/* $OpenBSD: if_sk.c,v 1.16 2001/08/25 10:13:29 art Exp $ */ /* * Copyright (c) 1997, 1998, 1999, 2000 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: /c/ncvs/src/sys/pci/if_sk.c,v 1.20 2000/04/22 02:16:37 wpaul Exp $ */ /* * SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports * the SK-984x series adapters, both single port and dual port. * References: * The XaQti XMAC II datasheet, * http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * The SysKonnect GEnesis manual, http://www.syskonnect.com * * Note: XaQti has been aquired by Vitesse, and Vitesse does not have the * XMAC II datasheet online. I have put my copy at people.freebsd.org as a * convience to others until Vitesse corrects this problem: * * http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf * * Written by Bill Paul * Department of Electrical Engineering * Columbia University, New York City */ /* * The SysKonnect gigabit ethernet adapters consist of two main * components: the SysKonnect GEnesis controller chip and the XaQti Corp. * XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC * components and a PHY while the GEnesis controller provides a PCI * interface with DMA support. Each card may have between 512K and * 2MB of SRAM on board depending on the configuration. * * The SysKonnect GEnesis controller can have either one or two XMAC * chips connected to it, allowing single or dual port NIC configurations. * SysKonnect has the distinction of being the only vendor on the market * with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs, * dual DMA queues, packet/MAC/transmit arbiters and direct access to the * XMAC registers. This driver takes advantage of these features to allow * both XMACs to operate as independent interfaces. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include #include #include #include #include #include #include #include #define SK_USEIOSPACE #define SK_VERBOSE #include #include int skc_probe __P((struct device *, void *, void *)); void skc_attach __P((struct device *, struct device *self, void *aux)); int sk_probe __P((struct device *, void *, void *)); void sk_attach __P((struct device *, struct device *self, void *aux)); int skcprint __P((void *, const char *)); int sk_attach_xmac __P((struct sk_softc *, int)); int sk_intr __P((void *)); void sk_intr_bcom __P((struct sk_if_softc *)); void sk_intr_xmac __P((struct sk_if_softc *)); void sk_rxeof __P((struct sk_if_softc *)); void sk_txeof __P((struct sk_if_softc *)); int sk_encap __P((struct sk_if_softc *, struct mbuf *, u_int32_t *)); void sk_start __P((struct ifnet *)); int sk_ioctl __P((struct ifnet *, u_long, caddr_t)); void sk_init __P((void *)); void sk_init_xmac __P((struct sk_if_softc *)); void sk_stop __P((struct sk_if_softc *)); void sk_watchdog __P((struct ifnet *)); void sk_shutdown __P((void *)); int sk_ifmedia_upd __P((struct ifnet *)); void sk_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); void sk_reset __P((struct sk_softc *)); int sk_newbuf __P((struct sk_if_softc *, struct sk_chain *, struct mbuf *)); int sk_init_rx_ring __P((struct sk_if_softc *)); void sk_init_tx_ring __P((struct sk_if_softc *)); u_int32_t sk_win_read_4 __P((struct sk_softc *, int)); u_int16_t sk_win_read_2 __P((struct sk_softc *, int)); u_int8_t sk_win_read_1 __P((struct sk_softc *, int)); void sk_win_write_4 __P((struct sk_softc *, int, u_int32_t)); void sk_win_write_2 __P((struct sk_softc *, int, u_int32_t)); void sk_win_write_1 __P((struct sk_softc *, int, u_int32_t)); u_int8_t sk_vpd_readbyte __P((struct sk_softc *, int)); void sk_vpd_read_res __P((struct sk_softc *, struct vpd_res *, int)); void sk_vpd_read __P((struct sk_softc *)); int sk_miibus_readreg __P((struct device *, int, int)); void sk_miibus_writereg __P((struct device *, int, int, int)); void sk_miibus_statchg __P((struct device *)); u_int32_t sk_calchash __P((caddr_t)); void sk_setfilt __P((struct sk_if_softc *, caddr_t, int)); void sk_setmulti __P((struct sk_if_softc *)); void sk_tick __P((void *)); #define SK_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) #define SK_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) #define SK_WIN_SETBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x) #define SK_WIN_CLRBIT_4(sc, reg, x) \ sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x) #define SK_WIN_SETBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x) #define SK_WIN_CLRBIT_2(sc, reg, x) \ sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x) u_int32_t sk_win_read_4(sc, reg) struct sk_softc *sc; int reg; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg))); } u_int16_t sk_win_read_2(sc, reg) struct sk_softc *sc; int reg; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg))); } u_int8_t sk_win_read_1(sc, reg) struct sk_softc *sc; int reg; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg))); } void sk_win_write_4(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val); return; } void sk_win_write_2(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), (u_int32_t)val); return; } void sk_win_write_1(sc, reg, val) struct sk_softc *sc; int reg; u_int32_t val; { CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg)); CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val); return; } /* * The VPD EEPROM contains Vital