/* $OpenBSD: if_sis.c,v 1.127 2015/06/24 09:40:54 mpi Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_sis.c,v 1.30 2001/02/06 10:11:47 phk Exp $ */ /* * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are * available from http://www.sis.com.tw. * * This driver also supports the NatSemi DP83815. Datasheets are * available from http://www.national.com. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The SiS 900 is a fairly simple chip. It uses bus master DMA with * simple TX and RX descriptors of 3 longwords in size. The receiver * has a single perfect filter entry for the station address and a * 128-bit multicast hash table. The SiS 900 has a built-in MII-based * transceiver while the 7016 requires an external transceiver chip. * Both chips offer the standard bit-bang MII interface as well as * an enchanced PHY interface which simplifies accessing MII registers. * * The only downside to this chipset is that RX descriptors must be * longword aligned. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #define SIS_USEIOSPACE #include int sis_probe(struct device *, void *, void *); void sis_attach(struct device *, struct device *, void *); int sis_activate(struct device *, int); struct cfattach sis_ca = { sizeof(struct sis_softc), sis_probe, sis_attach, NULL, sis_activate }; struct cfdriver sis_cd = { NULL, "sis", DV_IFNET }; int sis_intr(void *); void sis_fill_rx_ring(struct sis_softc *); int sis_newbuf(struct sis_softc *, struct sis_desc *); int sis_encap(struct sis_softc *, struct mbuf *, u_int32_t *); void sis_rxeof(struct sis_softc *); void sis_txeof(struct sis_softc *); void sis_tick(void *); void sis_start(struct ifnet *); int sis_ioctl(struct ifnet *, u_long, caddr_t); void sis_init(void *); void sis_stop(struct sis_softc *); void sis_watchdog(struct ifnet *); int sis_ifmedia_upd(struct ifnet *); void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *); u_int16_t sis_reverse(u_int16_t); void sis_delay(struct sis_softc *); void sis_eeprom_idle(struct sis_softc *); void sis_eeprom_putbyte(struct sis_softc *, int); void sis_eeprom_getword(struct sis_softc *, int, u_int16_t *); #if defined(__amd64__) || defined(__i386__) void sis_read_cmos(struct sis_softc *, struct pci_attach_args *, caddr_t, int, int); #endif void sis_read_mac(struct sis_softc *, struct pci_attach_args *); void sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int); void sis_read96x_mac(struct sis_softc *); void sis_mii_sync(struct sis_softc *); void sis_mii_send(struct sis_softc *, u_int32_t, int); int sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *); int sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *); int sis_miibus_readreg(struct device *, int, int); void sis_miibus_writereg(struct device *, int, int, int); void sis_miibus_statchg(struct device *); u_int32_t sis_mchash(struct sis_softc *, const uint8_t *); void sis_iff(struct sis_softc *); void sis_iff_ns(struct sis_softc *); void sis_iff_sis(struct sis_softc *); void sis_reset(struct sis_softc *); int sis_ring_init(struct sis_softc *); #define SIS_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define SIS_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x) const struct pci_matchid sis_devices[] = { { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900 }, { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016 }, { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815 } }; /* * Routine to reverse the bits in a word. Stolen almost * verbatim from /usr/games/fortune. */ u_int16_t sis_reverse(u_int16_t n) { n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa); n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc); n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0); n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00); return (n); } void sis_delay(struct sis_softc *sc) { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, SIS_CSR); } void sis_eeprom_idle(struct sis_softc *sc) { int i; SIO_SET(SIS_EECTL_CSEL); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); for (i = 0; i < 25; i++) { SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); } SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_CLR(SIS_EECTL_CSEL); sis_delay(sc); CSR_WRITE_4(sc, SIS_EECTL, 0x00000000); } /* * Send a read command and address to the EEPROM, check for ACK. */ void sis_eeprom_putbyte(struct sis_softc *sc, int addr) { int d, i; d = addr | SIS_EECMD_READ; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) SIO_SET(SIS_EECTL_DIN); else SIO_CLR(SIS_EECTL_DIN); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void sis_eeprom_getword(struct sis_softc *sc, int addr, u_int16_t *dest) { int i; u_int16_t word = 0; /* Force EEPROM to idle state. */ sis_eeprom_idle(sc); /* Enter EEPROM access mode. */ sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_SET(SIS_EECTL_CSEL); sis_delay(sc); /* * Send address of word we want to read. */ sis_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(SIS_EECTL_CLK); sis_delay(sc); if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT) word |= i; sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); } /* Turn off EEPROM access mode. */ sis_eeprom_idle(sc); *dest = word; } /* * Read a sequence of words from the EEPROM. */ void sis_read_eeprom(struct sis_softc *sc, caddr_t dest, int off, int cnt, int swap) { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { sis_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = letoh16(word); else *ptr = word; } } #if defined(__amd64__) || defined(__i386__) void sis_read_cmos(struct sis_softc *sc, struct pci_attach_args *pa, caddr_t dest, int off, int cnt) { u_int32_t reg; int i; reg = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x48); pci_conf_write(pa->pa_pc, pa->pa_tag, 0x48, reg | 0x40); for (i = 0; i < cnt; i++) { bus_space_write_1(pa->pa_iot, 0x0, 0x70, i + off); *(dest + i) = bus_space_read_1(pa->pa_iot, 0x0, 0x71); } pci_conf_write(pa->pa_pc, pa->pa_tag, 0x48, reg & ~0x40); } #endif void sis_read_mac(struct sis_softc *sc, struct pci_attach_args *pa) { uint32_t rxfilt, csrsave; u_int16_t *enaddr = (u_int16_t *) &sc->arpcom.ac_enaddr; rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL); csrsave = CSR_READ_4(sc, SIS_CSR); CSR_WRITE_4(sc, SIS_CSR, SIS_CSR_RELOAD | csrsave); CSR_WRITE_4(sc, SIS_CSR, 0); CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); enaddr[0] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); enaddr[1] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); enaddr[2] = letoh16(CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff); CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt); CSR_WRITE_4(sc, SIS_CSR, csrsave); } void sis_read96x_mac(struct sis_softc *sc) { int i; SIO_SET(SIS96x_EECTL_REQ); for (i = 0; i < 2000; i++) { if ((CSR_READ_4(sc, SIS_EECTL) & SIS96x_EECTL_GNT)) { sis_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, SIS_EE_NODEADDR, 3, 1); break; } else DELAY(1); } SIO_SET(SIS96x_EECTL_DONE); } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void sis_mii_sync(struct sis_softc *sc) { int i; SIO_SET(SIS_MII_DIR|SIS_MII_DATA); for (i = 0; i < 32; i++) { SIO_SET(SIS_MII_CLK); DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); } } /* * Clock a series of bits through the MII. */ void sis_mii_send(struct sis_softc *sc, u_int32_t bits, int cnt) { int i; SIO_CLR(SIS_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) SIO_SET(SIS_MII_DATA); else SIO_CLR(SIS_MII_DATA); DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); } } /* * Read an PHY register through the MII. */ int sis_mii_readreg(struct sis_softc *sc, struct sis_mii_frame *frame) { int i, ack, s; s = splnet(); /* * Set up frame for RX. */ frame->mii_stdelim = SIS_MII_STARTDELIM; frame->mii_opcode = SIS_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Turn on data xmit. */ SIO_SET(SIS_MII_DIR); sis_mii_sync(sc); /* * Send command/address info. */ sis_mii_send(sc, frame->mii_stdelim, 2); sis_mii_send(sc, frame->mii_opcode, 2); sis_mii_send(sc, frame->mii_phyaddr, 5); sis_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((SIS_MII_CLK|SIS_MII_DATA)); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(SIS_MII_DIR); /* Check for ack */ SIO_CLR(SIS_MII_CLK); DELAY(1); ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA; SIO_SET(SIS_MII_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(SIS_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA) frame->mii_data |= i; DELAY(1); } SIO_SET(SIS_MII_CLK); DELAY(1); } fail: SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); splx(s); if (ack) return (1); return (0); } /* * Write to a PHY register through the MII. */ int sis_mii_writereg(struct sis_softc *sc, struct sis_mii_frame *frame) { int s; s = splnet(); /* * Set up frame for TX. */ frame->mii_stdelim = SIS_MII_STARTDELIM; frame->mii_opcode = SIS_MII_WRITEOP; frame->mii_turnaround = SIS_MII_TURNAROUND; /* * Turn on data output. */ SIO_SET(SIS_MII_DIR); sis_mii_sync(sc); sis_mii_send(sc, frame->mii_stdelim, 2); sis_mii_send(sc, frame->mii_opcode, 2); sis_mii_send(sc, frame->mii_phyaddr, 5); sis_mii_send(sc, frame->mii_regaddr, 5); sis_mii_send(sc, frame->mii_turnaround, 2); sis_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(SIS_MII_CLK); DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(SIS_MII_DIR); splx(s); return (0); } int sis_miibus_readreg(struct device *self, int phy, int reg) { struct sis_softc *sc = (struct sis_softc *)self; struct sis_mii_frame frame; if (sc->sis_type == SIS_TYPE_83815) { if (phy != 0) return (0); /* * The NatSemi chip can take a while after * a reset to come ready, during which the BMSR * returns a value of 0. This is *never* supposed * to happen: some of the BMSR bits are meant to * be hardwired in the on position, and this can * confuse the miibus code a bit during the probe * and attach phase. So we make an effort to check * for this condition and wait for it to clear. */ if (!CSR_READ_4(sc, NS_BMSR)) DELAY(1000); return CSR_READ_4(sc, NS_BMCR + (reg * 4)); } /* * Chipsets < SIS_635 seem not to be able to read/write * through mdio. Use the enhanced PHY access register * again for