *sc; { register int i; CSR_WRITE_4(sc, MX_SIO, MX_SIO_EESEL); mx_delay(sc); MX_SETBIT(sc, MX_SIO, MX_SIO_ROMCTL_READ); mx_delay(sc); MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CS); mx_delay(sc); MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CLK); mx_delay(sc); for (i = 0; i < 25; i++) { MX_CLRBIT(sc, MX_SIO, MX_SIO_EE_CLK); mx_delay(sc); MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CLK); mx_delay(sc); } MX_CLRBIT(sc, MX_SIO, MX_SIO_EE_CLK); mx_delay(sc); MX_CLRBIT(sc, MX_SIO, MX_SIO_EE_CS); mx_delay(sc); CSR_WRITE_4(sc, MX_SIO, 0x00000000); return; } /* * Send a read command and address to the EEPROM, check for ACK. */ static void mx_eeprom_putbyte(sc, addr) struct mx_softc *sc; u_int8_t addr; { register int d, i; d = addr | MX_EECMD_READ; /* * Feed in each bit and stobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { SIO_SET(MX_SIO_EE_DATAIN); } else { SIO_CLR(MX_SIO_EE_DATAIN); } mx_delay(sc); SIO_SET(MX_SIO_EE_CLK); mx_delay(sc); SIO_CLR(MX_SIO_EE_CLK); mx_delay(sc); } return; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void mx_eeprom_getword(sc, addr, dest) struct mx_softc *sc; u_int8_t addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Force EEPROM to idle state. */ mx_eeprom_idle(sc); /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, MX_SIO, MX_SIO_EESEL); mx_delay(sc); MX_SETBIT(sc, MX_SIO, MX_SIO_ROMCTL_READ); mx_delay(sc); MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CS); mx_delay(sc); MX_SETBIT(sc, MX_SIO, MX_SIO_EE_CLK); mx_delay(sc); /* * Send address of word we want to read. */ mx_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(MX_SIO_EE_CLK); mx_delay(sc); if (CSR_READ_4(sc, MX_SIO) & MX_SIO_EE_DATAOUT) word |= i; mx_delay(sc); SIO_CLR(MX_SIO_EE_CLK); mx_delay(sc); } /* Turn off EEPROM access mode. */ mx_eeprom_idle(sc); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ static void mx_read_eeprom(sc, dest, off, cnt, swap) struct mx_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { mx_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } /* * The following two routines are taken from the Macronix 98713 * Application Notes pp.19-21. */ /* * Write a bit to the MII bus. */ static void mx_mii_writebit(sc, bit) struct mx_softc *sc; int bit; { if (bit) CSR_WRITE_4(sc, MX_SIO, MX_SIO_ROMCTL_WRITE|MX_SIO_MII_DATAOUT); else CSR_WRITE_4(sc, MX_SIO, MX_SIO_ROMCTL_WRITE); MX_SETBIT(sc, MX_SIO, MX_SIO_MII_CLK); MX_CLRBIT(sc, MX_SIO, MX_SIO_MII_CLK); return; } /* * Read a bit from the MII bus. */ static int mx_mii_readbit(sc) struct mx_softc *sc; { CSR_WRITE_4(sc, MX_SIO, MX_SIO_ROMCTL_READ|MX_SIO_MII_DIR); CSR_READ_4(sc, MX_SIO); MX_SETBIT(sc, MX_SIO, MX_SIO_MII_CLK); MX_CLRBIT(sc, MX_SIO, MX_SIO_MII_CLK); if (CSR_READ_4(sc, MX_SIO) & MX_SIO_MII_DATAIN) return(1); return(0); } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void mx_mii_sync(sc) struct mx_softc *sc; { register int i; CSR_WRITE_4(sc, MX_SIO, MX_SIO_ROMCTL_WRITE); for (i = 0; i < 32; i++) mx_mii_writebit(sc, 1); return; } /* * Clock a series of bits through the MII. */ static void mx_mii_send(sc, bits, cnt) struct mx_softc *sc; u_int32_t bits; int cnt; { int i; for (i = (0x1 << (cnt - 1)); i; i >>= 1) mx_mii_writebit(sc, bits & i); } /* * Read an PHY register through the MII. */ static int mx_mii_readreg(sc, frame) struct mx_softc *sc; struct mx_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = MX_MII_STARTDELIM; frame->mii_opcode = MX_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Sync the PHYs. */ mx_mii_sync(sc); /* * Send command/address info. */ mx_mii_send(sc, frame->mii_stdelim, 2); mx_mii_send(sc, frame->mii_opcode, 2); mx_mii_send(sc, frame->mii_phyaddr, 5); mx_mii_send(sc, frame->mii_regaddr, 5); #ifdef notdef /* Idle bit */ mx_mii_writebit(sc, 1); mx_mii_writebit(sc, 0); #endif /* Check for ack */ ack = mx_mii_readbit(sc); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { mx_mii_readbit(sc); } goto fail; } for (i = 0x8000; i; i >>= 1) { if (!ack) { if (mx_mii_readbit(sc)) frame->mii_data |= i; } } fail: mx_mii_writebit(sc, 0); mx_mii_writebit(sc, 0); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ static int mx_mii_writereg(sc, frame) struct mx_softc *sc; struct mx_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = MX_MII_STARTDELIM; frame->mii_opcode = MX_MII_WRITEOP; frame->mii_turnaround = MX_MII_TURNAROUND; /* * Sync the PHYs. */ mx_mii_sync(sc); mx_mii_send(sc, frame->mii_stdelim, 2); mx_mii_send(sc, frame->mii_opcode, 2); mx_mii_send(sc, frame->mii_phyaddr, 5); mx_mii_send(sc, frame->mii_regaddr, 5); mx_mii_send(sc, frame->mii_turnaround, 2); mx_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ mx_mii_writebit(sc, 0); mx_mii_writebit(sc, 0); splx(s); return(0); } static u_int16_t mx_phy_readreg(sc, reg) struct mx_softc *sc; int reg; { struct mx_mii_frame frame; u_int32_t cfg; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = sc->mx_phy_addr; frame.mii_regaddr = reg; cfg = CSR_READ_4(sc, MX_NETCFG); MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL); mx_mii_readreg(sc, &frame); CSR_WRITE_4(sc, MX_NETCFG, cfg); return(frame.mii_data); } static