/* $OpenBSD: if_ste.c,v 1.8 2000/10/16 17:08:08 aaron Exp $ */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_ste.c,v 1.14 1999/12/07 20:14:42 wpaul Exp $ */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include /* for vtophys */ #include #include #include #include #include #include #define STE_USEIOSPACE #include int ste_probe __P((struct device *, void *, void *)); void ste_attach __P((struct device *, struct device *, void *)); int ste_intr __P((void *)); void ste_shutdown __P((void *)); void ste_init __P((void *)); void ste_rxeof __P((struct ste_softc *)); void ste_txeoc __P((struct ste_softc *)); void ste_txeof __P((struct ste_softc *)); void ste_stats_update __P((void *)); void ste_stop __P((struct ste_softc *)); void ste_reset __P((struct ste_softc *)); int ste_ioctl __P((struct ifnet *, u_long, caddr_t)); int ste_encap __P((struct ste_softc *, struct ste_chain *, struct mbuf *)); void ste_start __P((struct ifnet *)); void ste_watchdog __P((struct ifnet *)); int ste_newbuf __P((struct ste_softc *, struct ste_chain_onefrag *, struct mbuf *)); int ste_ifmedia_upd __P((struct ifnet *)); void ste_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); void ste_mii_sync __P((struct ste_softc *)); void ste_mii_send __P((struct ste_softc *, u_int32_t, int)); int ste_mii_readreg __P((struct ste_softc *, struct ste_mii_frame *)); int ste_mii_writereg __P((struct ste_softc *, struct ste_mii_frame *)); int ste_miibus_readreg __P((struct device *, int, int)); void ste_miibus_writereg __P((struct device *, int, int, int)); void ste_miibus_statchg __P((struct device *)); int ste_eeprom_wait __P((struct ste_softc *)); int ste_read_eeprom __P((struct ste_softc *, caddr_t, int, int, int)); void ste_wait __P((struct ste_softc *)); u_int8_t ste_calchash __P((caddr_t)); void ste_setmulti __P((struct ste_softc *)); int ste_init_rx_list __P((struct ste_softc *)); void ste_init_tx_list __P((struct ste_softc *)); #define STE_SETBIT4(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x) #define STE_CLRBIT4(sc, reg, x) \ CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x) #define STE_SETBIT2(sc, reg, x) \ CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) | x) #define STE_CLRBIT2(sc, reg, x) \ CSR_WRITE_2(sc, reg, CSR_READ_2(sc, reg) & ~x) #define STE_SETBIT1(sc, reg, x) \ CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) | x) #define STE_CLRBIT1(sc, reg, x) \ CSR_WRITE_1(sc, reg, CSR_READ_1(sc, reg) & ~x) #define MII_SET(x) STE_SETBIT1(sc, STE_PHYCTL, x) #define MII_CLR(x) STE_CLRBIT1(sc, STE_PHYCTL, x) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void ste_mii_sync(sc) struct ste_softc *sc; { register int i; MII_SET(STE_PHYCTL_MDIR|STE_PHYCTL_MDATA); for (i = 0; i < 32; i++) { MII_SET(STE_PHYCTL_MCLK); DELAY(1); MII_CLR(STE_PHYCTL_MCLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ void ste_mii_send(sc, bits, cnt) struct ste_softc *sc; u_int32_t bits; int cnt; { int i; MII_CLR(STE_PHYCTL_MCLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { MII_SET(STE_PHYCTL_MDATA); } else { MII_CLR(STE_PHYCTL_MDATA); } DELAY(1); MII_CLR(STE_PHYCTL_MCLK); DELAY(1); MII_SET(STE_PHYCTL_MCLK); } } /* * Read an PHY register through the MII. */ int ste_mii_readreg(sc, frame) struct ste_softc *sc; struct ste_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = STE_MII_STARTDELIM; frame->mii_opcode = STE_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_2(sc, STE_PHYCTL, 0); /* * Turn on data xmit. */ MII_SET(STE_PHYCTL_MDIR); ste_mii_sync(sc); /* * Send command/address info. */ ste_mii_send(sc, frame->mii_stdelim, 2); ste_mii_send(sc, frame->mii_opcode, 2); ste_mii_send(sc, frame->mii_phyaddr, 5); ste_mii_send(sc, frame->mii_regaddr, 5); /* Turn off xmit. */ MII_CLR(STE_PHYCTL_MDIR); /* Idle bit */ MII_CLR((STE_PHYCTL_MCLK|STE_PHYCTL_MDATA)); DELAY(1); MII_SET(STE_PHYCTL_MCLK); DELAY(1); /* Check