/* $OpenBSD: if_nfe.c,v 1.78 2008/05/19 01:12:41 fgsch Exp $ */ /*- * Copyright (c) 2006, 2007 Damien Bergamini * Copyright (c) 2005, 2006 Jonathan Gray * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include int nfe_match(struct device *, void *, void *); void nfe_attach(struct device *, struct device *, void *); void nfe_power(int, void *); void nfe_miibus_statchg(struct device *); int nfe_miibus_readreg(struct device *, int, int); void nfe_miibus_writereg(struct device *, int, int, int); int nfe_intr(void *); int nfe_ioctl(struct ifnet *, u_long, caddr_t); void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int); void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int); void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int); void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int); void nfe_rxeof(struct nfe_softc *); void nfe_txeof(struct nfe_softc *); int nfe_encap(struct nfe_softc *, struct mbuf *); void nfe_start(struct ifnet *); void nfe_watchdog(struct ifnet *); int nfe_init(struct ifnet *); void nfe_stop(struct ifnet *, int); struct nfe_jbuf *nfe_jalloc(struct nfe_softc *); void nfe_jfree(caddr_t, u_int, void *); int nfe_jpool_alloc(struct nfe_softc *); void nfe_jpool_free(struct nfe_softc *); int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *); int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *); int nfe_ifmedia_upd(struct ifnet *); void nfe_ifmedia_sts(struct ifnet *, struct ifmediareq *); void nfe_setmulti(struct nfe_softc *); void nfe_get_macaddr(struct nfe_softc *, uint8_t *); void nfe_set_macaddr(struct nfe_softc *, const uint8_t *); void nfe_tick(void *); struct cfattach nfe_ca = { sizeof (struct nfe_softc), nfe_match, nfe_attach }; struct cfdriver nfe_cd = { NULL, "nfe", DV_IFNET }; #ifdef NFE_DEBUG int nfedebug = 0; #define DPRINTF(x) do { if (nfedebug) printf x; } while (0) #define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0) #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif const struct pci_matchid nfe_devices[] = { { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 }, { PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 } }; int nfe_match(struct device *dev, void *match, void *aux) { return pci_matchbyid((struct pci_attach_args *)aux, nfe_devices, sizeof (nfe_devices) / sizeof (nfe_devices[0])); } void nfe_attach(struct device *parent, struct device *self, void *aux) { struct nfe_softc *sc = (struct nfe_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr; struct ifnet *ifp; bus_size_t memsize; pcireg_t memtype; memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA); switch (memtype) { case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT: case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT: if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt, &sc->sc_memh, NULL, &memsize, 0) == 0) break; /* FALLTHROUGH */ default: printf(": could not map mem space\n"); return; } if (pci_intr_map(pa, &ih) != 0) { printf(": could not map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s", intrstr); sc->sc_dmat = pa->pa_dmat; sc->sc_flags = 0; switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4: case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5: sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM; break; case PCI_PRODUCT_NVIDIA_MCP51_LAN1: case PCI_PRODUCT_NVIDIA_MCP51_LAN2: sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT; break; case PCI_PRODUCT_NVIDIA_MCP61_LAN1: case PCI_PRODUCT_NVIDIA_MCP61_LAN2: case PCI_PRODUCT_NVIDIA_MCP61_LAN3: case PCI_PRODUCT_NVIDIA_MCP61_LAN4: case PCI_PRODUCT_NVIDIA_MCP67_LAN1: case PCI_PRODUCT_NVIDIA_MCP67_LAN2: case PCI_PRODUCT_NVIDIA_MCP67_LAN3: case PCI_PRODUCT_NVIDIA_MCP67_LAN4: case PCI_PRODUCT_NVIDIA_MCP73_LAN1: case PCI_PRODUCT_NVIDIA_MCP73_LAN2: case PCI_PRODUCT_NVIDIA_MCP73_LAN3: case PCI_PRODUCT_NVIDIA_MCP73_LAN4: sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR | NFE_PWR_MGMT; break; case PCI_PRODUCT_NVIDIA_MCP77_LAN1: case PCI_PRODUCT_NVIDIA_MCP77_LAN2: case PCI_PRODUCT_NVIDIA_MCP77_LAN3: case PCI_PRODUCT_NVIDIA_MCP77_LAN4: case PCI_PRODUCT_NVIDIA_MCP79_LAN1: case PCI_PRODUCT_NVIDIA_MCP79_LAN2: case PCI_PRODUCT_NVIDIA_MCP79_LAN3: case PCI_PRODUCT_NVIDIA_MCP79_LAN4: sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_CORRECT_MACADDR | NFE_PWR_MGMT; break; case PCI_PRODUCT_NVIDIA_CK804_LAN1: case PCI_PRODUCT_NVIDIA_CK804_LAN2: case PCI_PRODUCT_NVIDIA_MCP04_LAN1: case PCI_PRODUCT_NVIDIA_MCP04_LAN2: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM; break; case