/* $OpenBSD: if_nge.c,v 1.71 2011/06/22 16:44:27 tedu Exp $ */ /* * Copyright (c) 2001 Wind River Systems * Copyright (c) 1997, 1998, 1999, 2000, 2001 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_nge.c,v 1.35 2002/08/08 18:33:28 ambrisko Exp $ */ /* * National Semiconductor DP83820/DP83821 gigabit ethernet driver * for FreeBSD. Datasheets are available from: * * http://www.national.com/ds/DP/DP83820.pdf * http://www.national.com/ds/DP/DP83821.pdf * * These chips are used on several low cost gigabit ethernet NICs * sold by D-Link, Addtron, SMC and Asante. Both parts are * virtually the same, except the 83820 is a 64-bit/32-bit part, * while the 83821 is 32-bit only. * * Many cards also use National gigE transceivers, such as the * DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet * contains a full register description that applies to all of these * components: * * http://www.national.com/ds/DP/DP83861.pdf * * Written by Bill Paul * BSDi Open Source Solutions */ /* * The NatSemi DP83820 and 83821 controllers are enhanced versions * of the NatSemi MacPHYTER 10/100 devices. They support 10, 100 * and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII * ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP * hardware checksum offload (IPv4 only), VLAN tagging and filtering, * priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern * matching buffers, one perfect address filter buffer and interrupt * moderation. The 83820 supports both 64-bit and 32-bit addressing * and data transfers: the 64-bit support can be toggled on or off * via software. This affects the size of certain fields in the DMA * descriptors. * * There are two bugs/misfeatures in the 83820/83821 that I have * discovered so far: * * - Receive buffers must be aligned on 64-bit boundaries, which means * you must resort to copying data in order to fix up the payload * alignment. * * - In order to transmit jumbo frames larger than 8170 bytes, you have * to turn off transmit checksum offloading, because the chip can't * compute the checksum on an outgoing frame unless it fits entirely * within the TX FIFO, which is only 8192 bytes in size. If you have * TX checksum offload enabled and you transmit attempt to transmit a * frame larger than 8170 bytes, the transmitter will wedge. * * To work around the latter problem, TX checksum offload is disabled * if the user selects an MTU larger than 8152 (8170 - 18). */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #if NVLAN > 0 #include #include #endif #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #define VTOPHYS(v) vtophys((vaddr_t)(v)) #include #include #include #include #include #define NGE_USEIOSPACE #include int nge_probe(struct device *, void *, void *); void nge_attach(struct device *, struct device *, void *); int nge_alloc_jumbo_mem(struct nge_softc *); void *nge_jalloc(struct nge_softc *); void nge_jfree(caddr_t, u_int, void *); int nge_newbuf(struct nge_softc *, struct nge_desc *, struct mbuf *); int nge_encap(struct nge_softc *, struct mbuf *, u_int32_t *); void nge_rxeof(struct nge_softc *); void nge_txeof(struct nge_softc *); int nge_intr(void *); void nge_tick(void *); void nge_start(struct ifnet *); int nge_ioctl(struct ifnet *, u_long, caddr_t); void nge_init(void *); void nge_stop(struct nge_softc *); void nge_watchdog(struct ifnet *); int nge_ifmedia_mii_upd(struct ifnet *); void nge_ifmedia_mii_sts(struct ifnet *, struct ifmediareq *); int nge_ifmedia_tbi_upd(struct ifnet *); void nge_ifmedia_tbi_sts(struct ifnet *, struct ifmediareq *); void nge_delay(struct nge_softc *); void nge_eeprom_idle(struct nge_softc *); void nge_eeprom_putbyte(struct nge_softc *, int); void nge_eeprom_getword(struct nge_softc *, int, u_int16_t *); void nge_read_eeprom(struct nge_softc *, caddr_t, int, int, int); void nge_mii_sync(struct nge_softc *); void nge_mii_send(struct nge_softc *, u_int32_t, int); int nge_mii_readreg(struct nge_softc *, struct nge_mii_frame *); int nge_mii_writereg(struct nge_softc *, struct nge_mii_frame *); int nge_miibus_readreg(struct device *, int, int); void nge_miibus_writereg(struct device *, int, int, int); void nge_miibus_statchg(struct device *); void nge_setmulti(struct nge_softc *); void nge_reset(struct nge_softc *); int nge_list_rx_init(struct nge_softc *); int nge_list_tx_init(struct nge_softc *); #ifdef NGE_USEIOSPACE #define NGE_RES SYS_RES_IOPORT #define NGE_RID NGE_PCI_LOIO #else #define NGE_RES SYS_RES_MEMORY #define NGE_RID NGE_PCI_LOMEM #endif #ifdef NGE_DEBUG #define DPRINTF(x) if (ngedebug) printf x #define DPRINTFN(n,x) if (ngedebug >= (n)) printf x int ngedebug = 0; #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define NGE_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define NGE_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x)) #define SIO_CLR(x) \ CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x)) void nge_delay(sc) struct nge_softc *sc; { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, NGE_CSR); } void nge_eeprom_idle(sc) struct nge_softc *sc; { int i; SIO_SET(NGE_MEAR_EE_CSEL); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); for (i = 0; i < 25; i++) { SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); } SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CSEL); nge_delay(sc); CSR_WRITE_4(sc, NGE_MEAR, 0x00000000); } /* * Send a read command and address to the EEPROM, check for ACK. */ void nge_eeprom_putbyte(sc, addr) struct nge_softc *sc; int addr; { int d, i; d = addr | NGE_EECMD_READ; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { SIO_SET(NGE_MEAR_EE_DIN); } else { SIO_CLR(NGE_MEAR_EE_DIN); } nge_delay(sc); SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void nge_eeprom_getword(sc, addr, dest) struct nge_softc *sc; int addr; u_int16_t *dest; { int i; u_int16_t word = 0; /* Force EEPROM to idle state. */ nge_eeprom_idle(sc); /* Enter EEPROM access mode. */ nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); SIO_SET(NGE_MEAR_EE_CSEL); nge_delay(sc); /* * Send address of word we want to read. */ nge_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(NGE_MEAR_EE_CLK); nge_delay(sc); if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT) word |= i; nge_delay(sc); SIO_CLR(NGE_MEAR_EE_CLK); nge_delay(sc); } /* Turn off EEPROM access mode. */ nge_eeprom_idle(sc); *dest = word; } /* * Read a sequence of words from the EEPROM. */ void nge_read_eeprom(sc, dest, off, cnt, swap) struct nge_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { nge_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void nge_mii_sync(sc) struct nge_softc *sc; { int i; SIO_SET(NGE_MEAR_MII_DIR|NGE_MEAR_MII_DATA); for (i = 0; i < 32; i++) { SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); } } /* * Clock a series of bits through the MII. */ void nge_mii_send(sc, bits, cnt) struct nge_softc *sc; u_int32_t bits; int cnt; { int i; SIO_CLR(NGE_MEAR_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { SIO_SET(NGE_MEAR_MII_DATA); } else { SIO_CLR(NGE_MEAR_MII_DATA); } DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); } } /* * Read an PHY register through the MII. */ int nge_mii_readreg(sc, frame) struct nge_softc *sc; struct nge_mii_frame *frame; { int i, ack, s; s = splnet(); /* * Set up frame for RX. */ frame->mii_stdelim = NGE_MII_STARTDELIM; frame->mii_opcode = NGE_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_4(sc, NGE_MEAR, 0); /* * Turn on data xmit. */ SIO_SET(NGE_MEAR_MII_DIR); nge_mii_sync(sc); /* * Send command/address info. */ nge_mii_send(sc, frame->mii_stdelim, 2); nge_mii_send(sc, frame->mii_opcode, 2); nge_mii_send(sc, frame->mii_phyaddr, 5); nge_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((NGE_MEAR_MII_CLK|NGE_MEAR_MII_DATA)); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(NGE_MEAR_MII_DIR); /* Check for ack */ SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); ack = CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA; SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_MII_DATA) frame->mii_data |= i; DELAY(1); } SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); } fail: SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ int nge_mii_writereg(sc, frame) struct nge_softc *sc; struct nge_mii_frame *frame; { int s; s = splnet(); /* * Set up frame for TX. */ frame->mii_stdelim = NGE_MII_STARTDELIM; frame->mii_opcode = NGE_MII_WRITEOP; frame->mii_turnaround = NGE_MII_TURNAROUND; /* * Turn on data output. */ SIO_SET(NGE_MEAR_MII_DIR); nge_mii_sync(sc); nge_mii_send(sc, frame->mii_stdelim, 2); nge_mii_send(sc, frame->mii_opcode, 2); nge_mii_send(sc, frame->mii_phyaddr, 5); nge_mii_send(sc, frame->mii_regaddr, 5); nge_mii_send(sc, frame->mii_turnaround, 2); nge_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(NGE_MEAR_MII_CLK); DELAY(1); SIO_CLR(NGE_MEAR_MII_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(NGE_MEAR_MII_DIR); splx(s); return(0); } int nge_miibus_readreg(dev, phy, reg) struct device *dev; int phy, reg; { struct nge_softc *sc = (struct nge_softc *)dev; struct nge_mii_frame frame; DPRINTFN(9, ("%s: nge_miibus_readreg\n", sc->sc_dv.dv_xname)); bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; nge_mii_readreg(sc, &frame); return(frame.mii_data); } void nge_miibus_writereg(dev, phy, reg, data) struct device *dev; int phy, reg, data; { struct nge_softc *sc = (struct nge_softc *)dev; struct nge_mii_frame frame; DPRINTFN(9, ("%s: nge_miibus_writereg\n", sc->sc_dv.dv_xname)); bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; nge_mii_writereg(sc, &frame); } void nge_miibus_statchg(dev) struct device *dev; { struct nge_softc *sc = (struct nge_softc *)dev; struct mii_data *mii = &sc->nge_mii; u_int32_t txcfg, rxcfg; txcfg = CSR_READ_4(sc, NGE_TX_CFG); rxcfg = CSR_READ_4(sc, NGE_RX_CFG); DPRINTFN(4, ("%s: nge_miibus_statchg txcfg=%#x, rxcfg=%#x\n", sc->sc_dv.dv_xname, txcfg, rxcfg)); if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR); rxcfg |= (NGE_RXCFG_RX_FDX); } else { txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR); rxcfg &= ~(NGE_RXCFG_RX_FDX); } txcfg |= NGE_TXCFG_AUTOPAD; CSR_WRITE_4(sc, NGE_TX_CFG, txcfg); CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg); /* If we have a 1000Mbps link, set the mode_1000 bit. */ if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); else NGE_CLRBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); } void nge_setmulti(sc) struct nge_softc *sc; { struct arpcom *ac = &sc->arpcom; struct ifnet *ifp = &ac->ac_if; struct ether_multi *enm; struct ether_multistep step; u_int32_t h = 0, i, filtsave; int bit, index; allmulti: if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH|NGE_RXFILTCTL_UCHASH); NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); return; } /* * We have to explicitly enable the multicast hash table * on the NatSemi chip if we want to use it, which we do. * We also have to tell it that we don't want to use the * hash table for matching unicast