/* $OpenBSD: if_sf.c,v 1.13 2001/08/12 20:03:49 mickey Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_sf.c,v 1.23 2000/07/14 19:11:02 wpaul Exp $ */ /* * Adaptec AIC-6915 "Starfire" PCI fast ethernet driver for FreeBSD. * Programming manual is available from: * ftp.adaptec.com:/pub/BBS/userguides/aic6915_pg.pdf. * * Written by Bill Paul * Department of Electical Engineering * Columbia University, New York City */ /* * The Adaptec AIC-6915 "Starfire" is a 64-bit 10/100 PCI ethernet * controller designed with flexibility and reducing CPU load in mind. * The Starfire offers high and low priority buffer queues, a * producer/consumer index mechanism and several different buffer * queue and completion queue descriptor types. Any one of a number * of different driver designs can be used, depending on system and * OS requirements. This driver makes use of type0 transmit frame * descriptors (since BSD fragments packets across an mbuf chain) * and two RX buffer queues prioritized on size (one queue for small * frames that will fit into a single mbuf, another with full size * mbuf clusters for everything else). The producer/consumer indexes * and completion queues are also used. * * One downside to the Starfire has to do with alignment: buffer * queues must be aligned on 256-byte boundaries, and receive buffers * must be aligned on longword boundaries. The receive buffer alignment * causes problems on the Alpha platform, where the packet payload * should be longword aligned. There is no simple way around this. * * For receive filtering, the Starfire offers 16 perfect filter slots * and a 512-bit hash table. * * The Starfire has no internal transceiver, relying instead on an * external MII-based transceiver. Accessing registers on external * PHYs is done through a special register map rather than with the * usual bitbang MDIO method. * * Acesssing the registers on the Starfire is a little tricky. The * Starfire has a 512K internal register space. When programmed for * PCI memory mapped mode, the entire register space can be accessed * directly. However in I/O space mode, only 256 bytes are directly * mapped into PCI I/O space. The other registers can be accessed * indirectly using the SF_INDIRECTIO_ADDR and SF_INDIRECTIO_DATA * registers inside the 256-byte I/O window. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include #include #include #include #include #include #define SF_USEIOSPACE #include int sf_probe __P((struct device *, void *, void *)); void sf_attach __P((struct device *, struct device *, void *)); int sf_intr __P((void *)); void sf_shutdown __P((void *)); void sf_stats_update __P((void *)); void sf_rxeof __P((struct sf_softc *)); void sf_txeof __P((struct sf_softc *)); int sf_encap __P((struct sf_softc *, struct sf_tx_bufdesc_type0 *, struct mbuf *)); void sf_start __P((struct ifnet *)); int sf_ioctl __P((struct ifnet *, u_long, caddr_t)); void sf_init __P((void *)); void sf_stop __P((struct sf_softc *)); void sf_watchdog __P((struct ifnet *)); int sf_ifmedia_upd __P((struct ifnet *)); void sf_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); void sf_reset __P((struct sf_softc *)); int sf_init_rx_ring __P((struct sf_softc *)); void sf_init_tx_ring __P((struct sf_softc *)); int sf_newbuf __P((struct sf_softc *, struct sf_rx_bufdesc_type0 *, struct mbuf *)); void sf_setmulti __P((struct sf_softc *)); int