/* $OpenBSD: if_sk.c,v 1.60 2005/01/15 05:24:11 brad Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $ */ /* * Copyright (c) 2003 Nathan L. Binkert * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports * the SK-984x series adapters, both single port and dual port. * References: * The XaQti XMAC II datasheet, * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * The SysKonnect GEnesis manual, http://www.syskonnect.com * * Note: XaQti has been acquired by Vitesse, and Vitesse does not have the * XMAC II datasheet online. I have put my copy at people.freebsd.org as a * convenience to others until Vitesse corrects this problem: * * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * * Written by Bill Paul * Department of Electrical Engineering * Columbia University, New York City */ /* * The SysKonnect gigabit ethernet adapters consist of two main * components: the SysKonnect GEnesis controller chip and the XaQti Corp. * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC * components and a PHY while the GEnesis controller provides a PCI * interface with DMA support. Each card may have between 512K and * 2MB of SRAM on board depending on the configuration. * * The SysKonnect GEnesis controller can have either one or two XMAC * chips connected to it, allowing single or dual port NIC configurations. * SysKonnect has the distinction of being the only vendor on the market * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, * dual DMA queues, packet/MAC/transmit arbiters and direct access to the * XMAC registers. This driver takes advantage of these features to allow * both XMACs to operate as independent interfaces. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #include #include #endif #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #define SK_VERBOSE /* #define SK_USEIOSPACE */ #include #include #include int skc_probe(struct device *, void *, void *); void skc_attach(struct device *, struct device *self, void *aux); int sk_probe(struct device *, void *, void *); void sk_attach(struct device *, struct device *self, void *aux); int skcprint(void *, const char *); int sk_intr(void *); void sk_intr_bcom(struct sk_if_softc *); void sk_intr_xmac(struct sk_if_softc *); void sk_intr_yukon(struct sk_if_softc *); void sk_rxeof(struct sk_if_softc *); void sk_txeof(struct sk_if_softc *); int sk_encap(struct sk_if_softc *, struct mbuf *, u_int32_t *); void sk_start(struct ifnet *); int sk_ioctl(struct ifnet *, u_long, caddr_t); void sk_init(void *); void sk_init_xmac(struct sk_if_softc *); void sk_init_yukon(struct sk_if_softc *); void sk_stop(struct sk_if_softc *); void sk_watchdog(struct ifnet *); void sk_shutdown(void *); int sk_ifmedia_upd(struct ifnet *); void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *); void sk_reset(struct sk_softc *); int sk_newbuf(struct sk_if_softc *, int, struct mbuf *, bus_dmamap_t); int sk_alloc_jumbo_mem(struct sk_if_softc *); void sk_free_jumbo_mem(struct sk_if_softc *); void *sk_jalloc(struct sk_if_softc *); void sk_jfree(caddr_t, u_int, void *); int sk_init_rx_ring(struct sk_if_softc *); int sk_init_tx_ring(struct sk_if_softc *); u_int8_t sk_vpd_readbyte(struct sk_softc *, int); void sk_vpd_read_res(struct sk_softc *, struct vpd_res *, int); void sk_vpd_read(struct sk_softc *); int sk_xmac_miibus_readreg(struct device *, int, int); void sk_xmac_miibus_writereg(struct device *, int, int, int); void sk_xmac_miibus_statchg(struct device *); int sk_marv_miibus_readreg(struct device *, int, int); void sk_marv_miibus_writereg(struct device *, int, int, int); void sk_marv_miibus_statchg(struct device *); u_int32_t sk_xmac_hash(caddr_t); u_int32_t sk_yukon_hash(caddr_t); void sk_setfilt(struct sk_if_softc *, caddr_t, int); void sk_setmulti(struct sk_if_softc *); void sk_tick(void *); void sk_rxcsum(struct ifnet *, struct mbuf *, const u_int16_t, const u_int16_t); #ifdef SK_DEBUG #define DPRINTF(x) if (skdebug) printf x #define DPRINTFN(n,x) if (skdebug >= (n)) printf x int skdebug = 0; void sk_dump_txdesc(struct sk_tx_desc *, int); void sk_dump_mbuf(struct mbuf *); void sk_dump_bytes(const char *, int); #else #define DPRINTF(x) #define DPRINTFN(n,x) #endif #define SK_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) #define SK_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) #define SK_WIN_SETBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) #define SK_WIN_CLRBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) #define SK_WIN_SETBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) #define SK_WIN_CLRBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) /* supported device vendors */ const struct pci_matchid skc_devices[] = { { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C940}, { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE530T}, { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032}, { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1064}, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SK_V2}, { PCI_VENDOR_MARVELL, PCI_PRODUCT_MARVELL_SK_V2_BELKIN}, { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_GE}, { PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2}, }; static inline u_int32_t sk_win_read_4(struct sk_softc *sc, u_int32_t reg) { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)); #else return CSR_READ_4(sc, reg); #endif } static inline u_int16_t sk_win_read_2(struct sk_softc *sc, u_int32_t reg) { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)); #else return CSR_READ_2(sc, reg); #endif } static inline u_int8_t sk_win_read_1(struct sk_softc *sc, u_int32_t reg) { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)); #else return CSR_READ_1(sc, reg); #endif } static inline void sk_win_write_4(struct sk_softc *sc, u_int32_t reg, u_int32_t x) { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), x); #else CSR_WRITE_4(sc, reg, x); #endif } static inline void sk_win_write_2(struct sk_softc *sc, u_int32_t reg, u_int16_t x) { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), x); #else CSR_WRITE_2(sc, reg, x); #endif } static inline void sk_win_write_1(struct sk_softc *sc, u_int32_t reg, u_int8_t x) { #ifdef SK_USEIOSPACE CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), x); #else CSR_WRITE_1(sc, reg, x); #endif } /* * The VPD EEPROM contains Vital Product Data, as suggested in * the PCI 2.1 specification. The VPD data is separared into areas * denoted by resource IDs. The SysKonnect VPD contains an ID string * resource (the name of the adapter), a read-only area resource * containing various key/data fields and a read/write area which * can be used to store asset management information or log messages. * We read the ID string and read-only into buffers attached to * the controller softc structure for later use. At the moment, * we only use the ID string during sk_attach(). */ u_int8_t sk_vpd_readbyte(struct sk_softc *sc, int addr) { int i; sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (sk_win_read_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) break; } if (i == SK_TIMEOUT) return(0); return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); } void sk_vpd_read_res(struct sk_softc *sc, struct vpd_res *res, int addr) { int i; u_int8_t *ptr; ptr = (u_int8_t *)res; for (i = 0; i < sizeof(struct vpd_res); i++) ptr[i] = sk_vpd_readbyte(sc, i + addr); } void sk_vpd_read(struct sk_softc *sc) { int pos = 0, i; struct vpd_res res; if (sc->sk_vpd_prodname != NULL) free(sc->sk_vpd_prodname, M_DEVBUF); if (sc->sk_vpd_readonly != NULL) free(sc->sk_vpd_readonly, M_DEVBUF); sc->sk_vpd_prodname = NULL; sc->sk_vpd_readonly = NULL; sk_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_ID) { printf("%s: bad VPD resource id: expected %x got %x\n", sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id); return; } pos += sizeof(res); sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); if (sc->sk_vpd_prodname == NULL) panic("sk_vpd_read"); for (i = 0; i < res.vr_len; i++) sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); sc->sk_vpd_prodname[i] = '\0'; pos += i; sk_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_READ) { printf("%s: bad VPD resource id: expected %x got %x\n", sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id); return; } pos += sizeof(res); sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); if (sc->sk_vpd_readonly == NULL) panic("sk_vpd_read"); for (i = 0; i < res.vr_len; i++) sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); } int sk_xmac_miibus_readreg(struct device *dev, int phy, int reg) { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; int i; DPRINTFN(9, ("sk_xmac_miibus_readreg\n")); if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) return(0); SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); SK_XM_READ_2(sc_if, XM_PHY_DATA); if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYDATARDY) break; } if (i == SK_TIMEOUT) { printf("%s: phy failed to come ready\n", sc_if->sk_dev.dv_xname); return(0); } } DELAY(1); return(SK_XM_READ_2(sc_if, XM_PHY_DATA)); } void sk_xmac_miibus_writereg(struct device *dev, int phy, int reg, int val) { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; int i; DPRINTFN(9, ("sk_xmac_miibus_writereg\n")); SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); for (i = 0; i < SK_TIMEOUT; i++) { if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) { printf("%s: phy failed to come ready\n", sc_if->sk_dev.dv_xname); return; } SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname); } void sk_xmac_miibus_statchg(struct device *dev) { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; struct mii_data *mii = &sc_if->sk_mii; DPRINTFN(9, ("sk_xmac_miibus_statchg\n")); /* * If this is a GMII PHY, manually set the XMAC's * duplex mode accordingly. */ if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); } else { SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); } } } int sk_marv_miibus_readreg(dev, phy, reg) struct device *dev; int phy, reg; { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; u_int16_t val; int i; if (phy != 0 || (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER && sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER)) { DPRINTFN(9, ("sk_marv_miibus_readreg (skip) phy=%d, reg=%#x\n", phy, reg)); return(0); } SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); val = SK_YU_READ_2(sc_if, YUKON_SMICR); if (val & YU_SMICR_READ_VALID) break; } if (i == SK_TIMEOUT) { printf("%s: phy failed to come ready\n", sc_if->sk_dev.dv_xname); return 0; } DPRINTFN(9, ("sk_marv_miibus_readreg: i=%d, timeout=%d\n", i, SK_TIMEOUT)); val = SK_YU_READ_2(sc_if, YUKON_SMIDR); DPRINTFN(9, ("sk_marv_miibus_readreg phy=%d, reg=%#x, val=%#x\n", phy, reg, val)); return val; } void sk_marv_miibus_writereg(dev, phy, reg, val) struct device *dev; int phy, reg, val; { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; int i; DPRINTFN(9, ("sk_marv_miibus_writereg phy=%d reg=%#x val=%#x\n", phy, reg, val)); SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val); SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) | YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) break; } } void sk_marv_miibus_statchg(dev) struct device *dev; { DPRINTFN(9, ("sk_marv_miibus_statchg: gpcr=%x\n", SK_YU_READ_2(((struct sk_if_softc *)dev), YUKON_GPCR))); } #define HASH_BITS 6 u_int32_t sk_xmac_hash(caddr_t addr) { u_int32_t crc; crc = ether_crc32_le(addr, ETHER_ADDR_LEN); return (~crc & ((1 << HASH_BITS) - 1)); } u_int32_t sk_yukon_hash(caddr_t addr) { u_int32_t crc; crc = ether_crc32_be(addr, ETHER_ADDR_LEN); return (crc & ((1 << HASH_BITS) - 1)); } void sk_setfilt(struct sk_if_softc *sc_if, caddr_t addr, int slot) { int base = XM_RXFILT_ENTRY(slot); SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); } void sk_setmulti(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp= &sc_if->arpcom.ac_if; u_int32_t hashes[2] = { 0, 0 }; int h, i; struct arpcom *ac = &sc_if->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; /* First, zot all the existing filters. */ switch(sc->sk_type) { case SK_GENESIS: for (i = 1; i < XM_RXFILT_MAX; i++) sk_setfilt(sc_if, (caddr_t)&dummy, i); SK_XM_WRITE_4(sc_if, XM_MAR0, 0); SK_XM_WRITE_4(sc_if, XM_MAR2, 0); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_YU_WRITE_2(sc_if, YUKON_MCAH1, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH2, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH3, 0); SK_YU_WRITE_2(sc_if, YUKON_MCAH4, 0); break; } /* Now program new ones. */ allmulti: if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { i = 1; /* First find the tail of the list. */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } /* * Program the first XM_RXFILT_MAX multicast groups * into the perfect filter. For all others, * use the hash table. */ if (sc->sk_type == SK_GENESIS && i < XM_RXFILT_MAX) { sk_setfilt(sc_if, enm->enm_addrlo, i); i++; } else { switch(sc->sk_type) { case SK_GENESIS: h = sk_xmac_hash(enm->enm_addrlo); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: h = sk_yukon_hash(enm->enm_addrlo); break; } if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } ETHER_NEXT_MULTI(step, enm); } } switch(sc->sk_type) { case SK_GENESIS: SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| XM_MODE_RX_USE_PERFECT); SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff); SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff); break; } } int sk_init_rx_ring(struct sk_if_softc *sc_if) { struct sk_chain_data *cd = &sc_if->sk_cdata; struct sk_ring_data *rd = sc_if->sk_rdata; int i; bzero((char *)rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); for (i = 0; i < SK_RX_RING_CNT; i++) { cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; if (i == (SK_RX_RING_CNT - 1)) { cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0]; rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if, 0); } else { cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1]; rd->sk_rx_ring[i].sk_next = SK_RX_RING_ADDR(sc_if,i+1); } rd->sk_rx_ring[i].sk_csum1_start = ETHER_HDR_LEN; rd->sk_rx_ring[i].sk_csum2_start = ETHER_HDR_LEN + sizeof(struct ip); } for (i = 0; i < SK_RX_RING_CNT; i++) { if (sk_newbuf(sc_if, i, NULL, sc_if->sk_cdata.sk_rx_jumbo_map) == ENOBUFS) { printf("%s: failed alloc of %dth mbuf\n", sc_if->sk_dev.dv_xname, i); return(ENOBUFS); } } sc_if->sk_cdata.sk_rx_prod = 0; sc_if->sk_cdata.sk_rx_cons = 0; return(0); } int sk_init_tx_ring(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; struct sk_chain_data *cd = &sc_if->sk_cdata; struct sk_ring_data *rd = sc_if->sk_rdata; bus_dmamap_t dmamap; struct sk_txmap_entry *entry; int i; bzero((char *)sc_if->sk_rdata->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); SIMPLEQ_INIT(&sc_if->sk_txmap_head); for (i = 0; i < SK_TX_RING_CNT; i++) { cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; if (i == (SK_TX_RING_CNT - 1)) { cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0]; rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if, 0); } else { cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1]; rd->sk_tx_ring[i].sk_next = SK_TX_RING_ADDR(sc_if,i+1); } if (bus_dmamap_create(sc->sc_dmatag, SK_JLEN, SK_NTXSEG, SK_JLEN, 0, BUS_DMA_NOWAIT, &dmamap)) return (ENOBUFS); entry = malloc(sizeof(*entry), M_DEVBUF, M_NOWAIT); if (!entry) { bus_dmamap_destroy(sc->sc_dmatag, dmamap); return (ENOBUFS); } entry->dmamap = dmamap; SIMPLEQ_INSERT_HEAD(&sc_if->sk_txmap_head, entry, link); } sc_if->sk_cdata.sk_tx_prod = 0; sc_if->sk_cdata.sk_tx_cons = 0; sc_if->sk_cdata.sk_tx_cnt = 0; return (0); } int sk_newbuf(struct sk_if_softc *sc_if, int i, struct mbuf *m, bus_dmamap_t dmamap) { struct mbuf *m_new = NULL; struct sk_chain *c; struct sk_rx_desc *r; if (m == NULL) { caddr_t *buf = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(ENOBUFS); /* Allocate the jumbo buffer */ buf = sk_jalloc(sc_if); if (buf == NULL) { m_freem(m_new); DPRINTFN(1, ("%s jumbo allocation failed -- packet " "dropped!