void mx_phy_writereg(sc, reg, data) struct mx_softc *sc; u_int16_t reg; u_int16_t data; { struct mx_mii_frame frame; u_int32_t cfg; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = sc->mx_phy_addr; frame.mii_regaddr = reg; frame.mii_data = data; cfg = CSR_READ_4(sc, MX_NETCFG); MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL); mx_mii_writereg(sc, &frame); CSR_WRITE_4(sc, MX_NETCFG, cfg); return; } #define MX_POLY 0xEDB88320 #define MX_BITS 9 static u_int32_t mx_calchash(addr) u_int8_t *addr; { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? MX_POLY : 0); } return (crc & ((1 << MX_BITS) - 1)); } /* * Initiate an autonegotiation session. */ static void mx_autoneg_xmit(sc) struct mx_softc *sc; { u_int16_t phy_sts; mx_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); while(mx_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); phy_sts = mx_phy_readreg(sc, PHY_BMCR); phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; mx_phy_writereg(sc, PHY_BMCR, phy_sts); return; } /* * Invoke autonegotiation on a PHY. */ static void mx_autoneg_mii(sc, flag, verbose) struct mx_softc *sc; int flag; int verbose; { u_int16_t phy_sts = 0, media, advert, ability; struct ifnet *ifp; struct ifmedia *ifm; ifm = &sc->ifmedia; ifp = &sc->arpcom.ac_if; ifm->ifm_media = IFM_ETHER | IFM_AUTO; /* * The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported' * bit cleared in the status register, but has the 'autoneg enabled' * bit set in the control register. This is a contradiction, and * I'm not sure how to handle it. If you want to force an attempt * to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR * and see what happens. */ #ifndef FORCE_AUTONEG_TFOUR /* * First, see if autoneg is supported. If not, there's * no point in continuing. */ phy_sts = mx_phy_readreg(sc, PHY_BMSR); if (!(phy_sts & PHY_BMSR_CANAUTONEG)) { if (verbose) printf("mx%d: autonegotiation not supported\n", sc->mx_unit); ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; return; } #endif switch (flag) { case MX_FLAG_FORCEDELAY: /* * XXX Never use this option anywhere but in the probe * routine: making the kernel stop dead in its tracks * for three whole seconds after we've gone multi-user * is really bad manners. */ mx_autoneg_xmit(sc); DELAY(5000000); break; case MX_FLAG_SCHEDDELAY: /* * Wait for the transmitter to go idle before starting * an autoneg session, otherwise mx_start() may clobber * our timeout, and we don't want to allow transmission * during an autoneg session since that can screw it up. */ if (sc->mx_cdata.mx_tx_head != NULL) { sc->mx_want_auto = 1; return; } mx_autoneg_xmit(sc); ifp->if_timer = 5; sc->mx_autoneg = 1; sc->mx_want_auto = 0; return; break; case MX_FLAG_DELAYTIMEO: ifp->if_timer = 0; sc->mx_autoneg = 0; break; default: printf("mx%d: invalid autoneg flag: %d\n", sc->mx_unit, flag); return; } if (mx_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) { if (verbose) printf("mx%d: autoneg complete, ", sc->mx_unit); phy_sts = mx_phy_readreg(sc, PHY_BMSR); } else { if (verbose) printf("mx%d: autoneg not complete, ", sc->mx_unit); } media = mx_phy_readreg(sc, PHY_BMCR); /* Link is good. Report modes and set duplex mode. */ if (mx_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) { if (verbose) printf("link status good "); advert = mx_phy_readreg(sc, PHY_ANAR); ability = mx_phy_readreg(sc, PHY_LPAR); if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { ifm->ifm_media = IFM_ETHER|IFM_100_T4; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(100baseT4)\n"); } else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; media |= PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(half-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; media &= ~PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 10Mbps)\n"); } else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF) { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; media &= ~PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(half-duplex, 10Mbps)\n"); } media &= ~PHY_BMCR_AUTONEGENBL; /* Set ASIC's duplex mode to match the PHY. */ mx_setcfg(sc, media); mx_phy_writereg(sc, PHY_BMCR, media); } else { if (verbose) printf("no carrier\n"); } mx_init(sc); if (sc->mx_tx_pend) { sc->mx_autoneg = 0; sc->mx_tx_pend = 0; mx_start(ifp); } return; } /* * Invoke autoneg using internal NWAY. */ static void mx_autoneg(sc, flag, verbose) struct mx_softc *sc; int flag; int verbose; { u_int32_t media, ability; struct ifnet *ifp; struct ifmedia *ifm; ifm = &sc->ifmedia; ifp = &sc->arpcom.ac_if; ifm->ifm_media = IFM_ETHER | IFM_AUTO; switch (flag) { case MX_FLAG_FORCEDELAY: /* * XXX Never use this option anywhere but in the probe * routine: making the kernel stop dead in its tracks * for three whole seconds after we've gone multi-user * is really bad manners. */ MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL); MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_FULLDUPLEX); MX_SETBIT(sc, MX_10BTCTRL, MX_TCTL_AUTONEGENBL); MX_SETBIT(sc, MX_10BTCTRL, MX_ASTAT_TXDISABLE); DELAY(5000000); break; case MX_FLAG_SCHEDDELAY: /* * Wait for the transmitter to go idle before starting * an autoneg session, otherwise mx_start() may clobber * our timeout, and we don't want to allow transmission * during an autoneg session since that can screw it up. */ if (sc->mx_cdata.mx_tx_head != NULL) { sc->mx_want_auto = 1; return; } MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL); MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_FULLDUPLEX); MX_SETBIT(sc, MX_10BTCTRL, MX_TCTL_AUTONEGENBL); MX_SETBIT(sc, MX_10BTCTRL, MX_ASTAT_TXDISABLE); ifp->if_timer = 5; sc->mx_autoneg = 1; sc->mx_want_auto = 0; return; break; case MX_FLAG_DELAYTIMEO: ifp->if_timer = 0; sc->mx_autoneg = 0; break; default: printf("mx%d: invalid autoneg flag: %d\n", sc->mx_unit, flag); return; } if ((CSR_READ_4(sc, MX_10BTSTAT) & MX_TSTAT_ANEGSTAT) == MX_ASTAT_AUTONEGCMP) { if (verbose) printf("mx%d: autoneg complete, ", sc->mx_unit); } else { if (verbose) printf("mx%d: autoneg not complete, ", sc->mx_unit); } media = CSR_READ_4(sc, MX_NETCFG); /* Link is good. Report modes and set duplex mode. */ if (!(CSR_READ_4(sc, MX_10BTSTAT) & MX_TSTAT_LS10) || !(CSR_READ_4(sc, MX_10BTSTAT) & MX_TSTAT_LS100)) { if (verbose) printf("link status good "); ability = CSR_READ_4(sc, MX_NWAYSTAT); if (ability & MX_NWAY_100BT4) { ifm->ifm_media = IFM_ETHER|IFM_100_T4; media |= MX_NETCFG_PORTSEL|MX_NETCFG_PCS| MX_NETCFG_SCRAMBLER; media &= ~(MX_NETCFG_FULLDUPLEX|MX_NETCFG_SPEEDSEL); printf("(100baseT4)\n"); } else if (ability & MX_NWAY_100BTFULL) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; media |= MX_NETCFG_PORTSEL|MX_NETCFG_PCS| MX_NETCFG_SCRAMBLER; media |= MX_NETCFG_FULLDUPLEX; media &= ~MX_NETCFG_SPEEDSEL; printf("(full-duplex, 100Mbps)\n"); } else if (ability & MX_NWAY_100BTHALF) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; media |= MX_NETCFG_PORTSEL|MX_NETCFG_PCS| MX_NETCFG_SCRAMBLER; media &= ~(MX_NETCFG_FULLDUPLEX|MX_NETCFG_SPEEDSEL); printf("(half-duplex, 100Mbps)\n"); } else if (ability & MX_NWAY_10BTFULL) { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; media &= ~MX_NETCFG_PORTSEL; media |= (MX_NETCFG_FULLDUPLEX|MX_NETCFG_SPEEDSEL); printf("(full-duplex, 10Mbps)\n"); } else { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; media &= ~MX_NETCFG_PORTSEL; media &= ~MX_NETCFG_FULLDUPLEX; media |= MX_NETCFG_SPEEDSEL; printf("(half-duplex, 10Mbps)\n"); } CSR_WRITE_4(sc, MX_NETCFG, media); MX_CLRBIT(sc, MX_10BTCTRL, MX_TCTL_AUTONEGENBL); } else { if (verbose) printf("no carrier\n"); } mx_init(sc); if (sc->mx_tx_pend) { sc->mx_autoneg = 0; sc->mx_tx_pend = 0; mx_start(ifp); } return; } static void mx_getmode_mii(sc) struct mx_softc *sc; { u_int16_t bmsr; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; bmsr = mx_phy_readreg(sc, PHY_BMSR); /* fallback */ sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; if (bmsr & PHY_BMSR_10BTHALF) { ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); } if (bmsr & PHY_BMSR_10BTFULL) { ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; } if (bmsr & PHY_BMSR_100BTXHALF) { ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; } if (bmsr & PHY_BMSR_100BTXFULL) { ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; } /* Some also support 100BaseT4. */ if (bmsr & PHY_BMSR_100BT4) { ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4; #ifdef FORCE_AUTONEG_TFOUR ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL): sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO; #endif } if (bmsr & PHY_BMSR_CANAUTONEG) { ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO; } return; } /* * Set speed and duplex mode. */ static void mx_setmode_mii(sc, media) struct mx_softc *sc; int media; { u_int16_t bmcr; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* * If an autoneg session is in progress, stop it. */ if (sc->mx_autoneg) { printf("mx%d: canceling autoneg session\n", sc->mx_unit); ifp->if_timer = sc->mx_autoneg = sc->mx_want_auto = 0; bmcr = mx_phy_readreg(sc, PHY_BMCR); bmcr &= ~PHY_BMCR_AUTONEGENBL; mx_phy_writereg(sc, PHY_BMCR, bmcr); } printf("mx%d: selecting MII, ", sc->mx_unit); bmcr = mx_phy_readreg(sc, PHY_BMCR); bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL| PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK); if (IFM_SUBTYPE(media) == IFM_100_T4) { printf("100Mbps/T4, half-duplex\n"); bmcr |= PHY_BMCR_SPEEDSEL; bmcr &= ~PHY_BMCR_DUPLEX; } if (IFM_SUBTYPE(media) == IFM_100_TX) { printf("100Mbps, "); bmcr |= PHY_BMCR_SPEEDSEL; } if (IFM_SUBTYPE(media) == IFM_10_T) { printf("10Mbps, "); bmcr &= ~PHY_BMCR_SPEEDSEL; } if ((media & IFM_GMASK) == IFM_FDX) { printf("full duplex\n"); bmcr |= PHY_BMCR_DUPLEX; } else { printf("half duplex\n"); bmcr &= ~PHY_BMCR_DUPLEX; } mx_setcfg(sc, bmcr); mx_phy_writereg(sc, PHY_BMCR, bmcr); return; } /* * Set speed and duplex mode on internal transceiver. */ static void mx_setmode(sc, media, verbose) struct mx_softc *sc; int media; int verbose; { struct ifnet *ifp; u_int32_t mode; ifp = &sc->arpcom.ac_if; /* * If an autoneg session is in progress, stop it. */ if (sc->mx_autoneg) { printf("mx%d: canceling autoneg session\n", sc->mx_unit); ifp->if_timer = sc->mx_autoneg = sc->mx_want_auto = 0; MX_CLRBIT(sc, MX_10BTCTRL, MX_TCTL_AUTONEGENBL); } if (verbose) printf("mx%d: selecting NWAY, ", sc->mx_unit); mode = CSR_READ_4(sc, MX_NETCFG); mode &= ~(MX_NETCFG_FULLDUPLEX|MX_NETCFG_PORTSEL| MX_NETCFG_PCS|MX_NETCFG_SCRAMBLER|MX_NETCFG_SPEEDSEL); if (IFM_SUBTYPE(media) == IFM_100_T4) { if (verbose) printf("100Mbps/T4, half-duplex\n"); mode |= MX_NETCFG_PORTSEL|MX_NETCFG_PCS|MX_NETCFG_SCRAMBLER; } if (IFM_SUBTYPE(media) == IFM_100_TX) { if (verbose) printf("100Mbps, "); mode |= MX_NETCFG_PORTSEL|MX_NETCFG_PCS|MX_NETCFG_SCRAMBLER; } if (IFM_SUBTYPE(media) == IFM_10_T) { if (verbose) printf("10Mbps, "); mode &= ~MX_NETCFG_PORTSEL; mode |= MX_NETCFG_SPEEDSEL; } if ((media & IFM_GMASK) == IFM_FDX) { if (verbose) printf("full duplex\n"); mode |= MX_NETCFG_FULLDUPLEX; } else { if (verbose) printf("half duplex\n"); mode &= ~MX_NETCFG_FULLDUPLEX; } CSR_WRITE_4(sc, MX_NETCFG, mode); return; } /* * Programming the receiver filter on the tulip/PMAC is gross. You * have to construct a special setup frame and download it to the * chip via the transmit DMA engine. This routine is also somewhat * gross, as the setup frame is sent synchronously rather than putting * on the transmit queue. The transmitter has to be stopped, then we * can download the frame and wait for the 'owned' bit to clear. * * We always program the chip using 'hash perfect' mode, i.e. one perfect * address (our node address) and a 512-bit hash filter for multicast * frames. We also sneak the broadcast address into the hash filter since * we need that too. */ void mx_setfilt(sc) struct mx_softc *sc; { struct mx_desc *sframe; u_int32_t h, *sp; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; struct ifnet *ifp; int i; ifp = &sc->arpcom.ac_if; MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON); MX_SETBIT(sc, MX_ISR, MX_ISR_TX_IDLE); sframe = &sc->mx_cdata.mx_sframe; sp = (u_int32_t *)&sc->mx_cdata.mx_sbuf; bzero((char *)sp, MX_SFRAME_LEN); sframe->mx_next = vtophys(&sc->mx_ldata->mx_tx_list[0]); sframe->mx_data = vtophys(&sc->mx_cdata.mx_sbuf); sframe->mx_ctl = MX_SFRAME_LEN | MX_TXCTL_TLINK | MX_TXCTL_SETUP | MX_FILTER_HASHPERF; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_RX_PROMISC); else MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_RX_PROMISC); if (ifp->if_flags & IFF_ALLMULTI) MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_RX_ALLMULTI); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = mx_calchash(enm->enm_addrlo); ETHER_NEXT_MULTI(step, enm); } if (ifp->if_flags & IFF_BROADCAST) { h = mx_calchash(etherbroadcastaddr); sp[h >> 4] |= 1 << (h & 0xF); } sp[39] = ((u_int16_t *)sc->arpcom.ac_enaddr)[0]; sp[40] = ((u_int16_t *)sc->arpcom.ac_enaddr)[1]; sp[41] = ((u_int16_t *)sc->arpcom.ac_enaddr)[2]; CSR_WRITE_4(sc, MX_TXADDR, vtophys(sframe)); MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON); sframe->mx_status = MX_TXSTAT_OWN; CSR_WRITE_4(sc, MX_TXSTART, 0xFFFFFFFF); /* * Wait for chip to clear the 'own' bit. */ for (i = 0; i < MX_TIMEOUT; i++) { DELAY(10); if (sframe->mx_status != MX_TXSTAT_OWN) break; } if (i == MX_TIMEOUT) printf("mx%d: failed to send setup frame\n", sc->mx_unit); MX_SETBIT(sc, MX_ISR, MX_ISR_TX_NOBUF|MX_ISR_TX_IDLE); return; } /* * In order to fiddle with the * 'full-duplex' and '100Mbps' bits in the netconfig register, we * first have to put the transmit and/or receive logic in the idle state. */ static void mx_setcfg(sc, bmcr) struct mx_softc *sc; u_int16_t bmcr; { int i, restart = 0; if (CSR_READ_4(sc, MX_NETCFG) & (MX_NETCFG_TX_ON|MX_NETCFG_RX_ON)) { restart = 1; MX_CLRBIT(sc, MX_NETCFG, (MX_NETCFG_TX_ON|MX_NETCFG_RX_ON)); for (i = 0; i < MX_TIMEOUT; i++) { DELAY(10); if (CSR_READ_4(sc, MX_ISR) & MX_ISR_TX_IDLE) break; } if (i == MX_TIMEOUT) printf("mx%d: failed to force tx and " "rx to idle state\n", sc->mx_unit); } if (bmcr & PHY_BMCR_SPEEDSEL) { MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_SPEEDSEL); if (sc->mx_phy_addr == 0) { MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_PORTSEL| MX_NETCFG_PCS|MX_NETCFG_SCRAMBLER); } } else MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_SPEEDSEL); if (bmcr & PHY_BMCR_DUPLEX) MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_FULLDUPLEX); else MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_FULLDUPLEX); if (restart) MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON|MX_NETCFG_RX_ON); return; } static void mx_reset(sc) struct mx_softc *sc; { register int i; MX_SETBIT(sc, MX_BUSCTL, MX_BUSCTL_RESET); for (i = 0; i < MX_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, MX_BUSCTL) & MX_BUSCTL_RESET)) break; } if (i == MX_TIMEOUT) printf("mx%d: reset never completed!