sf_setperf __P((struct sf_softc *, int, caddr_t)); int sf_sethash __P((struct sf_softc *, caddr_t, int)); #ifdef notdef int sf_setvlan __P((struct sf_softc *, int, u_int32_t)); #endif u_int8_t sf_read_eeprom __P((struct sf_softc *, int)); u_int32_t sf_calchash __P((caddr_t)); int sf_miibus_readreg __P((struct device *, int, int)); void sf_miibus_writereg __P((struct device *, int, int, int)); void sf_miibus_statchg __P((struct device *)); u_int32_t csr_read_4 __P((struct sf_softc *, int)); void csr_write_4 __P((struct sf_softc *, int, u_int32_t)); #define SF_SETBIT(sc, reg, x) \ csr_write_4(sc, reg, csr_read_4(sc, reg) | x) #define SF_CLRBIT(sc, reg, x) \ csr_write_4(sc, reg, csr_read_4(sc, reg) & ~x) u_int32_t csr_read_4(sc, reg) struct sf_softc *sc; int reg; { u_int32_t val; #ifdef SF_USEIOSPACE CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); val = CSR_READ_4(sc, SF_INDIRECTIO_DATA); #else val = CSR_READ_4(sc, (reg + SF_RMAP_INTREG_BASE)); #endif return(val); } u_int8_t sf_read_eeprom(sc, reg) struct sf_softc *sc; int reg; { u_int8_t val; val = (csr_read_4(sc, SF_EEADDR_BASE + (reg & 0xFFFFFFFC)) >> (8 * (reg & 3))) & 0xFF; return(val); } void csr_write_4(sc, reg, val) struct sf_softc *sc; int reg; u_int32_t val; { #ifdef SF_USEIOSPACE CSR_WRITE_4(sc, SF_INDIRECTIO_ADDR, reg + SF_RMAP_INTREG_BASE); CSR_WRITE_4(sc, SF_INDIRECTIO_DATA, val); #else CSR_WRITE_4(sc, (reg + SF_RMAP_INTREG_BASE), val); #endif return; } u_int32_t sf_calchash(addr) caddr_t addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return(crc >> 23 & 0x1FF); } /* * Copy the address 'mac' into the perfect RX filter entry at * offset 'idx.' The perfect filter only has 16 entries so do * some sanity tests. */ int sf_setperf(sc, idx, mac) struct sf_softc *sc; int idx; caddr_t mac; { u_int16_t *p; if (idx < 0 || idx > SF_RXFILT_PERFECT_CNT) return(EINVAL); if (mac == NULL) return(EINVAL); p = (u_int16_t *)mac; csr_write_4(sc, SF_RXFILT_PERFECT_BASE + (idx * SF_RXFILT_PERFECT_SKIP), htons(p[2])); csr_write_4(sc, SF_RXFILT_PERFECT_BASE + (idx * SF_RXFILT_PERFECT_SKIP) + 4, htons(p[1])); csr_write_4(sc, SF_RXFILT_PERFECT_BASE + (idx * SF_RXFILT_PERFECT_SKIP) + 8, htons(p[0])); return(0); } /* * Set the bit in the 512-bit hash table that corresponds to the * specified mac address 'mac.' If 'prio' is nonzero, update the * priority hash table instead of the filter hash table. */ int sf_sethash(sc, mac, prio) struct sf_softc *sc; caddr_t mac; int prio; { u_int32_t h = 0; if (mac == NULL) return(EINVAL); h = sf_calchash(mac); if (prio) { SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_PRIOOFF + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); } else { SF_SETBIT(sc, SF_RXFILT_HASH_BASE + SF_RXFILT_HASH_ADDROFF + (SF_RXFILT_HASH_SKIP * (h >> 4)), (1 << (h & 0xF))); } return(0); } #ifdef notdef /* * Set a VLAN tag in the receive filter. */ int sf_setvlan(sc, idx, vlan) struct sf_softc *sc; int idx; u_int32_t vlan; { if (idx < 0 || idx >> SF_RXFILT_HASH_CNT) return(EINVAL); csr_write_4(sc, SF_RXFILT_HASH_BASE + (idx * SF_RXFILT_HASH_SKIP) + SF_RXFILT_HASH_VLANOFF, vlan); return(0); } #endif int sf_miibus_readreg(self, phy, reg) struct device *self; int phy, reg; { struct sf_softc *sc = (struct sf_softc *)self; int i; u_int32_t val = 0; for (i = 0; i < SF_TIMEOUT; i++) { val = csr_read_4(sc, SF_PHY_REG(phy, reg)); if (val & SF_MII_DATAVALID) break; } if (i == SF_TIMEOUT) return(0); if ((val & 0x0000FFFF) == 0xFFFF) return(0); return(val & 0x0000FFFF); } void sf_miibus_writereg(self, phy, reg, val) struct device *self; int phy, reg, val; { struct sf_softc *sc = (struct sf_softc *)self; int i; int busy; csr_write_4(sc, SF_PHY_REG(phy, reg), val); for (i = 0; i < SF_TIMEOUT; i++) { busy = csr_read_4(sc, SF_PHY_REG(phy, reg)); if (!