Product Data, as suggested in * the PCI 2.1 specification. The VPD data is separared into areas * denoted by resource IDs. The SysKonnect VPD contains an ID string * resource (the name of the adapter), a read-only area resource * containing various key/data fields and a read/write area which * can be used to store asset management information or log messages. * We read the ID string and read-only into buffers attached to * the controller softc structure for later use. At the moment, * we only use the ID string during sk_attach(). */ u_int8_t sk_vpd_readbyte(sc, addr) struct sk_softc *sc; int addr; { int i; sk_win_write_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR), addr); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (sk_win_read_2(sc, SK_PCI_REG(SK_PCI_VPD_ADDR)) & SK_VPD_FLAG) break; } if (i == SK_TIMEOUT) return(0); return(sk_win_read_1(sc, SK_PCI_REG(SK_PCI_VPD_DATA))); } void sk_vpd_read_res(sc, res, addr) struct sk_softc *sc; struct vpd_res *res; int addr; { int i; u_int8_t *ptr; ptr = (u_int8_t *)res; for (i = 0; i < sizeof(struct vpd_res); i++) ptr[i] = sk_vpd_readbyte(sc, i + addr); return; } void sk_vpd_read(sc) struct sk_softc *sc; { int pos = 0, i; struct vpd_res res; if (sc->sk_vpd_prodname != NULL) free(sc->sk_vpd_prodname, M_DEVBUF); if (sc->sk_vpd_readonly != NULL) free(sc->sk_vpd_readonly, M_DEVBUF); sc->sk_vpd_prodname = NULL; sc->sk_vpd_readonly = NULL; sk_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_ID) { printf("%s: bad VPD resource id: expected %x got %x\n", sc->sk_dev.dv_xname, VPD_RES_ID, res.vr_id); return; } pos += sizeof(res); sc->sk_vpd_prodname = malloc(res.vr_len + 1, M_DEVBUF, M_NOWAIT); for (i = 0; i < res.vr_len; i++) sc->sk_vpd_prodname[i] = sk_vpd_readbyte(sc, i + pos); sc->sk_vpd_prodname[i] = '\0'; pos += i; sk_vpd_read_res(sc, &res, pos); if (res.vr_id != VPD_RES_READ) { printf("%s: bad VPD resource id: expected %x got %x\n", sc->sk_dev.dv_xname, VPD_RES_READ, res.vr_id); return; } pos += sizeof(res); sc->sk_vpd_readonly = malloc(res.vr_len, M_DEVBUF, M_NOWAIT); for (i = 0; i < res.vr_len + 1; i++) sc->sk_vpd_readonly[i] = sk_vpd_readbyte(sc, i + pos); return; } int sk_miibus_readreg(dev, phy, reg) struct device *dev; int phy, reg; { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; int i; if (sc_if->sk_phytype == SK_PHYTYPE_XMAC && phy != 0) return(0); SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); SK_XM_READ_2(sc_if, XM_PHY_DATA); if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYDATARDY) break; } if (i == SK_TIMEOUT) { printf("%s: phy failed to come ready\n", sc_if->sk_dev.dv_xname); return(0); } } DELAY(1); return(SK_XM_READ_2(sc_if, XM_PHY_DATA)); } void sk_miibus_writereg(dev, phy, reg, val) struct device *dev; int phy, reg, val; { struct sk_if_softc *sc_if = (struct sk_if_softc *)dev; int i; SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8)); for (i = 0; i < SK_TIMEOUT; i++) { if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) { printf("%s: phy failed to come ready\n", sc_if->sk_dev.dv_xname); return; } SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val); for (i = 0; i < SK_TIMEOUT; i++) { DELAY(1); if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY)) break; } if (i == SK_TIMEOUT) printf("%s: phy write timed out\n", sc_if->sk_dev.dv_xname); return; } void sk_miibus_statchg(dev) struct device *dev; { struct sk_if_softc *sc_if; struct mii_data *mii; sc_if = (struct sk_if_softc *)dev; mii = &sc_if->sk_mii; /* * If this is a GMII PHY, manually set the XMAC's * duplex mode accordingly. */ if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) { if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); } else { SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX); } } return; } #define SK_POLY 0xEDB88320 #define SK_BITS 6 u_int32_t sk_calchash(addr) caddr_t addr; { u_int32_t idx, bit, data, crc; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (idx = 0; idx < 6; idx++) { for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) crc = (crc >> 1) ^ (((crc ^ data) & 1) ? SK_POLY : 0); } return (~crc & ((1 << SK_BITS) - 1)); } void sk_setfilt(sc_if, addr, slot) struct sk_if_softc *sc_if; caddr_t addr; int slot; { int base; base = XM_RXFILT_ENTRY(slot); SK_XM_WRITE_2(sc_if, base, *(u_int16_t *)(&addr[0])); SK_XM_WRITE_2(sc_if, base + 2, *(u_int16_t *)(&addr[2])); SK_XM_WRITE_2(sc_if, base + 4, *(u_int16_t *)(&addr[4])); return; } void sk_setmulti(sc_if) struct sk_if_softc *sc_if; { struct ifnet *ifp; u_int32_t hashes[2] = { 0, 0 }; int h, i; struct arpcom *ac = &sc_if->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int8_t dummy[] = { 0, 0, 0, 0, 0 ,0 }; ifp = &sc_if->arpcom.ac_if; /* First, zot all the existing filters. */ for (i = 1; i < XM_RXFILT_MAX; i++) sk_setfilt(sc_if, (caddr_t)&dummy, i); SK_XM_WRITE_4(sc_if, XM_MAR0, 0); SK_XM_WRITE_4(sc_if, XM_MAR2, 0); /* Now program new ones. */ allmulti: if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { hashes[0] = 0xFFFFFFFF; hashes[1] = 0xFFFFFFFF; } else { i = 1; /* First find the tail of the list. */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } /* * Program the first XM_RXFILT_MAX multicast groups * into the perfect filter. For all others, * use the hash table. */ if (i < XM_RXFILT_MAX) { sk_setfilt(sc_if, enm->enm_addrlo, i); i++; } else { h = sk_calchash(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); } ETHER_NEXT_MULTI(step, enm); } } SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_HASH| XM_MODE_RX_USE_PERFECT); SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]); SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]); return; } int sk_init_rx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_chain_data *cd; struct sk_ring_data *rd; int i; cd = &sc_if->sk_cdata; rd = sc_if->sk_rdata; bzero((char *)rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT); for (i = 0; i < SK_RX_RING_CNT; i++) { cd->sk_rx_chain[i].sk_desc = &rd->sk_rx_ring[i]; if (sk_newbuf(sc_if, &cd->sk_rx_chain[i], NULL) == ENOBUFS) { printf("%s: failed alloc of %dth mbuf\n", sc_if->sk_dev.dv_xname, i); return(ENOBUFS); } if (i == (SK_RX_RING_CNT - 1)) { cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[0]; rd->sk_rx_ring[i].sk_next = vtophys(&rd->sk_rx_ring[0]); } else { cd->sk_rx_chain[i].sk_next = &cd->sk_rx_chain[i + 1]; rd->sk_rx_ring[i].sk_next = vtophys(&rd->sk_rx_ring[i + 1]); } } sc_if->sk_cdata.sk_rx_prod = 0; sc_if->sk_cdata.sk_rx_cons = 0; return(0); } void sk_init_tx_ring(sc_if) struct sk_if_softc *sc_if; { struct sk_chain_data *cd; struct sk_ring_data *rd; int i; cd = &sc_if->sk_cdata; rd = sc_if->sk_rdata; bzero((char *)sc_if->sk_rdata->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT); for (i = 0; i < SK_TX_RING_CNT; i++) { cd->sk_tx_chain[i].sk_desc = &rd->sk_tx_ring[i]; if (i == (SK_TX_RING_CNT - 1)) { cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[0]; rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[0]); } else { cd->sk_tx_chain[i].sk_next = &cd->sk_tx_chain[i + 1]; rd->sk_tx_ring[i].sk_next = vtophys(&rd->sk_tx_ring[i + 1]); } } sc_if->sk_cdata.sk_tx_prod = 0; sc_if->sk_cdata.sk_tx_cons = 0; sc_if->sk_cdata.sk_tx_cnt = 0; return; } int sk_newbuf(sc_if, c, m) struct sk_if_softc *sc_if; struct sk_chain *c; struct mbuf *m; { struct mbuf *m_new = NULL; struct sk_rx_desc *r; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("%s: no memory for rx list -- " "packet dropped!\n", sc_if->sk_dev.dv_xname); return(ENOBUFS); } /* Allocate the jumbo buffer */ MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return (ENOBUFS); } } else { /* * We're re-using a previously allocated mbuf; * be sure to re-init pointers and lengths to * default values. */ m_new = m; m_new->m_data = m_new->m_ext.ext_buf; } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; /* * Adjust alignment so packet payload begins on a * longword boundary. Mandatory for Alpha, useful on * x86 too. */ m_adj(m_new, ETHER_ALIGN); r = c->sk_desc; c->sk_mbuf = m_new; r->sk_data_lo = vtophys(mtod(m_new, caddr_t)); r->sk_ctl = m_new->m_len | SK_RXSTAT; return(0); } /* * Set media options. */ int sk_ifmedia_upd(ifp) struct ifnet *ifp; { struct sk_if_softc *sc_if = ifp->if_softc; sk_init(sc_if); mii_mediachg(&sc_if->sk_mii); return(0); } /* * Report current media status. */ void sk_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct sk_if_softc *sc_if = ifp->if_softc; mii_pollstat(&sc_if->sk_mii); ifmr->ifm_active = sc_if->sk_mii.mii_media_active; ifmr->ifm_status = sc_if->sk_mii.mii_media_status; } int sk_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct sk_if_softc *sc_if = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *) data; struct mii_data *mii; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc_if->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: sk_init(sc_if); arp_ifinit(&sc_if->arpcom, ifa); break; #endif /* INET */ default: sk_init(sc_if); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc_if->sk_if_flags & IFF_PROMISC)) { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); sk_setmulti(sc_if); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc_if->sk_if_flags & IFF_PROMISC) { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); sk_setmulti(sc_if); } else sk_init(sc_if); } else { if (ifp->if_flags & IFF_RUNNING) sk_stop(sc_if); } sc_if->sk_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc_if->arpcom) : ether_delmulti(ifr, &sc_if->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ sk_setmulti(sc_if); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc_if->sk_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } /* * Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int skc_probe(parent, match, aux) struct device *parent; void *match, *aux; { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_SCHNEIDERKOCH) return (0); if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_SCHNEIDERKOCH_GE) return (0); return (1); } /* * Force the GEnesis into reset, then bring it out of reset. */ void sk_reset(sc) struct sk_softc *sc; { CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_RESET); CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_RESET); DELAY(1000); CSR_WRITE_4(sc, SK_CSR, SK_CSR_SW_UNRESET); CSR_WRITE_4(sc, SK_CSR, SK_CSR_MASTER_UNRESET); /* Configure packet arbiter */ sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET); sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT); sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT); /* Enable RAM interface */ sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET); /* * Configure