addresses. */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_MCHASH); NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI|NGE_RXFILTCTL_UCHASH); filtsave = CSR_READ_4(sc, NGE_RXFILT_CTL); /* first, zot all the existing hash bits */ for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) { CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i); CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0); } /* * From the 11 bits returned by the crc routine, the top 7 * bits represent the 16-bit word in the mcast hash table * that needs to be updated, and the lower 4 bits represent * which bit within that byte needs to be set. */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } h = (ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 21) & 0x00000FFF; index = (h >> 4) & 0x7F; bit = h & 0xF; CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + (index * 2)); NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit)); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, NGE_RXFILT_CTL, filtsave); } void nge_reset(sc) struct nge_softc *sc; { int i; NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET); for (i = 0; i < NGE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET)) break; } if (i == NGE_TIMEOUT) printf("%s: reset never completed\n", sc->sc_dv.dv_xname); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* * If this is a NetSemi chip, make sure to clear * PME mode. */ CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS); CSR_WRITE_4(sc, NGE_CLKRUN, 0); } /* * Probe for an NatSemi chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int nge_probe(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_DP83820) return (1); return (0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void nge_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct nge_softc *sc = (struct nge_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_size_t size; bus_dma_segment_t seg; bus_dmamap_t dmamap; int rseg; u_char eaddr[ETHER_ADDR_LEN]; pcireg_t command; #ifndef NGE_USEIOSPACE pcireg_t memtype; #endif struct ifnet *ifp; caddr_t kva; /* * Handle power management nonsense. */ DPRINTFN(5, ("%s: preparing for conf read\n", sc->sc_dv.dv_xname)); command = pci_conf_read(pc, pa->pa_tag, NGE_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, NGE_PCI_PWRMGMTCTRL); if (command & NGE_PSTATE_MASK) { pcireg_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(pc, pa->pa_tag, NGE_PCI_LOIO); membase = pci_conf_read(pc, pa->pa_tag, NGE_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, NGE_PCI_INTLINE); /* Reset the power state. */ printf("%s: chip is in D%d power mode " "-- setting to D0\n", sc->sc_dv.dv_xname, command & NGE_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, NGE_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, NGE_PCI_LOIO, iobase); pci_conf_write(pc, pa->pa_tag, NGE_PCI_LOMEM, membase); pci_conf_write(pc, pa->pa_tag, NGE_PCI_INTLINE, irq); } } /* * Map control/status registers. */ DPRINTFN(5, ("%s: map control/status regs\n", sc->sc_dv.dv_xname)); #ifdef NGE_USEIOSPACE DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname)); if (pci_mapreg_map(pa, NGE_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, &sc->nge_btag, &sc->nge_bhandle, NULL, &size, 0)) { printf(": can't map i/o space\n"); return; } #else DPRINTFN(5, ("%s: pci_mapreg_map\n", sc->sc_dv.dv_xname)); memtype = pci_mapreg_type(pc, pa->pa_tag, NGE_PCI_LOMEM); if (pci_mapreg_map(pa, NGE_PCI_LOMEM, memtype, 0, &sc->nge_btag, &sc->nge_bhandle, NULL, &size, 0)) { printf(": can't map mem space\n"); return; } #endif /* Disable all interrupts */ CSR_WRITE_4(sc, NGE_IER, 0); DPRINTFN(5, ("%s: pci_intr_map\n", sc->sc_dv.dv_xname)); if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail_1; } DPRINTFN(5, ("%s: pci_intr_string\n", sc->sc_dv.dv_xname)); intrstr = pci_intr_string(pc, ih); DPRINTFN(5, ("%s: pci_intr_establish\n", sc->sc_dv.dv_xname)); sc->nge_intrhand = pci_intr_establish(pc, ih, IPL_NET, nge_intr, sc, sc->sc_dv.dv_xname); if (sc->nge_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail_1; } printf(": %s", intrstr); /* Reset the adapter. */ DPRINTFN(5, ("%s: nge_reset\n", sc->sc_dv.dv_xname)); nge_reset(sc); /* * Get station address from the EEPROM. */ DPRINTFN(5, ("%s: nge_read_eeprom\n", sc->sc_dv.dv_xname)); nge_read_eeprom(sc, (caddr_t)&eaddr[4], NGE_EE_NODEADDR, 1, 0); nge_read_eeprom(sc, (caddr_t)&eaddr[2], NGE_EE_NODEADDR + 1, 1, 0); nge_read_eeprom(sc, (caddr_t)&eaddr[0], NGE_EE_NODEADDR + 2, 1, 0); /* * A NatSemi chip was detected. Inform the world. */ printf(", address %s\n", ether_sprintf(eaddr)); bcopy(eaddr, &sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); sc->sc_dmatag = pa->pa_dmat; DPRINTFN(5, ("%s: bus_dmamem_alloc\n", sc->sc_dv.dv_xname)); if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct nge_list_data), PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO)) { printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname); goto fail_2; } DPRINTFN(5, ("%s: bus_dmamem_map\n", sc->sc_dv.dv_xname)); if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, sizeof(struct nge_list_data), &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc->sc_dv.dv_xname, sizeof(struct nge_list_data)); goto fail_3; } DPRINTFN(5, ("%s: bus_dmamem_create\n", sc->sc_dv.dv_xname)); if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct nge_list_data), 1, sizeof(struct nge_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) { printf("%s: can't create dma map\n", sc->sc_dv.dv_xname); goto