(busy & SF_MII_BUSY)) break; } return; } void sf_miibus_statchg(self) struct device *self; { struct sf_softc *sc = (struct sf_softc *)self; struct mii_data *mii; mii = &sc->sc_mii; if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_FDX); } else { SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_FULLDUPLEX); csr_write_4(sc, SF_BKTOBKIPG, SF_IPGT_HDX); } return; } void sf_setmulti(sc) struct sf_softc *sc; { struct ifnet *ifp; int i; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int8_t dummy[] = { 0, 0, 0, 0, 0, 0 }; ifp = &sc->arpcom.ac_if; /* First zot all the existing filters. */ for (i = 1; i < SF_RXFILT_PERFECT_CNT; i++) sf_setperf(sc, i, (char *)&dummy); for (i = SF_RXFILT_HASH_BASE; i < (SF_RXFILT_HASH_MAX + 1); i += 4) csr_write_4(sc, i, 0); SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); /* Now program new ones. */ if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_ALLMULTI); } else { i = 1; /* First find the tail of the list. */ ETHER_FIRST_MULTI(step, ac, enm); /* Now traverse the list backwards. */ while (enm != NULL) { /* if (enm->enm_addrlo->sa_family != AF_LINK) continue; */ /* * Program the first 15 multicast groups * into the perfect filter. For all others, * use the hash table. */ if (i < SF_RXFILT_PERFECT_CNT) { sf_setperf(sc, i, LLADDR((struct sockaddr_dl *)enm->enm_addrlo)); i++; continue; } sf_sethash(sc, LLADDR((struct sockaddr_dl *)enm->enm_addrlo), 0); ETHER_NEXT_MULTI(step, enm); } } return; } /* * Set media options. */ int sf_ifmedia_upd(ifp) struct ifnet *ifp; { struct sf_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; sc->sf_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ void sf_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct sf_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } int sf_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct sf_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; struct mii_data *mii; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { case AF_INET: sf_init(sc); arp_ifinit(&sc->arpcom, ifa); break; default: sf_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->sf_if_flags & IFF_PROMISC)) { SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->sf_if_flags & IFF_PROMISC) { SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); } else if (!(ifp->if_flags & IFF_RUNNING)) sf_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) sf_stop(sc); } sc->sf_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ sf_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc->sc_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } void sf_reset(sc) struct sf_softc *sc; { register int i; csr_write_4(sc, SF_GEN_ETH_CTL, 0); SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); DELAY(1000); SF_CLRBIT(sc, SF_MACCFG_1, SF_MACCFG1_SOFTRESET); SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_RESET); for (i = 0; i < SF_TIMEOUT; i++) { DELAY(10); if (!(csr_read_4(sc, SF_PCI_DEVCFG) & SF_PCIDEVCFG_RESET)) break; } if (i == SF_TIMEOUT) printf("sf%d: reset never completed!