/* $OpenBSD: if_nfe.c,v 1.7 2006/01/18 20:44:51 damien Exp $ */ /* * Copyright (c) 2006 Damien Bergamini * Copyright (c) 2005, 2006 Jonathan Gray * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Driver for nvidia nForce Ethernet */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include int nfe_match(struct device *, void *, void *); void nfe_attach(struct device *, struct device *, void *); int nfe_intr(void *); int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); void nfe_rxeof(struct nfe_softc *); void nfe_txeof(struct nfe_softc *); int nfe_encap(struct nfe_softc *, struct mbuf *); int nfe_ioctl(struct ifnet *, u_long, caddr_t); void nfe_start(struct ifnet *); void nfe_stop(struct ifnet *, int); void nfe_watchdog(struct ifnet *); int nfe_init(struct ifnet *); void nfe_setmulti(struct nfe_softc *); void nfe_get_macaddr(struct nfe_softc *, uint8_t *); void nfe_set_macaddr(struct nfe_softc *, const uint8_t *); void nfe_update_promisc(struct nfe_softc *); void nfe_tick(void *); int nfe_miibus_readreg(struct device *, int, int); void nfe_miibus_writereg(struct device *, int, int, int); void nfe_miibus_statchg(struct device *); int nfe_mediachange(struct ifnet *); void nfe_mediastatus(struct ifnet *, struct ifmediareq *); struct cfattach nfe_ca = { sizeof (struct nfe_softc), nfe_match, nfe_attach }; struct cfdriver nfe_cd = { 0, "nfe", DV_IFNET }; #ifdef NFE_DEBUG int nfedebug = 1; #define DPRINTF(x) do { if (nfedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif const struct pci_matchid nfe_devices[] = { { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }, }; int nfe_match(struct device *dev, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, nfe_devices, sizeof (nfe_devices) / sizeof (nfe_devices[0])); } void nfe_attach(struct device *parent, struct device *self, void *aux) { struct nfe_softc *sc = (struct nfe_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr; struct ifnet *ifp; bus_size_t memsize; pcireg_t command; /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf(": mem space not enabled\n"); return; } if (pci_mapreg_map(pa, NFE_PCI_BA, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_memt, &sc->sc_memh, NULL, &memsize, 0) != 0) { printf(": can't map mem space\n"); return; } /* Allocate interrupt */ if (pci_intr_map(pa, &ih) != 0) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); return; } printf(": %s", intrstr); sc->sc_dmat = pa->pa_dmat; nfe_get_macaddr(sc, sc->sc_arpcom.ac_enaddr); printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); sc->sc_flags = 0; switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; break; case PCI_PRODUCT_NVIDIA_MCP51_LAN1: case PCI_PRODUCT_NVIDIA_MCP51_LAN2: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR; break; case PCI_PRODUCT_NVIDIA_CK804_LAN1: case PCI_PRODUCT_NVIDIA_CK804_LAN2: case PCI_PRODUCT_NVIDIA_MCP04_LAN1: case PCI_PRODUCT_NVIDIA_MCP04_LAN2: case PCI_PRODUCT_NVIDIA_MCP55_LAN1: case PCI_PRODUCT_NVIDIA_MCP55_LAN2: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; break; } /* * Allocate Tx and Rx rings. */ if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { printf("%s: could not allocate Tx ring\n", sc->sc_dev.dv_xname); return; } if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { printf("%s: could not allocate Rx ring\n", sc->sc_dev.dv_xname); nfe_free_tx_ring(sc, &sc->txq); return; } ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nfe_ioctl; ifp->if_start = nfe_start; ifp->if_watchdog = nfe_watchdog; ifp->if_init = nfe_init; ifp->if_baudrate = 1000000000; IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); /* Set interface name */ strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = nfe_miibus_readreg; sc->sc_mii.mii_writereg = nfe_miibus_writereg; sc->sc_mii.mii_statchg = nfe_miibus_statchg; /* XXX always seem to get a ghost ukphy along with eephy on nf4u */ ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_mediachange, nfe_mediastatus); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp); /* XXX powerhook */ } void nfe_miibus_statchg(struct device *dev) { struct nfe_softc *sc = (struct nfe_softc *)dev; struct mii_data *mii = &sc->sc_mii; uint32_t reg; reg = NFE_READ(sc, NFE_PHY_INT); switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: reg |= NFE_PHY_1000T; break; case IFM_100_TX: reg |= NFE_PHY_100TX; break; } NFE_WRITE(sc, NFE_PHY_INT, reg); } int nfe_miibus_readreg(struct device *dev, int phy, int reg) { struct nfe_softc *sc = (struct nfe_softc *)dev; uint32_t r; r = NFE_READ(sc, NFE_PHY_CTL); if (r & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); delay(100); } NFE_WRITE(sc, NFE_PHY_CTL, reg | (phy << NFE_PHYADD_SHIFT)); delay(1000); r = NFE_READ(sc, NFE_PHY_DATA); if (r != 0xffffffff && r != 0) sc->phyaddr = phy; DPRINTFN(2, ("nfe mii read phy %d reg 0x%x ret 0x%x\n", phy, reg, r)); return r; } void nfe_miibus_writereg(struct device *dev, int phy, int reg, int data) { struct nfe_softc *sc = (struct nfe_softc *)dev; uint32_t r; r = NFE_READ(sc, NFE_PHY_CTL); if (r & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); delay(100); } NFE_WRITE(sc, NFE_PHY_DATA, data); r = reg | (phy << NFE_PHYADD_SHIFT) | NFE_PHY_WRITE; NFE_WRITE(sc, NFE_PHY_CTL, r); } int nfe_intr(void *arg) { struct nfe_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; uint32_t r; /* disable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, 0); r = NFE_READ(sc, NFE_IRQ_STATUS); NFE_WRITE(sc, NFE_IRQ_STATUS, r); if (r == 0) { /* re-enable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); return 0; } if (ifp->if_flags & IFF_RUNNING) { /* check Rx ring */ nfe_rxeof(sc); /* check Tx ring */ nfe_txeof(sc); } DPRINTF(("nfe_intr: interrupt register %x", r)); /* re-enable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); return 1; } int nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct nfe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data)) > 0) { splx(s); return error; } switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: nfe_init(ifp); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif default: nfe_init(ifp); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) nfe_update_promisc(sc); else nfe_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) nfe_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) nfe_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; default: error = EINVAL; } splx(s); return error; } void nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (caddr_t)desc32 - (caddr_t)sc->txq.desc32, sizeof (struct nfe_desc32), ops); } void nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (caddr_t)desc64 - (caddr_t)sc->txq.desc64, sizeof (struct nfe_desc64), ops); } void nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, (caddr_t)desc32 - (caddr_t)sc->rxq.desc32, sizeof (struct nfe_desc32), ops); } void nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, (caddr_t)desc64 - (caddr_t)sc->rxq.desc64, sizeof (struct nfe_desc64), ops); } void nfe_rxeof(struct nfe_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_rx_data *data; struct mbuf *m, *mnew; uint16_t flags; int error, len; for (;;) { data = &sc->rxq.data[sc->rxq.cur]; if (sc->sc_flags & NFE_40BIT_ADDR) { /* const condition */ desc64 = &sc->rxq.desc64[sc->rxq.cur]; nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD); flags = letoh16(desc64->flags); len = letoh16(desc64->length) & 0x3fff; } else { desc32 = &sc->rxq.desc32[sc->rxq.cur]; nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD); flags = letoh16(desc32->flags); len = letoh16(desc32->length) & 0x3fff; } if (flags & NFE_RX_READY) break; if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { if (!(flags & NFE_RX_VALID_V1)) goto skip; if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { flags &= ~NFE_RX_ERROR; len--; /* fix buffer length */ } } else { if (!