fail_4; } DPRINTFN(5, ("%s: bus_dmamem_load\n", sc->sc_dv.dv_xname)); if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, sizeof(struct nge_list_data), NULL, BUS_DMA_NOWAIT)) { goto fail_5; } DPRINTFN(5, ("%s: bzero\n", sc->sc_dv.dv_xname)); sc->nge_ldata = (struct nge_list_data *)kva; /* Try to allocate memory for jumbo buffers. */ DPRINTFN(5, ("%s: nge_alloc_jumbo_mem\n", sc->sc_dv.dv_xname)); if (nge_alloc_jumbo_mem(sc)) { printf("%s: jumbo buffer allocation failed\n", sc->sc_dv.dv_xname); goto fail_5; } ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = nge_ioctl; ifp->if_start = nge_start; ifp->if_watchdog = nge_watchdog; ifp->if_baudrate = 1000000000; ifp->if_hardmtu = NGE_JUMBO_MTU; IFQ_SET_MAXLEN(&ifp->if_snd, NGE_TX_LIST_CNT - 1); IFQ_SET_READY(&ifp->if_snd); DPRINTFN(5, ("%s: bcopy\n", sc->sc_dv.dv_xname)); bcopy(sc->sc_dv.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif /* * Do MII setup. */ DPRINTFN(5, ("%s: mii setup\n", sc->sc_dv.dv_xname)); if (CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) { DPRINTFN(5, ("%s: TBI mode\n", sc->sc_dv.dv_xname)); sc->nge_tbi = 1; ifmedia_init(&sc->nge_ifmedia, 0, nge_ifmedia_tbi_upd, nge_ifmedia_tbi_sts); ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_NONE, 0, NULL), ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL); ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL); ifmedia_add(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); ifmedia_set(&sc->nge_ifmedia, IFM_ETHER|IFM_AUTO); CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP4_OUT | NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB | NGE_GPIO_GP3_OUTENB | NGE_GPIO_GP4_OUTENB | NGE_GPIO_GP5_OUTENB); NGE_SETBIT(sc, NGE_CFG, NGE_CFG_MODE_1000); } else { sc->nge_mii.mii_ifp = ifp; sc->nge_mii.mii_readreg = nge_miibus_readreg; sc->nge_mii.mii_writereg = nge_miibus_writereg; sc->nge_mii.mii_statchg = nge_miibus_statchg; ifmedia_init(&sc->nge_mii.mii_media, 0, nge_ifmedia_mii_upd, nge_ifmedia_mii_sts); mii_attach(&sc->sc_dv, &sc->nge_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->nge_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc->sc_dv.dv_xname); ifmedia_add(&sc->nge_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc->nge_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc->nge_mii.mii_media, IFM_ETHER|IFM_AUTO); } /* * Call MI attach routine. */ DPRINTFN(5, ("%s: if_attach\n", sc->sc_dv.dv_xname)); if_attach(ifp); DPRINTFN(5, ("%s: ether_ifattach\n", sc->sc_dv.dv_xname)); ether_ifattach(ifp); DPRINTFN(5, ("%s: timeout_set\n", sc->sc_dv.dv_xname)); timeout_set(&sc->nge_timeout, nge_tick, sc); timeout_add_sec(&sc->nge_timeout, 1); return; fail_5: bus_dmamap_destroy(sc->sc_dmatag, dmamap); fail_4: bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct nge_list_data)); fail_3: bus_dmamem_free(sc->sc_dmatag, &seg, rseg); fail_2: pci_intr_disestablish(pc, sc->nge_intrhand); fail_1: bus_space_unmap(sc->nge_btag, sc->nge_bhandle, size); } /* * Initialize the transmit descriptors. */ int nge_list_tx_init(sc) struct nge_softc *sc; { struct nge_list_data *ld; struct nge_ring_data *cd; int i; cd = &sc->nge_cdata; ld = sc->nge_ldata; for (i = 0; i < NGE_TX_LIST_CNT; i++) { if (i == (NGE_TX_LIST_CNT - 1)) { ld->nge_tx_list[i].nge_nextdesc = &ld->nge_tx_list[0]; ld->nge_tx_list[i].nge_next = VTOPHYS(&ld->nge_tx_list[0]); } else { ld->nge_tx_list[i].nge_nextdesc = &ld->nge_tx_list[i + 1]; ld->nge_tx_list[i].nge_next = VTOPHYS(&ld->nge_tx_list[i + 1]); } ld->nge_tx_list[i].nge_mbuf = NULL; ld->nge_tx_list[i].nge_ptr = 0; ld->nge_tx_list[i].nge_ctl = 0; } cd->nge_tx_prod = cd->nge_tx_cons = cd->nge_tx_cnt = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int nge_list_rx_init(sc) struct nge_softc *sc; { struct nge_list_data *ld; struct nge_ring_data *cd; int i; ld = sc->nge_ldata; cd = &sc->nge_cdata; for (i = 0; i < NGE_RX_LIST_CNT; i++) { if (nge_newbuf(sc, &ld->nge_rx_list[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (NGE_RX_LIST_CNT - 1)) { ld->nge_rx_list[i].nge_nextdesc = &ld->nge_rx_list[0]; ld->nge_rx_list[i].nge_next = VTOPHYS(&ld->nge_rx_list[0]); } else { ld->nge_rx_list[i].nge_nextdesc = &ld->nge_rx_list[i + 1]; ld->nge_rx_list[i].nge_next = VTOPHYS(&ld->nge_rx_list[i + 1]); } } cd->nge_rx_prod = 0; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int nge_newbuf(sc, c, m) struct nge_softc *sc; struct nge_desc *c; struct mbuf *m; { struct mbuf *m_new = NULL; if (m == NULL) { caddr_t buf = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return (ENOBUFS); /* Allocate the jumbo buffer */ buf = nge_jalloc(sc); if (buf == NULL) { m_freem(m_new); return (ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES; MEXTADD(m_new, buf, NGE_MCLBYTES, 0, nge_jfree, sc); } else { /* * We're re-using a previously allocated mbuf; * be sure to re-init pointers and lengths to * default values. */ m_new = m; m_new->m_len = m_new->m_pkthdr.len = NGE_MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(u_int64_t)); c->nge_mbuf = m_new; c->nge_ptr = VTOPHYS(mtod(m_new, caddr_t)); DPRINTFN(7,("%s: c->nge_ptr=%#x\n", sc->sc_dv.dv_xname, c->nge_ptr)); c->nge_ctl = m_new->m_len; c->nge_extsts = 0; return(0); } int nge_alloc_jumbo_mem(sc) struct nge_softc *sc; { caddr_t ptr, kva; bus_dma_segment_t seg; bus_dmamap_t dmamap; int i, rseg, state, error; struct nge_jpool_entry *entry; state = error = 0; if (bus_dmamem_alloc(sc->sc_dmatag, NGE_JMEM, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc rx buffers\n", sc->sc_dv.dv_xname); return (ENOBUFS); } state = 1; if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, NGE_JMEM, &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc->sc_dv.dv_xname, NGE_JMEM); error = ENOBUFS; goto out; } state = 2; if (bus_dmamap_create(sc->sc_dmatag, NGE_JMEM, 1, NGE_JMEM, 0, BUS_DMA_NOWAIT, &dmamap)) { printf("%s: can't create dma map\n", sc->sc_dv.dv_xname); error = ENOBUFS; goto out; } state = 3; if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, NGE_JMEM, NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc->sc_dv.dv_xname); error = ENOBUFS; goto out; } state = 4; sc->nge_cdata.nge_jumbo_buf = (caddr_t)kva; DPRINTFN(1,("%s: nge_jumbo_buf=%#x, NGE_MCLBYTES=%#x\n", sc->sc_dv.dv_xname , sc->nge_cdata.nge_jumbo_buf, NGE_MCLBYTES)); LIST_INIT(&sc->nge_jfree_listhead); LIST_INIT(&sc->nge_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. Note that we play an evil trick here by using * the first few bytes in the buffer to hold the address * of the softc structure for this interface. This is because * nge_jfree() needs it, but it is called by the mbuf management * code which will not pass it to us explicitly. */ ptr = sc->nge_cdata.nge_jumbo_buf; for (i = 0; i < NGE_JSLOTS; i++) { sc->nge_cdata.nge_jslots[i].nge_buf = ptr; sc->nge_cdata.nge_jslots[i].nge_inuse = 0; ptr += NGE_MCLBYTES; entry = malloc(sizeof(struct nge_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { sc->nge_cdata.nge_jumbo_buf = NULL; printf("%s: no memory for jumbo buffer queue!\n", sc->sc_dv.dv_xname); error = ENOBUFS; goto out; } entry->slot = i; LIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries); } out: if (error != 0) { switch (state) { case 4: bus_dmamap_unload(sc->sc_dmatag, dmamap); case 3: bus_dmamap_destroy(sc->sc_dmatag, dmamap); case 2: bus_dmamem_unmap(sc->sc_dmatag, kva, NGE_JMEM); case 1: bus_dmamem_free(sc->sc_dmatag, &seg, rseg); break; default: break; } } return (error); } /* * Allocate a jumbo buffer. */ void * nge_jalloc(sc) struct nge_softc *sc; { struct nge_jpool_entry *entry; entry = LIST_FIRST(&sc->nge_jfree_listhead); if (entry == NULL) return (NULL); LIST_REMOVE(entry, jpool_entries); LIST_INSERT_HEAD(&sc->nge_jinuse_listhead, entry, jpool_entries); sc->nge_cdata.nge_jslots[entry->slot].nge_inuse = 1; return(sc->nge_cdata.nge_jslots[entry->slot].nge_buf); } /* * Release a jumbo buffer. */ void nge_jfree(buf, size, arg) caddr_t buf; u_int size; void *arg; { struct nge_softc *sc; int i; struct nge_jpool_entry *entry; /* Extract the softc struct pointer. */ sc = (struct nge_softc *)arg; if (sc == NULL) panic("nge_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vaddr_t)buf - (vaddr_t)sc->nge_cdata.nge_jumbo_buf) / NGE_MCLBYTES; if ((i < 0) || (i >= NGE_JSLOTS)) panic("nge_jfree: asked to free buffer that we don't manage!"); else if (sc->nge_cdata.nge_jslots[i].nge_inuse == 0) panic("nge_jfree: buffer already free!"); else { sc->nge_cdata.nge_jslots[i].nge_inuse--; if(sc->nge_cdata.nge_jslots[i].nge_inuse == 0) { entry = LIST_FIRST(&sc->nge_jinuse_listhead); if (entry == NULL) panic("nge_jfree: buffer not in use!"); entry->slot = i; LIST_REMOVE(entry, jpool_entries); LIST_INSERT_HEAD(&sc->nge_jfree_listhead, entry, jpool_entries); } } } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void nge_rxeof(sc) struct nge_softc *sc; { struct mbuf *m; struct ifnet *ifp; struct nge_desc *cur_rx; int i, total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; i = sc->nge_cdata.nge_rx_prod; while (NGE_OWNDESC(&sc->nge_ldata->nge_rx_list[i])) { struct mbuf *m0 = NULL; u_int32_t extsts; cur_rx = &sc->nge_ldata->nge_rx_list[i]; rxstat = cur_rx->nge_rxstat; extsts = cur_rx->nge_extsts; m = cur_rx->nge_mbuf; cur_rx->nge_mbuf = NULL; total_len = NGE_RXBYTES(cur_rx); NGE_INC(i, NGE_RX_LIST_CNT); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (!(rxstat & NGE_CMDSTS_PKT_OK)) { #if NVLAN > 0 if ((rxstat & NGE_RXSTAT_RUNT) && total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - ETHER_VLAN_ENCAP_LEN)) { /* * Workaround a hardware bug. Accept runt * frames if its length is larger than or * equal to 56. */ } else { #endif ifp->if_ierrors++; nge_newbuf(sc, cur_rx, m); continue; #if NVLAN > 0 } #endif } /* * Ok. NatSemi really screwed up here. This is the * only gigE chip I know of with alignment constraints * on receive buffers. RX buffers must be 64-bit aligned. */ #ifndef __STRICT_ALIGNMENT /* * By popular demand, ignore the alignment problems * on the Intel x86 platform. The performance hit * incurred due to unaligned accesses is much smaller * than the hit produced by forcing buffer copies all * the time, especially with jumbo frames. We still * need to fix up the alignment everywhere else though. */ if (nge_newbuf(sc, cur_rx, NULL) == ENOBUFS) { #endif m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN, ifp, NULL); nge_newbuf(sc, cur_rx, m); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; #ifndef __STRICT_ALIGNMENT } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } #endif ifp->if_ipackets++; #if NVLAN > 0 if (extsts & NGE_RXEXTSTS_VLANPKT) { m->m_pkthdr.ether_vtag = ntohs(extsts & NGE_RXEXTSTS_VTCI); m->m_flags |= M_VLANTAG; } #endif #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet. */ if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_IN); #endif /* Do IP checksum checking. */ if (extsts & NGE_RXEXTSTS_IPPKT) { if (!(extsts & NGE_RXEXTSTS_IPCSUMERR)) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; if ((extsts & NGE_RXEXTSTS_TCPPKT) && (!