\n", sc->sf_unit); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } /* * Probe for an Adaptec AIC-6915 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. * We also check the subsystem ID so that we can identify exactly which * NIC has been found, if possible. */ int sf_probe(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ADP) return(0); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_ADP_AIC6915: return(1); } return(0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void sf_attach(parent, self, aux) struct device *parent, *self; void *aux; { int s, i; const char *intrstr = NULL; u_int32_t command; struct sf_softc *sc = (struct sf_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; struct ifnet *ifp; bus_addr_t iobase; bus_size_t iosize; s = splimp(); sc->sf_unit = sc->sc_dev.dv_unit; /* * Handle power management nonsense. */ command = pci_conf_read(pc, pa->pa_tag, SF_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, SF_PCI_PWRMGMTCTRL); if (command & SF_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(pc, pa->pa_tag, SF_PCI_LOIO); membase = pci_conf_read(pc, pa->pa_tag, SF_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, SF_PCI_INTLINE); /* Reset the power state. */ printf("sf%d: chip is in D%d power mode " "-- setting to D0\n", sc->sf_unit, command & SF_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, SF_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, SF_PCI_LOIO, iobase); pci_conf_write(pc, pa->pa_tag, SF_PCI_LOMEM, membase); pci_conf_write(pc, pa->pa_tag, SF_PCI_INTLINE, irq); } } /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef SF_USEIOSPACE if (!(command & PCI_COMMAND_IO_ENABLE)) { printf(": failed to enable I/O ports\n"); goto fail; } if (pci_io_find(pc, pa->pa_tag, SF_PCI_LOIO, &iobase, &iosize)) { printf(": can't find I/O space\n"); goto fail; } if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sf_bhandle)) { printf(": can't map I/O space\n"); goto fail; } sc->sf_btag = pa->pa_iot; #else if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping\n"); goto fail; } if (pci_mem_find(pc, pa->pa_tag, SF_PCI_LOMEM, &iobase, &iosize, NULL)){ printf(": can't find mem space\n"); goto fail; } if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sf_bhandle)) { printf(": can't map mem space\n"); goto fail; } sc->sf_btag = pa->pa_memt; #endif /* Allocate interrupt */ if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf(": couldn't map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sf_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } printf(": %s", intrstr); /* Reset the adapter. */ sf_reset(sc); /* * Get station address from the EEPROM. */ for (i = 0; i < ETHER_ADDR_LEN; i++) sc->arpcom.ac_enaddr[i] = sf_read_eeprom(sc, SF_EE_NODEADDR + ETHER_ADDR_LEN - i); printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); /* Allocate the descriptor queues. */ sc->sf_ldata_ptr = malloc(sizeof(struct sf_list_data) + 8, M_DEVBUF, M_NOWAIT); if (sc->sf_ldata_ptr == NULL) { printf("%s: no memory for list buffers!