them. */ if (sc->sis_type == SIS_TYPE_900 && sc->sis_rev < SIS_REV_635) { int i, val = 0; if (phy != 0) return (0); CSR_WRITE_4(sc, SIS_PHYCTL, (phy << 11) | (reg << 6) | SIS_PHYOP_READ); SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) break; } if (i == SIS_TIMEOUT) { printf("%s: PHY failed to come ready\n", sc->sc_dev.dv_xname); return (0); } val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF; if (val == 0xFFFF) return (0); return (val); } else { bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; sis_mii_readreg(sc, &frame); return (frame.mii_data); } } void sis_miibus_writereg(struct device *self, int phy, int reg, int data) { struct sis_softc *sc = (struct sis_softc *)self; struct sis_mii_frame frame; if (sc->sis_type == SIS_TYPE_83815) { if (phy != 0) return; CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data); return; } /* * Chipsets < SIS_635 seem not to be able to read/write * through mdio. Use the enhanced PHY access register * again for them. */ if (sc->sis_type == SIS_TYPE_900 && sc->sis_rev < SIS_REV_635) { int i; if (phy != 0) return; CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) | (reg << 6) | SIS_PHYOP_WRITE); SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) break; } if (i == SIS_TIMEOUT) printf("%s: PHY failed to come ready\n", sc->sc_dev.dv_xname); } else { bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; sis_mii_writereg(sc, &frame); } } void sis_miibus_statchg(struct device *self) { struct sis_softc *sc = (struct sis_softc *)self; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = &sc->sc_mii; if ((ifp->if_flags & IFF_RUNNING) == 0) return; sc->sis_link = 0; if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == (IFM_ACTIVE | IFM_AVALID)) { switch (IFM_SUBTYPE(mii->mii_media_active)) { case IFM_10_T: CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10); sc->sis_link++; break; case IFM_100_TX: CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); sc->sis_link++; break; default: break; } } if (!sc->sis_link) { /* * Stopping MACs seem to reset SIS_TX_LISTPTR and * SIS_RX_LISTPTR which in turn requires resetting * TX/RX buffers. So just don't do anything for * lost link. */ return; } /* Set full/half duplex mode. */ if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) { SIS_SETBIT(sc, SIS_TX_CFG, (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); } else { SIS_CLRBIT(sc, SIS_TX_CFG, (SIS_TXCFG_IGN_HBEAT | SIS_TXCFG_IGN_CARR)); SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); } if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { /* * MPII03.D: Half Duplex Excessive Collisions. * Also page 49 in 83816 manual */ SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D); } /* * Some DP83815s experience problems when used with short * (< 30m/100ft) Ethernet cables in 100baseTX mode. This * sequence adjusts the DSP's signal attenuation to fix the * problem. */ if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A && IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { uint32_t reg; CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff; CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000); DELAY(100); reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff; if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) { #ifdef DEBUG printf("%s: Applying short cable fix (reg=%x)\n", sc->sc_dev.dv_xname, reg); #endif CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8); SIS_SETBIT(sc, NS_PHY_DSPCFG, 0x20); } CSR_WRITE_4(sc, NS_PHY_PAGE, 0); } /* Enable TX/RX MACs. */ SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE | SIS_CSR_RX_ENABLE); } u_int32_t sis_mchash(struct sis_softc *sc, const uint8_t *addr) { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_be(addr, ETHER_ADDR_LEN); /* * return the filter bit position * * The NatSemi chip has a 512-bit filter, which is * different than the SiS, so we special-case it. */ if (sc->sis_type == SIS_TYPE_83815) return (crc >> 23); else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) return (crc >> 24); else return (crc >> 25); } void sis_iff(struct sis_softc *sc) { if (sc->sis_type == SIS_TYPE_83815) sis_iff_ns(sc); else sis_iff_sis(sc); } void sis_iff_ns(struct sis_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int32_t h = 0, i, rxfilt; int bit, index; rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL); if (rxfilt & SIS_RXFILTCTL_ENABLE) { /* * Filter should be disabled to program other bits. */ CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE); CSR_READ_4(sc, SIS_RXFILT_CTL); } rxfilt &= ~(SIS_RXFILTCTL_ALLMULTI | SIS_RXFILTCTL_ALLPHYS | NS_RXFILTCTL_ARP | SIS_RXFILTCTL_BROAD | NS_RXFILTCTL_MCHASH | NS_RXFILTCTL_PERFECT); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept ARP frames. * Always accept broadcast frames. * Always accept frames destined to our station address. */ rxfilt |= NS_RXFILTCTL_ARP | SIS_RXFILTCTL_BROAD | NS_RXFILTCTL_PERFECT; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; rxfilt |= SIS_RXFILTCTL_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) rxfilt |= SIS_RXFILTCTL_ALLPHYS; } else { /* * We have to explicitly enable the multicast hash table * on the NatSemi chip if we want to use it, which we do. */ rxfilt |= NS_RXFILTCTL_MCHASH; /* first, zot all the existing hash bits */ for (i = 0; i < 32; i++) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i * 2)); CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0); } ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = sis_mchash(sc, enm->enm_addrlo); index = h >> 3; bit = h & 0x1F; CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index); if (bit > 0xF) bit -= 0x10; SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit)); ETHER_NEXT_MULTI(step, enm); } } CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt); /* Turn the receive filter on. */ CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt | SIS_RXFILTCTL_ENABLE); CSR_READ_4(sc, SIS_RXFILT_CTL); } void sis_iff_sis(struct sis_softc *sc) { struct ifnet *ifp = &sc->arpcom.ac_if; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int32_t h, i, maxmulti, rxfilt; u_int16_t hashes[16]; /* hash table size */ if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) maxmulti = 16; else maxmulti = 8; rxfilt = CSR_READ_4(sc, SIS_RXFILT_CTL); if (rxfilt & SIS_RXFILTCTL_ENABLE) { /* * Filter should be disabled to program other bits. */ CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt & ~SIS_RXFILTCTL_ENABLE); CSR_READ_4(sc, SIS_RXFILT_CTL); } rxfilt &= ~(SIS_RXFILTCTL_ALLMULTI | SIS_RXFILTCTL_ALLPHYS | SIS_RXFILTCTL_BROAD); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept broadcast frames. */ rxfilt |= SIS_RXFILTCTL_BROAD; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0 || ac->ac_multicnt > maxmulti) { ifp->if_flags |= IFF_ALLMULTI; rxfilt |= SIS_RXFILTCTL_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) rxfilt |= SIS_RXFILTCTL_ALLPHYS; for (i = 0; i < maxmulti; i++) hashes[i] = ~0; } else { for (i = 0; i < maxmulti; i++) hashes[i] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = sis_mchash(sc, enm->enm_addrlo); hashes[h >> 4] |= 1 << (h & 0xf); ETHER_NEXT_MULTI(step, enm); } } for (i = 0; i < maxmulti; i++) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16); CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]); } CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt); /* Turn the receive filter on. */ CSR_WRITE_4(sc, SIS_RXFILT_CTL, rxfilt | SIS_RXFILTCTL_ENABLE); CSR_READ_4(sc, SIS_RXFILT_CTL); } void sis_reset(struct sis_softc *sc) { int i; SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET)) break; } if (i == SIS_TIMEOUT) printf("%s: reset never completed\n", sc->sc_dev.dv_xname); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* * If this is a NetSemi chip, make sure to clear * PME mode. */ if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS); CSR_WRITE_4(sc, NS_CLKRUN, 0); } } /* * Probe for an SiS chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int sis_probe(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, sis_devices, nitems(sis_devices))); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void sis_attach(struct device *parent, struct device *self, void *aux) { int i; const char *intrstr = NULL; struct sis_softc *sc = (struct sis_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; struct ifnet *ifp; bus_size_t size; sc->sis_stopped = 1; pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0); /* * Map control/status registers. */ #ifdef SIS_USEIOSPACE if (pci_mapreg_map(pa, SIS_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, &sc->sis_btag, &sc->sis_bhandle, NULL, &size, 0)) { printf(": can't map i/o space\n"); return; } #else if (pci_mapreg_map(pa, SIS_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, &sc->sis_btag, &sc->sis_bhandle, NULL, &size, 0)) { printf(": can't map mem space\n"); return; } #endif /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail_1; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sis_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail_1; } switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_SIS_900: sc->sis_type = SIS_TYPE_900; break; case PCI_PRODUCT_SIS_7016: sc->sis_type = SIS_TYPE_7016; break; case PCI_PRODUCT_NS_DP83815: sc->sis_type = SIS_TYPE_83815; break; default: break; } sc->sis_rev = PCI_REVISION(pa->pa_class); /* Reset the adapter. */ sis_reset(sc); if (sc->sis_type == SIS_TYPE_900 && (sc->sis_rev == SIS_REV_635 || sc->sis_rev == SIS_REV_900B)) { SIO_SET(SIS_CFG_RND_CNT); SIO_SET(SIS_CFG_PERR_DETECT); } /* * Get station address from the EEPROM. */ switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_NS: sc->sis_srr = CSR_READ_4(sc, NS_SRR); if (sc->sis_srr == NS_SRR_15C) printf(", DP83815C"); else if (sc->sis_srr == NS_SRR_15D) printf(", DP83815D"); else if (sc->sis_srr == NS_SRR_16A) printf(", DP83816A"); else printf(", srr %x", sc->sis_srr); /* * Reading the MAC address out of the EEPROM on * the NatSemi chip takes a bit more work than * you'd expect. The address spans 4 16-bit words, * with the first word containing only a single bit. * You