\n", sc_if->arpcom.ac_if.if_xname)); return(ENOBUFS); } /* Attach the buffer to the mbuf */ m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; MEXTADD(m_new, buf, SK_JLEN, 0, sk_jfree, sc_if); } else { /* * We're re-using a previously allocated mbuf; * be sure to re-init pointers and lengths to * default values. */ m_new = m; m_new->m_len = m_new->m_pkthdr.len = SK_JLEN; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); c = &sc_if->sk_cdata.sk_rx_chain[i]; r = c->sk_desc; c->sk_mbuf = m_new; r->sk_data_lo = dmamap->dm_segs[0].ds_addr + (((vaddr_t)m_new->m_data - (vaddr_t)sc_if->sk_cdata.sk_jumbo_buf)); r->sk_ctl = SK_JLEN | SK_RXSTAT; return(0); } /* * Memory management for jumbo frames. */ int sk_alloc_jumbo_mem(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; caddr_t ptr, kva; bus_dma_segment_t seg; int i, rseg; struct sk_jpool_entry *entry; /* Grab a big chunk o' storage. */ if (bus_dmamem_alloc(sc->sc_dmatag, SK_JMEM, PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname); return (ENOBUFS); } if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, SK_JMEM, &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc->sk_dev.dv_xname, SK_JMEM); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); return (ENOBUFS); } if (bus_dmamap_create(sc->sc_dmatag, SK_JMEM, 1, SK_JMEM, 0, BUS_DMA_NOWAIT, &sc_if->sk_cdata.sk_rx_jumbo_map)) { printf("%s: can't create dma map\n", sc->sk_dev.dv_xname); bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); return (ENOBUFS); } if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map, kva, SK_JMEM, NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc->sk_dev.dv_xname); bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); return (ENOBUFS); } sc_if->sk_cdata.sk_jumbo_buf = (caddr_t)kva; DPRINTFN(1,("sk_jumbo_buf = 0x%08X\n", sc_if->sk_cdata.sk_jumbo_buf)); LIST_INIT(&sc_if->sk_jfree_listhead); LIST_INIT(&sc_if->sk_jinuse_listhead); /* * Now divide it up into 9K pieces and save the addresses * in an array. */ ptr = sc_if->sk_cdata.sk_jumbo_buf; for (i = 0; i < SK_JSLOTS; i++) { sc_if->sk_cdata.sk_jslots[i] = ptr; ptr += SK_JLEN; entry = malloc(sizeof(struct sk_jpool_entry), M_DEVBUF, M_NOWAIT); if (entry == NULL) { bus_dmamap_unload(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_cdata.sk_rx_jumbo_map); bus_dmamem_unmap(sc->sc_dmatag, kva, SK_JMEM); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); sc_if->sk_cdata.sk_jumbo_buf = NULL; printf("%s: no memory for jumbo buffer queue!\n", sc->sk_dev.dv_xname); return(ENOBUFS); } entry->slot = i; if (i) LIST_INSERT_HEAD(&sc_if->sk_jfree_listhead, entry, jpool_entries); else LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); } return(0); } /* * Allocate a jumbo buffer. */ void * sk_jalloc(struct sk_if_softc *sc_if) { struct sk_jpool_entry *entry; entry = LIST_FIRST(&sc_if->sk_jfree_listhead); if (entry == NULL) { DPRINTF(("%s: no free jumbo buffers\n", sc_if->sk_dev.dv_xname)); return (NULL); } LIST_REMOVE(entry, jpool_entries); LIST_INSERT_HEAD(&sc_if->sk_jinuse_listhead, entry, jpool_entries); return (sc_if->sk_cdata.sk_jslots[entry->slot]); } /* * Release a jumbo buffer. */ void sk_jfree(caddr_t buf, u_int size, void *arg) { struct sk_jpool_entry *entry; struct sk_if_softc *sc; int i; /* Extract the softc struct pointer. */ sc = (struct sk_if_softc *)arg; if (sc == NULL) panic("sk_jfree: can't find softc pointer!"); /* calculate the slot this buffer belongs to */ i = ((vaddr_t)buf - (vaddr_t)sc->sk_cdata.sk_jumbo_buf) / SK_JLEN; if ((i < 0) || (i >= SK_JSLOTS)) panic("sk_jfree: asked to free buffer that we don't manage!"); entry = LIST_FIRST(&sc->sk_jinuse_listhead); if (entry == NULL) panic("sk_jfree: buffer not in use!"); entry->slot = i; LIST_REMOVE(entry, jpool_entries); LIST_INSERT_HEAD(&sc->sk_jfree_listhead, entry, jpool_entries); } /* * Set media options. */ int sk_ifmedia_upd(struct ifnet *ifp) { struct sk_if_softc *sc_if = ifp->if_softc; sk_init(sc_if); mii_mediachg(&sc_if->sk_mii); return(0); } /* * Report current media status. */ void sk_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct sk_if_softc *sc_if = ifp->if_softc; mii_pollstat(&sc_if->sk_mii); ifmr->ifm_active = sc_if->sk_mii.mii_media_active; ifmr->ifm_status = sc_if->sk_mii.mii_media_status; } int sk_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct sk_if_softc *sc_if = ifp->if_softc; struct sk_softc *sc = sc_if->sk_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *) data; struct mii_data *mii; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc_if->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: sk_init(sc_if); arp_ifinit(&sc_if->arpcom, ifa); break; #endif /* INET */ default: sk_init(sc_if); break; } break; case SIOCSIFMTU: if (ifr->ifr_mtu > ETHERMTU_JUMBO) error = EINVAL; else { ifp->if_mtu = ifr->ifr_mtu; ifp->if_flags &= ~IFF_RUNNING; sk_init(sc_if); } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc_if->sk_if_flags & IFF_PROMISC)) { switch(sc->sk_type) { case SK_GENESIS: SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_YU_CLRBIT_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN); break; } sk_setmulti(sc_if); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc_if->sk_if_flags & IFF_PROMISC) { switch(sc->sk_type) { case SK_GENESIS: SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_YU_SETBIT_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN); break; } sk_setmulti(sc_if); } else sk_init(sc_if); } else { if (ifp->if_flags & IFF_RUNNING) sk_stop(sc_if); } sc_if->sk_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc_if->arpcom) : ether_delmulti(ifr, &sc_if->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ if (ifp->if_flags & IFF_RUNNING) sk_setmulti(sc_if); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc_if->sk_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } splx(s); return(error); } /* * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int skc_probe(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, skc_devices, sizeof(skc_devices)/sizeof(skc_devices[0]))); } /* * Force the GEnesis into reset, then bring it out of reset. */ void sk_reset(struct sk_softc *sc) { DPRINTFN(2, ("sk_reset\n")); CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET); CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET); if (SK_YUKON_FAMILY(sc->sk_type)) CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET); DELAY(1000); CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET); DELAY(2); CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET); if (SK_YUKON_FAMILY(sc->sk_type)) CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR); DPRINTFN(2, ("sk_reset: sk_csr=%x\n", CSR_READ_2(sc, SK_CSR))); DPRINTFN(2, ("sk_reset: sk_link_ctrl=%x\n", CSR_READ_2(sc, SK_LINK_CTRL))); if (sc->sk_type == SK_GENESIS) { /* Configure packet arbiter */ sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); } /* Enable RAM interface */ sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); /* * Configure interrupt moderation. The moderation timer * defers interrupts specified in the interrupt moderation * timer mask based on the timeout specified in the interrupt * moderation timer init register. Each bit in the timer * register represents 18.825ns, so to specify a timeout in * microseconds, we have to multiply by 54. */ sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(100)); sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); } int sk_probe(struct device *parent, void *match, void *aux) { struct skc_attach_args *sa = aux; if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B) return(0); return (1); } /* * Each XMAC chip is attached as a separate logical IP interface. * Single port cards will have only one logical interface of course. */ void sk_attach(struct device *parent, struct device *self, void *aux) { struct sk_if_softc *sc_if = (struct sk_if_softc *) self; struct sk_softc *sc = (struct sk_softc *)parent; struct skc_attach_args *sa = aux; struct ifnet *ifp; caddr_t kva; bus_dma_segment_t seg; int i, rseg; sc_if->sk_port = sa->skc_port; sc_if->sk_softc = sc; sc->sk_if[sa->skc_port] = sc_if; if (sa->skc_port == SK_PORT_A) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; if (sa->skc_port == SK_PORT_B) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; DPRINTFN(2, ("begin sk_attach: port=%d\n", sc_if->sk_port)); /* * Get station address for this interface. Note that * dual port cards actually come with three station * addresses: one for each port, plus an extra. The * extra one is used by the SysKonnect driver software * as a 'virtual' station address for when both ports * are operating in failover mode. Currently we don't * use this extra address. */ for (i = 0; i < ETHER_ADDR_LEN; i++) sc_if->arpcom.ac_enaddr[i] = sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i); printf(": address %s\n", ether_sprintf(sc_if->arpcom.ac_enaddr)); /* * Set up RAM buffer addresses. The NIC will have a certain * amount of SRAM on it, somewhere between 512K and 2MB. We * need to divide this up a) between the transmitter and * receiver and b) between the two XMACs, if this is a * dual port NIC. Our algorithm is to divide up the memory * evenly so that everyone gets a fair share. */ if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { u_int32_t chunk, val; chunk = sc->sk_ramsize / 2; val = sc->sk_rboff / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } else { u_int32_t chunk, val; chunk = sc->sk_ramsize / 4; val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } DPRINTFN(2, ("sk_attach: rx_ramstart=%#x rx_ramend=%#x\n" " tx_ramstart=%#x tx_ramend=%#x\n", sc_if->sk_rx_ramstart, sc_if->sk_rx_ramend, sc_if->sk_tx_ramstart, sc_if->sk_tx_ramend)); /* Read and save PHY type and set PHY address */ sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; switch (sc_if->sk_phytype) { case SK_PHYTYPE_XMAC: sc_if->sk_phyaddr = SK_PHYADDR_XMAC; break; case SK_PHYTYPE_BCOM: sc_if->sk_phyaddr = SK_PHYADDR_BCOM; break; case SK_PHYTYPE_MARV_COPPER: sc_if->sk_phyaddr = SK_PHYADDR_MARV; break; default: printf("%s: unsupported PHY type: %d\n", sc->sk_dev.dv_xname, sc_if->sk_phytype); return; } /* Allocate the descriptor queues. */ if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data), PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname); goto fail; } if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc_if->sk_dev.dv_xname, sizeof(struct sk_ring_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1, sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT, &sc_if->sk_ring_map)) { printf("%s: can't create dma map\n", sc_if->sk_dev.dv_xname); bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct sk_ring_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } if (bus_dmamap_load(sc->sc_dmatag, sc_if->sk_ring_map, kva, sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc_if->sk_dev.dv_xname); bus_dmamap_destroy(sc->sc_dmatag, sc_if->sk_ring_map); bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct sk_ring_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } sc_if->sk_rdata = (struct sk_ring_data *)kva; bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data)); /* Try to allocate memory for jumbo buffers. */ if (sk_alloc_jumbo_mem(sc_if)) { printf("%s: jumbo buffer allocation failed\n", ifp->if_xname); goto fail; } ifp = &sc_if->arpcom.ac_if; ifp->if_softc = sc_if; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sk_ioctl; ifp->if_start = sk_start; ifp->if_watchdog = sk_watchdog; ifp->if_baudrate = 1000000000; ifp->if_capabilities |= IFCAP_VLAN_MTU; IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ); /* * Do miibus setup. */ switch (sc->sk_type) { case SK_GENESIS: sk_init_xmac(sc_if); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sk_init_yukon(sc_if); break; default: panic("%s: unknown device type %d", sc->sk_dev.dv_xname, sc->sk_type); } DPRINTFN(2, ("sk_attach: 1\n")); sc_if->sk_mii.mii_ifp = ifp; switch (sc->sk_type) { case SK_GENESIS: sc_if->sk_mii.mii_readreg = sk_xmac_miibus_readreg; sc_if->sk_mii.mii_writereg = sk_xmac_miibus_writereg; sc_if->sk_mii.mii_statchg = sk_xmac_miibus_statchg; break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sc_if->sk_mii.mii_readreg = sk_marv_miibus_readreg; sc_if->sk_mii.mii_writereg = sk_marv_miibus_writereg; sc_if->sk_mii.mii_statchg = sk_marv_miibus_statchg; break; } ifmedia_init(&sc_if->sk_mii.mii_media, 0, sk_ifmedia_upd, sk_ifmedia_sts); mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname); ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO); timeout_set(&sc_if->sk_tick_ch, sk_tick, sc_if); timeout_add(&sc_if->sk_tick_ch, hz); DPRINTFN(2, ("sk_attach: 1\n")); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); DPRINTFN(2, ("sk_attach: end\n")); return; fail: sc->sk_if[sa->skc_port] = NULL; } int skcprint(void *aux, const char *pnp) { struct skc_attach_args *sa = aux; if (pnp) printf("sk port %c at %s", (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp); else printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B'); return (UNCONF); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void skc_attach(struct device *parent, struct device *self, void *aux) { struct sk_softc *sc = (struct sk_softc *)self; struct pci_attach_args *pa = aux; struct skc_attach_args skca; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_addr_t iobase; bus_size_t iosize; int s; u_int8_t skrs; u_int32_t command; char *revstr = NULL; DPRINTFN(2, ("begin skc_attach\n")); s = splimp(); /* * Handle power management nonsense. */ command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL); if (command & SK_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO); membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE); /* Reset the power state. */ printf("%s chip is in D%d power mode " "-- setting to D0\n", sc->sk_dev.dv_xname, command & SK_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase); pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase); pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq); } } /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef SK_USEIOSPACE if (!(command & PCI_COMMAND_IO_ENABLE)) { printf(": failed to enable I/O ports!