\n", sc->mx_unit); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Initialize the transmit descriptors. */ static int mx_list_tx_init(sc) struct mx_softc *sc; { struct mx_chain_data *cd; struct mx_list_data *ld; int i; cd = &sc->mx_cdata; ld = sc->mx_ldata; for (i = 0; i < MX_TX_LIST_CNT; i++) { cd->mx_tx_chain[i].mx_ptr = &ld->mx_tx_list[i]; if (i == (MX_TX_LIST_CNT - 1)) cd->mx_tx_chain[i].mx_nextdesc = &cd->mx_tx_chain[0]; else cd->mx_tx_chain[i].mx_nextdesc = &cd->mx_tx_chain[i + 1]; } cd->mx_tx_free = &cd->mx_tx_chain[0]; cd->mx_tx_tail = cd->mx_tx_head = NULL; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int mx_list_rx_init(sc) struct mx_softc *sc; { struct mx_chain_data *cd; struct mx_list_data *ld; int i; cd = &sc->mx_cdata; ld = sc->mx_ldata; for (i = 0; i < MX_RX_LIST_CNT; i++) { cd->mx_rx_chain[i].mx_ptr = (volatile struct mx_desc *)&ld->mx_rx_list[i]; if (mx_newbuf(sc, &cd->mx_rx_chain[i]) == ENOBUFS) return(ENOBUFS); if (i == (MX_RX_LIST_CNT - 1)) { cd->mx_rx_chain[i].mx_nextdesc = &cd->mx_rx_chain[0]; ld->mx_rx_list[i].mx_next = vtophys(&ld->mx_rx_list[0]); } else { cd->mx_rx_chain[i].mx_nextdesc = &cd->mx_rx_chain[i + 1]; ld->mx_rx_list[i].mx_next = vtophys(&ld->mx_rx_list[i + 1]); } } cd->mx_rx_head = &cd->mx_rx_chain[0]; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. * Note: the length fields are only 11 bits wide, which means the * largest size we can specify is 2047. This is important because * MCLBYTES is 2048, so we have to subtract one otherwise we'll * overflow the field and make a mess. */ static int mx_newbuf(sc, c) struct mx_softc *sc; struct mx_chain_onefrag *c; { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(ENOBUFS); MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(ENOBUFS); } c->mx_mbuf = m_new; c->mx_ptr->mx_status = MX_RXSTAT; c->mx_ptr->mx_data = vtophys(mtod(m_new, caddr_t)); c->mx_ptr->mx_ctl = MX_RXCTL_RLINK | (MCLBYTES - 1); return(0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void mx_rxeof(sc) struct mx_softc *sc; { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct mx_chain_onefrag *cur_rx; int total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; while(!((rxstat = sc->mx_cdata.mx_rx_head->mx_ptr->mx_status) & MX_RXSTAT_OWN)) { cur_rx = sc->mx_cdata.mx_rx_head; sc->mx_cdata.mx_rx_head = cur_rx->mx_nextdesc; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & MX_RXSTAT_RXERR) { ifp->if_ierrors++; if (rxstat & MX_RXSTAT_COLLSEEN) ifp->if_collisions++; cur_rx->mx_ptr->mx_status = MX_RXSTAT; cur_rx->mx_ptr->mx_ctl = MX_RXCTL_RLINK | (MCLBYTES - 1); continue; } /* No errors; receive the packet. */ m = cur_rx->mx_mbuf; total_len = MX_RXBYTES(cur_rx->mx_ptr->mx_status); /* * XXX The Macronix chips includes the CRC with every * received frame, and there's no way to turn this * behavior off (at least, I can't find anything in * the manual that explains how to do it) so we have * to trim off the CRC manually. */ total_len -= ETHER_CRC_LEN; /* * Try to conjure up a new mbuf cluster. If that * fails, it means we have an out of memory condition and * should leave the buffer in place and continue. This will * result in a lost packet, but there's little else we * can do in this situation. */ if (mx_newbuf(sc, cur_rx) == ENOBUFS) { ifp->if_ierrors++; cur_rx->mx_ptr->mx_status = MX_RXSTAT; cur_rx->mx_ptr->mx_ctl = MX_RXCTL_RLINK | (MCLBYTES - 1); continue; } ifp->if_ipackets++; eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof(struct ether_header)); ether_input(ifp, eh, m); } return; } void mx_rxeoc(sc) struct mx_softc *sc; { mx_rxeof(sc); MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_RX_ON); CSR_WRITE_4(sc, MX_RXADDR, vtophys(sc->mx_cdata.mx_rx_head->mx_ptr)); MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_RX_ON); CSR_WRITE_4(sc, MX_RXSTART, 0xFFFFFFFF); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void mx_txeof(sc) struct mx_softc *sc; { struct mx_chain *cur_tx; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; if (sc->mx_cdata.mx_tx_head == NULL) return; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ while(sc->mx_cdata.mx_tx_head->mx_mbuf != NULL) { u_int32_t txstat; cur_tx = sc->mx_cdata.mx_tx_head; txstat = MX_TXSTATUS(cur_tx); if ((txstat & MX_TXSTAT_OWN) || txstat == MX_UNSENT) break; if (txstat & MX_TXSTAT_ERRSUM) { ifp->if_oerrors++; if (txstat & MX_TXSTAT_EXCESSCOLL) ifp->if_collisions++; if (txstat & MX_TXSTAT_LATECOLL) ifp->if_collisions++; } ifp->if_collisions += (txstat & MX_TXSTAT_COLLCNT) >> 3; ifp->if_opackets++; m_freem(cur_tx->mx_mbuf); cur_tx->mx_mbuf = NULL; if (sc->mx_cdata.mx_tx_head == sc->mx_cdata.mx_tx_tail) { sc->mx_cdata.mx_tx_head = NULL; sc->mx_cdata.mx_tx_tail = NULL; break; } sc->mx_cdata.mx_tx_head = cur_tx->mx_nextdesc; } return; } /* * TX 'end of channel' interrupt handler. */ static void mx_txeoc(sc) struct mx_softc *sc; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; if (sc->mx_cdata.mx_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->mx_cdata.mx_tx_tail = NULL; if (sc->mx_want_auto) { if (sc->mx_type == MX_TYPE_98713 && sc->mx_hasmii != 0) mx_autoneg_mii(sc, MX_FLAG_DELAYTIMEO, 1); else mx_autoneg(sc, MX_FLAG_DELAYTIMEO, 1); } } else { if (MX_TXOWN(sc->mx_cdata.mx_tx_head) == MX_UNSENT) { MX_TXOWN(sc->mx_cdata.mx_tx_head) = MX_TXSTAT_OWN; ifp->if_timer = 5; CSR_WRITE_4(sc, MX_TXSTART, 0xFFFFFFFF); } } return; } static int mx_intr(arg) void *arg; { struct mx_softc *sc; struct ifnet *ifp; u_int32_t status; int claimed = 0; sc = arg; ifp = &sc->arpcom.ac_if; /* Supress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { mx_stop(sc); return 0; } /* Disable interrupts. */ CSR_WRITE_4(sc, MX_IMR, 0x00000000); for (;;) { status = CSR_READ_4(sc, MX_ISR); if (status) CSR_WRITE_4(sc, MX_ISR, status); if ((status & MX_INTRS) == 0) break; claimed = 1; if (status & MX_ISR_TX_OK) mx_txeof(sc); if (status & MX_ISR_TX_NOBUF) mx_txeoc(sc); if (status & MX_ISR_TX_IDLE) { mx_txeof(sc); if (sc->mx_cdata.mx_tx_head != NULL) { MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON); CSR_WRITE_4(sc, MX_TXSTART, 0xFFFFFFFF); } } if (status & MX_ISR_TX_UNDERRUN) { u_int32_t cfg; cfg = CSR_READ_4(sc, MX_NETCFG); if ((cfg & MX_NETCFG_TX_THRESH) == MX_TXTHRESH_160BYTES) MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_STORENFWD); else CSR_WRITE_4(sc, MX_NETCFG, cfg + 0x4000); } if (status & MX_ISR_RX_OK) mx_rxeof(sc); if ((status & MX_ISR_RX_WATDOGTIMEO) || (status & MX_ISR_RX_NOBUF)) mx_rxeoc(sc); if (status & MX_ISR_BUS_ERR) { mx_reset(sc); mx_init(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, MX_IMR, MX_INTRS); if (ifp->if_snd.ifq_head != NULL) { mx_start(ifp); } return (claimed); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int mx_encap(sc, c, m_head) struct mx_softc *sc; struct mx_chain *c; struct mbuf *m_head; { int frag = 0; volatile struct mx_desc *f = NULL; int total_len; struct mbuf *m; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; total_len = 0; for (m = m_head, frag = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (frag == MX_MAXFRAGS) break; total_len += m->m_len; f = &c->mx_ptr->mx_frag[frag]; f->mx_ctl = MX_TXCTL_TLINK | m->m_len; if (frag == 0) { f->mx_status = 0; f->mx_ctl |= MX_TXCTL_FIRSTFRAG; } else f->mx_status = MX_TXSTAT_OWN; f->mx_next = vtophys(&c->mx_ptr->mx_frag[frag + 1]); f->mx_data = vtophys(mtod(m, vm_offset_t)); frag++; } } /* * Handle special case: we ran out of fragments, * but we have more mbufs left in the chain. Copy the * data into an mbuf cluster. Note that we don't * bother clearing the values in the other fragment * pointers/counters; it wouldn't gain us anything, * and would waste cycles. */ if (m != NULL) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { return(1); } if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; f = &c->mx_ptr->mx_frag[0]; f->mx_status = 0; f->mx_data = vtophys(mtod(m_new, caddr_t)); f->mx_ctl = total_len = m_new->m_len; f->mx_ctl |= MX_TXCTL_TLINK|MX_TXCTL_FIRSTFRAG; frag = 1; } if (total_len < MX_MIN_FRAMELEN) { f = &c->mx_ptr->mx_frag[frag]; f->mx_ctl = MX_MIN_FRAMELEN - total_len; f->mx_data = vtophys(&sc->mx_cdata.mx_pad); f->mx_ctl |= MX_TXCTL_TLINK; f->mx_status = MX_TXSTAT_OWN; frag++; } c->mx_mbuf = m_head; c->mx_lastdesc = frag - 1; MX_TXCTL(c) |= MX_TXCTL_LASTFRAG; MX_TXNEXT(c) = vtophys(&c->mx_nextdesc->mx_ptr->mx_frag[0]); return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void mx_start(ifp) struct ifnet *ifp; { struct mx_softc *sc; struct mbuf *m_head = NULL; struct mx_chain *cur_tx = NULL, *start_tx; sc = ifp->if_softc; if (sc->mx_autoneg) { sc->mx_tx_pend = 1; return; } /* * Check for an available queue slot. If there are none, * punt. */ if (sc->mx_cdata.mx_tx_free->mx_mbuf != NULL) { ifp->if_flags |= IFF_OACTIVE; return; } start_tx = sc->mx_cdata.mx_tx_free; while(sc->mx_cdata.mx_tx_free->mx_mbuf == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ cur_tx = sc->mx_cdata.mx_tx_free; sc->mx_cdata.mx_tx_free = cur_tx->mx_nextdesc; /* Pack the data into the descriptor. */ mx_encap(sc, cur_tx, m_head); if (cur_tx != start_tx) MX_TXOWN(cur_tx) = MX_TXSTAT_OWN; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, cur_tx->mx_mbuf); #endif } /* * If there are no frames queued, bail. */ if (cur_tx == NULL) return; /* * Place the request for the upload interrupt * in the last descriptor in the chain. This way, if * we're chaining several packets at once, we'll only * get an interupt once for the whole chain rather than * once for each packet. */ MX_TXCTL(cur_tx) |= MX_TXCTL_FINT; sc->mx_cdata.mx_tx_tail = cur_tx; if (sc->mx_cdata.mx_tx_head == NULL) { sc->mx_cdata.mx_tx_head = start_tx; MX_TXOWN(start_tx) = MX_TXSTAT_OWN; CSR_WRITE_4(sc, MX_TXSTART, 0xFFFFFFFF); } else { MX_TXOWN(start_tx) = MX_UNSENT; } /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } static void mx_init(xsc) void *xsc; { struct mx_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; u_int16_t phy_bmcr = 0; int s; if (sc->mx_autoneg) return; s = splimp(); if (sc->mx_hasmii != 0) phy_bmcr = mx_phy_readreg(sc, PHY_BMCR); /* * Cancel pending I/O and free all RX/TX buffers. */ mx_stop(sc); mx_reset(sc); /* * Set cache alignment and burst length. */ CSR_WRITE_4(sc, MX_BUSCTL, MX_BUSCTL_CONFIG); MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_NO_RXCRC); MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_HEARTBEAT); MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_STORENFWD); MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_TX_BACKOFF); /* * The app notes for the 98713 and 98715A say that * in order to have the chips operate properly, a magic * number must be written to