(flags & NFE_RX_VALID_V2)) goto skip; if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { flags &= ~NFE_RX_ERROR; len--; /* fix buffer length */ } } if (flags & NFE_RX_ERROR) { ifp->if_ierrors++; goto skip; } /* * Try to allocate a new mbuf for this ring element and load * it before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the * old mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ifp->if_ierrors++; goto skip; } MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail... */ panic("%s: could not load old rx mbuf", sc->sc_dev.dv_xname); } ifp->if_ierrors++; goto skip; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; /* finalize mbuf */ m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = ifp; if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_CSUMOK)) m->m_pkthdr.csum_flags = M_IPV4_CSUM_IN_OK; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif ifp->if_ipackets++; ether_input_mbuf(ifp, m); skip: if (sc->sc_flags & NFE_40BIT_ADDR) { /* const condition */ #if defined(__amd64__) desc64->physaddr[0] = htole32(data->map->dm_segs->ds_addr >> 32); #endif desc64->physaddr[1] = htole32(data->map->dm_segs->ds_addr & 0xffffffff); desc64->flags = htole16(NFE_RX_READY); desc64->length = htole16(MCLBYTES); nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE); } else { desc32->physaddr = htole32(data->map->dm_segs->ds_addr); desc32->flags = htole16(NFE_RX_READY); desc32->length = htole16(MCLBYTES); nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE); } sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT; } } void nfe_txeof(struct nfe_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_tx_data *data; uint16_t flags; /* XXX: should limit # iterations to NFE_TX_RING_COUNT */ for (;;) { data = &sc->txq.data[sc->txq.next]; if (sc->sc_flags & NFE_40BIT_ADDR) { /* const condition */ desc64 = &sc->txq.desc64[sc->txq.next]; nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD); flags = letoh16(desc64->flags); } else { desc32 = &sc->txq.desc32[sc->txq.next]; nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD); flags = letoh16(desc32->flags); } if (!(flags & NFE_TX_VALID)) break; if (data->m == NULL) goto skip; /* skip intermediate fragments */ if (flags & NFE_TX_ERROR) ifp->if_oerrors++; else ifp->if_opackets++; /* last fragment of the mbuf chain transmitted */ bus_dmamap_sync(sc->sc_dmat, data->active, 0, data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->active); m_freem(data->m); data->m = NULL; skip: sc->txq.queued--; sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT; } ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; nfe_start(ifp); } int nfe_encap(struct nfe_softc *sc, struct mbuf *m0) { struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_tx_data *data; struct mbuf *mnew; bus_dmamap_t map; uint32_t txctl = NFE_RXTX_KICKTX; uint16_t flags = NFE_TX_VALID; int error, i; map = sc->txq.data[sc->txq.cur].map; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT); if (error != 0 && error != EFBIG) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } if (error != 0) { /* too many fragments, linearize */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m0); return ENOMEM; } M_DUP_PKTHDR(mnew, m0); if (m0->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(m0); m_freem(mnew); return ENOMEM; } } m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, caddr_t)); m_freem(m0); mnew->m_len = mnew->m_pkthdr.len; m0 = mnew; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); m_freem(m0); return error; } } /* h/w checksum (XXX only if HW_CSUM?) */ if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) flags |= NFE_TX_IP_CSUM; if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) flags |= NFE_TX_TCP_CSUM; for (i = 0; i < map->dm_nsegs; i++) { data = &sc->txq.data[sc->txq.cur]; if (sc->sc_flags & NFE_40BIT_ADDR) { /* const condition */ desc64 = &sc->txq.desc64[sc->txq.cur]; #if defined(__amd64__) desc64->physaddr[0] = htole32(map->dm_segs[i].ds_addr >> 32); #endif desc64->physaddr[1] = htole32(map->dm_segs[i].ds_addr & 0xffffffff); desc64->length = htole16(map->dm_segs[i].ds_len - 1); desc64->flags = htole16(flags); nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE); } else { desc32 = &sc->txq.desc32[sc->txq.cur]; desc32->physaddr = htole32(map->dm_segs[i].ds_addr); desc32->length = htole16(map->dm_segs[i].ds_len - 1); desc32->flags = htole16(flags); nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE); } /* csum flags belong to the first frament only */ if (map->dm_nsegs > 1) flags &= ~(M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT); sc->txq.queued++; sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT; } /* the whole mbuf chain has been DMA mapped, fix last descriptor */ if (sc->sc_flags & NFE_40BIT_ADDR) { txctl |= NFE_RXTX_V3MAGIC; flags |= NFE_TX_LASTFRAG_V2; desc64->flags = htole16(flags); nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE); } else { if (sc->sc_flags & NFE_JUMBO_SUP) { txctl |= NFE_RXTX_V2MAGIC; flags |= NFE_TX_LASTFRAG_V2; } else flags |= NFE_TX_LASTFRAG_V1; desc32->flags = htole16(flags); nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE); } if (sc->sc_flags & NFE_HW_CSUM) txctl |= NFE_RXTX_RXCHECK; data->m = m0; data->active = map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); /* kick Tx */ NFE_WRITE(sc, NFE_RXTX_CTL, txctl); return 0; } void nfe_start(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; struct mbuf *m0; for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (nfe_encap(sc, m0) != 0) { ifp->if_flags |= IFF_OACTIVE; break; } /* packet put in h/w queue, remove from s/w queue */ IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0); #endif /* start watchdog timer */ ifp->if_timer = 5; } } void nfe_watchdog(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); ifp->if_flags &= ~IFF_RUNNING; nfe_init(ifp); ifp->if_oerrors++; } void nfe_stop(struct ifnet *ifp, int disable) { struct nfe_softc *sc = ifp->if_softc; timeout_del(&sc->sc_timeout); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); /* abort Tx */ NFE_WRITE(sc, NFE_TX_CTL, 0); /* disable Rx */ NFE_WRITE(sc, NFE_RX_CTL, 0); /* disable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, 0); /* reset Tx and Rx rings */ nfe_reset_tx_ring(sc, &sc->txq); nfe_reset_rx_ring(sc, &sc->rxq); } int nfe_init(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; uint32_t rxtxctl; nfe_stop(ifp, 0); NFE_WRITE(sc, NFE_TX_UNK, 0); rxtxctl = NFE_RXTX_BIT2; if (sc->sc_flags & NFE_40BIT_ADDR) rxtxctl |= NFE_RXTX_V3MAGIC; else if (sc->sc_flags & NFE_JUMBO_SUP) rxtxctl |= NFE_RXTX_V2MAGIC; if (sc->sc_flags & NFE_HW_CSUM) rxtxctl |= NFE_RXTX_RXCHECK; NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | rxtxctl); delay(10); NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl); NFE_WRITE(sc, NFE_SETUP_R6, 0); /* set MAC address */ nfe_set_macaddr(sc, sc->sc_arpcom.ac_enaddr); /* tell MAC where rings are in memory */ NFE_WRITE(sc, NFE_RX_RING_ADDR, sc->rxq.physaddr); NFE_WRITE(sc, NFE_TX_RING_ADDR, sc->txq.physaddr); NFE_WRITE(sc, NFE_RING_SIZE, (NFE_RX_RING_COUNT - 1) << 16 | (NFE_TX_RING_COUNT - 1)); NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); NFE_WRITE(sc, NFE_TIMER_INT, 970); /* XXX Magic */ NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_MAGIC); rxtxctl &= ~NFE_RXTX_BIT2; NFE_WRITE(sc, NFE_RXTX_CTL, rxtxctl); delay(10); NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | rxtxctl); /* enable Rx */ NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); /* enable Tx */ NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); nfe_setmulti(sc); /* enable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); mii_mediachg(&sc->sc_mii); timeout_set(&sc->sc_timeout, nfe_tick, sc); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; return 0; } int nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_rx_data *data; struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; void **desc; int i, nsegs, error, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = (void **)&ring->desc32; descsize = sizeof (struct nfe_desc32); } ring->cur = ring->next = 0; error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1, NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map desc DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } bzero(*desc, NFE_RX_RING_COUNT * descsize); ring->physaddr = ring->map->dm_segs->ds_addr; /* * Pre-allocate Rx buffers and populate Rx ring. */ for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &sc->rxq.data[i]; error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate rx mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load rx buf DMA map", sc->sc_dev.dv_xname); goto fail; } if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->rxq.desc64[i]; #if defined(__amd64__) desc64->physaddr[0] = htole32(data->map->dm_segs->ds_addr >> 32); #endif desc64->physaddr[1] = htole32(data->map->dm_segs->ds_addr & 0xffffffff); desc64->length = htole16(MCLBYTES); desc64->flags = htole16(NFE_RX_READY); } else { desc32 = &sc->rxq.desc32[i]; desc32->physaddr = htole32(data->map->dm_segs->ds_addr); desc32->length = htole16(MCLBYTES); desc32->flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); return 0; fail: nfe_free_rx_ring(sc, ring); return error; } void nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { int i; for (i = 0; i < NFE_RX_RING_COUNT; i++) { if (sc->sc_flags & NFE_40BIT_ADDR) { ring->desc64[i].length = htole16(MCLBYTES); ring->desc64[i].flags = htole16(NFE_RX_READY); } else { ring->desc32[i].length = htole16(MCLBYTES); ring->desc32[i].flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; } void nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_rx_data *data; void *desc; int i, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = ring->desc32; descsize = sizeof (struct nfe_desc32); } if (desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc, NFE_RX_RING_COUNT * descsize); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } int nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { int i, nsegs, error; void **desc; int descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = (void **)&ring->desc32; descsize = sizeof (struct nfe_desc32); } ring->queued = 0; ring->cur = ring->next = 0; error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1, NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map desc DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } bzero(*desc, NFE_TX_RING_COUNT * descsize); ring->physaddr = ring->map->dm_segs->ds_addr; for (i = 0; i < NFE_TX_RING_COUNT; i++) { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, NFE_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: nfe_free_tx_ring(sc, ring); return error; } void nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; int i; for (i = 0; i < NFE_TX_RING_COUNT; i++) { if (sc->sc_flags & NFE_40BIT_ADDR) ring->desc64[i].flags = 0; else ring->desc32[i].flags = 0; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; } void nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; void *desc; int i, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = ring->desc32; descsize = sizeof (struct nfe_desc32); } if (desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc, NFE_TX_RING_COUNT * descsize); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } for (i = 0; i < NFE_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); } if (data->map != NULL) bus_dmamap_destroy(sc->sc_dmat, data->map); } } int nfe_mediachange(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; uint32_t val; DPRINTF(("nfe_mediachange\n")); #if 0 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) /* XXX? */ else #endif val = 0; val |= NFE_MEDIA_SET; switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: val |= NFE_MEDIA_1000T; break; case IFM_100_TX: val |= NFE_MEDIA_100TX; break; case IFM_10_T: val |= NFE_MEDIA_10T; break; } DPRINTF(("nfe_miibus_statchg: val=0x%x\n", val)); NFE_WRITE(sc, NFE_LINKSPEED, val); return 0; } void nfe_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct nfe_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_status = sc->sc_mii.mii_media_status; ifmr->ifm_active = sc->sc_mii.mii_media_active; } void nfe_setmulti(struct nfe_softc *sc) { NFE_WRITE(sc, NFE_MULT_ADDR1, 0x01); NFE_WRITE(sc, NFE_MULT_ADDR2, 0); NFE_WRITE(sc, NFE_MULT_MASK1, 0); NFE_WRITE(sc, NFE_MULT_MASK2, 0); #ifdef notyet NFE_WRITE(sc, NFE_MULTI_FLAGS, NFE_MC_ALWAYS | NFE_MC_MYADDR); #else NFE_WRITE(sc, NFE_MULTI_FLAGS, NFE_MC_ALWAYS | NFE_MC_PROMISC); #endif } void nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) { uint32_t tmp; tmp = NFE_READ(sc, NFE_MACADDR_LO); addr[0] = (tmp >> 8) & 0xff; addr[1] = (tmp & 0xff); tmp = NFE_READ(sc, NFE_MACADDR_HI); addr[2] = (tmp >> 24) & 0xff; addr[3] = (tmp >> 16) & 0xff; addr[4] = (tmp >> 8) & 0xff; addr[5] = (tmp & 0xff); } void nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr) { NFE_WRITE(sc, NFE_MACADDR_LO, addr[0] << 8 | addr[1]); NFE_WRITE(sc, NFE_MACADDR_HI, addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5]); } void nfe_update_promisc(struct nfe_softc *sc) { } void nfe_tick(void *arg) { struct nfe_softc *sc = arg; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); timeout_add(&sc->sc_timeout, hz); }