PCI_PRODUCT_NVIDIA_MCP65_LAN1: case PCI_PRODUCT_NVIDIA_MCP65_LAN2: case PCI_PRODUCT_NVIDIA_MCP65_LAN3: case PCI_PRODUCT_NVIDIA_MCP65_LAN4: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_CORRECT_MACADDR | NFE_PWR_MGMT; break; case PCI_PRODUCT_NVIDIA_MCP55_LAN1: case PCI_PRODUCT_NVIDIA_MCP55_LAN2: sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM | NFE_HW_VLAN | NFE_PWR_MGMT; break; } if (sc->sc_flags & NFE_PWR_MGMT) { NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2); NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC); DELAY(100); NFE_WRITE(sc, NFE_MAC_RESET, 0); DELAY(100); NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2); NFE_WRITE(sc, NFE_PWR2_CTL, NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK); } #ifdef notyet /* enable jumbo frames for adapters that support it */ if (sc->sc_flags & NFE_JUMBO_SUP) sc->sc_flags |= NFE_USE_JUMBO; #endif nfe_get_macaddr(sc, sc->sc_arpcom.ac_enaddr); printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); /* * Allocate Tx and Rx rings. */ if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) { printf("%s: could not allocate Tx ring\n", sc->sc_dev.dv_xname); return; } if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) { printf("%s: could not allocate Rx ring\n", sc->sc_dev.dv_xname); nfe_free_tx_ring(sc, &sc->txq); return; } ifp = &sc->sc_arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nfe_ioctl; ifp->if_start = nfe_start; ifp->if_watchdog = nfe_watchdog; ifp->if_init = nfe_init; ifp->if_baudrate = IF_Gbps(1); IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN); IFQ_SET_READY(&ifp->if_snd); strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; if (sc->sc_flags & NFE_USE_JUMBO) ifp->if_hardmtu = NFE_JUMBO_MTU; #if NVLAN > 0 if (sc->sc_flags & NFE_HW_VLAN) ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif if (sc->sc_flags & NFE_HW_CSUM) { ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; } sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = nfe_miibus_readreg; sc->sc_mii.mii_writereg = nfe_miibus_writereg; sc->sc_mii.mii_statchg = nfe_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, nfe_ifmedia_upd, nfe_ifmedia_sts); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dev.dv_xname); ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO); if_attach(ifp); ether_ifattach(ifp); timeout_set(&sc->sc_tick_ch, nfe_tick, sc); sc->sc_powerhook = powerhook_establish(nfe_power, sc); } void nfe_power(int why, void *arg) { struct nfe_softc *sc = arg; struct ifnet *ifp; if (why == PWR_RESUME) { ifp = &sc->sc_arpcom.ac_if; if (ifp->if_flags & IFF_UP) { nfe_init(ifp); if (ifp->if_flags & IFF_RUNNING) nfe_start(ifp); } } } void nfe_miibus_statchg(struct device *dev) { struct nfe_softc *sc = (struct nfe_softc *)dev; struct mii_data *mii = &sc->sc_mii; uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET; phy = NFE_READ(sc, NFE_PHY_IFACE); phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T); seed = NFE_READ(sc, NFE_RNDSEED); seed &= ~NFE_SEED_MASK; if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) { phy |= NFE_PHY_HDX; /* half-duplex */ misc |= NFE_MISC1_HDX; } switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_1000_T: /* full-duplex only */ link |= NFE_MEDIA_1000T; seed |= NFE_SEED_1000T; phy |= NFE_PHY_1000T; break; case IFM_100_TX: link |= NFE_MEDIA_100TX; seed |= NFE_SEED_100TX; phy |= NFE_PHY_100TX; break; case IFM_10_T: link |= NFE_MEDIA_10T; seed |= NFE_SEED_10T; break; } NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */ NFE_WRITE(sc, NFE_PHY_IFACE, phy); NFE_WRITE(sc, NFE_MISC1, misc); NFE_WRITE(sc, NFE_LINKSPEED, link); } int nfe_miibus_readreg(struct device *dev, int phy, int reg) { struct nfe_softc *sc = (struct nfe_softc *)dev; uint32_t val; int ntries; NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); DELAY(100); } NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg); for (ntries = 0; ntries < 1000; ntries++) { DELAY(100); if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) break; } if (ntries == 1000) { DPRINTFN(2, ("%s: timeout waiting for PHY\n", sc->sc_dev.dv_xname)); return 0; } if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) { DPRINTFN(2, ("%s: could not read PHY\n", sc->sc_dev.dv_xname)); return 0; } val = NFE_READ(sc, NFE_PHY_DATA); if (val != 0xffffffff && val != 0) sc->mii_phyaddr = phy; DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n", sc->sc_dev.dv_xname, phy, reg, val)); return val; } void nfe_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct nfe_softc *sc = (struct nfe_softc *)dev; uint32_t ctl; int ntries; NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) { NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY); DELAY(100); } NFE_WRITE(sc, NFE_PHY_DATA, val); ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg; NFE_WRITE(sc, NFE_PHY_CTL, ctl); for (ntries = 0; ntries < 1000; ntries++) { DELAY(100); if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY)) break; } #ifdef NFE_DEBUG if (nfedebug >= 2 && ntries == 1000) printf("could not write to PHY\n"); #endif } int nfe_intr(void *arg) { struct nfe_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; uint32_t r; if ((r = NFE_READ(sc, NFE_IRQ_STATUS) & NFE_IRQ_WANTED) == 0) return 0; /* not for us */ NFE_WRITE(sc, NFE_IRQ_STATUS, r); DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r)); if (r & NFE_IRQ_LINK) { NFE_READ(sc, NFE_PHY_STATUS); NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); DPRINTF(("%s: link state changed\n", sc->sc_dev.dv_xname)); } if (ifp->if_flags & IFF_RUNNING) { /* check Rx ring */ nfe_rxeof(sc); /* check Tx ring */ nfe_txeof(sc); } return 1; } int nfe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct nfe_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data)) > 0) { splx(s); return error; } switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) nfe_init(ifp); #ifdef INET if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc->sc_arpcom, ifa); #endif break; case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ifp->if_hardmtu) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { /* * If only the PROMISC or ALLMULTI flag changes, then * don't do a full re-init of the chip, just update * the Rx filter. */ if ((ifp->if_flags & IFF_RUNNING) && ((ifp->if_flags ^ sc->sc_if_flags) & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { nfe_setmulti(sc); } else { if (!(ifp->if_flags & IFF_RUNNING)) nfe_init(ifp); } } else { if (ifp->if_flags & IFF_RUNNING) nfe_stop(ifp, 1); } sc->sc_if_flags = ifp->if_flags; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (cmd == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) nfe_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; default: error = ENOTTY; } splx(s); return error; } void nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (caddr_t)desc32 - (caddr_t)sc->txq.desc32, sizeof (struct nfe_desc32), ops); } void nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (caddr_t)desc64 - (caddr_t)sc->txq.desc64, sizeof (struct nfe_desc64), ops); } void nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops) { if (end > start) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32, (caddr_t)&sc->txq.desc32[end] - (caddr_t)&sc->txq.desc32[start], ops); return; } /* sync from 'start' to end of ring */ bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (caddr_t)&sc->txq.desc32[start] - (caddr_t)sc->txq.desc32, (caddr_t)&sc->txq.desc32[NFE_TX_RING_COUNT] - (caddr_t)&sc->txq.desc32[start], ops); /* sync from start of ring to 'end' */ bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, (caddr_t)&sc->txq.desc32[end] - (caddr_t)sc->txq.desc32, ops); } void nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops) { if (end > start) { bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64, (caddr_t)&sc->txq.desc64[end] - (caddr_t)&sc->txq.desc64[start], ops); return; } /* sync from 'start' to end of ring */ bus_dmamap_sync(sc->sc_dmat, sc->txq.map, (caddr_t)&sc->txq.desc64[start] - (caddr_t)sc->txq.desc64, (caddr_t)&sc->txq.desc64[NFE_TX_RING_COUNT] - (caddr_t)&sc->txq.desc64[start], ops); /* sync from start of ring to 'end' */ bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0, (caddr_t)&sc->txq.desc64[end] - (caddr_t)sc->txq.desc64, ops); } void nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, (caddr_t)desc32 - (caddr_t)sc->rxq.desc32, sizeof (struct nfe_desc32), ops); } void nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops) { bus_dmamap_sync(sc->sc_dmat, sc->rxq.map, (caddr_t)desc64 - (caddr_t)sc->rxq.desc64, sizeof (struct nfe_desc64), ops); } void nfe_rxeof(struct nfe_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_rx_data *data; struct nfe_jbuf *jbuf; struct mbuf *m, *mnew; bus_addr_t physaddr; uint16_t flags; int error, len; for (;;) { data = &sc->rxq.data[sc->rxq.cur]; if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->rxq.desc64[sc->rxq.cur]; nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD); flags = letoh16(desc64->flags); len = letoh16(desc64->length) & 0x3fff; } else { desc32 = &sc->rxq.desc32[sc->rxq.cur]; nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD); flags = letoh16(desc32->flags); len = letoh16(desc32->length) & 0x3fff; } if (flags & NFE_RX_READY) break; if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { if (!