interrupt moderation. The moderation timer * defers interrupts specified in the interrupt moderation * timer mask based on the timeout specified in the interrupt * moderation timer init register. Each bit in the timer * register represents 18.825ns, so to specify a timeout in * microseconds, we have to multiply by 54. */ sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(200)); sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF| SK_ISR_RX1_EOF|SK_ISR_RX2_EOF); sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START); return; } int sk_probe(parent, match, aux) struct device *parent; void *match, *aux; { struct skc_attach_args *sa = aux; if (sa->skc_port != SK_PORT_A && sa->skc_port != SK_PORT_B) return(0); return (1); } /* * Each XMAC chip is attached as a separate logical IP interface. * Single port cards will have only one logical interface of course. */ void sk_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct sk_if_softc *sc_if = (struct sk_if_softc *) self; struct sk_softc *sc = (struct sk_softc *)parent; struct skc_attach_args *sa = aux; struct ifnet *ifp; caddr_t kva; bus_dma_segment_t seg; bus_dmamap_t dmamap; int i, rseg; sc_if->sk_port = sa->skc_port; sc_if->sk_softc = sc; sc->sk_if[sa->skc_port] = sc_if; if (sa->skc_port == SK_PORT_A) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0; if (sa->skc_port == SK_PORT_B) sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1; /* * Get station address for this interface. Note that * dual port cards actually come with three station * addresses: one for each port, plus an extra. The * extra one is used by the SysKonnect driver software * as a 'virtual' station address for when both ports * are operating in failover mode. Currently we don't * use this extra address. */ for (i = 0; i < ETHER_ADDR_LEN; i++) sc_if->arpcom.ac_enaddr[i] = sk_win_read_1(sc, SK_MAC0_0 + (sa->skc_port * 8) + i); printf(": address %s\n", ether_sprintf(sc_if->arpcom.ac_enaddr)); /* * Set up RAM buffer addresses. The NIC will have a certain * amount of SRAM on it, somewhere between 512K and 2MB. We * need to divide this up a) between the transmitter and * receiver and b) between the two XMACs, if this is a * dual port NIC. Our algotithm is to divide up the memory * evenly so that everyone gets a fair share. */ if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) { u_int32_t chunk, val; chunk = sc->sk_ramsize / 2; val = sc->sk_rboff / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } else { u_int32_t chunk, val; chunk = sc->sk_ramsize / 4; val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) / sizeof(u_int64_t); sc_if->sk_rx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_rx_ramend = val - 1; sc_if->sk_tx_ramstart = val; val += (chunk / sizeof(u_int64_t)); sc_if->sk_tx_ramend = val - 1; } /* Read and save PHY type and set PHY address */ sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF; switch (sc_if->sk_phytype) { case SK_PHYTYPE_XMAC: sc_if->sk_phyaddr = SK_PHYADDR_XMAC; break; case SK_PHYTYPE_BCOM: sc_if->sk_phyaddr = SK_PHYADDR_BCOM; break; default: printf("%s: unsupported PHY type: %d\n", sc->sk_dev.dv_xname, sc_if->sk_phytype); return; } /* Allocate the descriptor queues. */ if (bus_dmamem_alloc(sc->sc_dmatag, sizeof(struct sk_ring_data), PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc rx buffers\n", sc->sk_dev.dv_xname); goto fail; } if (bus_dmamem_map(sc->sc_dmatag, &seg, rseg, sizeof(struct sk_ring_data), &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc_if->sk_dev.dv_xname, sizeof(struct sk_ring_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } if (bus_dmamap_create(sc->sc_dmatag, sizeof(struct sk_ring_data), 1, sizeof(struct sk_ring_data), 0, BUS_DMA_NOWAIT, &dmamap)) { printf("%s: can't create dma map\n", sc_if->sk_dev.dv_xname); bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct sk_ring_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } if (bus_dmamap_load(sc->sc_dmatag, dmamap, kva, sizeof(struct sk_ring_data), NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc_if->sk_dev.dv_xname); bus_dmamap_destroy(sc->sc_dmatag, dmamap); bus_dmamem_unmap(sc->sc_dmatag, kva, sizeof(struct sk_ring_data)); bus_dmamem_free(sc->sc_dmatag, &seg, rseg); goto fail; } sc_if->sk_rdata = (struct sk_ring_data *)kva; bzero(sc_if->sk_rdata, sizeof(struct sk_ring_data)); ifp = &sc_if->arpcom.ac_if; ifp->if_softc = sc_if; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = sk_ioctl; ifp->if_output = ether_output; ifp->if_start = sk_start; ifp->if_watchdog = sk_watchdog; ifp->if_baudrate = 1000000000; ifp->if_snd.ifq_maxlen = SK_TX_RING_CNT - 1; bcopy(sc_if->sk_dev.dv_xname, ifp->if_xname, IFNAMSIZ); /* * Do miibus setup. */ sk_init_xmac(sc_if); sc_if->sk_mii.mii_ifp = ifp; sc_if->sk_mii.mii_readreg = sk_miibus_readreg; sc_if->sk_mii.mii_writereg = sk_miibus_writereg; sc_if->sk_mii.mii_statchg = sk_miibus_statchg; ifmedia_init(&sc_if->sk_mii.mii_media, 0, sk_ifmedia_upd, sk_ifmedia_sts); mii_attach(self, &sc_if->sk_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc_if->sk_mii.mii_phys) == NULL) { printf("%s: no PHY found!