for ack */ MII_CLR(STE_PHYCTL_MCLK); DELAY(1); MII_SET(STE_PHYCTL_MCLK); DELAY(1); ack = CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA; /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { MII_CLR(STE_PHYCTL_MCLK); DELAY(1); MII_SET(STE_PHYCTL_MCLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { MII_CLR(STE_PHYCTL_MCLK); DELAY(1); if (!ack) { if (CSR_READ_2(sc, STE_PHYCTL) & STE_PHYCTL_MDATA) frame->mii_data |= i; DELAY(1); } MII_SET(STE_PHYCTL_MCLK); DELAY(1); } fail: MII_CLR(STE_PHYCTL_MCLK); DELAY(1); MII_SET(STE_PHYCTL_MCLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ int ste_mii_writereg(sc, frame) struct ste_softc *sc; struct ste_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = STE_MII_STARTDELIM; frame->mii_opcode = STE_MII_WRITEOP; frame->mii_turnaround = STE_MII_TURNAROUND; /* * Turn on data output. */ MII_SET(STE_PHYCTL_MDIR); ste_mii_sync(sc); ste_mii_send(sc, frame->mii_stdelim, 2); ste_mii_send(sc, frame->mii_opcode, 2); ste_mii_send(sc, frame->mii_phyaddr, 5); ste_mii_send(sc, frame->mii_regaddr, 5); ste_mii_send(sc, frame->mii_turnaround, 2); ste_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ MII_SET(STE_PHYCTL_MCLK); DELAY(1); MII_CLR(STE_PHYCTL_MCLK); DELAY(1); /* * Turn off xmit. */ MII_CLR(STE_PHYCTL_MDIR); splx(s); return(0); } int ste_miibus_readreg(self, phy, reg) struct device *self; int phy, reg; { struct ste_softc *sc = (struct ste_softc *)self; struct ste_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; ste_mii_readreg(sc, &frame); return(frame.mii_data); } void ste_miibus_writereg(self, phy, reg, data) struct device *self; int phy, reg, data; { struct ste_softc *sc = (struct ste_softc *)self; struct ste_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; ste_mii_writereg(sc, &frame); return; } void ste_miibus_statchg(self) struct device *self; { struct ste_softc *sc = (struct ste_softc *)self; struct mii_data *mii; mii = &sc->sc_mii; if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) { STE_SETBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX); } else { STE_CLRBIT2(sc, STE_MACCTL0, STE_MACCTL0_FULLDUPLEX); } return; } int ste_ifmedia_upd(ifp) struct ifnet *ifp; { struct ste_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; sc->ste_link = 0; if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } mii_mediachg(mii); return(0); } void ste_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct ste_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; return; } void ste_wait(sc) struct ste_softc *sc; { register int i; for (i = 0; i < STE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_DMA_HALTINPROG)) break; } if (i == STE_TIMEOUT) printf("ste%d: command never completed!\n", sc->ste_unit); return; } /* * The EEPROM is slow: give it time to come ready after issuing * it a command. */ int ste_eeprom_wait(sc) struct ste_softc *sc; { int i; DELAY(1000); for (i = 0; i < 100; i++) { if (CSR_READ_2(sc, STE_EEPROM_CTL) & STE_EECTL_BUSY) DELAY(1000); else break; } if (i == 100) { printf("ste%d: eeprom failed to come ready\n", sc->ste_unit); return(1); } return(0); } /* * Read a sequence of words from the EEPROM. Note that ethernet address * data is stored in the EEPROM in network byte order. */ int ste_read_eeprom(sc, dest, off, cnt, swap) struct ste_softc *sc; caddr_t dest; int off; int cnt; int swap; { int err = 0, i; u_int16_t word = 0, *ptr; if (ste_eeprom_wait(sc)) return(1); for (i = 0; i < cnt; i++) { CSR_WRITE_2(sc, STE_EEPROM_CTL, STE_EEOPCODE_READ | (off + i)); err = ste_eeprom_wait(sc); if (err) break; word = CSR_READ_2(sc, STE_EEPROM_DATA); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return(err ? 