/* $OpenBSD: if_sis.c,v 1.59 2005/10/20 21:47:56 brad Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_sis.c,v 1.30 2001/02/06 10:11:47 phk Exp $ */ /* * SiS 900/SiS 7016 fast ethernet PCI NIC driver. Datasheets are * available from http://www.sis.com.tw. * * This driver also supports the NatSemi DP83815. Datasheets are * available from http://www.national.com. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The SiS 900 is a fairly simple chip. It uses bus master DMA with * simple TX and RX descriptors of 3 longwords in size. The receiver * has a single perfect filter entry for the station address and a * 128-bit multicast hash table. The SiS 900 has a built-in MII-based * transceiver while the 7016 requires an external transceiver chip. * Both chips offer the standard bit-bang MII interface as well as * an enchanced PHY interface which simplifies accessing MII registers. * * The only downside to this chipset is that RX descriptors must be * longword aligned. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #define SIS_USEIOSPACE #include int sis_probe(struct device *, void *, void *); void sis_attach(struct device *, struct device *, void *); int sis_intr(void *); void sis_shutdown(void *); int sis_newbuf(struct sis_softc *, struct sis_desc *, struct mbuf *); int sis_encap(struct sis_softc *, struct mbuf *, u_int32_t *); void sis_rxeof(struct sis_softc *); void sis_rxeoc(struct sis_softc *); void sis_txeof(struct sis_softc *); void sis_tick(void *); void sis_start(struct ifnet *); int sis_ioctl(struct ifnet *, u_long, caddr_t); void sis_init(void *); void sis_stop(struct sis_softc *); void sis_watchdog(struct ifnet *); int sis_ifmedia_upd(struct ifnet *); void sis_ifmedia_sts(struct ifnet *, struct ifmediareq *); u_int16_t sis_reverse(u_int16_t); void sis_delay(struct sis_softc *); void sis_eeprom_idle(struct sis_softc *); void sis_eeprom_putbyte(struct sis_softc *, int); void sis_eeprom_getword(struct sis_softc *, int, u_int16_t *); #if defined(__amd64__) || defined(__i386__) void sis_read_cmos(struct sis_softc *, struct pci_attach_args *, caddr_t, int, int); #endif void sis_read_mac(struct sis_softc *, struct pci_attach_args *); void sis_read_eeprom(struct sis_softc *, caddr_t, int, int, int); void sis_read96x_mac(struct sis_softc *); void sis_mii_sync(struct sis_softc *); void sis_mii_send(struct sis_softc *, u_int32_t, int); int sis_mii_readreg(struct sis_softc *, struct sis_mii_frame *); int sis_mii_writereg(struct sis_softc *, struct sis_mii_frame *); int sis_miibus_readreg(struct device *, int, int); void sis_miibus_writereg(struct device *, int, int, int); void sis_miibus_statchg(struct device *); u_int32_t sis_mchash(struct sis_softc *, const uint8_t *); void sis_setmulti_sis(struct sis_softc *); void sis_setmulti_ns(struct sis_softc *); void sis_reset(struct sis_softc *); int sis_list_rx_init(struct sis_softc *); int sis_list_tx_init(struct sis_softc *); #define SIS_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define SIS_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, SIS_EECTL, CSR_READ_4(sc, SIS_EECTL) & ~x) /* * Routine to reverse the bits in a word. Stolen almost * verbatim from /usr/games/fortune. */ u_int16_t sis_reverse(n) u_int16_t n; { n = ((n >> 1) & 0x5555) | ((n << 1) & 0xaaaa); n = ((n >> 2) & 0x3333) | ((n << 2) & 0xcccc); n = ((n >> 4) & 0x0f0f) | ((n << 4) & 0xf0f0); n = ((n >> 8) & 0x00ff) | ((n << 8) & 0xff00); return(n); } void sis_delay(sc) struct sis_softc *sc; { int idx; for (idx = (300 / 33) + 1; idx > 0; idx--) CSR_READ_4(sc, SIS_CSR); return; } void sis_eeprom_idle(sc) struct sis_softc *sc; { register int i; SIO_SET(SIS_EECTL_CSEL); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); for (i = 0; i < 25; i++) { SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); } SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_CLR(SIS_EECTL_CSEL); sis_delay(sc); CSR_WRITE_4(sc, SIS_EECTL, 0x00000000); return; } /* * Send a read command and address to the EEPROM, check for ACK. */ void sis_eeprom_putbyte(sc, addr) struct sis_softc *sc; int addr; { register int d, i; d = addr | SIS_EECMD_READ; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { SIO_SET(SIS_EECTL_DIN); } else { SIO_CLR(SIS_EECTL_DIN); } sis_delay(sc); SIO_SET(SIS_EECTL_CLK); sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); } return; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void sis_eeprom_getword(sc, addr, dest) struct sis_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Force EEPROM to idle state. */ sis_eeprom_idle(sc); /* Enter EEPROM access mode. */ sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); SIO_SET(SIS_EECTL_CSEL); sis_delay(sc); /* * Send address of word we want to read. */ sis_eeprom_putbyte(sc, addr); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(SIS_EECTL_CLK); sis_delay(sc); if (CSR_READ_4(sc, SIS_EECTL) & SIS_EECTL_DOUT) word |= i; sis_delay(sc); SIO_CLR(SIS_EECTL_CLK); sis_delay(sc); } /* Turn off EEPROM access mode. */ sis_eeprom_idle(sc); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ void sis_read_eeprom(sc, dest, off, cnt, swap) struct sis_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { sis_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } #if defined(__amd64__) || defined(__i386__) void sis_read_cmos(sc, pa, dest, off, cnt) struct sis_softc *sc; struct pci_attach_args *pa; caddr_t dest; int off, cnt; { bus_space_tag_t btag; u_int32_t reg; int i; reg = pci_conf_read(pa->pa_pc, pa->pa_tag, 0x48); pci_conf_write(pa->pa_pc, pa->pa_tag, 0x48, reg | 0x40); #if defined(__amd64__) btag = X86_BUS_SPACE_IO; #elif defined(__i386__) btag = I386_BUS_SPACE_IO; #endif for (i = 0; i < cnt; i++) { bus_space_write_1(btag, 0x0, 0x70, i + off); *(dest + i) = bus_space_read_1(btag, 0x0, 0x71); } pci_conf_write(pa->pa_pc, pa->pa_tag, 0x48, reg & ~0x40); } #endif void sis_read_mac(sc, pa) struct sis_softc *sc; struct pci_attach_args *pa; { u_int16_t *enaddr = (u_int16_t *) &sc->arpcom.ac_enaddr; SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RELOAD); SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_RELOAD); SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); enaddr[0] = CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff; CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); enaddr[1] = CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff; CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); enaddr[2] = CSR_READ_4(sc, SIS_RXFILT_DATA) & 0xffff; SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE); } void sis_read96x_mac(sc) struct sis_softc *sc; { int i; SIO_SET(SIS96x_EECTL_REQ); for (i = 0; i < 2000; i++) { if ((CSR_READ_4(sc, SIS_EECTL) & SIS96x_EECTL_GNT)) { sis_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, SIS_EE_NODEADDR, 3, 0); break; } else DELAY(1); } SIO_SET(SIS96x_EECTL_DONE); } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void sis_mii_sync(sc) struct sis_softc *sc; { register int i; SIO_SET(SIS_MII_DIR|SIS_MII_DATA); for (i = 0; i < 32; i++) { SIO_SET(SIS_MII_CLK); DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ void sis_mii_send(sc, bits, cnt) struct sis_softc *sc; u_int32_t bits; int cnt; { int i; SIO_CLR(SIS_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { SIO_SET(SIS_MII_DATA); } else { SIO_CLR(SIS_MII_DATA); } DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); } } /* * Read an PHY register through the MII. */ int sis_mii_readreg(sc, frame) struct sis_softc *sc; struct sis_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = SIS_MII_STARTDELIM; frame->mii_opcode = SIS_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Turn on data xmit. */ SIO_SET(SIS_MII_DIR); sis_mii_sync(sc); /* * Send command/address info. */ sis_mii_send(sc, frame->mii_stdelim, 2); sis_mii_send(sc, frame->mii_opcode, 2); sis_mii_send(sc, frame->mii_phyaddr, 5); sis_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((SIS_MII_CLK|SIS_MII_DATA)); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(SIS_MII_DIR); /* Check for ack */ SIO_CLR(SIS_MII_CLK); DELAY(1); ack = CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA; SIO_SET(SIS_MII_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(SIS_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, SIS_EECTL) & SIS_MII_DATA) frame->mii_data |= i; DELAY(1); } SIO_SET(SIS_MII_CLK); DELAY(1); } fail: SIO_CLR(SIS_MII_CLK); DELAY(1); SIO_SET(SIS_MII_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ int sis_mii_writereg(sc, frame) struct sis_softc *sc; struct sis_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = SIS_MII_STARTDELIM; frame->mii_opcode = SIS_MII_WRITEOP; frame->mii_turnaround = SIS_MII_TURNAROUND; /* * Turn on data output. */ SIO_SET(SIS_MII_DIR); sis_mii_sync(sc); sis_mii_send(sc, frame->mii_stdelim, 2); sis_mii_send(sc, frame->mii_opcode, 2); sis_mii_send(sc, frame->mii_phyaddr, 5); sis_mii_send(sc, frame->mii_regaddr, 5); sis_mii_send(sc, frame->mii_turnaround, 2); sis_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(SIS_MII_CLK); DELAY(1); SIO_CLR(SIS_MII_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(SIS_MII_DIR); splx(s); return(0); } int sis_miibus_readreg(self, phy, reg) struct device *self; int phy, reg; { struct sis_softc *sc = (struct sis_softc *)self; struct sis_mii_frame frame; if (sc->sis_type == SIS_TYPE_83815) { if (phy != 0) return(0); /* * The NatSemi chip can take a while after * a reset to come ready, during which the BMSR * returns a value of 0. This is *never* supposed * to happen: some of the BMSR bits are meant to * be hardwired in the on position, and this can * confuse the miibus code a bit during the probe * and attach phase. So we make an effort to check * for this condition and wait for it to clear. */ if (!CSR_READ_4(sc, NS_BMSR)) DELAY(1000); return CSR_READ_4(sc, NS_BMCR + (reg * 4)); } /* * Chipsets < SIS_635 seem not to be able to read/write * through mdio. Use the enhanced PHY access register * again for them. */ if (sc->sis_type == SIS_TYPE_900 && sc->sis_rev < SIS_REV_635) { int i, val = 0; if (phy != 0) return(0); CSR_WRITE_4(sc, SIS_PHYCTL, (phy << 11) | (reg << 6) | SIS_PHYOP_READ); SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) break; } if (i == SIS_TIMEOUT) { printf("%s: PHY failed to come ready\n", sc->sc_dev.dv_xname); return(0); } val = (CSR_READ_4(sc, SIS_PHYCTL) >> 16) & 0xFFFF; if (val == 0xFFFF) return(0); return(val); } else { bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; sis_mii_readreg(sc, &frame); return(frame.mii_data); } } void sis_miibus_writereg(self, phy, reg, data) struct device *self; int phy, reg, data; { struct sis_softc *sc = (struct sis_softc *)self; struct sis_mii_frame frame; if (sc->sis_type == SIS_TYPE_83815) { if (phy != 0) return; CSR_WRITE_4(sc, NS_BMCR + (reg * 4), data); return; } /* * Chipsets < SIS_635 seem not to be able to read/write * through mdio. Use the enhanced PHY access register * again for them. */ if (sc->sis_type == SIS_TYPE_900 && sc->sis_rev < SIS_REV_635) { int i; if (phy != 0) return; CSR_WRITE_4(sc, SIS_PHYCTL, (data << 16) | (phy << 11) | (reg << 6) | SIS_PHYOP_WRITE); SIS_SETBIT(sc, SIS_PHYCTL, SIS_PHYCTL_ACCESS); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_PHYCTL) & SIS_PHYCTL_ACCESS)) break; } if (i == SIS_TIMEOUT) printf("%s: PHY failed to come ready\n", sc->sc_dev.dv_xname); } else { bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; sis_mii_writereg(sc, &frame); } return; } void sis_miibus_statchg(self) struct device *self; { struct sis_softc *sc = (struct sis_softc *)self; sis_init(sc); return; } u_int32_t sis_mchash(struct sis_softc *sc, const uint8_t *addr) { uint32_t crc; /* Compute CRC for the address value. */ crc = ether_crc32_be(addr, ETHER_ADDR_LEN); /* * return the filter bit position * * The NatSemi chip has a 512-bit filter, which is * different than the SiS, so we special-case it. */ if (sc->sis_type == SIS_TYPE_83815) return (crc >> 23); else if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) return (crc >> 24); else return (crc >> 25); } void sis_setmulti_ns(struct sis_softc *sc) { struct ifnet *ifp; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int32_t h = 0, i, filtsave; int bit, index; ifp = &sc->arpcom.ac_if; allmulti: if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { SIS_CLRBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH); SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI); return; } /* * We have to explicitly enable the multicast hash table * on the NatSemi chip if we want to use it, which we do. */ SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_MCHASH); SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLMULTI); filtsave = CSR_READ_4(sc, SIS_RXFILT_CTL); /* first, zot all the existing hash bits */ for (i = 0; i < 32; i++) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + (i*2)); CSR_WRITE_4(sc, SIS_RXFILT_DATA, 0); } ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } h = sis_mchash(sc, enm->enm_addrlo); index = h >> 3; bit = h & 0x1F; CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_FMEM_LO + index); if (bit > 0xF) bit -= 0x10; SIS_SETBIT(sc, SIS_RXFILT_DATA, (1 << bit)); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, SIS_RXFILT_CTL, filtsave); } void sis_setmulti_sis(struct sis_softc *sc) { struct ifnet *ifp; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int32_t h, i, n, ctl; u_int16_t hashes[16]; ifp = &sc->arpcom.ac_if; /* hash table size */ if (sc->sis_rev >= SIS_REV_635 || sc->sis_rev == SIS_REV_900B) n = 16; else n = 8; ctl = CSR_READ_4(sc, SIS_RXFILT_CTL) & SIS_RXFILTCTL_ENABLE; if (ifp->if_flags & IFF_BROADCAST) ctl |= SIS_RXFILTCTL_BROAD; allmulti: if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { ctl |= SIS_RXFILTCTL_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) ctl |= SIS_RXFILTCTL_BROAD|SIS_RXFILTCTL_ALLPHYS; for (i = 0; i < n; i++) hashes[i] = ~0; } else { for (i = 0; i < n; i++) hashes[i] = 0; i = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } h = sis_mchash(sc, enm->enm_addrlo); hashes[h >> 4] |= 1 << (h & 0xf); i++; ETHER_NEXT_MULTI(step, enm); } if (i > n) { ctl |= SIS_RXFILTCTL_ALLMULTI; for (i = 0; i < n; i++) hashes[i] = ~0; } } for (i = 0; i < n; i++) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, (4 + i) << 16); CSR_WRITE_4(sc, SIS_RXFILT_DATA, hashes[i]); } CSR_WRITE_4(sc, SIS_RXFILT_CTL, ctl); } void sis_reset(sc) struct sis_softc *sc; { register int i; SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RESET); for (i = 0; i < SIS_TIMEOUT; i++) { if (!