\n", sc_if->sk_dev.dv_xname); ifmedia_add(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL); ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_MANUAL); } else ifmedia_set(&sc_if->sk_mii.mii_media, IFM_ETHER|IFM_AUTO); timeout_set(&sc_if->sk_tick_ch, sk_tick, sc_if); timeout_add(&sc_if->sk_tick_ch, hz); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); return; fail: sc->sk_if[sa->skc_port] = NULL; } int skcprint(aux, pnp) void *aux; const char *pnp; { struct skc_attach_args *sa = aux; if (pnp) printf("sk port %c at %s", (sa->skc_port == SK_PORT_A) ? 'A' : 'B', pnp); else printf(" port %c", (sa->skc_port == SK_PORT_A) ? 'A' : 'B'); return (UNCONF); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void skc_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct sk_softc *sc = (struct sk_softc *)self; struct pci_attach_args *pa = aux; struct skc_attach_args skca; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_addr_t iobase; bus_size_t iosize; int s; u_int32_t command; s = splimp(); /* * Handle power management nonsense. */ command = pci_conf_read(pc, pa->pa_tag, SK_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL); if (command & SK_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOIO); membase = pci_conf_read(pc, pa->pa_tag, SK_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, SK_PCI_INTLINE); /* Reset the power state. */ printf("%s chip is in D%d power mode " "-- setting to D0\n", sc->sk_dev.dv_xname, command & SK_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, SK_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, SK_PCI_LOIO, iobase); pci_conf_write(pc, pa->pa_tag, SK_PCI_LOMEM, membase); pci_conf_write(pc, pa->pa_tag, SK_PCI_INTLINE, irq); } } /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef SK_USEIOSPACE if (!(command & PCI_COMMAND_IO_ENABLE)) { printf(": failed to enable I/O ports!\n"); goto fail; } /* * Map control/status registers. */ if (pci_io_find(pc, pa->pa_tag, SK_PCI_LOIO, &iobase, &iosize)) { printf(": can't find i/o space\n"); goto fail; } if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sk_bhandle)) { printf(": can't map i/o space\n"); goto fail; } sc->sk_btag = pa->pa_iot; #else if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping!\n"); goto fail; } if (pci_mem_find(pc, pa->pa_tag, SK_PCI_LOMEM, &iobase, &iosize, NULL)){ printf(": can't find mem space\n"); goto fail; } if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sk_bhandle)) { printf(": can't map mem space\n"); goto fail; } sc->sk_btag = pa->pa_memt; #endif sc->sc_dmatag = pa->pa_dmat; /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sk_intrhand = pci_intr_establish(pc, ih, IPL_NET, sk_intr, sc, self->dv_xname); if (sc->sk_intrhand == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); goto fail; } printf(": %s\n", intrstr); /* Reset the adapter. */ sk_reset(sc); /* Read and save vital product data from EEPROM. */ sk_vpd_read(sc); /* Read and save RAM size and RAMbuffer offset */ switch(sk_win_read_1(sc, SK_EPROM0)) { case SK_RAMSIZE_512K_64: sc->sk_ramsize = 0x80000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_1024K_64: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_80000; break; case SK_RAMSIZE_1024K_128: sc->sk_ramsize = 0x100000; sc->sk_rboff = SK_RBOFF_0; break; case SK_RAMSIZE_2048K_128: sc->sk_ramsize = 0x200000; sc->sk_rboff = SK_RBOFF_0; break; default: printf("%s: unknown ram size: %d\n", sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_EPROM0)); goto fail; break; } /* Read and save physical media type */ switch(sk_win_read_1(sc, SK_PMDTYPE)) { case SK_PMD_1000BASESX: sc->sk_pmd = IFM_1000_SX; break; case SK_PMD_1000BASELX: sc->sk_pmd = IFM_1000_LX; break; case SK_PMD_1000BASECX: sc->sk_pmd = IFM_1000_CX; break; case SK_PMD_1000BASETX: sc->sk_pmd = IFM_1000_TX; break; default: printf("%s: unknown media type: 0x%x\n", sc->sk_dev.dv_xname, sk_win_read_1(sc, SK_PMDTYPE)); goto fail; } /* Announce the product name. */ printf("%s: %s\n", sc->sk_dev.dv_xname, sc->sk_vpd_prodname); skca.skc_port = SK_PORT_A; (void)config_found(&sc->sk_dev, &skca, skcprint); if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) { skca.skc_port = SK_PORT_B; (void)config_found(&sc->sk_dev, &skca, skcprint); } /* Turn on the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON); fail: splx(s); } int sk_encap(sc_if, m_head, txidx) struct sk_if_softc *sc_if; struct mbuf *m_head; u_int32_t *txidx; { struct sk_tx_desc *f = NULL; struct mbuf *m; u_int32_t frag, cur, cnt = 0; m = m_head; cur = frag = *txidx; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ for (m = m_head; m != NULL; m = m->m_next) { if (m->m_len != 0) { if ((SK_TX_RING_CNT - (sc_if->sk_cdata.sk_tx_cnt + cnt)) < 2) return(ENOBUFS); f = &sc_if->sk_rdata->sk_tx_ring[frag]; f->sk_data_lo = vtophys(mtod(m, vm_offset_t)); f->sk_ctl = m->m_len | SK_OPCODE_DEFAULT; if (cnt == 0) f->sk_ctl |= SK_TXCTL_FIRSTFRAG; else f->sk_ctl |= SK_TXCTL_OWN; cur = frag; SK_INC(frag, SK_TX_RING_CNT); cnt++; } } if (m != NULL) return(ENOBUFS); sc_if->sk_rdata->sk_tx_ring[cur].sk_ctl |= SK_TXCTL_LASTFRAG|SK_TXCTL_EOF_INTR; sc_if->sk_cdata.sk_tx_chain[cur].sk_mbuf = m_head; sc_if->sk_rdata->sk_tx_ring[*txidx].sk_ctl |= SK_TXCTL_OWN; sc_if->sk_cdata.sk_tx_cnt += cnt; *txidx = frag; return(0); } void sk_start(ifp) struct ifnet *ifp; { struct sk_softc *sc; struct sk_if_softc *sc_if; struct mbuf *m_head = NULL; u_int32_t idx; sc_if = ifp->if_softc; sc = sc_if->sk_softc; idx = sc_if->sk_cdata.sk_tx_prod; while(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf == NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. If we * don't have room, set the OACTIVE flag and wait * for the NIC to drain the ring. */ if (sk_encap(sc_if, m_head, &idx)) { IF_PREPEND(&ifp->if_snd, m_head); ifp->if_flags |= IFF_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m_head); #endif } /* Transmit */ sc_if->sk_cdata.sk_tx_prod = idx; CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } void sk_watchdog(ifp) struct ifnet *ifp; { struct sk_if_softc *sc_if; sc_if = ifp->if_softc; printf("%s: watchdog timeout\n", sc_if->sk_dev.dv_xname); sk_init(sc_if); return; } void sk_shutdown(v) void *v; { struct sk_softc *sc = v; /* Turn off the 'driver is loaded' LED. */ CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF); /* * Reset the GEnesis controller. Doing this should also * assert the resets on the attached XMAC(s). */ sk_reset(sc); return; } void sk_rxeof(sc_if) struct sk_if_softc *sc_if; { struct mbuf *m; struct ifnet *ifp; struct sk_chain *cur_rx; int total_len = 0; int i; u_int32_t rxstat; ifp = &sc_if->arpcom.ac_if; i = sc_if->sk_cdata.sk_rx_prod; cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; while(!(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl & SK_RXCTL_OWN)) { cur_rx = &sc_if->sk_cdata.sk_rx_chain[i]; rxstat = sc_if->sk_rdata->sk_rx_ring[i].sk_xmac_rxstat; m = cur_rx->sk_mbuf; cur_rx->sk_mbuf = NULL; total_len = SK_RXBYTES(sc_if->sk_rdata->sk_rx_ring[i].sk_ctl); SK_INC(i, SK_RX_RING_CNT); if (rxstat & XM_RXSTAT_ERRFRAME) { ifp->if_ierrors++; sk_newbuf(sc_if, cur_rx, m); continue; } /* * Try to allocate a new jumbo buffer. If that * fails, copy the packet to mbufs and put the * jumbo buffer back in the ring so it can be * re-used. If allocating mbufs fails, then we * have to drop the packet. */ if (sk_newbuf(sc_if, cur_rx, NULL) == ENOBUFS) { struct mbuf *m0; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); sk_newbuf(sc_if, cur_rx, m); if (m0 == NULL) { printf("%s: no receive buffers " "available -- packet dropped!\n", sc_if->sk_dev.dv_xname); ifp->if_ierrors++; continue; } m_adj(m0, ETHER_ALIGN); m = m0; } else { m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; } ifp->if_ipackets++; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* pass it on. */ ether_input_mbuf(ifp, m); } sc_if->sk_cdata.sk_rx_prod = i; return; } void sk_txeof(sc_if) struct sk_if_softc *sc_if; { struct sk_tx_desc *cur_tx = NULL; struct ifnet *ifp; u_int32_t idx; ifp = &sc_if->arpcom.ac_if; /* * Go through our tx ring and free mbufs for those * frames that have been sent. */ idx = sc_if->sk_cdata.sk_tx_cons; while(idx != sc_if->sk_cdata.sk_tx_prod) { cur_tx = &sc_if->sk_rdata->sk_tx_ring[idx]; if (cur_tx->sk_ctl & SK_TXCTL_OWN) break; if (cur_tx->sk_ctl & SK_TXCTL_LASTFRAG) ifp->if_opackets++; if (sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[idx].sk_mbuf = NULL; } sc_if->sk_cdata.sk_tx_cnt--; SK_INC(idx, SK_TX_RING_CNT); ifp->if_timer = 0; } sc_if->sk_cdata.sk_tx_cons = idx; if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; return; } void sk_tick(xsc_if) void *xsc_if; { struct sk_if_softc *sc_if; struct mii_data *mii; struct ifnet *ifp; int i; sc_if = xsc_if; ifp = &sc_if->arpcom.ac_if; mii = &sc_if->sk_mii; if (!(ifp->if_flags & IFF_UP)) return; if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { sk_intr_bcom(sc_if); return; } /* * According to SysKonnect, the correct way to verify that * the link has come back up is to poll bit 0 of the GPIO * register three times. This pin has the signal from the * link sync pin connected to it; if we read the same link * state 3 times in a row, we know the link is up. */ for (i = 0; i < 3; i++) { if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET) break; } if (i != 3) { timeout_add(&sc_if->sk_tick_ch, hz); return; } /* Turn the GP0 interrupt back on. */ SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); SK_XM_READ_2(sc_if, XM_ISR); mii_tick(mii); mii_pollstat(mii); timeout_del(&sc_if->sk_tick_ch); } void sk_intr_bcom(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct mii_data *mii; struct ifnet *ifp; int status; sc = sc_if->sk_softc; mii = &sc_if->sk_mii; ifp = &sc_if->arpcom.ac_if; SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); /* * Read the PHY interrupt register to make sure * we clear any pending interrupts. */ status = sk_miibus_readreg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR); if (!