(extsts & NGE_RXEXTSTS_TCPCSUMERR))) m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK; else if ((extsts & NGE_RXEXTSTS_UDPPKT) && (!(extsts & NGE_RXEXTSTS_UDPCSUMERR))) m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK; } ether_input_mbuf(ifp, m); } sc->nge_cdata.nge_rx_prod = i; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void nge_txeof(sc) struct nge_softc *sc; { struct nge_desc *cur_tx; struct ifnet *ifp; u_int32_t idx; ifp = &sc->arpcom.ac_if; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ idx = sc->nge_cdata.nge_tx_cons; while (idx != sc->nge_cdata.nge_tx_prod) { cur_tx = &sc->nge_ldata->nge_tx_list[idx]; if (NGE_OWNDESC(cur_tx)) break; if (cur_tx->nge_ctl & NGE_CMDSTS_MORE) { sc->nge_cdata.nge_tx_cnt--; NGE_INC(idx, NGE_TX_LIST_CNT); continue; } if (!(cur_tx->nge_ctl & NGE_CMDSTS_PKT_OK)) { ifp->if_oerrors++; if (cur_tx->nge_txstat & NGE_TXSTAT_EXCESSCOLLS) ifp->if_collisions++; if (cur_tx->nge_txstat & NGE_TXSTAT_OUTOFWINCOLL) ifp->if_collisions++; } ifp->if_collisions += (cur_tx->nge_txstat & NGE_TXSTAT_COLLCNT) >> 16; ifp->if_opackets++; if (cur_tx->nge_mbuf != NULL) { m_freem(cur_tx->nge_mbuf); cur_tx->nge_mbuf = NULL; ifp->if_flags &= ~IFF_OACTIVE; } sc->nge_cdata.nge_tx_cnt--; NGE_INC(idx, NGE_TX_LIST_CNT); } sc->nge_cdata.nge_tx_cons = idx; if (idx == sc->nge_cdata.nge_tx_prod) ifp->if_timer = 0; } void nge_tick(xsc) void *xsc; { struct nge_softc *sc = xsc; struct mii_data *mii = &sc->nge_mii; struct ifnet *ifp = &sc->arpcom.ac_if; int s; s = splnet(); DPRINTFN(10, ("%s: nge_tick: link=%d\n", sc->sc_dv.dv_xname, sc->nge_link)); timeout_add_sec(&sc->nge_timeout, 1); if (sc->nge_link) { splx(s); return; } if (sc->nge_tbi) { if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) { u_int32_t bmsr, anlpar, txcfg, rxcfg; bmsr = CSR_READ_4(sc, NGE_TBI_BMSR); DPRINTFN(2, ("%s: nge_tick: bmsr=%#x\n", sc->sc_dv.dv_xname, bmsr)); if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) { CSR_WRITE_4(sc, NGE_TBI_BMCR, 0); splx(s); return; } anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR); txcfg = CSR_READ_4(sc, NGE_TX_CFG); rxcfg = CSR_READ_4(sc, NGE_RX_CFG); DPRINTFN(2, ("%s: nge_tick: anlpar=%#x, txcfg=%#x, " "rxcfg=%#x\n", sc->sc_dv.dv_xname, anlpar, txcfg, rxcfg)); if (anlpar == 0 || anlpar & NGE_TBIANAR_FDX) { txcfg |= (NGE_TXCFG_IGN_HBEAT| NGE_TXCFG_IGN_CARR); rxcfg |= NGE_RXCFG_RX_FDX; } else { txcfg &= ~(NGE_TXCFG_IGN_HBEAT| NGE_TXCFG_IGN_CARR); rxcfg &= ~(NGE_RXCFG_RX_FDX); } txcfg |= NGE_TXCFG_AUTOPAD; CSR_WRITE_4(sc, NGE_TX_CFG, txcfg); CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg); } DPRINTF(("%s: gigabit link up\n", sc->sc_dv.dv_xname)); sc->nge_link++; if (!IFQ_IS_EMPTY(&ifp->if_snd)) nge_start(ifp); } else { mii_tick(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->nge_link++; if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) DPRINTF(("%s: gigabit link up\n", sc->sc_dv.dv_xname)); if (!IFQ_IS_EMPTY(&ifp->if_snd)) nge_start(ifp); } } splx(s); } int nge_intr(arg) void *arg; { struct nge_softc *sc; struct ifnet *ifp; u_int32_t status; int claimed = 0; sc = arg; ifp = &sc->arpcom.ac_if; /* Suppress unwanted interrupts */ if (!(ifp->if_flags & IFF_UP)) { nge_stop(sc); return (0); } /* Disable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 0); /* Data LED on for TBI mode */ if(sc->nge_tbi) CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT); for (;;) { /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, NGE_ISR); if ((status & NGE_INTRS) == 0) break; claimed = 1; if ((status & NGE_ISR_TX_DESC_OK) || (status & NGE_ISR_TX_ERR) || (status & NGE_ISR_TX_OK) || (status & NGE_ISR_TX_IDLE)) nge_txeof(sc); if ((status & NGE_ISR_RX_DESC_OK) || (status & NGE_ISR_RX_ERR) || (status & NGE_ISR_RX_OFLOW) || (status & NGE_ISR_RX_FIFO_OFLOW) || (status & NGE_ISR_RX_IDLE) || (status & NGE_ISR_RX_OK)) nge_rxeof(sc); if ((status & NGE_ISR_RX_IDLE)) NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); if (status & NGE_ISR_SYSERR) { nge_reset(sc); ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); } #if 0 /* * XXX: nge_tick() is not ready to be called this way * it screws up the aneg timeout because mii_tick() is * only to be called once per second. */ if (status & NGE_IMR_PHY_INTR) { sc->nge_link = 0; nge_tick(sc); } #endif } /* Re-enable interrupts. */ CSR_WRITE_4(sc, NGE_IER, 1); if (!IFQ_IS_EMPTY(&ifp->if_snd)) nge_start(ifp); /* Data LED off for TBI mode */ if(sc->nge_tbi) CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT); return claimed; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int nge_encap(sc, m_head, txidx) struct nge_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct nge_desc *f = NULL; struct mbuf *m; int frag, cur, cnt = 0; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; cur = frag = *txidx; for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if ((NGE_TX_LIST_CNT - (sc->nge_cdata.nge_tx_cnt + cnt)) < 2) return(ENOBUFS); f = &sc->nge_ldata->nge_tx_list[frag]; f->nge_ctl = NGE_CMDSTS_MORE | m->m_len; f->nge_ptr = VTOPHYS(mtod(m, vaddr_t)); DPRINTFN(7,("%s: f->nge_ptr=%#x\n", sc->sc_dv.dv_xname, f->nge_ptr)); if (cnt != 0) f->nge_ctl |= NGE_CMDSTS_OWN; cur = frag; NGE_INC(frag, NGE_TX_LIST_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); sc->nge_ldata->nge_tx_list[*txidx].nge_extsts = 0; #if NVLAN > 0 if (m_head->m_flags & M_VLANTAG) { sc->nge_ldata->nge_tx_list[cur].nge_extsts |= (NGE_TXEXTSTS_VLANPKT|htons(m_head->m_pkthdr.ether_vtag)); } #endif sc->nge_ldata->nge_tx_list[cur].nge_mbuf = m_head; sc->nge_ldata->nge_tx_list[cur].nge_ctl &= ~NGE_CMDSTS_MORE; sc->nge_ldata->nge_tx_list[*txidx].nge_ctl |= NGE_CMDSTS_OWN; sc->nge_cdata.nge_tx_cnt += cnt; *txidx = frag; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void nge_start(ifp) struct ifnet *ifp; { struct nge_softc *sc; struct mbuf *m_head = NULL; u_int32_t idx; int pkts = 0; sc = ifp->if_softc; if (!sc->nge_link) return; idx = sc->nge_cdata.nge_tx_prod; if (ifp->if_flags & IFF_OACTIVE) return; while(sc->nge_ldata->nge_tx_list[idx].nge_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; if (nge_encap(sc, m_head, &idx)) { ifp->if_flags |= IFF_OACTIVE; break; } /* now we are committed to transmit the packet */ IFQ_DEQUEUE(&ifp->if_snd, m_head); pkts++; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif } if (pkts == 0) return; /* Transmit */ sc->nge_cdata.nge_tx_prod = idx; NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } void nge_init(xsc) void *xsc; { struct nge_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; u_int32_t txcfg, rxcfg; int s, media; if (ifp->if_flags & IFF_RUNNING) return; s = splnet(); /* * Cancel pending I/O and free all RX/TX buffers. */ nge_stop(sc); mii = sc->nge_tbi ? NULL: &sc->nge_mii; /* Set MAC address */ CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[0]); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[1]); CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2); CSR_WRITE_4(sc, NGE_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[2]); /* Init circular RX list. */ if (nge_list_rx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no " "memory for rx buffers\n", sc->sc_dv.dv_xname); nge_stop(sc); splx(s); return; } /* * Init tx descriptors. */ nge_list_tx_init(sc); /* * For the NatSemi chip, we have to explicitly enable the * reception of ARP frames, as well as turn on the 'perfect * match' filter where we store the station address, otherwise * we won't receive unicasts meant for this host. */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ARP); NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_PERFECT); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); else NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); /* * Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); else NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_BROAD); /* * Load the multicast filter. */ nge_setmulti(sc); /* Turn the receive filter on */ NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ENABLE); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, NGE_RX_LISTPTR, VTOPHYS(&sc->nge_ldata->nge_rx_list[0])); CSR_WRITE_4(sc, NGE_TX_LISTPTR, VTOPHYS(&sc->nge_ldata->nge_tx_list[0])); /* Set RX configuration */ CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG); /* * Enable hardware checksum validation for all IPv4 * packets, do not reject packets with bad checksums. */ CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB); /* * If VLAN support is enabled, tell the chip to detect * and strip VLAN tag info from received frames. The tag * will be provided in the extsts field in the RX descriptors. */ if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB | NGE_VIPRXCTL_TAG_STRIP_ENB); /* Set TX configuration */ CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG); /* * If VLAN support is enabled, tell the chip to insert * VLAN tags on a per-packet basis as dictated by the * code in the frame encapsulation routine. */ if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT); /* Set full/half duplex mode. */ if (sc->nge_tbi) media = sc->nge_ifmedia.ifm_cur->ifm_media; else media = mii->mii_media_active; txcfg = CSR_READ_4(sc, NGE_TX_CFG); rxcfg = CSR_READ_4(sc, NGE_RX_CFG); DPRINTFN(4, ("%s: nge_init txcfg=%#x, rxcfg=%#x\n", sc->sc_dv.dv_xname, txcfg, rxcfg)); if ((media & IFM_GMASK) == IFM_FDX) { txcfg |= (NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR); rxcfg |= (NGE_RXCFG_RX_FDX); } else { txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR); rxcfg &= ~(NGE_RXCFG_RX_FDX); } txcfg |= NGE_TXCFG_AUTOPAD; CSR_WRITE_4(sc, NGE_TX_CFG, txcfg); CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg); nge_tick(sc); /* * Enable the delivery of PHY interrupts based on * link/speed/duplex status changes and enable return * of extended status information in the DMA descriptors, * required for checksum offloading. */ NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD|NGE_CFG_PHYINTR_LNK| NGE_CFG_PHYINTR_DUP|NGE_CFG_EXTSTS_ENB); DPRINTFN(1, ("%s: nge_init: config=%#x\n", sc->sc_dv.dv_xname, CSR_READ_4(sc, NGE_CFG))); /* * Configure interrupt holdoff (moderation). We can * have the chip delay interrupt delivery for a certain * period. Units are in 100us, and the max setting * is 25500us (0xFF x 100us). Default is a 100us holdoff. */ CSR_WRITE_4(sc, NGE_IHR, 0x01); /* * Enable interrupts. */ CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS); CSR_WRITE_4(sc, NGE_IER, 1); /* Enable receiver and transmitter. */ NGE_CLRBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE); if (sc->nge_tbi) nge_ifmedia_tbi_upd(ifp); else nge_ifmedia_mii_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); } /* * Set mii media options. */ int nge_ifmedia_mii_upd(ifp) struct ifnet *ifp; { struct nge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->nge_mii; DPRINTFN(2, ("%s: nge_ifmedia_mii_upd\n", sc->sc_dv.dv_xname)); sc->nge_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current mii media status. */ void