1 : 0); } u_int8_t ste_calchash(addr) caddr_t addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return(crc & 0x0000003F); } void ste_setmulti(sc) struct ste_softc *sc; { struct ifnet *ifp; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; int h = 0; u_int32_t hashes[2] = { 0, 0 }; ifp = &sc->arpcom.ac_if; if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI); STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, STE_MAR0, 0); CSR_WRITE_4(sc, STE_MAR1, 0); /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = ste_calchash(enm->enm_addrlo); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } CSR_WRITE_4(sc, STE_MAR0, hashes[0]); CSR_WRITE_4(sc, STE_MAR1, hashes[1]); STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_ALLMULTI); STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_MULTIHASH); return; } int ste_intr(xsc) void *xsc; { struct ste_softc *sc; struct ifnet *ifp; u_int16_t status; int claimed = 0; sc = xsc; ifp = &sc->arpcom.ac_if; /* See if this is really our interrupt. */ if (!(CSR_READ_2(sc, STE_ISR) & STE_ISR_INTLATCH)) return claimed; for (;;) { status = CSR_READ_2(sc, STE_ISR_ACK); if (!(status & STE_INTRS)) break; claimed = 1; if (status & STE_ISR_RX_DMADONE) ste_rxeof(sc); if (status & STE_ISR_TX_DMADONE) ste_txeof(sc); if (status & STE_ISR_TX_DONE) ste_txeoc(sc); if (status & STE_ISR_STATS_OFLOW) { untimeout(ste_stats_update, sc); ste_stats_update(sc); } if (status & STE_ISR_HOSTERR) { ste_reset(sc); ste_init(sc); } } /* Re-enable interrupts */ CSR_WRITE_2(sc, STE_IMR, STE_INTRS); if (ifp->if_snd.ifq_head != NULL) ste_start(ifp); return claimed; } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void ste_rxeof(sc) struct ste_softc *sc; { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct ste_chain_onefrag *cur_rx; int total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; again: while((rxstat = sc->ste_cdata.ste_rx_head->ste_ptr->ste_status)) { cur_rx = sc->ste_cdata.ste_rx_head; sc->ste_cdata.ste_rx_head = cur_rx->ste_next; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & STE_RXSTAT_FRAME_ERR) { ifp->if_ierrors++; cur_rx->ste_ptr->ste_status = 0; continue; } /* * If there error bit was not set, the upload complete * bit should be set which means we have a valid packet. * If not, something truly strange has happened. */ if (!(rxstat & STE_RXSTAT_DMADONE)) { printf("ste%d: bad receive status -- packet dropped", sc->ste_unit); ifp->if_ierrors++; cur_rx->ste_ptr->ste_status = 0; continue; } /* No errors; receive the packet. */ m = cur_rx->ste_mbuf; total_len = cur_rx->ste_ptr->ste_status & STE_RXSTAT_FRAMELEN; /* * Try to conjure up a new mbuf cluster. If that * fails, it means we have an out of memory condition and * should leave the buffer in place and continue. This will * result in a lost packet, but there's little else we * can do in this situation. */ if (ste_newbuf(sc, cur_rx, NULL) == ENOBUFS) { ifp->if_ierrors++; cur_rx->ste_ptr->ste_status = 0; continue; } ifp->if_ipackets++; eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; m->m_pkthdr.len = m->m_len = total_len; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* Remove header from mbuf and pass it on. */ m_adj(m, sizeof(struct ether_header)); ether_input(ifp, eh, m); } /* * Handle the 'end of channel' condition. When the upload * engine hits the end of the RX ring, it will stall. This * is our cue to flush the RX ring, reload the uplist pointer * register and unstall the engine. * XXX This is actually a little goofy. With the ThunderLAN * chip, you get an interrupt when the receiver hits the end * of the receive ring, which tells you exactly when you * you need to reload the ring pointer. Here we have to * fake it. I'm mad at myself for not being clever enough * to avoid the use of a goto here. */ if (CSR_READ_4(sc, STE_RX_DMALIST_PTR) == 0 || CSR_READ_4(sc, STE_DMACTL) & STE_DMACTL_RXDMA_STOPPED) { STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL); ste_wait(sc); CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, vtophys(&sc->ste_ldata->ste_rx_list[0])); sc->ste_cdata.ste_rx_head = &sc->ste_cdata.ste_rx_chain[0]; STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL); goto again; } return; } void ste_txeoc(sc) struct ste_softc *sc; { u_int8_t txstat; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; while ((txstat = CSR_READ_1(sc, STE_TX_STATUS)) & STE_TXSTATUS_TXDONE) { if (txstat & STE_TXSTATUS_UNDERRUN || txstat & STE_TXSTATUS_EXCESSCOLLS || txstat & STE_TXSTATUS_RECLAIMERR) { ifp->if_oerrors++; printf("ste%d: transmission error: %x\n", sc->ste_unit, txstat); ste_reset(sc); ste_init(sc); if (txstat & STE_TXSTATUS_UNDERRUN && sc->ste_tx_thresh < STE_PACKET_SIZE) { sc->ste_tx_thresh += STE_MIN_FRAMELEN; printf("ste%d: tx underrun, increasing tx" " start threshold to %d bytes\n", sc->ste_unit, sc->ste_tx_thresh); } CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh); CSR_WRITE_2(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4)); } ste_init(sc); CSR_WRITE_2(sc, STE_TX_STATUS, txstat); } return; } void ste_txeof(sc) struct ste_softc *sc; { struct ste_chain *cur_tx = NULL; struct ifnet *ifp; int idx; ifp = &sc->arpcom.ac_if; idx = sc->ste_cdata.ste_tx_cons; while(idx != sc->ste_cdata.ste_tx_prod) { cur_tx = &sc->ste_cdata.ste_tx_chain[idx]; if (!(cur_tx->ste_ptr->ste_ctl & STE_TXCTL_DMADONE)) break; if (cur_tx->ste_mbuf != NULL) { m_freem(cur_tx->ste_mbuf); cur_tx->ste_mbuf = NULL; } ifp->if_opackets++; sc->ste_cdata.ste_tx_cnt--; STE_INC(idx, STE_TX_LIST_CNT); ifp->if_timer = 0; } sc->ste_cdata.ste_tx_cons = idx; if (cur_tx != NULL) ifp->if_flags &= ~IFF_OACTIVE; return; } void ste_stats_update(xsc) void *xsc; { struct ste_softc *sc; struct ste_stats stats; struct ifnet *ifp; struct mii_data *mii; int i, s; u_int8_t *p; s = splimp(); sc = xsc; ifp = &sc->arpcom.ac_if; mii = &sc->sc_mii; p = (u_int8_t *)&stats; for (i = 0; i < sizeof(stats); i++) { *p = CSR_READ_1(sc, STE_STATS + i); p++; } ifp->if_collisions += stats.ste_single_colls + stats.ste_multi_colls + stats.ste_late_colls; mii_tick(mii); if (!sc->ste_link) { mii_pollstat(mii); if (mii->mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) sc->ste_link++; if (ifp->if_snd.ifq_head != NULL) ste_start(ifp); } timeout(ste_stats_update, sc, hz); splx(s); return; } /* * Probe for a Sundance ST201 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int ste_probe(parent, match, aux) struct device *parent; void *match, *aux; { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUNDANCE && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUNDANCE_ST201) return(1); if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_DLINK && PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_DLINK_550TX) return(1); return(0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void ste_attach(parent, self, aux) struct device *parent, *self; void *aux; { int s; const char *intrstr = NULL; u_int32_t command; struct ste_softc *sc = (struct ste_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; struct ifnet *ifp; bus_addr_t iobase; bus_size_t iosize; s = splimp(); sc->ste_unit = sc->sc_dev.dv_unit; /* * Handle power management nonsense. */ command = pci_conf_read(pc, pa->pa_tag, STE_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, STE_PCI_PWRMGMTCTRL); if (command & STE_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(pc, pa->pa_tag, STE_PCI_LOIO); membase = pci_conf_read(pc, pa->pa_tag, STE_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, STE_PCI_INTLINE); /* Reset the power state. */ printf("ste%d: chip is in D%d power mode " "-- setting to D0\n", sc->ste_unit, command & STE_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, STE_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, STE_PCI_LOIO, iobase); pci_conf_write(pc, pa->pa_tag, STE_PCI_LOMEM, membase); pci_conf_write(pc, pa->pa_tag, STE_PCI_INTLINE, irq); } } /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef STE_USEIOSPACE if (!