\n"); goto fail; } /* * Map control/status registers. */ if (pci_io_find(pc, pa->pa_tag, SK_PCI_LOIO, &iobase, &iosize)) { printf(": can't find i/o space\n"); goto fail; } if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sk_bhandle)) { printf(": can't map i/o space\n"); goto fail; } sc->sk_btag = pa->pa_iot; #else if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping!\n"); goto fail; } if (pci_mem_find(pc, pa->pa_tag, SK_PCI_LOMEM, &iobase, &iosize, NULL)){ printf(": can't find mem space\n"); goto fail; } if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sk_bhandle)) { printf(": can't map mem space\n"); goto fail; } sc->sk_btag = pa->pa_memt; DPRINTFN(2, ("skc_attach: iobase=%#x, iosize=%#x\n", iobase, iosize)); #endif sc->sc_dmatag = pa->pa_dmat; sc->sk_type = sk_win_read_1(sc, SK_CHIPVER); sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4); /* bail out here if chip is not recognized */ if (sc->sk_type != SK_GENESIS && ! SK_YUKON_FAMILY(sc->sk_type)) { printf("%s: unknown chip type\n",sc->sk_dev.dv_xname); goto fail; } DPRINTFN(2, ("skc_attach: allocate interrupt\n")); /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc, self->dv_xname); if (sc->sk_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); goto fail; } printf(": %s\n", intrstr); /* Reset the adapter. */ sk_reset(sc); /* Read and save vital product data from EEPROM. */ sk_vpd_read(sc); skrs = sk_win_read_1(sc, SK_EPROM0); if (sc->sk_type == SK_GENESIS) { /* Read and save RAM size and RAMbuffer offset */ switch(skrs) { case SK_RAMSIZE_512K_64: sc->sk_ramsize = 0x80000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_1024K_64: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_80000; break; case SK_RAMSIZE_1024K_128: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_2048K_128: sc->sk_ramsize = 0x200000; sc->sk_rboff = SK_RBOFF_0; break; default: printf("%s: unknown ram size: %d\n", sc->sk_dev.dv_xname, skrs); goto fail; break; } } else { if (skrs == 0x00) sc->sk_ramsize = 0x20000; else sc->sk_ramsize = skrs * (1<<12); sc->sk_rboff = SK_RBOFF_0; } DPRINTFN(2, ("skc_attach: ramsize=%d (%dk), rboff=%d\n", sc->sk_ramsize, sc->sk_ramsize / 1024, sc->sk_rboff)); /* Read and save physical media type */ switch(sk_win_read_1(sc, SK_PMDTYPE)) { case SK_PMD_1000BASESX: sc->sk_pmd = IFM_1000_SX; break; case SK_PMD_1000BASELX: sc->sk_pmd = IFM_1000_LX; break; case SK_PMD_1000BASECX: sc->sk_pmd = IFM_1000_CX; break; case SK_PMD_1000BASETX: sc->sk_pmd = IFM_1000_T; break; default: printf("%s: unknown media type: 0x%x\n", sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE)); goto fail; } /* determine whether to name it with VPD or just make it up */ /* Marvell Yukon VPD's can freqently be bogus */ switch (pa->pa_id) { case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_GE): case PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2: case PCI_PRODUCT_3COM_3C940: case PCI_PRODUCT_LINKSYS_EG1032: case PCI_PRODUCT_LINKSYS_EG1064: case PCI_ID_CODE(PCI_VENDOR_SCHNEIDERKOCH, PCI_PRODUCT_SCHNEIDERKOCH_SK9821v2): case PCI_ID_CODE(PCI_VENDOR_3COM,PCI_PRODUCT_3COM_3C940): case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1032): case PCI_ID_CODE(PCI_VENDOR_LINKSYS,PCI_PRODUCT_LINKSYS_EG1064): sc->sk_name = sc->sk_vpd_prodname; break; case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SK_V2): case PCI_ID_CODE(PCI_VENDOR_MARVELL,PCI_PRODUCT_MARVELL_SK_V2_BELKIN): case PCI_PRODUCT_DLINK_DGE530T: case PCI_ID_CODE(PCI_VENDOR_DLINK,PCI_PRODUCT_DLINK_DGE530T): /* whoops Yukon VPD prodname bears no resemblance to reality */ switch (sc->sk_type) { case SK_GENESIS: sc->sk_name = sc->sk_vpd_prodname; break; case SK_YUKON: sc->sk_name = "Marvell Yukon Gigabit Ethernet"; break; case SK_YUKON_LITE: sc->sk_name = "Marvell Yukon Lite Gigabit Ethernet"; break; case SK_YUKON_LP: sc->sk_name = "Marvell Yukon LP Gigabit Ethernet"; break; default: sc->sk_name = "Marvell Yukon (Unknown) Gigabit Ethernet"; } /* Yukon Lite Rev A0 needs special test, from sk98lin driver */ if (sc->sk_type == SK_YUKON) { uint32_t flashaddr; uint8_t testbyte; flashaddr = sk_win_read_4(sc, SK_EP_ADDR); /* test Flash-Address Register */ sk_win_write_1(sc, SK_EP_ADDR+3, 0xff); testbyte = sk_win_read_1(sc, SK_EP_ADDR+3); if (testbyte != 0) { /* This is a Yukon Lite Rev A0 */ sc->sk_type = SK_YUKON_LITE; sc->sk_rev = SK_YUKON_LITE_REV_A0; /* restore Flash-Address Register */ sk_win_write_4(sc, SK_EP_ADDR, flashaddr); } } break; default: sc->sk_name = "Unkown Marvell"; } if (sc->sk_type == SK_YUKON_LITE) { switch (sc->sk_rev) { case SK_YUKON_LITE_REV_A0: revstr = "A0"; break; case SK_YUKON_LITE_REV_A1: revstr = "A1"; break; case SK_YUKON_LITE_REV_A3: revstr = "A3"; break; default: ; } } /* Announce the product name. */ printf("%s: %s", sc->sk_dev.dv_xname, sc->sk_name); if (revstr != NULL) printf(" rev. %s", revstr); printf(" (0x%x)\n", sc->sk_rev); skca.skc_port = SK_PORT_A; (void)config_found(&sc->sk_dev, &skca, skcprint); if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { skca.skc_port = SK_PORT_B; (void)config_found(&sc->sk_dev, &skca, skcprint); } /* Turn on the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); fail: splx(s); } int sk_encap(struct sk_if_softc *sc_if, struct mbuf *m_head, u_int32_t *txidx) { struct sk_softc *sc = sc_if->sk_softc; struct sk_tx_desc *f = NULL; u_int32_t frag, cur, cnt = 0; int i; struct sk_txmap_entry *entry; bus_dmamap_t txmap; DPRINTFN(2, ("sk_encap\n")); entry = SIMPLEQ_FIRST(&sc_if->sk_txmap_head); if (entry == NULL) { DPRINTFN(2, ("sk_encap: no txmap available\n")); return ENOBUFS; } txmap = entry->dmamap; cur = frag = *txidx; #ifdef SK_DEBUG if (skdebug >= 2) sk_dump_mbuf(m_head); #endif /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ if (bus_dmamap_load_mbuf(sc->sc_dmatag, txmap, m_head, BUS_DMA_NOWAIT)) { DPRINTFN(2, ("sk_encap: dmamap failed\n")); return(ENOBUFS); } DPRINTFN(2, ("sk_encap: dm_nsegs=%d\n", txmap->dm_nsegs)); for (i = 0; i < txmap->dm_nsegs; i++) { if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) { DPRINTFN(2, ("sk_encap: too few descriptors free\n")); return(ENOBUFS); } f = &sc_if->sk_rdata->sk_tx_ring[frag]; f->sk_data_lo = txmap->dm_segs[i].ds_addr; f->sk_ctl = txmap->dm_segs[i].ds_len | SK_OPCODE_DEFAULT; if (cnt == 0) f->sk_ctl |= SK_TXCTL_FIRSTFRAG; else f->sk_ctl |= SK_TXCTL_OWN; cur = frag; SK_INC(frag, SK_TX_RING_CNT); cnt++; } sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; SIMPLEQ_REMOVE_HEAD(&sc_if->sk_txmap_head, link); sc_if->sk_cdata.sk_tx_map[cur] = entry; sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; sc_if->sk_cdata.sk_tx_cnt += cnt; #ifdef SK_DEBUG if (skdebug >= 2) { struct sk_tx_desc *desc; u_int32_t idx; for (idx = *txidx; idx != frag; SK_INC(idx, SK_TX_RING_CNT)) { desc = &sc_if->sk_rdata->sk_tx_ring[idx]; sk_dump_txdesc(desc, idx); } } #endif *txidx = frag; DPRINTFN(2, ("sk_encap: completed successfully\n")); return(0); } void sk_start(struct ifnet *ifp) { struct sk_if_softc *sc_if = ifp->if_softc; struct sk_softc *sc = sc_if->sk_softc; struct mbuf *m_head = NULL; u_int32_t idx = sc_if->sk_cdata.sk_tx_prod; int pkts = 0; DPRINTFN(2, ("sk_start\n")); while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { IFQ_POLL(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (sk_encap(sc_if, m_head, &idx)) { ifp->if_flags |= IFF_OACTIVE; break; } /* now we are committed to transmit the packet */ IFQ_DEQUEUE(&ifp->if_snd, m_head); pkts++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif } if (pkts == 0) return; /* Transmit */ if (idx != sc_if->sk_cdata.sk_tx_prod) { sc_if->sk_cdata.sk_tx_prod = idx; CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } } void sk_watchdog(struct ifnet *ifp) { struct sk_if_softc *sc_if = ifp->if_softc; printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname); ifp->if_flags &= ~IFF_RUNNING; sk_init(sc_if); } void sk_shutdown(void *v) { struct sk_softc *sc = v; DPRINTFN(2, ("sk_shutdown\n")); /* Turn off the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); /* * Reset the GEnesis controller. Doing this should also * assert the resets on the attached XMAC(s). */ sk_reset(sc); } void sk_rxeof(struct sk_if_softc *sc_if) { struct ifnet *ifp = &sc_if->arpcom.ac_if; struct mbuf *m; struct sk_chain *cur_rx; struct sk_rx_desc *cur_desc; int i, cur, total_len = 0; u_int32_t rxstat; bus_dmamap_t dmamap; u_int16_t csum1, csum2; DPRINTFN(2, ("sk_rxeof\n")); i = sc_if->sk_cdata.sk_rx_prod; while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { cur = i; cur_rx = &sc_if->sk_cdata.sk_rx_chain[cur]; cur_desc = &sc_if->sk_rdata->sk_rx_ring[cur]; rxstat = cur_desc->sk_xmac_rxstat; m = cur_rx->sk_mbuf; cur_rx->sk_mbuf = NULL; total_len = SK_RXBYTES(cur_desc->sk_ctl); dmamap = sc_if->sk_cdata.sk_rx_jumbo_map; csum1 = sc_if->sk_rdata->sk_rx_ring[i].sk_csum1; csum2 = sc_if->sk_rdata->sk_rx_ring[i].sk_csum2; SK_INC(i, SK_RX_RING_CNT); if (rxstat & XM_RXSTAT_ERRFRAME) { ifp->if_ierrors++; sk_newbuf(sc_if, cur, m, dmamap); continue; } /* * Try to allocate a new jumbo buffer. If that * fails, copy the packet to mbufs and put the * jumbo buffer back in the ring so it can be * re-used. If allocating mbufs fails, then we * have to drop the packet. */ if (sk_newbuf(sc_if, cur, NULL, dmamap) == ENOBUFS) { struct mbuf *m0; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); sk_newbuf(sc_if, cur, m, dmamap); if (m0 == NULL) { ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } ifp->if_ipackets++; sk_rxcsum(ifp, m, csum1, csum2); #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* pass it on. */ ether_input_mbuf(ifp, m); } sc_if->sk_cdata.sk_rx_prod = i; } void sk_rxcsum(struct ifnet *ifp, struct mbuf *m, const u_int16_t csum1, const u_int16_t csum2) { struct ether_header *eh; struct ip *ip; u_int8_t *pp; int hlen, len, plen; u_int16_t iph_csum, ipo_csum, ipd_csum, csum; pp = mtod(m, u_int8_t *); plen = m->m_pkthdr.len; if (plen < sizeof(*eh)) return; eh = (struct ether_header *)pp; iph_csum = in_cksum_addword(csum1, (~csum2 & 0xffff)); if (eh->ether_type == htons(ETHERTYPE_VLAN)) { u_int16_t *xp = (u_int16_t *)pp; xp = (u_int16_t *)pp; if (xp[1] != htons(ETHERTYPE_IP)) return; iph_csum = in_cksum_addword(iph_csum, (~xp[0] & 0xffff)); iph_csum = in_cksum_addword(iph_csum, (~xp[1] & 0xffff)); xp = (u_int16_t *)(pp + sizeof(struct ip)); iph_csum = in_cksum_addword(iph_csum, xp[0]); iph_csum = in_cksum_addword(iph_csum, xp[1]); pp += EVL_ENCAPLEN; } else if (eh->ether_type != htons(ETHERTYPE_IP)) return; pp += sizeof(*eh); plen -= sizeof(*eh); ip = (struct ip *)pp; if (ip->ip_v != IPVERSION) return; hlen = ip->ip_hl << 2; if (hlen < sizeof(struct ip)) return; if (hlen > ntohs(ip->ip_len)) return; /* Don't deal with truncated or padded packets. */ if (plen != ntohs(ip->ip_len)) return; len = hlen - sizeof(struct ip); if (len > 0) { u_int16_t *p; p = (u_int16_t *)(ip + 1); ipo_csum = 0; for (ipo_csum = 0; len > 0; len -= sizeof(*p), p++) ipo_csum = in_cksum_addword(ipo_csum, *p); iph_csum = in_cksum_addword(iph_csum, ipo_csum); ipd_csum = in_cksum_addword(csum2, (~ipo_csum & 0xffff)); } else ipd_csum = csum2; if (iph_csum != 0xffff) { if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); return; } m->m_pkthdr.csum |= M_IPV4_CSUM_IN_OK; if (ip->ip_off & htons(IP_MF | IP_OFFMASK)) return; /* ip frag, we're done for now */ pp += hlen; /* Only know checksum protocol for udp/tcp */ if (ip->ip_p == IPPROTO_UDP) { struct udphdr *uh = (struct udphdr *)pp; if (uh->uh_sum == 0) /* udp with no checksum */ return; } else if (ip->ip_p != IPPROTO_TCP) return; csum = in_cksum_phdr(ip->ip_src.s_addr, ip->ip_dst.s_addr, htonl(ntohs(ip->ip_len) - hlen + ip->ip_p) + ipd_csum); if (csum == 0xffff) { m->m_pkthdr.csum |= (ip->ip_p == IPPROTO_TCP) ? M_TCP_CSUM_IN_OK : M_UDP_CSUM_IN_OK; } } void sk_txeof(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; struct sk_tx_desc *cur_tx; struct ifnet *ifp = &sc_if->arpcom.ac_if; u_int32_t idx; struct sk_txmap_entry *entry; DPRINTFN(2, ("sk_txeof\n")); /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ idx = sc_if->sk_cdata.sk_tx_cons; while(idx != sc_if->sk_cdata.sk_tx_prod) { cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; #ifdef SK_DEBUG if (skdebug >= 2) sk_dump_txdesc(cur_tx, idx); #endif if (cur_tx->sk_ctl & SK_TXCTL_OWN) break; if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) ifp->if_opackets++; if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; entry = sc_if->sk_cdata.sk_tx_map[idx]; bus_dmamap_sync(sc->sc_dmatag, entry->dmamap, 0, entry->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmatag, entry->dmamap); SIMPLEQ_INSERT_TAIL(&sc_if->sk_txmap_head, entry, link); sc_if->sk_cdata.sk_tx_map[idx] = NULL; } sc_if->sk_cdata.sk_tx_cnt--; SK_INC(idx, SK_TX_RING_CNT); } if (sc_if->sk_cdata.sk_tx_cnt == 0) ifp->if_timer = 0; else /* nudge chip to keep tx ring moving */ CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); if (sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 2) ifp->if_flags &= ~IFF_OACTIVE; sc_if->sk_cdata.sk_tx_cons = idx; } void sk_tick(void *xsc_if) { struct sk_if_softc *sc_if = xsc_if; struct mii_data *mii = &sc_if->sk_mii; struct ifnet *ifp = &sc_if->arpcom.ac_if; int i; DPRINTFN(2, ("sk_tick\n")); if (!(ifp->if_flags & IFF_UP)) return; if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { sk_intr_bcom(sc_if); return; } /* * According to SysKonnect, the correct way to verify that * the link has come back up is to poll bit 0 of the GPIO * register three times. This pin has the signal from the * link sync pin connected to it; if we read the same link * state 3 times in a row, we know the link is up. */ for (i = 0; i < 3; i++) { if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) break; } if (i != 3) { timeout_add(&sc_if->sk_tick_ch, hz); return; } /* Turn the GP0 interrupt back on. */ SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); SK_XM_READ_2(sc_if, XM_ISR); mii_tick(mii); mii_pollstat(mii); timeout_del(&sc_if->sk_tick_ch); } void sk_intr_bcom(struct sk_if_softc *sc_if) { struct mii_data *mii = &sc_if->sk_mii; struct ifnet *ifp = &sc_if->arpcom.ac_if; int status; DPRINTFN(2, ("sk_intr_bcom\n")); SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); /* * Read the PHY interrupt register to make sure * we clear any pending interrupts. */ status = sk_xmac_miibus_readreg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); if (!