(ifp->if_flags & IFF_RUNNING)) { sk_init_xmac(sc_if); return; } if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) { int lstat; lstat = sk_miibus_readreg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_AUXSTS); if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) { mii_mediachg(mii); /* Turn off the link LED. */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); sc_if->sk_link = 0; } else if (status & BRGPHY_ISR_LNK_CHG) { sk_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFF00); mii_tick(mii); sc_if->sk_link = 1; /* Turn on the link LED. */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF| SK_LINKLED_BLINK_OFF); mii_pollstat(mii); } else { mii_tick(mii); timeout_add(&sc_if->sk_tick_ch, hz); } } SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); return; } void sk_intr_xmac(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; u_int16_t status; sc = sc_if->sk_softc; status = SK_XM_READ_2(sc_if, XM_ISR); if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) { if (status & XM_ISR_GP0_SET) { SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET); timeout_add(&sc_if->sk_tick_ch, hz); } if (status & XM_ISR_AUTONEG_DONE) { timeout_add(&sc_if->sk_tick_ch, hz); } } if (status & XM_IMR_TX_UNDERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO); if (status & XM_IMR_RX_OVERRUN) SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO); return; } int sk_intr(xsc) void *xsc; { struct sk_softc *sc = xsc; struct sk_if_softc *sc_if0 = NULL, *sc_if1 = NULL; struct ifnet *ifp0 = NULL, *ifp1 = NULL; u_int32_t status; int claimed = 0; sc_if0 = sc->sk_if[SK_PORT_A]; sc_if1 = sc->sk_if[SK_PORT_B]; if (sc_if0 != NULL) ifp0 = &sc_if0->arpcom.ac_if; if (sc_if1 != NULL) ifp1 = &sc_if1->arpcom.ac_if; for (;;) { status = CSR_READ_4(sc, SK_ISSR); if (!(status & sc->sk_intrmask)) break; claimed = 1; /* Handle receive interrupts first. */ if (status & SK_ISR_RX1_EOF) { sk_rxeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_RX_CSR0, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } if (status & SK_ISR_RX2_EOF) { sk_rxeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_RX_CSR1, SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START); } /* Then transmit interrupts. */ if (status & SK_ISR_TX1_S_EOF) { sk_txeof(sc_if0); CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF); } if (status & SK_ISR_TX2_S_EOF) { sk_txeof(sc_if1); CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF); } /* Then MAC interrupts. */ if (status & SK_ISR_MAC1 && ifp0->if_flags & IFF_RUNNING) sk_intr_xmac(sc_if0); if (status & SK_ISR_MAC2 && ifp1->if_flags & IFF_RUNNING) sk_intr_xmac(sc_if1); if (status & SK_ISR_EXTERNAL_REG) { if (ifp0 != NULL) sk_intr_bcom(sc_if0); if (ifp1 != NULL) sk_intr_bcom(sc_if1); } } CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); if (ifp0 != NULL && ifp0->if_snd.ifq_head != NULL) sk_start(ifp0); if (ifp1 != NULL && ifp1->if_snd.ifq_head != NULL) sk_start(ifp1); return (claimed); } void sk_init_xmac(sc_if) struct sk_if_softc *sc_if; { struct sk_softc *sc; struct ifnet *ifp; struct sk_bcom_hack bhack[] = { { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 }, { 0, 0 } }; sc = sc_if->sk_softc; ifp = &sc_if->arpcom.ac_if; /* Unreset the XMAC. */ SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET); DELAY(1000); /* Reset the XMAC's internal state. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); /* Save the XMAC II revision */ sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID)); /* * Perform additional initialization for external PHYs, * namely for the 1000baseTX cards that use the XMAC's * GMII mode. */ if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { int i = 0; u_int32_t val; /* Take PHY out of reset. */ val = sk_win_read_4(sc, SK_GPIO); if (sc_if->sk_port == SK_PORT_A) val |= SK_GPIO_DIR0|SK_GPIO_DAT0; else val |= SK_GPIO_DIR2|SK_GPIO_DAT2; sk_win_write_4(sc, SK_GPIO, val); /* Enable GMII mode on the XMAC. */ SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE); sk_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET); DELAY(10000); sk_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_IMR, 0xFFF0); /* * Early versions of the BCM5400 apparently have * a bug that requires them to have their reserved * registers initialized to some magic values. I don't * know what the numbers do, I'm just the messenger. */ if (sk_miibus_readreg((struct device *)sc_if, SK_PHYADDR_BCOM, 0x03) == 0x6041) { while(bhack[i].reg) { sk_miibus_writereg((struct device *)sc_if, SK_PHYADDR_BCOM, bhack[i].reg, bhack[i].val); i++; } } } /* Set station address */ SK_XM_WRITE_2(sc_if, XM_PAR0, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[0])); SK_XM_WRITE_2(sc_if, XM_PAR1, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[2])); SK_XM_WRITE_2(sc_if, XM_PAR2, *(u_int16_t *)(&sc_if->arpcom.ac_enaddr[4])); SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION); if (ifp->if_flags & IFF_PROMISC) { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); } else { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_PROMISC); } if (ifp->if_flags & IFF_BROADCAST) { SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } else { SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD); } /* We don't need the FCS appended to the packet. */ SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS); /* We want short frames padded to 60 bytes. */ SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD); /* * Enable the reception of all error frames. This is is * a necessary evil due to the design of the XMAC. The * XMAC's receive FIFO is only 8K in size, however jumbo * frames can be up to 9000 bytes in length. When bad * frame filtering is enabled, the XMAC's RX FIFO operates * in 'store and forward' mode. For this to work, the * entire frame has to fit into the FIFO, but that means * that jumbo frames larger than 8192 bytes will be * truncated. Disabling all bad frame filtering causes * the RX FIFO to operate in streaming mode, in which * case the XMAC will start transfering frames out of the * RX FIFO