(flags & NFE_RX_VALID_V1)) goto skip; if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) { flags &= ~NFE_RX_ERROR; len--; /* fix buffer length */ } } else { if (!(flags & NFE_RX_VALID_V2)) goto skip; if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) { flags &= ~NFE_RX_ERROR; len--; /* fix buffer length */ } } if (flags & NFE_RX_ERROR) { ifp->if_ierrors++; goto skip; } /* * Try to allocate a new mbuf for this ring element and load * it before processing the current mbuf. If the ring element * cannot be loaded, drop the received packet and reuse the * old mbuf. In the unlikely case that the old mbuf can't be * reloaded either, explicitly panic. */ MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { ifp->if_ierrors++; goto skip; } if (sc->sc_flags & NFE_USE_JUMBO) { if ((jbuf = nfe_jalloc(sc)) == NULL) { m_freem(mnew); ifp->if_ierrors++; goto skip; } MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc); bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap, mtod(data->m, caddr_t) - sc->rxq.jpool, NFE_JBYTES, BUS_DMASYNC_POSTREAD); physaddr = jbuf->physaddr; } else { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); ifp->if_ierrors++; goto skip; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { m_freem(mnew); /* try to reload the old mbuf */ error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { /* very unlikely that it will fail.. */ panic("%s: could not load old rx mbuf", sc->sc_dev.dv_xname); } ifp->if_ierrors++; goto skip; } physaddr = data->map->dm_segs[0].ds_addr; } /* * New mbuf successfully loaded, update Rx ring and continue * processing. */ m = data->m; data->m = mnew; /* finalize mbuf */ m->m_pkthdr.len = m->m_len = len; m->m_pkthdr.rcvif = ifp; if ((sc->sc_flags & NFE_HW_CSUM) && (flags & NFE_RX_IP_CSUMOK)) { m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; if (flags & NFE_RX_UDP_CSUMOK) m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK; if (flags & NFE_RX_TCP_CSUMOK) m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK; } #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif ifp->if_ipackets++; ether_input_mbuf(ifp, m); /* update mapping address in h/w descriptor */ if (sc->sc_flags & NFE_40BIT_ADDR) { #if defined(__LP64__) desc64->physaddr[0] = htole32(physaddr >> 32); #endif desc64->physaddr[1] = htole32(physaddr & 0xffffffff); } else { desc32->physaddr = htole32(physaddr); } skip: if (sc->sc_flags & NFE_40BIT_ADDR) { desc64->length = htole16(sc->rxq.bufsz); desc64->flags = htole16(NFE_RX_READY); nfe_rxdesc64_sync(sc, desc64, BUS_DMASYNC_PREWRITE); } else { desc32->length = htole16(sc->rxq.bufsz); desc32->flags = htole16(NFE_RX_READY); nfe_rxdesc32_sync(sc, desc32, BUS_DMASYNC_PREWRITE); } sc->rxq.cur = (sc->rxq.cur + 1) % NFE_RX_RING_COUNT; } } void nfe_txeof(struct nfe_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_tx_data *data = NULL; uint16_t flags; while (sc->txq.next != sc->txq.cur) { if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->txq.desc64[sc->txq.next]; nfe_txdesc64_sync(sc, desc64, BUS_DMASYNC_POSTREAD); flags = letoh16(desc64->flags); } else { desc32 = &sc->txq.desc32[sc->txq.next]; nfe_txdesc32_sync(sc, desc32, BUS_DMASYNC_POSTREAD); flags = letoh16(desc32->flags); } if (flags & NFE_TX_VALID) break; data = &sc->txq.data[sc->txq.next]; if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) { if (!(flags & NFE_TX_LASTFRAG_V1) && data->m == NULL) goto skip; if ((flags & NFE_TX_ERROR_V1) != 0) { printf("%s: tx v1 error %b\n", sc->sc_dev.dv_xname, flags, NFE_V1_TXERR); ifp->if_oerrors++; } else ifp->if_opackets++; } else { if (!(flags & NFE_TX_LASTFRAG_V2) && data->m == NULL) goto skip; if ((flags & NFE_TX_ERROR_V2) != 0) { printf("%s: tx v2 error %b\n", sc->sc_dev.dv_xname, flags, NFE_V2_TXERR); ifp->if_oerrors++; } else ifp->if_opackets++; } if (data->m == NULL) { /* should not get there */ printf("%s: last fragment bit w/o associated mbuf!