(ifp->if_flags & IFF_RUNNING)) { sk_init_xmac(sc_if); return; } if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { int lstat; lstat = sk_xmac_miibus_readreg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS); if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { mii_mediachg(mii); /* Turn off the link LED. */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); sc_if->sk_link = 0; } else if (status & BRGPHY_ISR_LNK_CHG) { sk_xmac_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00); mii_tick(mii); sc_if->sk_link = 1; /* Turn on the link LED. */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| SK_LINKLED_BLINK_OFF); mii_pollstat(mii); } else { mii_tick(mii); timeout_add(&sc_if->sk_tick_ch, hz); } } SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); } void sk_intr_xmac(struct sk_if_softc *sc_if) { u_int16_t status = SK_XM_READ_2(sc_if, XM_ISR); DPRINTFN(2, ("sk_intr_xmac\n")); if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { if (status & XM_ISR_GP0_SET) { SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); timeout_add(&sc_if->sk_tick_ch, hz); } if (status & XM_ISR_AUTONEG_DONE) { timeout_add(&sc_if->sk_tick_ch, hz); } } if (status & XM_IMR_TX_UNDERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); if (status & XM_IMR_RX_OVERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); } void sk_intr_yukon(sc_if) struct sk_if_softc *sc_if; { int status; status = SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); DPRINTFN(2, ("sk_intr_yukon status=%#x\n", status)); } int sk_intr(void *xsc) { struct sk_softc *sc = xsc; struct sk_if_softc *sc_if0 = sc->sk_if[SK_PORT_A]; struct sk_if_softc *sc_if1 = sc->sk_if[SK_PORT_B]; struct ifnet *ifp0 = NULL, *ifp1 = NULL; u_int32_t status; int claimed = 0; if (sc_if0 != NULL) ifp0 = &sc_if0->arpcom.ac_if; if (sc_if1 != NULL) ifp1 = &sc_if1->arpcom.ac_if; for (;;) { status = CSR_READ_4(sc, SK_ISSR); DPRINTFN(2, ("sk_intr: status=%#x\n", status)); if (!(status & sc->sk_intrmask)) break; claimed = 1; /* Handle receive interrupts first. */ if (status & SK_ISR_RX1_EOF) { sk_rxeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_RX_CSR0, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } if (status & SK_ISR_RX2_EOF) { sk_rxeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_RX_CSR1, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } /* Then transmit interrupts. */ if (status & SK_ISR_TX1_S_EOF) { sk_txeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); } if (status & SK_ISR_TX2_S_EOF) { sk_txeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); } /* Then MAC interrupts. */ if (status & SK_ISR_MAC1 && (ifp0->if_flags & IFF_RUNNING)) { if (sc->sk_type == SK_GENESIS) sk_intr_xmac(sc_if0); else sk_intr_yukon(sc_if0); } if (status & SK_ISR_MAC2 && (ifp1->if_flags & IFF_RUNNING)) { if (sc->sk_type == SK_GENESIS) sk_intr_xmac(sc_if1); else sk_intr_yukon(sc_if1); } if (status & SK_ISR_EXTERNAL_REG) { if (ifp0 != NULL && sc_if0->sk_phytype == SK_PHYTYPE_BCOM) sk_intr_bcom(sc_if0); if (ifp1 != NULL && sc_if1->sk_phytype == SK_PHYTYPE_BCOM) sk_intr_bcom(sc_if1); } } CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); if (ifp0 != NULL && !IFQ_IS_EMPTY(&ifp0->if_snd)) sk_start(ifp0); if (ifp1 != NULL && !IFQ_IS_EMPTY(&ifp1->if_snd)) sk_start(ifp1); return (claimed); } void sk_init_xmac(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp = &sc_if->arpcom.ac_if; struct sk_bcom_hack bhack[] = { { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, { 0, 0 } }; DPRINTFN(2, ("sk_init_xmac\n")); /* Unreset the XMAC. */ SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); DELAY(1000); /* Reset the XMAC's internal state. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); /* Save the XMAC II revision */ sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); /* * Perform additional initialization for external PHYs, * namely for the 1000baseTX cards that use the XMAC's * GMII mode. */ if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { int i = 0; u_int32_t val; /* Take PHY out of reset. */ val = sk_win_read_4(sc, SK_GPIO); if (sc_if->sk_port == SK_PORT_A) val |= SK_GPIO_DIR0|SK_GPIO_DAT0; else val |= SK_GPIO_DIR2|SK_GPIO_DAT2; sk_win_write_4(sc, SK_GPIO, val); /* Enable GMII mode on the XMAC. */ SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); sk_xmac_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); DELAY(10000); sk_xmac_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0); /* * Early versions of the BCM5400 apparently have * a bug that requires them to have their reserved * registers initialized to some magic values. I don't * know what the numbers do, I'm just the messenger. */ if (sk_xmac_miibus_readreg((struct device *)sc_if, SK_PHYADDR_BCOM, 0x03) == 0x6041) { while(bhack[i].reg) { sk_xmac_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM, bhack[i].reg, bhack[i].val); i++; } } } /* Set station address */ SK_XM_WRITE_2(sc_if, XM_PAR0, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); SK_XM_WRITE_2(sc_if, XM_PAR1, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); SK_XM_WRITE_2(sc_if, XM_PAR2, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); if (ifp->if_flags & IFF_PROMISC) { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); } else { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); } if (ifp->if_flags & IFF_BROADCAST) { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } else { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } /* We don't need the FCS appended to the packet. */ SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); /* We want short frames padded to 60 bytes. */ SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); /* * Enable the reception of all error frames. This is is * a necessary evil due to the design of the XMAC. The * XMAC's receive FIFO is only 8K in size, however jumbo * frames can be up to 9000 bytes in length. When bad * frame filtering is enabled, the XMAC's RX FIFO operates * in 'store and forward' mode. For this to work, the * entire frame has to fit into the FIFO, but that means * that jumbo frames larger than 8192 bytes will be * truncated. Disabling all bad frame filtering causes * the RX FIFO to operate in streaming mode, in which * case the XMAC will start transfering frames out of the * RX FIFO as soon as the FIFO threshold is reached. */ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| XM_MODE_RX_INRANGELEN); SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); /* * Bump up the transmit threshold. This helps hold off transmit * underruns when we're blasting traffic from both ports at once. */ SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); /* Set multicast filter */ sk_setmulti(sc_if); /* Clear and enable interrupts */ SK_XM_READ_2(sc_if, XM_ISR); if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); else SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Configure MAC arbiter */ switch(sc_if->sk_xmac_rev) { case XM_XMAC_REV_B2: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; case XM_XMAC_REV_C1: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; default: break; } sk_win_write_2(sc, SK_MACARB_CTL, SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); sc_if->sk_link = 1; } void sk_init_yukon(sc_if) struct sk_if_softc *sc_if; { u_int32_t phy; u_int16_t reg; int i; DPRINTFN(2, ("sk_init_yukon: start: sk_csr=%#x\n", CSR_READ_4(sc_if->sk_softc, SK_CSR))); /* GMAC and GPHY Reset */ SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET); DPRINTFN(6, ("sk_init_yukon: 1\n")); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); DELAY(1000); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET); DELAY(1000); DPRINTFN(6, ("sk_init_yukon: 2\n")); phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP | SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE; switch(sc_if->sk_softc->sk_pmd) { case IFM_1000_SX: case IFM_1000_LX: phy |= SK_GPHY_FIBER; break; case IFM_1000_CX: case IFM_1000_T: phy |= SK_GPHY_COPPER; break; } DPRINTFN(3, ("sk_init_yukon: phy=%#x\n", phy)); SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET); DELAY(1000); SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF | SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR); DPRINTFN(3, ("sk_init_yukon: gmac_ctrl=%#x\n", SK_IF_READ_4(sc_if, 0, SK_GMAC_CTRL))); DPRINTFN(6, ("sk_init_yukon: 3\n")); /* unused read of the interrupt source register */ DPRINTFN(6, ("sk_init_yukon: 4\n")); SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR); DPRINTFN(6, ("sk_init_yukon: 