\n", sc->sf_unit); goto fail; } sc->sf_ldata = (struct sf_list_data *)sc->sf_ldata_ptr; bzero(sc->sf_ldata, sizeof(struct sf_list_data)); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sf_ioctl; ifp->if_output = ether_output; ifp->if_start = sf_start; ifp->if_watchdog = sf_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, SF_TX_DLIST_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); /* * Initialize our media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = sf_miibus_readreg; sc->sc_mii.mii_writereg = sf_miibus_writereg; sc->sc_mii.mii_statchg = sf_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, sf_ifmedia_upd, sf_ifmedia_sts); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); shutdownhook_establish(sf_shutdown, sc); fail: splx(s); return; } int sf_init_rx_ring(sc) struct sf_softc *sc; { struct sf_list_data *ld; int i; ld = sc->sf_ldata; bzero((char *)ld->sf_rx_dlist_big, sizeof(struct sf_rx_bufdesc_type0) * SF_RX_DLIST_CNT); bzero((char *)ld->sf_rx_clist, sizeof(struct sf_rx_cmpdesc_type3) * SF_RX_CLIST_CNT); for (i = 0; i < SF_RX_DLIST_CNT; i++) { if (sf_newbuf(sc, &ld->sf_rx_dlist_big[i], NULL) == ENOBUFS) return(ENOBUFS); } return(0); } void sf_init_tx_ring(sc) struct sf_softc *sc; { struct sf_list_data *ld; int i; ld = sc->sf_ldata; bzero((char *)ld->sf_tx_dlist, sizeof(struct sf_tx_bufdesc_type0) * SF_TX_DLIST_CNT); bzero((char *)ld->sf_tx_clist, sizeof(struct sf_tx_cmpdesc_type0) * SF_TX_CLIST_CNT); for (i = 0; i < SF_TX_DLIST_CNT; i++) ld->sf_tx_dlist[i].sf_id = SF_TX_BUFDESC_ID; for (i = 0; i < SF_TX_CLIST_CNT; i++) ld->sf_tx_clist[i].sf_type = SF_TXCMPTYPE_TX; ld->sf_tx_dlist[SF_TX_DLIST_CNT - 1].sf_end = 1; sc->sf_tx_cnt = 0; return; } int sf_newbuf(sc, c, m) struct sf_softc *sc; struct sf_rx_bufdesc_type0 *c; struct mbuf *m; { struct mbuf *m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("sf%d: no memory for rx list -- " "packet dropped!\n", sc->sf_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("sf%d: no memory for rx list -- " "packet dropped!\n", sc->sf_unit); m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(u_int64_t)); c->sf_mbuf = m_new; c->sf_addrlo = SF_RX_HOSTADDR(vtophys(mtod(m_new, caddr_t))); c->sf_valid = 1; return(0); } /* * The starfire is programmed to use 'normal' mode for packet reception, * which means we use the consumer/producer model for both the buffer * descriptor queue and the completion descriptor queue. The only problem * with this is that it involves a lot of register accesses: we have to * read the RX completion consumer and producer indexes and the RX buffer * producer index, plus the RX completion consumer and RX buffer producer * indexes have to be updated. It would have been easier if Adaptec had * put each index in a separate register, especially given that the damn * NIC has a 512K register space. * * In spite of all the lovely features that Adaptec crammed into the 6915, * it is marred by one truly stupid design flaw, which is that receive * buffer addresses must be aligned on a longword boundary. This forces * the packet payload to be unaligned, which is suboptimal on the x86 and * completely unuseable on the Alpha. Our only recourse is to copy received * packets into properly aligned buffers before handing them off. */ void sf_rxeof(sc) struct sf_softc *sc; { struct mbuf *m; struct ifnet *ifp; struct sf_rx_bufdesc_type0 *desc; struct sf_rx_cmpdesc_type3 *cur_rx; u_int32_t rxcons, rxprod; int cmpprodidx, cmpconsidx, bufprodidx; ifp = &sc->arpcom.ac_if; rxcons = csr_read_4(sc, SF_CQ_CONSIDX); rxprod = csr_read_4(sc, SF_RXDQ_PTR_Q1); cmpprodidx = SF_IDX_LO(csr_read_4(sc, SF_CQ_PRODIDX)); cmpconsidx = SF_IDX_LO(rxcons); bufprodidx = SF_IDX_LO(rxprod); while (cmpconsidx != cmpprodidx) { struct mbuf *m0; cur_rx = &sc->sf_ldata->sf_rx_clist[cmpconsidx]; desc = &sc->sf_ldata->sf_rx_dlist_big[cur_rx->sf_endidx]; m = desc->sf_mbuf; SF_INC(cmpconsidx, SF_RX_CLIST_CNT); SF_INC(bufprodidx, SF_RX_DLIST_CNT); if (!