(command & PCI_COMMAND_IO_ENABLE)) { printf(": failed to enable I/O ports\n"); goto fail; } if (pci_io_find(pc, pa->pa_tag, STE_PCI_LOIO, &iobase, &iosize)) { printf(": can't find I/O space\n"); goto fail; } if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->ste_bhandle)) { printf(": can't map I/O space\n"); goto fail; } sc->ste_btag = pa->pa_iot; #else if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping\n"); goto fail; } if (pci_mem_find(pc, pa->pa_tag, STE_PCI_LOMEM, &iobase, &iosize,NULL)){ printf(": can't find mem space\n"); goto fail; } if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->ste_bhandle)) { printf(": can't map mem space\n"); goto fail; } sc->ste_btag = pa->pa_memt; #endif /* Allocate interrupt */ if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf(": couldn't map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, ste_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } printf(": %s", intrstr); /* Reset the adapter. */ ste_reset(sc); /* * Get station address from the EEPROM. */ ste_read_eeprom(sc,(caddr_t)&sc->arpcom.ac_enaddr,STE_EEADDR_NODE0,3,0); printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); sc->ste_ldata_ptr = malloc(sizeof(struct ste_list_data) + 8, M_DEVBUF, M_NOWAIT); if (sc->ste_ldata_ptr == NULL) { printf("%s: no memory for list buffers!\n", sc->ste_unit); goto fail; } sc->ste_ldata = (struct ste_list_data *)sc->ste_ldata_ptr; bzero(sc->ste_ldata, sizeof(struct ste_list_data)); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = ste_ioctl; ifp->if_output = ether_output; ifp->if_start = ste_start; ifp->if_watchdog = ste_watchdog; ifp->if_baudrate = 10000000; ifp->if_snd.ifq_maxlen = STE_TX_LIST_CNT - 1; bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = ste_miibus_readreg; sc->sc_mii.mii_writereg = ste_miibus_writereg; sc->sc_mii.mii_statchg = ste_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, ste_ifmedia_upd,ste_ifmedia_sts); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); #if NBPFILTER > 0 bpfattach(&sc->arpcom.ac_if.if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif shutdownhook_establish(ste_shutdown, sc); fail: splx(s); return; } int ste_newbuf(sc, c, m) struct ste_softc *sc; struct ste_chain_onefrag *c; struct mbuf *m; { struct mbuf *m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("ste%d: no memory for rx list -- " "packet dropped\n", sc->ste_unit); return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("ste%d: no memory for rx list -- " "packet dropped\n", sc->ste_unit); m_freem(m_new); return(ENOBUFS); } m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = MCLBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, ETHER_ALIGN); c->ste_mbuf = m_new; c->ste_ptr->ste_status = 0; c->ste_ptr->ste_frag.ste_addr = vtophys(mtod(m_new, caddr_t)); c->ste_ptr->ste_frag.ste_len = 1536 | STE_FRAG_LAST; return(0); } int ste_init_rx_list(sc) struct ste_softc *sc; { struct ste_chain_data *cd; struct ste_list_data *ld; int i; cd = &sc->ste_cdata; ld = sc->ste_ldata; for (i = 0; i < STE_RX_LIST_CNT; i++) { cd->ste_rx_chain[i].ste_ptr = &ld->ste_rx_list[i]; if (ste_newbuf(sc, &cd->ste_rx_chain[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (STE_RX_LIST_CNT - 1)) { cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[0]; ld->ste_rx_list[i].ste_next = vtophys(&ld->ste_rx_list[0]); } else { cd->ste_rx_chain[i].ste_next = &cd->ste_rx_chain[i + 1]; ld->ste_rx_list[i].ste_next = vtophys(&ld->ste_rx_list[i + 1]); } } cd->ste_rx_head = &cd->ste_rx_chain[0]; return(0); } void ste_init_tx_list(sc) struct ste_softc *sc; { struct ste_chain_data *cd; struct ste_list_data *ld; int