4a\n")); reg = SK_YU_READ_2(sc_if, YUKON_PAR); DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg)); /* MIB Counter Clear Mode set */ reg |= YU_PAR_MIB_CLR; DPRINTFN(6, ("sk_init_yukon: YUKON_PAR=%#x\n", reg)); DPRINTFN(6, ("sk_init_yukon: 4b\n")); SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); /* MIB Counter Clear Mode clear */ DPRINTFN(6, ("sk_init_yukon: 5\n")); reg &= ~YU_PAR_MIB_CLR; SK_YU_WRITE_2(sc_if, YUKON_PAR, reg); /* receive control reg */ DPRINTFN(6, ("sk_init_yukon: 7\n")); SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_UFLEN | YU_RCR_MUFLEN | YU_RCR_CRCR); /* transmit parameter register */ DPRINTFN(6, ("sk_init_yukon: 8\n")); SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) | YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) ); /* serial mode register */ DPRINTFN(6, ("sk_init_yukon: 9\n")); SK_YU_WRITE_2(sc_if, YUKON_SMR, YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_MFL_JUMBO | YU_SMR_IPG_DATA(0x1e)); DPRINTFN(6, ("sk_init_yukon: 10\n")); /* Setup Yukon's address */ for (i = 0; i < 3; i++) { /* Write Source Address 1 (unicast filter) */ SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4, sc_if->arpcom.ac_enaddr[i * 2] | sc_if->arpcom.ac_enaddr[i * 2 + 1] << 8); } for (i = 0; i < 3; i++) { reg = sk_win_read_2(sc_if->sk_softc, SK_MAC1_0 + i * 2 + sc_if->sk_port * 8); SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4, reg); } /* Set multicast filter */ DPRINTFN(6, ("sk_init_yukon: 11\n")); sk_setmulti(sc_if); /* enable interrupt mask for counter overflows */ DPRINTFN(6, ("sk_init_yukon: 12\n")); SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0); SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0); SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0); /* Configure RX MAC FIFO */ SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_OPERATION_ON); /* Configure TX MAC FIFO */ SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR); SK_IF_WRITE_4(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON); DPRINTFN(6, ("sk_init_yukon: end\n")); } /* * Note that to properly initialize any part of the GEnesis chip, * you first have to take it out of reset mode. */ void sk_init(void *xsc_if) { struct sk_if_softc *sc_if = xsc_if; struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp = &sc_if->arpcom.ac_if; struct mii_data *mii = &sc_if->sk_mii; int s; DPRINTFN(2, ("sk_init\n")); s = splimp(); if (ifp->if_flags & IFF_RUNNING) { splx(s); return; } /* Cancel pending I/O and free all RX/TX buffers. */ sk_stop(sc_if); if (sc->sk_type == SK_GENESIS) { /* Configure LINK_SYNC LED */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON); /* Configure RX LED */ SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START); /* Configure TX LED */ SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START); } /* Configure I2C registers */ /* Configure XMAC(s) */ switch (sc->sk_type) { case SK_GENESIS: sk_init_xmac(sc_if); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: sk_init_yukon(sc_if); break; } mii_mediachg(mii); if (sc->sk_type == SK_GENESIS) { /* Configure MAC FIFOs */ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); } /* Configure transmit arbiter(s) */ SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); /* Configure RAMbuffers */ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); /* Configure BMUs */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, SK_RX_RING_ADDR(sc_if, 0)); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, SK_TX_RING_ADDR(sc_if, 0)); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); /* Init descriptors */ if (sk_init_rx_ring(sc_if) == ENOBUFS) { printf("%s: initialization failed: no " "memory for rx buffers\n", sc_if->sk_dev.dv_xname); sk_stop(sc_if); splx(s); return; } if (sk_init_tx_ring(sc_if) == ENOBUFS) { printf("%s: initialization failed: no " "memory for tx buffers\n", sc_if->sk_dev.dv_xname); sk_stop(sc_if); splx(s); return; } /* Configure interrupt handling */ CSR_READ_4(sc, SK_ISSR); if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask |= SK_INTRS1; else sc->sk_intrmask |= SK_INTRS2; sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); /* Start BMUs. */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); if (sc->sk_type == SK_GENESIS) { /* Enable XMACs TX and RX state machines */ SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); } if (SK_YUKON_FAMILY(sc->sk_type)) { u_int16_t reg = SK_YU_READ_2(sc_if, YUKON_GPCR); reg |= YU_GPCR_TXEN | YU_GPCR_RXEN; reg &= ~(YU_GPCR_SPEED_EN | YU_GPCR_DPLX_EN); SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg); } ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); } void sk_stop(struct sk_if_softc *sc_if) { struct sk_softc *sc = sc_if->sk_softc; struct ifnet *ifp = &sc_if->arpcom.ac_if; int i; DPRINTFN(2, ("sk_stop\n")); timeout_del(&sc_if->sk_tick_ch); if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { u_int32_t val; /* Put PHY back into reset. */ val = sk_win_read_4(sc, SK_GPIO); if (sc_if->sk_port == SK_PORT_A) { val |= SK_GPIO_DIR0; val &= ~SK_GPIO_DAT0; } else { val |= SK_GPIO_DIR2; val &= ~SK_GPIO_DAT2; } sk_win_write_4(sc, SK_GPIO, val); } /* Turn off various components of this interface. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); switch (sc->sk_type) { case SK_GENESIS: SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); break; case SK_YUKON: case SK_YUKON_LITE: case SK_YUKON_LP: SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET); SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET); break; } SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); /* Disable interrupts */ if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask &= ~SK_INTRS1; else sc->sk_intrmask &= ~SK_INTRS2; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); SK_XM_READ_2(sc_if, XM_ISR); SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Free RX and TX mbufs still in the queues. */ for (i = 0; i < SK_RX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; } } for (i = 0; i < SK_TX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; } } ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); } struct cfattach skc_ca = { sizeof(struct sk_softc), skc_probe, skc_attach, }; struct cfdriver skc_cd = { 0, "skc", DV_DULL }; struct cfattach sk_ca = { sizeof(struct sk_if_softc), sk_probe, sk_attach, }; struct cfdriver sk_cd = { 0, "sk", DV_IFNET }; #ifdef SK_DEBUG void sk_dump_txdesc(struct sk_tx_desc *desc, int idx) { #define DESC_PRINT(X) \ if (desc->X) \ printf("txdesc[%d]." #X "=%#x\n", \ idx, desc->X); DESC_PRINT(sk_ctl); DESC_PRINT(sk_next); DESC_PRINT(sk_data_lo); DESC_PRINT(sk_data_hi); DESC_PRINT(sk_xmac_txstat); DESC_PRINT(sk_rsvd0); DESC_PRINT(sk_csum_startval); DESC_PRINT(sk_csum_startpos); DESC_PRINT(sk_csum_writepos); DESC_PRINT(sk_rsvd1); #undef PRINT } void sk_dump_bytes(const char *data, int len) { int c, i, j; for (i = 0; i < len; i += 16) { printf("%08x ", i); c = len - i; if (c > 16) c = 16; for (j = 0; j < c; j++) { printf("%02x ", data[i + j] & 0xff); if ((j & 0xf) == 7 && j > 0) printf(" "); } for (; j < 16; j++) printf(" "); printf(" "); for (j = 0; j < c; j++) { int ch = data[i + j] & 0xff; printf("%c", ' ' <= ch && ch <= '~' ? ch : ' '); } printf("\n"); if (c < 16) break; } } void sk_dump_mbuf(struct mbuf *m) { int count = m->m_pkthdr.len; printf("m=%#lx, m->m_pkthdr.len=%#d\n", m, m->m_pkthdr.len); while (count > 0 && m) { printf("m=%#lx, m->m_data=%#lx, m->m_len=%d\n", m, m->m_data, m->m_len); sk_dump_bytes(mtod(m, char *), m->m_len); count -= m->m_len; m = m->m_next; } } #endif