(cur_rx->sf_status1 & SF_RXSTAT1_OK)) { ifp->if_ierrors++; sf_newbuf(sc, desc, m); continue; } m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, cur_rx->sf_len + ETHER_ALIGN, 0, ifp, NULL); sf_newbuf(sc, desc, m); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; ifp->if_ipackets++; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* pass it on. */ ether_input_mbuf(ifp, m); } csr_write_4(sc, SF_CQ_CONSIDX, (rxcons & ~SF_CQ_CONSIDX_RXQ1) | cmpconsidx); csr_write_4(sc, SF_RXDQ_PTR_Q1, (rxprod & ~SF_RXDQ_PRODIDX) | bufprodidx); return; } /* * Read the transmit status from the completion queue and release * mbufs. Note that the buffer descriptor index in the completion * descriptor is an offset from the start of the transmit buffer * descriptor list in bytes. This is important because the manual * gives the impression that it should match the producer/consumer * index, which is the offset in 8 byte blocks. */ void sf_txeof(sc) struct sf_softc *sc; { int txcons, cmpprodidx, cmpconsidx; struct sf_tx_cmpdesc_type1 *cur_cmp; struct sf_tx_bufdesc_type0 *cur_tx; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; txcons = csr_read_4(sc, SF_CQ_CONSIDX); cmpprodidx = SF_IDX_HI(csr_read_4(sc, SF_CQ_PRODIDX)); cmpconsidx = SF_IDX_HI(txcons); while (cmpconsidx != cmpprodidx) { cur_cmp = &sc->sf_ldata->sf_tx_clist[cmpconsidx]; cur_tx = &sc->sf_ldata->sf_tx_dlist[cur_cmp->sf_index >> 7]; SF_INC(cmpconsidx, SF_TX_CLIST_CNT); if (cur_cmp->sf_txstat & SF_TXSTAT_TX_OK) ifp->if_opackets++; else ifp->if_oerrors++; sc->sf_tx_cnt--; if (cur_tx->sf_mbuf != NULL) { m_freem(cur_tx->sf_mbuf); cur_tx->sf_mbuf = NULL; } } ifp->if_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; csr_write_4(sc, SF_CQ_CONSIDX, (txcons & ~SF_CQ_CONSIDX_TXQ) | ((cmpconsidx << 16) & 0xFFFF0000)); return; } int sf_intr(arg) void *arg; { struct sf_softc *sc; struct ifnet *ifp; u_int32_t status; int claimed = 0; sc = arg; ifp = &sc->arpcom.ac_if; if (!(csr_read_4(sc, SF_ISR_SHADOW) & SF_ISR_PCIINT_ASSERTED)) return claimed; /* Disable interrupts. */ csr_write_4(sc, SF_IMR, 0x00000000); for (;;) { status = csr_read_4(sc, SF_ISR); if (status) csr_write_4(sc, SF_ISR, status); if (!(status & SF_INTRS)) break; claimed = 1; if (status & SF_ISR_RXDQ1_DMADONE) sf_rxeof(sc); if (status & SF_ISR_TX_TXDONE) sf_txeof(sc); if (status & SF_ISR_ABNORMALINTR) { if (status & SF_ISR_STATSOFLOW) { timeout_del(&sc->sc_stats_tmo); sf_stats_update(sc); } else sf_init(sc); } } /* Re-enable interrupts. */ csr_write_4(sc, SF_IMR, SF_INTRS); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) sf_start(ifp); return claimed; } void sf_init(xsc) void *xsc; { struct sf_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int i, s; s = splimp(); mii = &sc->sc_mii; sf_stop(sc); sf_reset(sc); /* Init all the receive filter registers */ for (i = SF_RXFILT_PERFECT_BASE; i < (SF_RXFILT_HASH_MAX + 1); i += 4) csr_write_4(sc, i, 0); /* Empty stats counter registers. */ for (i = 0; i < sizeof(struct sf_stats)/sizeof(u_int32_t); i++) csr_write_4(sc, SF_STATS_BASE + (i + sizeof(u_int32_t)), 0); /* Init our MAC address */ csr_write_4(sc, SF_PAR0, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0])); csr_write_4(sc, SF_PAR1, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4])); sf_setperf(sc, 0, (caddr_t)&sc->arpcom.ac_enaddr); if (sf_init_rx_ring(sc) == ENOBUFS) { printf("sf%d: initialization failed: no " "memory for rx buffers\n", sc->sf_unit); (void)splx(s); return; } sf_init_tx_ring(sc); csr_write_4(sc, SF_RXFILT, SF_PERFMODE_NORMAL|SF_HASHMODE_WITHVLAN); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); } else { SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_PROMISC); } if (ifp->if_flags & IFF_BROADCAST) { SF_SETBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); } else { SF_CLRBIT(sc, SF_RXFILT, SF_RXFILT_BROAD); } /* * Load the multicast filter. */ sf_setmulti(sc); /* Init the completion queue indexes */ csr_write_4(sc, SF_CQ_CONSIDX, 0); csr_write_4(sc, SF_CQ_PRODIDX, 0); /* Init the RX completion queue */ csr_write_4(sc, SF_RXCQ_CTL_1, vtophys(sc->sf_ldata->sf_rx_clist) & SF_RXCQ_ADDR); SF_SETBIT(sc, SF_RXCQ_CTL_1, SF_RXCQTYPE_3); /* Init RX DMA control. */ SF_SETBIT(sc, SF_RXDMA_CTL, SF_RXDMA_REPORTBADPKTS); /* Init the RX buffer descriptor queue. */ csr_write_4(sc, SF_RXDQ_ADDR_Q1, vtophys(sc->sf_ldata->sf_rx_dlist_big)); csr_write_4(sc, SF_RXDQ_CTL_1, (MCLBYTES << 16) | SF_DESCSPACE_16BYTES); csr_write_4(sc, SF_RXDQ_PTR_Q1, SF_RX_DLIST_CNT - 1); /* Init the TX completion queue */ csr_write_4(sc, SF_TXCQ_CTL, vtophys(sc->sf_ldata->sf_tx_clist) & SF_RXCQ_ADDR); /* Init the TX buffer descriptor queue. */ csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, vtophys(sc->sf_ldata->sf_tx_dlist)); SF_SETBIT(sc, SF_TX_FRAMCTL, SF_TXFRMCTL_CPLAFTERTX); csr_write_4(sc, SF_TXDQ_CTL, SF_TXBUFDESC_TYPE0|SF_TXMINSPACE_128BYTES|SF_TXSKIPLEN_8BYTES); SF_SETBIT(sc, SF_TXDQ_CTL, SF_TXDQCTL_NODMACMP); /* Enable autopadding of short TX frames. */ SF_SETBIT(sc, SF_MACCFG_1, SF_MACCFG1_AUTOPAD); /* Enable interrupts. */ csr_write_4(sc, SF_IMR, SF_INTRS); SF_SETBIT(sc, SF_PCI_DEVCFG, SF_PCIDEVCFG_INTR_ENB); /* Enable the RX and TX engines. */ SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_RX_ENB|SF_ETHCTL_RXDMA_ENB); SF_SETBIT(sc, SF_GEN_ETH_CTL, SF_ETHCTL_TX_ENB|SF_ETHCTL_TXDMA_ENB); sf_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_set(&sc->sc_stats_tmo, sf_stats_update, sc); timeout_add(&sc->sc_stats_tmo, hz); return; } int sf_encap(sc, c, m_head) struct sf_softc *sc; struct sf_tx_bufdesc_type0 *c; struct mbuf *m_head; { int frag = 0; struct sf_frag *f = NULL; struct mbuf *m; m = m_head; for (m = m_head, frag = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (frag == SF_MAXFRAGS) break; f = &c->sf_frags[frag]; if (frag == 0) f->sf_pktlen = m_head->m_pkthdr.len; f->sf_fraglen = m->m_len; f->sf_addr = vtophys(mtod(m, vm_offset_t)); frag++; } } if (m != NULL) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("sf%d: no memory for tx list", sc->sf_unit); return(1); } if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); printf("sf%d: no memory for tx list", sc->sf_unit); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; f = &c->sf_frags[0]; f->sf_fraglen = f->sf_pktlen = m_head->m_pkthdr.len; f->sf_addr = vtophys(mtod(m_head, caddr_t)); frag = 1; } c->sf_mbuf = m_head; c->sf_id = SF_TX_BUFDESC_ID; c->sf_fragcnt = frag; c->sf_intr = 1; c->sf_caltcp = 0; c->sf_crcen = 1; return(0); } void sf_start(ifp) struct ifnet *ifp; { struct sf_softc *sc; struct sf_tx_bufdesc_type0 *cur_tx = NULL; struct mbuf *m_head = NULL; int i, txprod; sc = ifp->if_softc; if (!sc->sf_link) return; if (ifp->if_flags & IFF_OACTIVE) return; txprod = csr_read_4(sc, SF_TXDQ_PRODIDX); i = SF_IDX_HI(txprod) >> 4; while(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf == NULL) { IFQ_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; cur_tx = &sc->sf_ldata->sf_tx_dlist[i]; if (sf_encap(sc, cur_tx, m_head)) { m_freem(m_head); continue; } #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, cur_tx->sf_mbuf); #endif SF_INC(i, SF_TX_DLIST_CNT); sc->sf_tx_cnt++; if (sc->sf_tx_cnt == (SF_TX_DLIST_CNT - 2)) break; } if (cur_tx == NULL) return; /* Transmit */ csr_write_4(sc, SF_TXDQ_PRODIDX, (txprod & ~SF_TXDQ_PRODIDX_HIPRIO) | ((i << 20) & 0xFFFF0000)); ifp->if_timer = 5; return; } void sf_stop(sc) struct sf_softc *sc; { int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; timeout_del(&sc->sc_stats_tmo); csr_write_4(sc, SF_GEN_ETH_CTL, 0); csr_write_4(sc, SF_CQ_CONSIDX, 0); csr_write_4(sc, SF_CQ_PRODIDX, 0); csr_write_4(sc, SF_RXDQ_ADDR_Q1, 0); csr_write_4(sc, SF_RXDQ_CTL_1, 0); csr_write_4(sc, SF_RXDQ_PTR_Q1, 0); csr_write_4(sc, SF_TXCQ_CTL, 0); csr_write_4(sc, SF_TXDQ_ADDR_HIPRIO, 0); csr_write_4(sc, SF_TXDQ_CTL, 0); sf_reset(sc); sc->sf_link = 0; for (i = 0; i < SF_RX_DLIST_CNT; i++) { if (sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf != NULL) { m_freem(sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf); sc->sf_ldata->sf_rx_dlist_big[i].sf_mbuf = NULL; } } for (i = 0; i < SF_TX_DLIST_CNT; i++) { if (sc->sf_ldata->sf_tx_dlist[i].sf_mbuf != NULL) { m_freem(sc->sf_ldata->sf_tx_dlist[i].sf_mbuf); sc->sf_ldata->sf_tx_dlist[i].sf_mbuf = NULL; } } ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); return; } /* * Note: it is important that this function not be interrupted. We * use a two-stage register access scheme: if we are interrupted in * between setting the indirect address register and reading from the * indirect data register, the contents of the address register could * be changed out from under us. */ void sf_stats_update(xsc) void *xsc; { struct sf_softc *sc; struct ifnet *ifp; struct mii_data *mii; struct sf_stats stats; u_int32_t *ptr; int i, s; s = splimp(); sc = xsc; ifp = &sc->arpcom.ac_if; mii = &sc->sc_mii; ptr = (u_int32_t *)&stats; for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) ptr[i] = csr_read_4(sc, SF_STATS_BASE + (i + sizeof(u_int32_t))); for (i = 0; i < sizeof(stats)/sizeof(u_int32_t); i++) csr_write_4(sc, SF_STATS_BASE + (i + sizeof(u_int32_t)), 0); ifp->if_collisions += stats.sf_tx_single_colls + stats.sf_tx_multi_colls + stats.sf_tx_excess_colls; mii_tick(mii); if (!sc->sf_link) { mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) sc->sf_link++; if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) sf_start(ifp); } splx(s); timeout_add(&sc->sc_stats_tmo, hz); return; } void sf_watchdog(ifp) struct ifnet *ifp; { struct sf_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("sf%d: watchdog timeout\n", sc->sf_unit); sf_stop(sc); sf_reset(sc); sf_init(sc); if (IFQ_IS_EMPTY(&ifp->if_snd) == 0) sf_start(ifp); return; } void sf_shutdown(v) void *v; { struct sf_softc *sc = (struct sf_softc *)v; sf_stop(sc); } struct cfattach sf_ca = { sizeof(struct sf_softc), sf_probe, sf_attach }; struct cfdriver sf_cd = { 0, "sf", DV_IFNET };