have to shift everything over one bit to * get it aligned properly. Also, the bits are * stored backwards (the LSB is really the MSB, * and so on) so you have to reverse them in order * to get the MAC address into the form we want. * Why? Who the hell knows. */ { u_int16_t tmp[4]; sis_read_eeprom(sc, (caddr_t)&tmp, NS_EE_NODEADDR, 4, 0); /* Shift everything over one bit. */ tmp[3] = tmp[3] >> 1; tmp[3] |= tmp[2] << 15; tmp[2] = tmp[2] >> 1; tmp[2] |= tmp[1] << 15; tmp[1] = tmp[1] >> 1; tmp[1] |= tmp[0] << 15; /* Now reverse all the bits. */ tmp[3] = letoh16(sis_reverse(tmp[3])); tmp[2] = letoh16(sis_reverse(tmp[2])); tmp[1] = letoh16(sis_reverse(tmp[1])); bcopy(&tmp[1], sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); } break; case PCI_VENDOR_SIS: default: #if defined(__amd64__) || defined(__i386__) /* * If this is a SiS 630E chipset with an embedded * SiS 900 controller, we have to read the MAC address * from the APC CMOS RAM. Our method for doing this * is very ugly since we have to reach out and grab * ahold of hardware for which we cannot properly * allocate resources. This code is only compiled on * the i386 architecture since the SiS 630E chipset * is for x86 motherboards only. Note that there are * a lot of magic numbers in this hack. These are * taken from SiS's Linux driver. I'd like to replace * them with proper symbolic definitions, but that * requires some datasheets that I don't have access * to at the moment. */ if (sc->sis_rev == SIS_REV_630S || sc->sis_rev == SIS_REV_630E) sis_read_cmos(sc, pa, (caddr_t)&sc->arpcom.ac_enaddr, 0x9, 6); else #endif if (sc->sis_rev == SIS_REV_96x) sis_read96x_mac(sc); else if (sc->sis_rev == SIS_REV_635 || sc->sis_rev == SIS_REV_630ET || sc->sis_rev == SIS_REV_630EA1) sis_read_mac(sc, pa); else sis_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, SIS_EE_NODEADDR, 3, 1); break; } printf(": %s, address %s\n", intrstr, ether_sprintf(sc->arpcom.ac_enaddr)); sc->sc_dmat = pa->pa_dmat; if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sis_list_data), PAGE_SIZE, 0, sc->sc_listseg, 1, &sc->sc_listnseg, BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) { printf(": can't alloc list mem\n"); goto fail_2; } if (bus_dmamem_map(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg, sizeof(struct sis_list_data), &sc->sc_listkva, BUS_DMA_NOWAIT) != 0) { printf(": can't map list mem\n"); goto fail_2; } if (bus_dmamap_create(sc->sc_dmat, sizeof(struct sis_list_data), 1, sizeof(struct sis_list_data), 0, BUS_DMA_NOWAIT, &sc->sc_listmap) != 0) { printf(": can't alloc list map\n"); goto fail_2; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_listmap, sc->sc_listkva, sizeof(struct sis_list_data), NULL, BUS_DMA_NOWAIT) != 0) { printf(": can't load list map\n"); goto fail_2; } sc->sis_ldata = (struct sis_list_data *)sc->sc_listkva; for (i = 0; i < SIS_RX_LIST_CNT; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sis_ldata->sis_rx_list[i].map) != 0) { printf(": can't create rx map\n"); goto fail_2; } } for (i = 0; i < SIS_TX_LIST_CNT; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, SIS_MAXTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sis_ldata->sis_tx_list[i].map) != 0) { printf(": can't create tx map\n"); goto fail_2; } } if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, SIS_MAXTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_tx_sparemap) != 0) { printf(": can't create tx spare map\n"); goto fail_2; } timeout_set(&sc->sis_timeout, sis_tick, sc); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sis_ioctl; ifp->if_start = sis_start; ifp->if_watchdog = sis_watchdog; IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_hardmtu = 1518; /* determined experimentally on DP83815 */ ifp->if_capabilities = IFCAP_VLAN_MTU; sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = sis_miibus_readreg; sc->sc_mii.mii_writereg = sis_miibus_writereg; sc->sc_mii.mii_statchg = sis_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, sis_ifmedia_upd,sis_ifmedia_sts); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); return; fail_2: pci_intr_disestablish(pc, sc->sc_ih); fail_1: bus_space_unmap(sc->sis_btag, sc->sis_bhandle, size); } int sis_activate(struct device *self, int act) { struct sis_softc *sc = (struct sis_softc *)self; struct ifnet *ifp = &sc->arpcom.ac_if; int rv = 0; switch (act) { case DVACT_SUSPEND: if (ifp->if_flags & IFF_RUNNING) sis_stop(sc); rv = config_activate_children(self, act); break; case DVACT_RESUME: if (ifp->if_flags & IFF_UP) sis_init(sc); break; default: rv = config_activate_children(self, act); break; } return (rv); } /* * Initialize the TX and RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int sis_ring_init(struct sis_softc *sc) { struct sis_list_data *ld; struct sis_ring_data *cd; int i, nexti; cd = &sc->sis_cdata; ld = sc->sis_ldata; for (i = 0; i < SIS_TX_LIST_CNT; i++) { if (i == (SIS_TX_LIST_CNT - 1)) nexti = 0; else nexti = i + 1; ld->sis_tx_list[i].sis_nextdesc = &ld->sis_tx_list[nexti]; ld->sis_tx_list[i].sis_next = htole32(sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct sis_list_data, sis_tx_list[nexti])); ld->sis_tx_list[i].sis_mbuf = NULL; ld->sis_tx_list[i].sis_ptr = 0; ld->sis_tx_list[i].sis_ctl = 0; } cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0; for (i = 0; i < SIS_RX_LIST_CNT; i++) { if (i == SIS_RX_LIST_CNT - 1) nexti = 0; else nexti = i + 1; ld->sis_rx_list[i].sis_nextdesc = &ld->sis_rx_list[nexti]; ld->sis_rx_list[i].sis_next = htole32(sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct sis_list_data, sis_rx_list[nexti])); ld->sis_rx_list[i].sis_ctl = 0; } cd->sis_rx_prod = cd->sis_rx_cons; if_rxr_init(&cd->sis_rx_ring, 2, SIS_RX_LIST_CNT - 1); sis_fill_rx_ring(sc); return (0); } void sis_fill_rx_ring(struct sis_softc *sc) { struct sis_list_data *ld; struct sis_ring_data *cd; u_int slots; cd = &sc->sis_cdata; ld = sc->sis_ldata; for (slots = if_rxr_get(&cd->sis_rx_ring, SIS_RX_LIST_CNT); slots > 0; slots--) { if (sis_newbuf(sc, &ld->sis_rx_list[cd->sis_rx_prod])) break; SIS_INC(cd->sis_rx_prod, SIS_RX_LIST_CNT); } if_rxr_put(&cd->sis_rx_ring, slots); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int sis_newbuf(struct sis_softc *sc, struct sis_desc *c) { struct mbuf *m_new = NULL; if (c == NULL) return (EINVAL); m_new = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES); if (!m_new) return (ENOBUFS); m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; if (bus_dmamap_load_mbuf(sc->sc_dmat, c->map, m_new, BUS_DMA_NOWAIT)) { m_free(m_new); return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmat, c->map, 0, c->map->dm_mapsize, BUS_DMASYNC_PREREAD); c->sis_mbuf = m_new; c->sis_ptr = htole32(c->map->dm_segs[0].ds_addr); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)c - sc->sc_listkva), sizeof(struct sis_desc), BUS_DMASYNC_PREWRITE); c->sis_ctl = htole32(ETHER_MAX_DIX_LEN); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)c - sc->sc_listkva), sizeof(struct sis_desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void sis_rxeof(struct sis_softc *sc) { struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct mbuf *m; struct ifnet *ifp; struct sis_desc *cur_rx; int total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; while (if_rxr_inuse(&sc->sis_cdata.sis_rx_ring) > 0) { cur_rx = &sc->sis_ldata->sis_rx_list[sc->sis_cdata.sis_rx_cons]; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)cur_rx - sc->sc_listkva), sizeof(struct sis_desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (!SIS_OWNDESC(cur_rx)) break; rxstat = letoh32(cur_rx->sis_rxstat); m = cur_rx->sis_mbuf; cur_rx->sis_mbuf = NULL; total_len = SIS_RXBYTES(cur_rx); /* from here on the buffer is consumed */ SIS_INC(sc->sis_cdata.sis_rx_cons, SIS_RX_LIST_CNT); if_rxr_put(&sc->sis_cdata.sis_rx_ring, 1); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. However, don't report long * frames as errors since they could be VLANs. */ if (rxstat & SIS_RXSTAT_GIANT && total_len <= (ETHER_MAX_DIX_LEN - ETHER_CRC_LEN)) rxstat &= ~SIS_RXSTAT_GIANT; if (SIS_RXSTAT_ERROR(rxstat)) { ifp->if_ierrors++; if (rxstat & SIS_RXSTAT_COLL) ifp->if_collisions++; m_freem(m); continue; } /* No errors; receive the packet. */ bus_dmamap_sync(sc->sc_dmat, cur_rx->map, 0, cur_rx->map->dm_mapsize, BUS_DMASYNC_POSTREAD); #ifdef __STRICT_ALIGNMENT /* * On some architectures, we do not have alignment problems, * so try to allocate a new buffer for the receive ring, and * pass up the one where the packet is already, saving the * expensive copy done in m_devget(). * If we are on an architecture with alignment problems, or * if the allocation fails, then use m_devget and leave the * existing buffer in the receive ring. */ { struct mbuf *m0; m0 = m_devget(mtod(m, char *), total_len, ETHER_ALIGN); m_freem(m); if (m0 == NULL) { ifp->if_ierrors++; continue; } m = m0; } #else m->m_pkthdr.len = m->m_len = total_len; #endif ml_enqueue(&ml, m); } if_input(ifp, &ml); sis_fill_rx_ring(sc); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void sis_txeof(struct sis_softc *sc) { struct ifnet *ifp; u_int32_t idx, ctl, txstat; ifp = &sc->arpcom.ac_if; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0; sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT)) { struct sis_desc *cur_tx = &sc->sis_ldata->sis_tx_list[idx]; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)cur_tx - sc->sc_listkva), sizeof(struct sis_desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (SIS_OWNDESC(cur_tx)) break; ctl = letoh32(cur_tx->sis_ctl); if (ctl & SIS_CMDSTS_MORE) continue; txstat = letoh32(cur_tx->sis_txstat); if (!