CSR16. Macronix does not * document the meaning of these bits so there's no way * to know exactly what they mean. The 98713 has a magic * number all its own; the rest all use a different one. */ MX_CLRBIT(sc, MX_MAGICPACKET, 0xFFFF0000); if (sc->mx_type == MX_TYPE_98713) MX_SETBIT(sc, MX_MAGICPACKET, MX_MAGIC_98713); else MX_SETBIT(sc, MX_MAGICPACKET, MX_MAGIC_98715); if (sc->mx_hasmii != 0) { MX_SETBIT(sc, MX_WATCHDOG, MX_WDOG_JABBERDIS); mx_setcfg(sc, mx_phy_readreg(sc, PHY_BMCR)); } else mx_setmode(sc, sc->ifmedia.ifm_media, 0); MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_TX_THRESH); MX_CLRBIT(sc, MX_NETCFG, MX_NETCFG_SPEEDSEL); if (IFM_SUBTYPE(sc->ifmedia.ifm_media) == IFM_10_T) MX_SETBIT(sc, MX_NETCFG, MX_TXTHRESH_160BYTES); else MX_SETBIT(sc, MX_NETCFG, MX_TXTHRESH_72BYTES); /* Init circular RX list. */ if (mx_list_rx_init(sc) == ENOBUFS) { printf("mx%d: no memory for rx buffers\n", sc->mx_unit); mx_stop(sc); (void)splx(s); return; } /* * Init tx descriptors. */ mx_list_tx_init(sc); /* * Load the address of the RX list. */ CSR_WRITE_4(sc, MX_RXADDR, vtophys(sc->mx_cdata.mx_rx_head->mx_ptr)); /* * Load the RX/multicast filter. */ mx_setfilt(sc); /* * Enable interrupts. */ CSR_WRITE_4(sc, MX_IMR, MX_INTRS); CSR_WRITE_4(sc, MX_ISR, 0xFFFFFFFF); /* Enable receiver and transmitter. */ MX_SETBIT(sc, MX_NETCFG, MX_NETCFG_TX_ON|MX_NETCFG_RX_ON); CSR_WRITE_4(sc, MX_RXSTART, 0xFFFFFFFF); /* Restore state of BMCR */ if (sc->mx_hasmii != 0) mx_phy_writereg(sc, PHY_BMCR, phy_bmcr); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); return; } /* * Set media options. */ static int mx_ifmedia_upd(ifp) struct ifnet *ifp; { struct mx_softc *sc; struct ifmedia *ifm; sc = ifp->if_softc; ifm = &sc->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); if (sc->mx_type == MX_TYPE_98713 && sc->mx_hasmii != 0) { if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) mx_autoneg_mii(sc, MX_FLAG_SCHEDDELAY, 1); else mx_setmode_mii(sc, ifm->ifm_media); } else { if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) mx_autoneg(sc, MX_FLAG_SCHEDDELAY, 1); else mx_setmode(sc, ifm->ifm_media, 1); } return(0); } /* * Report current media status. */ static void mx_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct mx_softc *sc; u_int16_t advert = 0, ability = 0; u_int32_t media = 0; sc = ifp->if_softc; ifmr->ifm_active = IFM_ETHER; if (sc->mx_type != MX_TYPE_98713 || sc->mx_hasmii == 0) { media = CSR_READ_4(sc, MX_NETCFG); if (media & MX_NETCFG_PORTSEL) ifmr->ifm_active = IFM_ETHER|IFM_100_TX; else ifmr->ifm_active = IFM_ETHER|IFM_10_T; if (media & MX_NETCFG_FULLDUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; return; } if (!(mx_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) { if (mx_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL) ifmr->ifm_active = IFM_ETHER|IFM_100_TX; else ifmr->ifm_active = IFM_ETHER|IFM_10_T; if (mx_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; return; } ability = mx_phy_readreg(sc, PHY_LPAR); advert = mx_phy_readreg(sc, PHY_ANAR); if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { ifmr->ifm_active = IFM_ETHER|IFM_100_T4; } else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) { ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX; } else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) { ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX; } else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) { ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX; } else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF) { ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX; } return; } static int mx_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct mx_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; struct ifaddr *ifa = (struct ifaddr *)data; s = splimp(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: mx_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: mx_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { mx_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) mx_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: mx_init(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } static void mx_watchdog(ifp) struct ifnet *ifp; { struct mx_softc *sc; sc = ifp->if_softc; if (sc->mx_autoneg) { if (sc->mx_type == MX_TYPE_98713 && sc->mx_hasmii != 0) mx_autoneg_mii(sc, MX_FLAG_DELAYTIMEO, 1); else mx_autoneg(sc, MX_FLAG_DELAYTIMEO, 1); return; } ifp->if_oerrors++; printf("mx%d: watchdog timeout\n", sc->mx_unit); if (sc->mx_hasmii == 0) { if (!(CSR_READ_4(sc, MX_10BTSTAT) & MX_TSTAT_LS10) || !(CSR_READ_4(sc, MX_10BTSTAT) & MX_TSTAT_LS100)) printf("mx%d: no carrier - transceiver " "cable problem?\n", sc->mx_unit); } else { if (!(mx_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT)) printf("mx%d: no carrier - transceiver " "cable problem?