as soon as the FIFO threshold is reached. */ SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES| XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS| XM_MODE_RX_INRANGELEN); if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN)) SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); else SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK); /* * Bump up the transmit threshold. This helps hold off transmit * underruns when we're blasting traffic from both ports at once. */ SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH); /* Set multicast filter */ sk_setmulti(sc_if); /* Clear and enable interrupts */ SK_XM_READ_2(sc_if, XM_ISR); if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS); else SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Configure MAC arbiter */ switch(sc_if->sk_xmac_rev) { case XM_XMAC_REV_B2: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; case XM_XMAC_REV_C1: sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1); sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2); break; default: break; } sk_win_write_2(sc, SK_MACARB_CTL, SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF); sc_if->sk_link = 1; return; } /* * Note that to properly initialize any part of the GEnesis chip, * you first have to take it out of reset mode. */ void sk_init(xsc) void *xsc; { struct sk_if_softc *sc_if = xsc; struct sk_softc *sc; struct ifnet *ifp; struct mii_data *mii; int s; s = splimp(); ifp = &sc_if->arpcom.ac_if; sc = sc_if->sk_softc; mii = &sc_if->sk_mii; /* Cancel pending I/O and free all RX/TX buffers. */ sk_stop(sc_if); /* Configure LINK_SYNC LED */ SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_ON); /* Configure RX LED */ SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_START); /* Configure TX LED */ SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_TXLEDCTL_COUNTER_START); /* Configure I2C registers */ /* Configure XMAC(s) */ sk_init_xmac(sc_if); mii_mediachg(mii); /* Configure MAC FIFOs */ SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END); SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON); /* Configure transmit arbiter(s) */ SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON); /* Configure RAMbuffers */ SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON); /* Configure BMUs */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO, vtophys(&sc_if->sk_rdata->sk_rx_ring[0])); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI, 0); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO, vtophys(&sc_if->sk_rdata->sk_tx_ring[0])); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI, 0); /* Init descriptors */ if (sk_init_rx_ring(sc_if) == ENOBUFS) { printf("%s: initialization failed: no " "memory for rx buffers\n", sc_if->sk_dev.dv_xname); sk_stop(sc_if); (void)splx(s); return; } sk_init_tx_ring(sc_if); /* Configure interrupt handling */ CSR_READ_4(sc, SK_ISSR); if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask |= SK_INTRS1; else sc->sk_intrmask |= SK_INTRS2; sc->sk_intrmask |= SK_ISR_EXTERNAL_REG; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); /* Start BMUs. */ SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START); /* Enable XMACs TX and RX state machines */ SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE); SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); return; } void sk_stop(sc_if) struct sk_if_softc *sc_if; { int i; struct sk_softc *sc; struct ifnet *ifp; sc = sc_if->sk_softc; ifp = &sc_if->arpcom.ac_if; timeout_del(&sc_if->sk_tick_ch); if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) { u_int32_t val; /* Put PHY back into reset. */ val = sk_win_read_4(sc, SK_GPIO); if (sc_if->sk_port == SK_PORT_A) { val |= SK_GPIO_DIR0; val &= ~SK_GPIO_DAT0; } else { val |= SK_GPIO_DIR2; val &= ~SK_GPIO_DAT2; } sk_win_write_4(sc, SK_GPIO, val); } /* Turn off various components of this interface. */ SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC); SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET); SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET); SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE); SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF); SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF); SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF); /* Disable interrupts */ if (sc_if->sk_port == SK_PORT_A) sc->sk_intrmask &= ~SK_INTRS1; else sc->sk_intrmask &= ~SK_INTRS2; CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask); SK_XM_READ_2(sc_if, XM_ISR); SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF); /* Free RX and TX mbufs still in the queues. */ for (i = 0; i < SK_RX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_rx_chain[i].sk_mbuf = NULL; } } for (i = 0; i < SK_TX_RING_CNT; i++) { if (sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf != NULL) { m_freem(sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf); sc_if->sk_cdata.sk_tx_chain[i].sk_mbuf = NULL; } } ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); return; } struct cfattach skc_ca = { sizeof(struct sk_softc), skc_probe, skc_attach, }; struct cfdriver skc_cd = { 0, "skc", DV_DULL }; struct cfattach sk_ca = { sizeof(struct sk_if_softc), sk_probe, sk_attach, }; struct cfdriver sk_cd = { 0, "sk", DV_IFNET };