(ctl & SIS_CMDSTS_PKT_OK)) { ifp->if_oerrors++; if (txstat & SIS_TXSTAT_EXCESSCOLLS) ifp->if_collisions++; if (txstat & SIS_TXSTAT_OUTOFWINCOLL) ifp->if_collisions++; } ifp->if_collisions += (txstat & SIS_TXSTAT_COLLCNT) >> 16; ifp->if_opackets++; if (cur_tx->map->dm_nsegs != 0) { bus_dmamap_t map = cur_tx->map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); } if (cur_tx->sis_mbuf != NULL) { m_freem(cur_tx->sis_mbuf); cur_tx->sis_mbuf = NULL; } } if (idx != sc->sis_cdata.sis_tx_cons) { /* we freed up some buffers */ sc->sis_cdata.sis_tx_cons = idx; ifp->if_flags &= ~IFF_OACTIVE; } ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5; } void sis_tick(void *xsc) { struct sis_softc *sc = (struct sis_softc *)xsc; struct mii_data *mii; int s; s = splnet(); mii = &sc->sc_mii; mii_tick(mii); if (!sc->sis_link) sis_miibus_statchg(&sc->sc_dev); timeout_add_sec(&sc->sis_timeout, 1); splx(s); } int sis_intr(void *arg) { struct sis_softc *sc = arg; struct ifnet *ifp = &sc->arpcom.ac_if; u_int32_t status; if (sc->sis_stopped) /* Most likely shared interrupt */ return (0); /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, SIS_ISR); if ((status & SIS_INTRS) == 0) return (0); if (status & (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK | SIS_ISR_TX_IDLE)) sis_txeof(sc); if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_ERR | SIS_ISR_RX_IDLE)) sis_rxeof(sc); if (status & (SIS_ISR_RX_IDLE)) { /* consume what's there so that sis_rx_cons points * to the first HW owned descriptor. */ sis_rxeof(sc); /* reprogram the RX listptr */ CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct sis_list_data, sis_rx_list[sc->sis_cdata.sis_rx_cons])); } if (status & SIS_ISR_SYSERR) sis_init(sc); /* * XXX: Re-enable RX engine every time otherwise it occasionally * stops under unknown circumstances. */ SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); if (!IFQ_IS_EMPTY(&ifp->if_snd)) sis_start(ifp); return (1); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int sis_encap(struct sis_softc *sc, struct mbuf *m_head, u_int32_t *txidx) { struct sis_desc *f = NULL; bus_dmamap_t map; int frag, cur, i, error; map = sc->sc_tx_sparemap; error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT); switch (error) { case 0: break; case EFBIG: if (m_defrag(m_head, M_DONTWAIT) == 0 && bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT) == 0) break; /* FALLTHROUGH */ default: return (ENOBUFS); } if ((SIS_TX_LIST_CNT - (sc->sis_cdata.sis_tx_cnt + map->dm_nsegs)) < 2) { bus_dmamap_unload(sc->sc_dmat, map); return (ENOBUFS); } /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ cur = frag = *txidx; for (i = 0; i < map->dm_nsegs; i++) { f = &sc->sis_ldata->sis_tx_list[frag]; f->sis_ctl = htole32(SIS_CMDSTS_MORE | map->dm_segs[i].ds_len); f->sis_ptr = htole32(map->dm_segs[i].ds_addr); if (i != 0) f->sis_ctl |= htole32(SIS_CMDSTS_OWN); cur = frag; SIS_INC(frag, SIS_TX_LIST_CNT); } bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->sis_ldata->sis_tx_list[cur].sis_mbuf = m_head; sc->sis_ldata->sis_tx_list[cur].sis_ctl &= ~htole32(SIS_CMDSTS_MORE); sc->sis_ldata->sis_tx_list[*txidx].sis_ctl |= htole32(SIS_CMDSTS_OWN); sc->sis_cdata.sis_tx_cnt += map->dm_nsegs; *txidx = frag; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offsetof(struct sis_list_data, sis_tx_list[0]), sizeof(struct sis_desc) * SIS_TX_LIST_CNT, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void sis_start(struct ifnet *ifp) { struct sis_softc *sc; struct mbuf *m_head = NULL; u_int32_t idx, queued = 0; sc = ifp->if_softc; if (!sc->sis_link) return; idx = sc->sis_cdata.sis_tx_prod; if (ifp->if_flags & IFF_OACTIVE) return; while(sc->sis_ldata->sis_tx_list[idx].sis_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sis_encap(sc, m_head, &idx)) { ifp->if_flags |= IFF_OACTIVE; break; } /* now we are committed to transmit the packet */ IFQ_DEQUEUE(&ifp->if_snd, m_head); queued++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head, BPF_DIRECTION_OUT); #endif } if (queued) { /* Transmit */ sc->sis_cdata.sis_tx_prod = idx; SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } } void sis_init(void *xsc) { struct sis_softc *sc = (struct sis_softc *)xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int s; s = splnet(); /* * Cancel pending I/O and free all RX/TX buffers. */ sis_stop(sc); /* * Reset the chip to a known state. */ sis_reset(sc); #if NS_IHR_DELAY > 0 /* Configure interrupt holdoff register. */ if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr == NS_SRR_16A) CSR_WRITE_4(sc, NS_IHR, NS_IHR_VALUE); #endif mii = &sc->sc_mii; /* Set MAC address */ if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0); CSR_WRITE_4(sc, SIS_RXFILT_DATA, htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[0])); CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1); CSR_WRITE_4(sc, SIS_RXFILT_DATA, htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[1])); CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2); CSR_WRITE_4(sc, SIS_RXFILT_DATA, htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[2])); } else { CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); CSR_WRITE_4(sc, SIS_RXFILT_DATA, htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[0])); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); CSR_WRITE_4(sc, SIS_RXFILT_DATA, htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[1])); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); CSR_WRITE_4(sc, SIS_RXFILT_DATA, htole16(((u_int16_t *)sc->arpcom.ac_enaddr)[2])); } /* Init circular TX/RX lists. */ if (sis_ring_init(sc) != 