\n", sc->mx_unit); } mx_stop(sc); mx_reset(sc); mx_init(sc); if (ifp->if_snd.ifq_head != NULL) mx_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void mx_stop(sc) struct mx_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; MX_CLRBIT(sc, MX_NETCFG, (MX_NETCFG_RX_ON|MX_NETCFG_TX_ON)); CSR_WRITE_4(sc, MX_IMR, 0x00000000); CSR_WRITE_4(sc, MX_TXADDR, 0x00000000); CSR_WRITE_4(sc, MX_RXADDR, 0x00000000); /* * Free data in the RX lists. */ for (i = 0; i < MX_RX_LIST_CNT; i++) { if (sc->mx_cdata.mx_rx_chain[i].mx_mbuf != NULL) { m_freem(sc->mx_cdata.mx_rx_chain[i].mx_mbuf); sc->mx_cdata.mx_rx_chain[i].mx_mbuf = NULL; } } bzero((char *)&sc->mx_ldata->mx_rx_list, sizeof(sc->mx_ldata->mx_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < MX_TX_LIST_CNT; i++) { if (sc->mx_cdata.mx_tx_chain[i].mx_mbuf != NULL) { m_freem(sc->mx_cdata.mx_tx_chain[i].mx_mbuf); sc->mx_cdata.mx_tx_chain[i].mx_mbuf = NULL; } } bzero((char *)&sc->mx_ldata->mx_tx_list, sizeof(sc->mx_ldata->mx_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } static int mx_probe(parent, match, aux) struct device *parent; void *match, *aux; { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MACRONIX) { switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_MACRONIX_MX98713: case PCI_PRODUCT_MACRONIX_MX98715: return (1); } } return (0); } static void mx_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct mx_softc *sc = (struct mx_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; struct ifnet *ifp = &sc->arpcom.ac_if; bus_addr_t iobase; bus_size_t iosize; unsigned int round; caddr_t roundptr; u_int32_t command; u_int16_t phy_sts, phy_did, phy_vid, mac_offset = 0; int s, i, media; s = splimp(); sc->mx_unit = sc->sc_dev.dv_unit; command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef MX_USEIOSPACE if (!(command & PCI_COMMAND_IO_ENABLE)) { printf(": failed to enable i/o ports\n"); goto fail; } if (pci_io_find(pc, pa->pa_tag, MX_PCI_LOIO, &iobase, &iosize)) { printf(": can't find i/o space\n"); goto fail; } if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->mx_bhandle)) { printf(": can't map i/o space\n"); goto fail; } sc->mx_btag = pa->pa_iot; #else if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping\n"); goto fail; } if (pci_mem_find(pc, pa->pa_tag, MX_PCI_LOMEM, &iobase, &iosize)) { printf(": can't find mem space\n"); goto fail; } if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->mx_bhandle)) { printf(": can't map mem space\n"); goto fail; } sc->mx_btag = pa->pa_memt; #endif if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf(": couldn't map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, mx_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } printf(": %s", intrstr); if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_MACRONIX) { if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MACRONIX_MX98713) { if (PCI_REVISION(pa->pa_class) < MX_REVISION_98713A) sc->mx_type = MX_TYPE_98713; else sc->mx_type = MX_TYPE_98713A; } if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_MACRONIX_MX98715) { sc->mx_type = MX_TYPE_987x5; } } mx_reset(sc); mx_read_eeprom(sc, (caddr_t)&mac_offset, (MX_EE_NODEADDR_OFFSET / 2), 1, 0); mx_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, (mac_offset / 2), 3, 0); printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); sc->mx_ldata_ptr = malloc(sizeof(struct mx_list_data) + 8, M_DEVBUF, M_NOWAIT); if (sc->mx_ldata_ptr == NULL) { printf("%s: no memory for list buffers\n", sc->sc_dev.dv_xname); goto fail; } sc->mx_ldata = (struct mx_list_data *)sc->mx_ldata_ptr; round = (unsigned int)sc->mx_ldata_ptr & 0xf; roundptr = sc->mx_ldata_ptr; for (i = 0; i < 8; i++) { if (round % 8) { round++; roundptr++; } else break; } sc->mx_ldata = (struct mx_list_data *)roundptr; bzero(sc->mx_ldata, sizeof(struct mx_list_data)); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = mx_ioctl; ifp->if_output = ether_output; ifp->if_start = mx_start; ifp->if_watchdog = mx_watchdog; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = MX_TX_LIST_CNT - 1; bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); if (sc->mx_type == MX_TYPE_98713) { for (i = MX_PHYADDR_MIN; i < MX_PHYADDR_MAX + 1; i++) { sc->mx_phy_addr = i; mx_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); while (mx_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_RESET); if ((phy_sts = mx_phy_readreg(sc, PHY_BMSR))) break; } if (phy_sts) { phy_vid = mx_phy_readreg(sc, PHY_VENID); phy_did = mx_phy_readreg(sc, PHY_DEVID); sc->mx_hasmii = 1; } else { printf("%s: MII without any phy!\n", sc->sc_dev.dv_xname); goto fail; } } ifmedia_init(&sc->ifmedia, 0, mx_ifmedia_upd, mx_ifmedia_sts); if (sc->mx_type == MX_TYPE_98713 && sc->mx_hasmii != 0) { mx_getmode_mii(sc); mx_autoneg_mii(sc, MX_FLAG_FORCEDELAY, 1); } else { ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); mx_autoneg(sc, MX_FLAG_FORCEDELAY, 1); } media = sc->ifmedia.ifm_media; mx_stop(sc); ifmedia_set(&sc->ifmedia, media); if_attach(ifp); ether_ifattach(ifp); #if NBPFILTER > 0 bpfattach(&sc->arpcom.ac_if.if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif shutdownhook_establish(mx_shutdown, sc); fail: splx(s); } static void mx_shutdown(v) void *v; { struct mx_softc *sc = (struct mx_softc *)v; mx_stop(sc); } struct cfattach mx_ca = { sizeof(struct mx_softc), mx_probe, mx_attach }; struct cfdriver mx_cd = { 0, "mx", DV_IFNET };