\n", sc->sc_dev.dv_xname); goto skip; } /* last fragment of the mbuf chain transmitted */ bus_dmamap_sync(sc->sc_dmat, data->active, 0, data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->active); m_freem(data->m); data->m = NULL; ifp->if_timer = 0; skip: sc->txq.queued--; sc->txq.next = (sc->txq.next + 1) % NFE_TX_RING_COUNT; } if (data != NULL) { /* at least one slot freed */ ifp->if_flags &= ~IFF_OACTIVE; nfe_start(ifp); } } int nfe_encap(struct nfe_softc *sc, struct mbuf *m0) { struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_tx_data *data; bus_dmamap_t map; uint16_t flags = 0; #if NVLAN > 0 uint32_t vtag = 0; #endif int error, i, first = sc->txq.cur; map = sc->txq.data[first].map; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map mbuf (error %d)\n", sc->sc_dev.dv_xname, error); return error; } if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) { bus_dmamap_unload(sc->sc_dmat, map); return ENOBUFS; } #if NVLAN > 0 /* setup h/w VLAN tagging */ if ((m0->m_flags & (M_PROTO1 | M_PKTHDR)) == (M_PROTO1 | M_PKTHDR) && m0->m_pkthdr.rcvif != NULL) { struct ifvlan *ifv = m0->m_pkthdr.rcvif->if_softc; vtag = NFE_TX_VTAG | htons(ifv->ifv_tag); } #endif if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) flags |= NFE_TX_IP_CSUM; if (m0->m_pkthdr.csum_flags & (M_TCPV4_CSUM_OUT | M_UDPV4_CSUM_OUT)) flags |= NFE_TX_TCP_UDP_CSUM; for (i = 0; i < map->dm_nsegs; i++) { data = &sc->txq.data[sc->txq.cur]; if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->txq.desc64[sc->txq.cur]; #if defined(__LP64__) desc64->physaddr[0] = htole32(map->dm_segs[i].ds_addr >> 32); #endif desc64->physaddr[1] = htole32(map->dm_segs[i].ds_addr & 0xffffffff); desc64->length = htole16(map->dm_segs[i].ds_len - 1); desc64->flags = htole16(flags); #if NVLAN > 0 desc64->vtag = htole32(vtag); #endif } else { desc32 = &sc->txq.desc32[sc->txq.cur]; desc32->physaddr = htole32(map->dm_segs[i].ds_addr); desc32->length = htole16(map->dm_segs[i].ds_len - 1); desc32->flags = htole16(flags); } if (map->dm_nsegs > 1) { /* * Checksum flags and vtag belong to the first fragment * only. */ flags &= ~(NFE_TX_IP_CSUM | NFE_TX_TCP_UDP_CSUM); #if NVLAN > 0 vtag = 0; #endif /* * Setting of the valid bit in the first descriptor is * deferred until the whole chain is fully setup. */ flags |= NFE_TX_VALID; } sc->txq.queued++; sc->txq.cur = (sc->txq.cur + 1) % NFE_TX_RING_COUNT; } /* the whole mbuf chain has been setup */ if (sc->sc_flags & NFE_40BIT_ADDR) { /* fix last descriptor */ flags |= NFE_TX_LASTFRAG_V2; desc64->flags = htole16(flags); /* finally, set the valid bit in the first descriptor */ sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID); } else { /* fix last descriptor */ if (sc->sc_flags & NFE_JUMBO_SUP) flags |= NFE_TX_LASTFRAG_V2; else flags |= NFE_TX_LASTFRAG_V1; desc32->flags = htole16(flags); /* finally, set the valid bit in the first descriptor */ sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID); } data->m = m0; data->active = map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); return 0; } void nfe_start(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; int old = sc->txq.cur; struct mbuf *m0; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; if (nfe_encap(sc, m0) != 0) { ifp->if_flags |= IFF_OACTIVE; break; } /* packet put in h/w queue, remove from s/w queue */ IFQ_DEQUEUE(&ifp->if_snd, m0); #if NBPFILTER > 0 if (ifp->if_bpf != NULL) bpf_mtap(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif } if (sc->txq.cur == old) /* nothing sent */ return; if (sc->sc_flags & NFE_40BIT_ADDR) nfe_txdesc64_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE); else nfe_txdesc32_rsync(sc, old, sc->txq.cur, BUS_DMASYNC_PREWRITE); /* kick Tx */ NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void nfe_watchdog(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); nfe_init(ifp); ifp->if_oerrors++; } int nfe_init(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; uint32_t tmp; nfe_stop(ifp, 0); NFE_WRITE(sc, NFE_TX_UNK, 0); NFE_WRITE(sc, NFE_STATUS, 0); sc->rxtxctl = NFE_RXTX_BIT2; if (sc->sc_flags & NFE_40BIT_ADDR) sc->rxtxctl |= NFE_RXTX_V3MAGIC; else if (sc->sc_flags & NFE_JUMBO_SUP) sc->rxtxctl |= NFE_RXTX_V2MAGIC; if (sc->sc_flags & NFE_HW_CSUM) sc->rxtxctl |= NFE_RXTX_RXCSUM; #if NVLAN > 0 /* * Although the adapter is capable of stripping VLAN tags from received * frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on * purpose. This will be done in software by our network stack. */ if (sc->sc_flags & NFE_HW_VLAN) sc->rxtxctl |= NFE_RXTX_VTAG_INSERT; #endif NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl); DELAY(10); NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); #if NVLAN if (sc->sc_flags & NFE_HW_VLAN) NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE); #endif NFE_WRITE(sc, NFE_SETUP_R6, 0); /* set MAC address */ nfe_set_macaddr(sc, sc->sc_arpcom.ac_enaddr); /* tell MAC where rings are in memory */ #ifdef __LP64__ NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32); #endif NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff); #ifdef __LP64__ NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32); #endif NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff); NFE_WRITE(sc, NFE_RING_SIZE, (NFE_RX_RING_COUNT - 1) << 16 | (NFE_TX_RING_COUNT - 1)); NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz); /* force MAC to wakeup */ tmp = NFE_READ(sc, NFE_PWR_STATE); NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP); DELAY(10); tmp = NFE_READ(sc, NFE_PWR_STATE); NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID); #if 1 /* configure interrupts coalescing/mitigation */ NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT); #else /* no interrupt mitigation: one interrupt per packet */ NFE_WRITE(sc, NFE_IMTIMER, 970); #endif NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC); NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC); NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC); /* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */ NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC); NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC); NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE); sc->rxtxctl &= ~NFE_RXTX_BIT2; NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl); DELAY(10); NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl); /* set Rx filter */ nfe_setmulti(sc); nfe_ifmedia_upd(ifp); /* enable Rx */ NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START); /* enable Tx */ NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START); NFE_WRITE(sc, NFE_PHY_STATUS, 0xf); /* enable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED); timeout_add(&sc->sc_tick_ch, hz); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; return 0; } void nfe_stop(struct ifnet *ifp, int disable) { struct nfe_softc *sc = ifp->if_softc; timeout_del(&sc->sc_tick_ch); ifp->if_timer = 0; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); mii_down(&sc->sc_mii); /* abort Tx */ NFE_WRITE(sc, NFE_TX_CTL, 0); /* disable Rx */ NFE_WRITE(sc, NFE_RX_CTL, 0); /* disable interrupts */ NFE_WRITE(sc, NFE_IRQ_MASK, 0); /* reset Tx and Rx rings */ nfe_reset_tx_ring(sc, &sc->txq); nfe_reset_rx_ring(sc, &sc->rxq); } int nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_desc32 *desc32; struct nfe_desc64 *desc64; struct nfe_rx_data *data; struct nfe_jbuf *jbuf; void **desc; bus_addr_t physaddr; int i, nsegs, error, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = (void **)&ring->desc32; descsize = sizeof (struct nfe_desc32); } ring->cur = ring->next = 0; ring->bufsz = MCLBYTES; error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1, NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, NFE_RX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map desc DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } bzero(*desc, NFE_RX_RING_COUNT * descsize); ring->physaddr = ring->map->dm_segs[0].ds_addr; if (sc->sc_flags & NFE_USE_JUMBO) { ring->bufsz = NFE_JBYTES; if ((error = nfe_jpool_alloc(sc)) != 0) { printf("%s: could not allocate jumbo frames\n", sc->sc_dev.dv_xname); goto fail; } } /* * Pre-allocate Rx buffers and populate Rx ring. */ for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &sc->rxq.data[i]; MGETHDR(data->m, M_DONTWAIT, MT_DATA); if (data->m == NULL) { printf("%s: could not allocate rx mbuf\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } if (sc->sc_flags & NFE_USE_JUMBO) { if ((jbuf = nfe_jalloc(sc)) == NULL) { printf("%s: could not allocate jumbo buffer\n", sc->sc_dev.dv_xname); goto fail; } MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc); physaddr = jbuf->physaddr; } else { error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } MCLGET(data->m, M_DONTWAIT); if (!