(CSR_READ_4(sc, SIS_CSR) & SIS_CSR_RESET)) break; } if (i == SIS_TIMEOUT) printf("%s: reset never completed\n", sc->sc_dev.dv_xname); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); /* * If this is a NetSemi chip, make sure to clear * PME mode. */ if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, NS_CLKRUN, NS_CLKRUN_PMESTS); CSR_WRITE_4(sc, NS_CLKRUN, 0); } return; } const struct pci_matchid sis_devices[] = { { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_900 }, { PCI_VENDOR_SIS, PCI_PRODUCT_SIS_7016 }, { PCI_VENDOR_NS, PCI_PRODUCT_NS_DP83815 }, }; /* * Probe for an SiS chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int sis_probe(parent, match, aux) struct device *parent; void *match; void *aux; { return (pci_matchbyid((struct pci_attach_args *)aux, sis_devices, sizeof(sis_devices)/sizeof(sis_devices[0]))); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void sis_attach(parent, self, aux) struct device *parent, *self; void *aux; { int i, s; const char *intrstr = NULL; pcireg_t command; struct sis_softc *sc = (struct sis_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; struct ifnet *ifp; bus_size_t iosize; s = splnet(); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_SIS_900: sc->sis_type = SIS_TYPE_900; break; case PCI_PRODUCT_SIS_7016: sc->sis_type = SIS_TYPE_7016; break; case PCI_PRODUCT_NS_DP83815: sc->sis_type = SIS_TYPE_83815; break; default: break; } /* * Handle power management nonsense. */ command = pci_conf_read(pc, pa->pa_tag, SIS_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, SIS_PCI_PWRMGMTCTRL); if (command & SIS_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(pc, pa->pa_tag, SIS_PCI_LOIO); membase = pci_conf_read(pc, pa->pa_tag, SIS_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, SIS_PCI_INTLINE); /* Reset the power state. */ printf("%s: chip is in D%d power mode -- setting to D0\n", sc->sc_dev.dv_xname, command & SIS_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, SIS_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, SIS_PCI_LOIO, iobase); pci_conf_write(pc, pa->pa_tag, SIS_PCI_LOMEM, membase); pci_conf_write(pc, pa->pa_tag, SIS_PCI_INTLINE, irq); } } /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef SIS_USEIOSPACE if (pci_mapreg_map(pa, SIS_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, &sc->sis_btag, &sc->sis_bhandle, NULL, &iosize, 0)) { printf(": can't map i/o space\n"); return; } #else if (pci_mapreg_map(pa, SIS_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, &sc->sis_btag, &sc->sis_bhandle, NULL, &iosize, 0)) { printf(": can't map mem space\n"); return; } #endif /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, sis_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } sc->sis_rev = PCI_REVISION(pa->pa_class); /* Reset the adapter. */ sis_reset(sc); if (sc->sis_type == SIS_TYPE_900 && (sc->sis_rev == SIS_REV_635 || sc->sis_rev == SIS_REV_900B)) { SIO_SET(SIS_CFG_RND_CNT); SIO_SET(SIS_CFG_PERR_DETECT); } printf(":"); /* * Get station address from the EEPROM. */ switch (PCI_VENDOR(pa->pa_id)) { case PCI_VENDOR_NS: sc->sis_srr = CSR_READ_4(sc, NS_SRR); if (sc->sis_srr == NS_SRR_15C) printf(" DP83815C,"); else if (sc->sis_srr == NS_SRR_15D) printf(" DP83815D,"); else if (sc->sis_srr == NS_SRR_16A) printf(" DP83816A,"); else printf(" srr %x,", sc->sis_srr); /* * Reading the MAC address out of the EEPROM on * the NatSemi chip takes a bit more work than * you'd expect. The address spans 4 16-bit words, * with the first word containing only a single bit. * You have to shift everything over one bit to * get it aligned properly. Also, the bits are * stored backwards (the LSB is really the MSB, * and so on) so you have to reverse them in order * to get the MAC address into the form we want. * Why? Who the hell knows. */ { u_int16_t tmp[4]; sis_read_eeprom(sc, (caddr_t)&tmp, NS_EE_NODEADDR,4,0); /* Shift everything over one bit. */ tmp[3] = tmp[3] >> 1; tmp[3] |= tmp[2] << 15; tmp[2] = tmp[2] >> 1; tmp[2] |= tmp[1] << 15; tmp[1] = tmp[1] >> 1; tmp[1] |= tmp[0] << 15; /* Now reverse all the bits. */ tmp[3] = sis_reverse(tmp[3]); tmp[2] = sis_reverse(tmp[2]); tmp[1] = sis_reverse(tmp[1]); bcopy((char *)&tmp[1], sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); } break; case PCI_VENDOR_SIS: default: #if defined(__amd64__) || defined(__i386__) /* * If this is a SiS 630E chipset with an embedded * SiS 900 controller, we have to read the MAC address * from the APC CMOS RAM. Our method for doing this * is very ugly since we have to reach out and grab * ahold of hardware for which we cannot properly * allocate resources. This code is only compiled on * the i386 architecture since the SiS 630E chipset * is for x86 motherboards only. Note that there are * a lot of magic numbers in this hack. These are * taken from SiS's Linux driver. I'd like to replace * them with proper symbolic definitions, but that * requires some datasheets that I don't have access * to at the moment. */ if (sc->sis_rev == SIS_REV_630S || sc->sis_rev == SIS_REV_630E) sis_read_cmos(sc, pa, (caddr_t)&sc->arpcom.ac_enaddr, 0x9, 6); else #endif if (sc->sis_rev == SIS_REV_96x) sis_read96x_mac(sc); else if (sc->sis_rev == SIS_REV_635 || sc->sis_rev == SIS_REV_630ET || sc->sis_rev == SIS_REV_630EA1) sis_read_mac(sc, pa); else sis_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, SIS_EE_NODEADDR, 3, 0); break; } printf(" %s, address %s\n", intrstr, ether_sprintf(sc->arpcom.ac_enaddr)); sc->sc_dmat = pa->pa_dmat; if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct sis_list_data), PAGE_SIZE, 0, sc->sc_listseg, 1, &sc->sc_listnseg, BUS_DMA_NOWAIT) != 0) { printf(": can't alloc list mem\n"); return; } if (bus_dmamem_map(sc->sc_dmat, sc->sc_listseg, sc->sc_listnseg, sizeof(struct sis_list_data), &sc->sc_listkva, BUS_DMA_NOWAIT) != 0) { printf(": can't map list mem\n"); return; } if (bus_dmamap_create(sc->sc_dmat, sizeof(struct sis_list_data), 1, sizeof(struct sis_list_data), 0, BUS_DMA_NOWAIT, &sc->sc_listmap) != 0) { printf(": can't alloc list map\n"); return; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_listmap, sc->sc_listkva, sizeof(struct sis_list_data), NULL, BUS_DMA_NOWAIT) != 0) { printf(": can't load list map\n"); return; } sc->sis_ldata = (struct sis_list_data *)sc->sc_listkva; bzero(sc->sis_ldata, sizeof(struct sis_list_data)); for (i = 0; i < SIS_RX_LIST_CNT_MAX; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sis_ldata->sis_rx_list[i].map) != 0) { printf(": can't create rx map\n"); return; } } if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_rx_sparemap) != 0) { printf(": can't create rx spare map\n"); return; } for (i = 0; i < SIS_TX_LIST_CNT; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, SIS_TX_LIST_CNT - 3, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sis_ldata->sis_tx_list[i].map) != 0) { printf(": can't create tx map\n"); return; } } if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, SIS_TX_LIST_CNT - 3, MCLBYTES, 0, BUS_DMA_NOWAIT, &sc->sc_tx_sparemap) != 0) { printf(": can't create tx spare map\n"); return; } ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sis_ioctl; ifp->if_start = sis_start; ifp->if_watchdog = sis_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, SIS_TX_LIST_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities |= IFCAP_VLAN_MTU; sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = sis_miibus_readreg; sc->sc_mii.mii_writereg = sis_miibus_writereg; sc->sc_mii.mii_statchg = sis_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, sis_ifmedia_upd,sis_ifmedia_sts); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); shutdownhook_establish(sis_shutdown, sc); fail: splx(s); return; } /* * Initialize the transmit descriptors. */ int sis_list_tx_init(sc) struct sis_softc *sc; { struct sis_list_data *ld; struct sis_ring_data *cd; int i; bus_addr_t next; cd = &sc->sis_cdata; ld = sc->sis_ldata; for (i = 0; i < SIS_TX_LIST_CNT; i++) { next = sc->sc_listmap->dm_segs[0].ds_addr; if (i == (SIS_TX_LIST_CNT - 1)) { ld->sis_tx_list[i].sis_nextdesc = &ld->sis_tx_list[0]; next += offsetof(struct sis_list_data, sis_tx_list[0]); } else { ld->sis_tx_list[i].sis_nextdesc = &ld->sis_tx_list[i+1]; next += offsetof(struct sis_list_data, sis_tx_list[i+1]); } ld->sis_tx_list[i].sis_next = next; ld->sis_tx_list[i].sis_mbuf = NULL; ld->sis_tx_list[i].sis_ptr = 0; ld->sis_tx_list[i].sis_ctl = 0; } cd->sis_tx_prod = cd->sis_tx_cons = cd->sis_tx_cnt = 0; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int sis_list_rx_init(sc) struct sis_softc *sc; { struct sis_list_data *ld; struct sis_ring_data *cd; bus_addr_t next; int i; ld = sc->sis_ldata; cd = &sc->sis_cdata; if (sc->arpcom.ac_if.if_flags & IFF_UP) sc->sc_rxbufs = SIS_RX_LIST_CNT_MAX; else sc->sc_rxbufs = SIS_RX_LIST_CNT_MIN; for (i = 0; i < sc->sc_rxbufs; i++) { if (sis_newbuf(sc, &ld->sis_rx_list[i], NULL) == ENOBUFS) return(ENOBUFS); next = sc->sc_listmap->dm_segs[0].ds_addr; if (i == (sc->sc_rxbufs - 1)) { ld->sis_rx_list[i].sis_nextdesc = &ld->sis_rx_list[0]; next += offsetof(struct sis_list_data, sis_rx_list[0]); } else { ld->sis_rx_list[i].sis_nextdesc = &ld->sis_rx_list[i+1]; next += offsetof(struct sis_list_data, sis_rx_list[i+1]); } ld->sis_rx_list[i].sis_next = next; } cd->sis_rx_pdsc = &ld->sis_rx_list[0]; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int sis_newbuf(sc, c, m) struct sis_softc *sc; struct sis_desc *c; struct mbuf *m; { struct mbuf *m_new = NULL; bus_dmamap_t map; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(ENOBUFS); MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } if (bus_dmamap_load(sc->sc_dmat, sc->sc_rx_sparemap, mtod(m_new, caddr_t), MCLBYTES, NULL, BUS_DMA_NOWAIT) != 0) { printf("%s: rx load failed\n", sc->sc_dev.dv_xname); m_freem(m_new); return (ENOBUFS); } map = c->map; c->map = sc->sc_rx_sparemap; sc->sc_rx_sparemap = map; bus_dmamap_sync(sc->sc_dmat, c->map, 0, c->map->dm_mapsize, BUS_DMASYNC_PREREAD); m_adj(m_new, sizeof(u_int64_t)); c->sis_mbuf = m_new; c->sis_ptr = c->map->dm_segs[0].ds_addr + sizeof(u_int64_t); c->sis_ctl = ETHER_MAX_DIX_LEN; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)c - sc->sc_listkva), sizeof(struct sis_desc), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return(0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void sis_rxeof(sc) struct sis_softc *sc; { struct mbuf *m; struct ifnet *ifp; struct sis_desc *cur_rx; int total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; for(cur_rx = sc->sis_cdata.sis_rx_pdsc; SIS_OWNDESC(cur_rx); cur_rx = cur_rx->sis_nextdesc) { bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)cur_rx - sc->sc_listkva), sizeof(struct sis_desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = cur_rx->sis_rxstat; m = cur_rx->sis_mbuf; cur_rx->sis_mbuf = NULL; total_len = SIS_RXBYTES(cur_rx); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (!(rxstat & SIS_CMDSTS_PKT_OK)) { ifp->if_ierrors++; if (rxstat & SIS_RXSTAT_COLL) ifp->if_collisions++; sis_newbuf(sc, cur_rx, m); continue; } /* No errors; receive the packet. */ bus_dmamap_sync(sc->sc_dmat, cur_rx->map, 0, cur_rx->map->dm_mapsize, BUS_DMASYNC_POSTREAD); #ifndef __STRICT_ALIGNMENT /* * On some architectures, we do not have alignment problems, * so try to allocate a new buffer for the receive ring, and * pass up the one where the packet is already, saving the * expensive copy done in m_devget(). * If we are on an architecture with alignment problems, or * if the allocation fails, then use m_devget and leave the * existing buffer in the receive ring. */ if (sis_newbuf(sc, cur_rx, NULL) == 0) { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } else #endif { struct mbuf *m0; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); sis_newbuf(sc, cur_rx, m); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; } ifp->if_ipackets++; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* pass it on. */ ether_input_mbuf(ifp, m); } sc->sis_cdata.sis_rx_pdsc = cur_rx; } void sis_rxeoc(sc) struct sis_softc *sc; { sis_rxeof(sc); sis_init(sc); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void sis_txeof(sc) struct sis_softc *sc; { struct ifnet *ifp; u_int32_t idx; ifp = &sc->arpcom.ac_if; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ for (idx = sc->sis_cdata.sis_tx_cons; sc->sis_cdata.sis_tx_cnt > 0; sc->sis_cdata.sis_tx_cnt--, SIS_INC(idx, SIS_TX_LIST_CNT)) { struct sis_desc *cur_tx = &sc->sis_ldata->sis_tx_list[idx]; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, ((caddr_t)cur_tx - sc->sc_listkva), sizeof(struct sis_desc), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); if (SIS_OWNDESC(cur_tx)) break; if (cur_tx->sis_ctl & SIS_CMDSTS_MORE) continue; if (!(cur_tx->sis_ctl & SIS_CMDSTS_PKT_OK)) { ifp->if_oerrors++; if (cur_tx->sis_txstat & SIS_TXSTAT_EXCESSCOLLS) ifp->if_collisions++; if (cur_tx->sis_txstat & SIS_TXSTAT_OUTOFWINCOLL) ifp->if_collisions++; } ifp->if_collisions += (cur_tx->sis_txstat & SIS_TXSTAT_COLLCNT) >> 16; ifp->if_opackets++; if (cur_tx->map->dm_nsegs != 0) { bus_dmamap_t map = cur_tx->map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); } if (cur_tx->sis_mbuf != NULL) { m_freem(cur_tx->sis_mbuf); cur_tx->sis_mbuf = NULL; } } if (idx != sc->sis_cdata.sis_tx_cons) { /* we freed up some buffers */ sc->sis_cdata.sis_tx_cons = idx; ifp->if_flags &= ~IFF_OACTIVE; } ifp->if_timer = (sc->sis_cdata.sis_tx_cnt == 0) ? 0 : 5; } void sis_tick(xsc) void *xsc; { struct sis_softc *sc = (struct sis_softc *)xsc; struct mii_data *mii; struct ifnet *ifp; int s; s = splnet(); ifp = &sc->arpcom.ac_if; mii = &sc->sc_mii; mii_tick(mii); if (!sc->sis_link && mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { sc->sis_link++; if (!IFQ_IS_EMPTY(&ifp->if_snd)) sis_start(ifp); } timeout_add(&sc->sis_timeout, hz); splx(s); return; } int sis_intr(arg) void *arg; { struct sis_softc *sc; struct ifnet *ifp; u_int32_t status; int claimed = 0; sc = arg; ifp = &sc->arpcom.ac_if; if (sc->sis_stopped) /* Most likely shared interrupt */ return claimed; /* Disable interrupts. */ CSR_WRITE_4(sc, SIS_IER, 0); for (;;) { /* Reading the ISR register clears all interrupts. */ status = CSR_READ_4(sc, SIS_ISR); if ((status & SIS_INTRS) == 0) break; claimed = 1; if (status & (SIS_ISR_TX_DESC_OK | SIS_ISR_TX_ERR | SIS_ISR_TX_OK | SIS_ISR_TX_IDLE)) sis_txeof(sc); if (status & (SIS_ISR_RX_DESC_OK | SIS_ISR_RX_OK | SIS_ISR_RX_IDLE)) sis_rxeof(sc); if (status & (SIS_ISR_RX_ERR | SIS_ISR_RX_OFLOW)) sis_rxeoc(sc); if (status & (SIS_ISR_RX_IDLE)) SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); if (status & SIS_ISR_SYSERR) { sis_reset(sc); sis_init(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, SIS_IER, 1); if (!IFQ_IS_EMPTY(&ifp->if_snd)) sis_start(ifp); return claimed; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int sis_encap(sc, m_head, txidx) struct sis_softc *sc; struct mbuf *m_head; u_int32_t *txidx; { struct sis_desc *f = NULL; int frag, cur, i; bus_dmamap_t map; map = sc->sc_tx_sparemap; if (bus_dmamap_load_mbuf(sc->sc_dmat, map, m_head, BUS_DMA_NOWAIT) != 0) return (ENOBUFS); /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ cur = frag = *txidx; for (i = 0; i < map->dm_nsegs; i++) { if ((SIS_TX_LIST_CNT - (sc->sis_cdata.sis_tx_cnt + i)) < 2) return(ENOBUFS); f = &sc->sis_ldata->sis_tx_list[frag]; f->sis_ctl = SIS_CMDSTS_MORE | map->dm_segs[i].ds_len; f->sis_ptr = map->dm_segs[i].ds_addr; if (i != 0) f->sis_ctl |= SIS_CMDSTS_OWN; cur = frag; SIS_INC(frag, SIS_TX_LIST_CNT); } bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_PREWRITE); sc->sis_ldata->sis_tx_list[cur].sis_mbuf = m_head; sc->sis_ldata->sis_tx_list[cur].sis_ctl &= ~SIS_CMDSTS_MORE; sc->sis_ldata->sis_tx_list[*txidx].sis_ctl |= SIS_CMDSTS_OWN; sc->sis_cdata.sis_tx_cnt += i; *txidx = frag; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap, offsetof(struct sis_list_data, sis_tx_list[0]), sizeof(struct sis_desc) * SIS_TX_LIST_CNT, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void sis_start(ifp) struct ifnet *ifp; { struct sis_softc *sc; struct mbuf *m_head = NULL; u_int32_t idx, queued = 0; sc = ifp->if_softc; if (!sc->sis_link) return; idx = sc->sis_cdata.sis_tx_prod; if (ifp->if_flags & IFF_OACTIVE) return; while(sc->sis_ldata->sis_tx_list[idx].sis_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; if (sis_encap(sc, m_head, &idx)) { ifp->if_flags |= IFF_OACTIVE; break; } /* now we are committed to transmit the packet */ IFQ_DEQUEUE(&ifp->if_snd, m_head); queued++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif } if (queued) { /* Transmit */ sc->sis_cdata.sis_tx_prod = idx; SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_ENABLE); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } return; } void sis_init(xsc) void *xsc; { struct sis_softc *sc = (struct sis_softc *)xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int s; s = splnet(); /* * Cancel pending I/O and free all RX/TX buffers. */ sis_stop(sc); sc->sis_stopped = 0; mii = &sc->sc_mii; /* Set MAC address */ if (sc->sis_type == SIS_TYPE_83815) { CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR0); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[0]); CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR1); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[1]); CSR_WRITE_4(sc, SIS_RXFILT_CTL, NS_FILTADDR_PAR2); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[2]); } else { CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR0); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[0]); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR1); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[1]); CSR_WRITE_4(sc, SIS_RXFILT_CTL, SIS_FILTADDR_PAR2); CSR_WRITE_4(sc, SIS_RXFILT_DATA, ((u_int16_t *)sc->arpcom.ac_enaddr)[2]); } /* Init circular RX list. */ if (sis_list_rx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no memory for rx buffers\n", sc->sc_dev.dv_xname); sis_stop(sc); splx(s); return; } /* * Init tx descriptors. */ sis_list_tx_init(sc); /* * Short Cable Receive Errors (MP21.E) * also: Page 78 of the DP83815 data sheet (september 2002 version) * recommends the following register settings "for optimum * performance." for rev 15C. The driver from NS also sets * the PHY_CR register for later versions. */ if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr <= NS_SRR_15D) { CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); CSR_WRITE_4(sc, NS_PHY_CR, 0x189C); if (sc->sis_srr == NS_SRR_15C) { /* set val for c2 */ CSR_WRITE_4(sc, NS_PHY_TDATA, 0x0000); /* load/kill c2 */ CSR_WRITE_4(sc, NS_PHY_DSPCFG, 0x5040); /* rais SD off, from 4 to c */ CSR_WRITE_4(sc, NS_PHY_SDCFG, 0x008C); } CSR_WRITE_4(sc, NS_PHY_PAGE, 0); } /* * For the NatSemi chip, we have to explicitly enable the * reception of ARP frames, as well as turn on the 'perfect * match' filter where we store the station address, otherwise * we won't receive unicasts meant for this host. */ if (sc->sis_type == SIS_TYPE_83815) { SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_ARP); SIS_SETBIT(sc, SIS_RXFILT_CTL, NS_RXFILTCTL_PERFECT); } /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS); } else { SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ALLPHYS); } /* * Set the capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD); } else { SIS_CLRBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_BROAD); } /* * Load the multicast filter. */ if (sc->sis_type == SIS_TYPE_83815) sis_setmulti_ns(sc); else sis_setmulti_sis(sc); /* Turn the receive filter on */ SIS_SETBIT(sc, SIS_RXFILT_CTL, SIS_RXFILTCTL_ENABLE); /* * Load the address of the RX and TX lists. */ CSR_WRITE_4(sc, SIS_RX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct sis_list_data, sis_rx_list[0])); CSR_WRITE_4(sc, SIS_TX_LISTPTR, sc->sc_listmap->dm_segs[0].ds_addr + offsetof(struct sis_list_data, sis_tx_list[0])); /* SIS_CFG_EDB_MASTER_EN indicates the EDB bus is used instead of * the PCI bus. When this bit is set, the Max DMA Burst Size * for TX/RX DMA should be no larger than 16 double words. */ if (CSR_READ_4(sc, SIS_CFG) & SIS_CFG_EDB_MASTER_EN) { CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG64); } else { CSR_WRITE_4(sc, SIS_RX_CFG, SIS_RXCFG256); } /* Accept Long Packets for VLAN support */ SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_JABBER); /* Set TX configuration */ if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_10); else CSR_WRITE_4(sc, SIS_TX_CFG, SIS_TXCFG_100); /* Set full/half duplex mode. */ if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { SIS_SETBIT(sc, SIS_TX_CFG, (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR)); SIS_SETBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); } else { SIS_CLRBIT(sc, SIS_TX_CFG, (SIS_TXCFG_IGN_HBEAT|SIS_TXCFG_IGN_CARR)); SIS_CLRBIT(sc, SIS_RX_CFG, SIS_RXCFG_RX_TXPKTS); } if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr >= NS_SRR_16A) { /* * MPII03.D: Half Duplex Excessive Collisions. * Also page 49 in 83816 manual */ SIS_SETBIT(sc, SIS_TX_CFG, SIS_TXCFG_MPII03D); } if (sc->sis_type == SIS_TYPE_83815 && sc->sis_srr < NS_SRR_16A && IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { uint32_t reg; /* * Short Cable Receive Errors (MP21.E) */ CSR_WRITE_4(sc, NS_PHY_PAGE, 0x0001); reg = CSR_READ_4(sc, NS_PHY_DSPCFG) & 0xfff; CSR_WRITE_4(sc, NS_PHY_DSPCFG, reg | 0x1000); DELAY(100000); reg = CSR_READ_4(sc, NS_PHY_TDATA) & 0xff; if ((reg & 0x0080) == 0 || (reg > 0xd8 && reg <= 0xff)) { #ifdef DEBUG printf("%s: Applying short cable fix (reg=%x)\n", sc->sc_dev.dv_xname, reg); #endif CSR_WRITE_4(sc, NS_PHY_TDATA, 0x00e8); reg = CSR_READ_4(sc, NS_PHY_DSPCFG); SIS_SETBIT(sc, NS_PHY_DSPCFG, reg | 0x20); } CSR_WRITE_4(sc, NS_PHY_PAGE, 0); } /* * Enable interrupts. */ CSR_WRITE_4(sc, SIS_IMR, SIS_INTRS); CSR_WRITE_4(sc, SIS_IER, 1); /* Enable receiver and transmitter. */ SIS_CLRBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE); SIS_SETBIT(sc, SIS_CSR, SIS_CSR_RX_ENABLE); #ifdef notdef mii_mediachg(mii); #endif ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_set(&sc->sis_timeout, sis_tick, sc); timeout_add(&sc->sis_timeout, hz); return; } /* * Set media options. */ int sis_ifmedia_upd(ifp) struct ifnet *ifp; { struct sis_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; sc->sis_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } /* * Report current media status. */ void sis_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct sis_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } int sis_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct sis_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; struct mii_data *mii; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { case AF_INET: sis_init(sc); arp_ifinit(&sc->arpcom, ifa); break; default: sis_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { sis_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) sis_stop(sc); } error = 0; break; case SIOCSIFMTU: if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) error = EINVAL; else if (ifp->if_mtu != ifr->ifr_mtu) ifp->if_mtu = ifr->ifr_mtu; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ if (ifp->if_flags & IFF_RUNNING) { if (sc->sis_type == SIS_TYPE_83815) sis_setmulti_ns(sc); else sis_setmulti_sis(sc); } error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc->sc_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } splx(s); return(error); } void sis_watchdog(ifp) struct ifnet *ifp; { struct sis_softc *sc; int s; sc = ifp->if_softc; if (sc->sis_stopped) { return; } ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); s = splnet(); sis_stop(sc); sis_reset(sc); sis_init(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd)) sis_start(ifp); splx(s); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void sis_stop(sc) struct sis_softc *sc; { register int i; struct ifnet *ifp; if (sc->sis_stopped) return; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->sis_timeout); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); sc->sis_stopped = 1; CSR_WRITE_4(sc, SIS_IER, 0); CSR_WRITE_4(sc, SIS_IMR, 0); CSR_READ_4(sc, SIS_ISR); /* clear any interrupts already pending */ SIS_SETBIT(sc, SIS_CSR, SIS_CSR_TX_DISABLE|SIS_CSR_RX_DISABLE); DELAY(1000); CSR_WRITE_4(sc, SIS_TX_LISTPTR, 0); CSR_WRITE_4(sc, SIS_RX_LISTPTR, 0); sc->sis_link = 0; /* * Free data in the RX lists. */ for (i = 0; i < SIS_RX_LIST_CNT_MAX; i++) { if (sc->sis_ldata->sis_rx_list[i].map->dm_nsegs != 0) { bus_dmamap_t map = sc->sis_ldata->sis_rx_list[i].map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->sis_ldata->sis_rx_list[i].sis_mbuf != NULL) { m_freem(sc->sis_ldata->sis_rx_list[i].sis_mbuf); sc->sis_ldata->sis_rx_list[i].sis_mbuf = NULL; } bzero((char *)&sc->sis_ldata->sis_rx_list[i], sizeof(struct sis_desc) - sizeof(bus_dmamap_t)); } /* * Free the TX list buffers. */ for (i = 0; i < SIS_TX_LIST_CNT; i++) { if (sc->sis_ldata->sis_tx_list[i].map->dm_nsegs != 0) { bus_dmamap_t map = sc->sis_ldata->sis_tx_list[i].map; bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, map); } if (sc->sis_ldata->sis_tx_list[i].sis_mbuf != NULL) { m_freem(sc->sis_ldata->sis_tx_list[i].sis_mbuf); sc->sis_ldata->sis_tx_list[i].sis_mbuf = NULL; } bzero((char *)&sc->sis_ldata->sis_tx_list[i], sizeof(struct sis_desc) - sizeof(bus_dmamap_t)); } } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ void sis_shutdown(v) void *v; { struct sis_softc *sc = (struct sis_softc *)v; sis_stop(sc); } struct cfattach sis_ca = { sizeof(struct sis_softc), sis_probe, sis_attach }; struct cfdriver sis_cd = { 0, "sis", DV_IFNET };