nge_ifmedia_mii_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct nge_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->nge_mii; DPRINTFN(2, ("%s: nge_ifmedia_mii_sts\n", sc->sc_dv.dv_xname)); mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } /* * Set mii media options. */ int nge_ifmedia_tbi_upd(ifp) struct ifnet *ifp; { struct nge_softc *sc = ifp->if_softc; DPRINTFN(2, ("%s: nge_ifmedia_tbi_upd\n", sc->sc_dv.dv_xname)); sc->nge_link = 0; if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) { u_int32_t anar, bmcr; anar = CSR_READ_4(sc, NGE_TBI_ANAR); anar |= (NGE_TBIANAR_HDX | NGE_TBIANAR_FDX); CSR_WRITE_4(sc, NGE_TBI_ANAR, anar); bmcr = CSR_READ_4(sc, NGE_TBI_BMCR); bmcr |= (NGE_TBIBMCR_ENABLE_ANEG|NGE_TBIBMCR_RESTART_ANEG); CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr); bmcr &= ~(NGE_TBIBMCR_RESTART_ANEG); CSR_WRITE_4(sc, NGE_TBI_BMCR, bmcr); } else { u_int32_t txcfg, rxcfg; txcfg = CSR_READ_4(sc, NGE_TX_CFG); rxcfg = CSR_READ_4(sc, NGE_RX_CFG); if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX) { txcfg |= NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR; rxcfg |= NGE_RXCFG_RX_FDX; } else { txcfg &= ~(NGE_TXCFG_IGN_HBEAT|NGE_TXCFG_IGN_CARR); rxcfg &= ~(NGE_RXCFG_RX_FDX); } txcfg |= NGE_TXCFG_AUTOPAD; CSR_WRITE_4(sc, NGE_TX_CFG, txcfg); CSR_WRITE_4(sc, NGE_RX_CFG, rxcfg); } NGE_CLRBIT(sc, NGE_GPIO, NGE_GPIO_GP3_OUT); return(0); } /* * Report current tbi media status. */ void nge_ifmedia_tbi_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct nge_softc *sc = ifp->if_softc; u_int32_t bmcr; bmcr = CSR_READ_4(sc, NGE_TBI_BMCR); if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) { u_int32_t bmsr = CSR_READ_4(sc, NGE_TBI_BMSR); DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmsr=%#x, bmcr=%#x\n", sc->sc_dv.dv_xname, bmsr, bmcr)); if (!(bmsr & NGE_TBIBMSR_ANEG_DONE)) { ifmr->ifm_active = IFM_ETHER|IFM_NONE; ifmr->ifm_status = IFM_AVALID; return; } } else { DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts bmcr=%#x\n", sc->sc_dv.dv_xname, bmcr)); } ifmr->ifm_status = IFM_AVALID|IFM_ACTIVE; ifmr->ifm_active = IFM_ETHER|IFM_1000_SX; if (bmcr & NGE_TBIBMCR_LOOPBACK) ifmr->ifm_active |= IFM_LOOP; if (IFM_SUBTYPE(sc->nge_ifmedia.ifm_cur->ifm_media) == IFM_AUTO) { u_int32_t anlpar = CSR_READ_4(sc, NGE_TBI_ANLPAR); DPRINTFN(2, ("%s: nge_ifmedia_tbi_sts anlpar=%#x\n", sc->sc_dv.dv_xname, anlpar)); ifmr->ifm_active |= IFM_AUTO; if (anlpar & NGE_TBIANLPAR_FDX) { ifmr->ifm_active |= IFM_FDX; } else if (anlpar & NGE_TBIANLPAR_HDX) { ifmr->ifm_active |= IFM_HDX; } else ifmr->ifm_active |= IFM_FDX; } else if ((sc->nge_ifmedia.ifm_cur->ifm_media & IFM_GMASK) == IFM_FDX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; } int nge_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct nge_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int s, error = 0; s = splnet(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: nge_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: nge_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->nge_if_flags & IFF_PROMISC)) { NGE_SETBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS| NGE_RXFILTCTL_ALLMULTI); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->nge_if_flags & IFF_PROMISC) { NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLPHYS); if (!(ifp->if_flags & IFF_ALLMULTI)) NGE_CLRBIT(sc, NGE_RXFILT_CTL, NGE_RXFILTCTL_ALLMULTI); } else { ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) nge_stop(sc); } sc->nge_if_flags = ifp->if_flags; error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: if (sc->nge_tbi) { error = ifmedia_ioctl(ifp, ifr, &sc->nge_ifmedia, command); } else { mii = &sc->nge_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); } break; default: error = ether_ioctl(ifp, &sc->arpcom, command, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) nge_setmulti(sc); error = 0; } splx(s); return(error); } void nge_watchdog(ifp) struct ifnet *ifp; { struct nge_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->sc_dv.dv_xname); nge_stop(sc); nge_reset(sc); ifp->if_flags &= ~IFF_RUNNING; nge_init(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd)) nge_start(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void nge_stop(sc) struct nge_softc *sc; { int i; struct ifnet *ifp; struct mii_data *mii; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; if (sc->nge_tbi) { mii = NULL; } else { mii = &sc->nge_mii; } timeout_del(&sc->nge_timeout); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); CSR_WRITE_4(sc, NGE_IER, 0); CSR_WRITE_4(sc, NGE_IMR, 0); NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_DISABLE|NGE_CSR_RX_DISABLE); DELAY(1000); CSR_WRITE_4(sc, NGE_TX_LISTPTR, 0); CSR_WRITE_4(sc, NGE_RX_LISTPTR, 0); if (!sc->nge_tbi) mii_down(mii); sc->nge_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < NGE_RX_LIST_CNT; i++) { if (sc->nge_ldata->nge_rx_list[i].nge_mbuf != NULL) { m_freem(sc->nge_ldata->nge_rx_list[i].nge_mbuf); sc->nge_ldata->nge_rx_list[i].nge_mbuf = NULL; } } bzero(&sc->nge_ldata->nge_rx_list, sizeof(sc->nge_ldata->nge_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < NGE_TX_LIST_CNT; i++) { if (sc->nge_ldata->nge_tx_list[i].nge_mbuf != NULL) { m_freem(sc->nge_ldata->nge_tx_list[i].nge_mbuf); sc->nge_ldata->nge_tx_list[i].nge_mbuf = NULL; } } bzero(&sc->nge_ldata->nge_tx_list, sizeof(sc->nge_ldata->nge_tx_list)); } struct cfattach nge_ca = { sizeof(struct nge_softc), nge_probe, nge_attach }; struct cfdriver nge_cd = { NULL, "nge", DV_IFNET };