(data->m->m_flags & M_EXT)) { printf("%s: could not allocate mbuf cluster\n", sc->sc_dev.dv_xname); error = ENOMEM; goto fail; } error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load rx buf DMA map", sc->sc_dev.dv_xname); goto fail; } physaddr = data->map->dm_segs[0].ds_addr; } if (sc->sc_flags & NFE_40BIT_ADDR) { desc64 = &sc->rxq.desc64[i]; #if defined(__LP64__) desc64->physaddr[0] = htole32(physaddr >> 32); #endif desc64->physaddr[1] = htole32(physaddr & 0xffffffff); desc64->length = htole16(sc->rxq.bufsz); desc64->flags = htole16(NFE_RX_READY); } else { desc32 = &sc->rxq.desc32[i]; desc32->physaddr = htole32(physaddr); desc32->length = htole16(sc->rxq.bufsz); desc32->flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); return 0; fail: nfe_free_rx_ring(sc, ring); return error; } void nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { int i; for (i = 0; i < NFE_RX_RING_COUNT; i++) { if (sc->sc_flags & NFE_40BIT_ADDR) { ring->desc64[i].length = htole16(ring->bufsz); ring->desc64[i].flags = htole16(NFE_RX_READY); } else { ring->desc32[i].length = htole16(ring->bufsz); ring->desc32[i].flags = htole16(NFE_RX_READY); } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->cur = ring->next = 0; } void nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring) { struct nfe_rx_data *data; void *desc; int i, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = ring->desc32; descsize = sizeof (struct nfe_desc32); } if (desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc, NFE_RX_RING_COUNT * descsize); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } for (i = 0; i < NFE_RX_RING_COUNT; i++) { data = &ring->data[i]; if (data->map != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); bus_dmamap_destroy(sc->sc_dmat, data->map); } if (data->m != NULL) m_freem(data->m); } } struct nfe_jbuf * nfe_jalloc(struct nfe_softc *sc) { struct nfe_jbuf *jbuf; jbuf = SLIST_FIRST(&sc->rxq.jfreelist); if (jbuf == NULL) return NULL; SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext); return jbuf; } /* * This is called automatically by the network stack when the mbuf is freed. * Caution must be taken that the NIC might be reset by the time the mbuf is * freed. */ void nfe_jfree(caddr_t buf, u_int size, void *arg) { struct nfe_softc *sc = arg; struct nfe_jbuf *jbuf; int i; /* find the jbuf from the base pointer */ i = (buf - sc->rxq.jpool) / NFE_JBYTES; if (i < 0 || i >= NFE_JPOOL_COUNT) { printf("%s: request to free a buffer (%p) not managed by us\n", sc->sc_dev.dv_xname, buf); return; } jbuf = &sc->rxq.jbuf[i]; /* ..and put it back in the free list */ SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext); } int nfe_jpool_alloc(struct nfe_softc *sc) { struct nfe_rx_ring *ring = &sc->rxq; struct nfe_jbuf *jbuf; bus_addr_t physaddr; caddr_t buf; int i, nsegs, error; /* * Allocate a big chunk of DMA'able memory. */ error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1, NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap); if (error != 0) { printf("%s: could not create jumbo DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0, &ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s could not allocate jumbo DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE, &ring->jpool, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map jumbo DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool, NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load jumbo DMA map\n", sc->sc_dev.dv_xname); goto fail; } /* ..and split it into 9KB chunks */ SLIST_INIT(&ring->jfreelist); buf = ring->jpool; physaddr = ring->jmap->dm_segs[0].ds_addr; for (i = 0; i < NFE_JPOOL_COUNT; i++) { jbuf = &ring->jbuf[i]; jbuf->buf = buf; jbuf->physaddr = physaddr; SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext); buf += NFE_JBYTES; physaddr += NFE_JBYTES; } return 0; fail: nfe_jpool_free(sc); return error; } void nfe_jpool_free(struct nfe_softc *sc) { struct nfe_rx_ring *ring = &sc->rxq; if (ring->jmap != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0, ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->jmap); bus_dmamap_destroy(sc->sc_dmat, ring->jmap); } if (ring->jpool != NULL) { bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE); bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1); } } int nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { int i, nsegs, error; void **desc; int descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = (void **)&ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = (void **)&ring->desc32; descsize = sizeof (struct nfe_desc32); } ring->queued = 0; ring->cur = ring->next = 0; error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1, NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map); if (error != 0) { printf("%s: could not create desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not allocate DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs, NFE_TX_RING_COUNT * descsize, (caddr_t *)desc, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not map desc DMA memory\n", sc->sc_dev.dv_xname); goto