0) { printf("%s: initialization failed: no memory for rx buffers\n", sc->sc_dev.dv_xname); sis_stop(sc); splx(s); return; } /* * Page 78 of the DP83815 data sheet (september 2002 version) * recommends the following register settings "for optimum * performance." for rev 15C. The driver from NS also sets * the PHY_CR register for later versions. * * This resolves an issue with tons of errors in AcceptPerfectMatch * (non-IFF_PROMISC) mode. */ if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) { CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); CSR_WRITE_4(sc, NS_PHY_CR, 0x189C); /* set val for c2 */ CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000); /* load/kill c2 */ CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040); /* raise SD off, from 4 to c */ CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C); CSR_WRITE_4(sc, NS_PHY_PAGE, 0); } /* * Program promiscuous mode and multicast filters. */ sis_iff(sc); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct sis_list_data, sis_rx_list[0])); CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct sis_list_data, sis_tx_list[0])); /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of * the PCI bus. When this bit is set, the Max DMA Burst Size * for TX/RX DMA should be no larger than 16 double words. */ if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64); else CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256); /* Accept Long Packets for VLAN support */ SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER); /* * Assume 100Mbps link, actual MAC configuration is done * after getting a valid link. */ CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); /* * Enable interrupts. */ CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS); CSR_WRITE_4(sc, SIS_IER, 1); /* Clear MAC disable. */ SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); sc->sis_link = 0; mii_mediachg(mii); sc->sis_stopped = 0; ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_add_sec(&sc->sis_timeout, 1); } /* * Set media options. */ int sis_ifmedia_upd(struct ifnet *ifp) { struct sis_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return (0); } /* * Report current media status. */ void sis_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct sis_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } int sis_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct sis_softc *sc = ifp->if_softc; struct ifaddr *ifa = (struct ifaddr *) data; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int s, error = 0; s = splnet(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) sis_init(sc); if (ifa->ifa_addr->sa_family == AF_INET) arp_ifinit(&sc->arpcom, ifa); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else sis_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) sis_stop(sc); } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc->sc_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCGIFRXR: error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data, NULL, MCLBYTES, &sc->sis_cdata.sis_rx_ring); break; default: error = ether_ioctl(ifp, &sc->arpcom, command, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) sis_iff(sc); error = 0; } splx(s); return(error); } void sis_watchdog(struct ifnet *ifp) { struct sis_softc *sc; int s; sc = ifp->if_softc; if (sc->sis_stopped) return; ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); s = splnet(); sis_init(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd)) sis_start(ifp); splx(s); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void sis_stop(struct sis_softc *sc) { int i; struct ifnet *ifp; if (sc->sis_stopped) return; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->sis_timeout); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); sc->sis_stopped = 1; CSR_WRITE_4(sc, SIS_IER, 0); CSR_WRITE_4(sc, SIS_IMR, 0); CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */ SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE | SIS_CSR_RX_DISABLE); DELAY(1000); CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0); CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); sc->sis_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < SIS_RX_LIST_CNT; i++) { if (sc->sis_ldata->sis_rx_list[i].map->dm_nsegs != 0) { bus_dmamap_t map = sc->sis_ldata->sis_rx_list[i].map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->sis_ldata->sis_rx_list[i].sis_mbuf != NULL) { m_freem(sc->sis_ldata->sis_rx_list[i].sis_mbuf); sc->sis_ldata->sis_rx_list[i].sis_mbuf = NULL; } bzero(&sc->sis_ldata->sis_rx_list[i], sizeof(struct sis_desc) - sizeof(bus_dmamap_t)); } /* * Free the TX list buffers. */ for (i = 0; i < SIS_TX_LIST_CNT; i++) { if (sc->sis_ldata->sis_tx_list[i].map->dm_nsegs != 0) { bus_dmamap_t map = sc->sis_ldata->sis_tx_list[i].map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->sis_ldata->sis_tx_list[i].sis_mbuf != NULL) { m_freem(sc->sis_ldata->sis_tx_list[i].sis_mbuf); sc->sis_ldata->sis_tx_list[i].sis_mbuf = NULL; } bzero(&sc->sis_ldata->sis_tx_list[i], sizeof(struct sis_desc) - sizeof(bus_dmamap_t)); } }