fail; } error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc, NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT); if (error != 0) { printf("%s: could not load desc DMA map\n", sc->sc_dev.dv_xname); goto fail; } bzero(*desc, NFE_TX_RING_COUNT * descsize); ring->physaddr = ring->map->dm_segs[0].ds_addr; for (i = 0; i < NFE_TX_RING_COUNT; i++) { error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES, NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT, &ring->data[i].map); if (error != 0) { printf("%s: could not create DMA map\n", sc->sc_dev.dv_xname); goto fail; } } return 0; fail: nfe_free_tx_ring(sc, ring); return error; } void nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; int i; for (i = 0; i < NFE_TX_RING_COUNT; i++) { if (sc->sc_flags & NFE_40BIT_ADDR) ring->desc64[i].flags = 0; else ring->desc32[i].flags = 0; data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->active, 0, data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->active); m_freem(data->m); data->m = NULL; } } bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_PREWRITE); ring->queued = 0; ring->cur = ring->next = 0; } void nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring) { struct nfe_tx_data *data; void *desc; int i, descsize; if (sc->sc_flags & NFE_40BIT_ADDR) { desc = ring->desc64; descsize = sizeof (struct nfe_desc64); } else { desc = ring->desc32; descsize = sizeof (struct nfe_desc32); } if (desc != NULL) { bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ring->map); bus_dmamem_unmap(sc->sc_dmat, (caddr_t)desc, NFE_TX_RING_COUNT * descsize); bus_dmamem_free(sc->sc_dmat, &ring->seg, 1); } for (i = 0; i < NFE_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->active, 0, data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->active); m_freem(data->m); } } /* ..and now actually destroy the DMA mappings */ for (i = 0; i < NFE_TX_RING_COUNT; i++) { data = &ring->data[i]; if (data->map == NULL) continue; bus_dmamap_destroy(sc->sc_dmat, data->map); } } int nfe_ifmedia_upd(struct ifnet *ifp) { struct nfe_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; struct mii_softc *miisc; if (mii->mii_instance != 0) { LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } return mii_mediachg(mii); } void nfe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct nfe_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_status = mii->mii_media_status; ifmr->ifm_active = mii->mii_media_active; } void nfe_setmulti(struct nfe_softc *sc) { struct arpcom *ac = &sc->sc_arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN]; uint32_t filter = NFE_RXFILTER_MAGIC; int i; if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { bzero(addr, ETHER_ADDR_LEN); bzero(mask, ETHER_ADDR_LEN); goto done; } bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN); bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; bzero(addr, ETHER_ADDR_LEN); bzero(mask, ETHER_ADDR_LEN); goto done; } for (i = 0; i < ETHER_ADDR_LEN; i++) { addr[i] &= enm->enm_addrlo[i]; mask[i] &= ~enm->enm_addrlo[i]; } ETHER_NEXT_MULTI(step, enm); } for (i = 0; i < ETHER_ADDR_LEN; i++) mask[i] |= addr[i]; done: addr[0] |= 0x01; /* make sure multicast bit is set */ NFE_WRITE(sc, NFE_MULTIADDR_HI, addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); NFE_WRITE(sc, NFE_MULTIADDR_LO, addr[5] << 8 | addr[4]); NFE_WRITE(sc, NFE_MULTIMASK_HI, mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]); NFE_WRITE(sc, NFE_MULTIMASK_LO, mask[5] << 8 | mask[4]); filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M; NFE_WRITE(sc, NFE_RXFILTER, filter); } void nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr) { uint32_t tmp; if (sc->sc_flags & NFE_CORRECT_MACADDR) { tmp = NFE_READ(sc, NFE_MACADDR_HI); addr[0] = (tmp & 0xff); addr[1] = (tmp >> 8) & 0xff; addr[2] = (tmp >> 16) & 0xff; addr[3] = (tmp >> 24) & 0xff; tmp = NFE_READ(sc, NFE_MACADDR_LO); addr[4] = (tmp & 0xff); addr[5] = (tmp >> 8) & 0xff; } else { tmp = NFE_READ(sc, NFE_MACADDR_LO); addr[0] = (tmp >> 8) & 0xff; addr[1] = (tmp & 0xff); tmp = NFE_READ(sc, NFE_MACADDR_HI); addr[2] = (tmp >> 24) & 0xff; addr[3] = (tmp >> 16) & 0xff; addr[4] = (tmp >> 8) & 0xff; addr[5] = (tmp & 0xff); } } void nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr) { NFE_WRITE(sc, NFE_MACADDR_LO, addr[5] << 8 | addr[4]); NFE_WRITE(sc, NFE_MACADDR_HI, addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]); } void nfe_tick(void *arg) { struct nfe_softc *sc = arg; int s; s = splnet(); mii_tick(&sc->sc_mii); splx(s); timeout_add(&sc->sc_tick_ch, hz); }