i; cd = &sc->ste_cdata; ld = sc->ste_ldata; for (i = 0; i < STE_TX_LIST_CNT; i++) { cd->ste_tx_chain[i].ste_ptr = &ld->ste_tx_list[i]; cd->ste_tx_chain[i].ste_phys = vtophys(&ld->ste_tx_list[i]); if (i == (STE_TX_LIST_CNT - 1)) cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[0]; else cd->ste_tx_chain[i].ste_next = &cd->ste_tx_chain[i + 1]; if (i == 0) cd->ste_tx_chain[i].ste_prev = &cd->ste_tx_chain[STE_TX_LIST_CNT - 1]; else cd->ste_tx_chain[i].ste_prev = &cd->ste_tx_chain[i - 1]; } bzero((char *)ld->ste_tx_list, sizeof(struct ste_desc) * STE_TX_LIST_CNT); cd->ste_tx_prod = 0; cd->ste_tx_cons = 0; cd->ste_tx_cnt = 0; return; } void ste_init(xsc) void *xsc; { struct ste_softc *sc = (struct ste_softc *)xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii; int i, s; s = splimp(); ste_stop(sc); mii = &sc->sc_mii; /* Init our MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) { CSR_WRITE_1(sc, STE_PAR0 + i, sc->arpcom.ac_enaddr[i]); } /* Init RX list */ if (ste_init_rx_list(sc) == ENOBUFS) { printf("ste%d: initialization failed: no " "memory for RX buffers\n", sc->ste_unit); ste_stop(sc); splx(s); return; } /* Init TX descriptors */ ste_init_tx_list(sc); /* Set the TX freethresh value */ CSR_WRITE_1(sc, STE_TX_DMABURST_THRESH, STE_PACKET_SIZE >> 8); /* Set the TX start threshold for best performance. */ CSR_WRITE_2(sc, STE_TX_STARTTHRESH, sc->ste_tx_thresh); /* Set the TX reclaim threshold. */ CSR_WRITE_1(sc, STE_TX_RECLAIM_THRESH, (STE_PACKET_SIZE >> 4)); /* Set up the RX filter. */ CSR_WRITE_1(sc, STE_RX_MODE, STE_RXMODE_UNICAST); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC); } else { STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC); } /* Set capture broadcast bit to accept broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST); } else { STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_BROADCAST); } ste_setmulti(sc); /* Load the address of the RX list. */ STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL); ste_wait(sc); CSR_WRITE_4(sc, STE_RX_DMALIST_PTR, vtophys(&sc->ste_ldata->ste_rx_list[0])); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_RXDMA_UNSTALL); /* Set TX polling interval */ CSR_WRITE_1(sc, STE_TX_DMAPOLL_PERIOD, 64); /* Load address of the TX list */ STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL); ste_wait(sc); CSR_WRITE_4(sc, STE_TX_DMALIST_PTR, vtophys(&sc->ste_ldata->ste_tx_list[0])); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL); STE_SETBIT4(sc, STE_DMACTL, STE_DMACTL_TXDMA_UNSTALL); ste_wait(sc); /* Enable receiver and transmitter */ CSR_WRITE_2(sc, STE_MACCTL0, 0); STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_ENABLE); STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_ENABLE); /* Enable stats counters. */ STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_ENABLE); /* Enable interrupts. */ CSR_WRITE_2(sc, STE_ISR, 0xFFFF); CSR_WRITE_2(sc, STE_IMR, STE_INTRS); ste_ifmedia_upd(ifp); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout(ste_stats_update, sc, hz); return; } void ste_stop(sc) struct ste_softc *sc; { int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; untimeout(ste_stats_update, sc); CSR_WRITE_2(sc, STE_IMR, 0); STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_TX_DISABLE); STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_RX_DISABLE); STE_SETBIT2(sc, STE_MACCTL1, STE_MACCTL1_STATS_DISABLE); STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_TXDMA_STALL); STE_SETBIT2(sc, STE_DMACTL, STE_DMACTL_RXDMA_STALL); ste_wait(sc); sc->ste_link = 0; for (i = 0; i < STE_RX_LIST_CNT; i++) { if (sc->ste_cdata.ste_rx_chain[i].ste_mbuf != NULL) { m_freem(sc->ste_cdata.ste_rx_chain[i].ste_mbuf); sc->ste_cdata.ste_rx_chain[i].ste_mbuf = NULL; } } for (i = 0; i < STE_TX_LIST_CNT; i++) { if (sc->ste_cdata.ste_tx_chain[i].ste_mbuf != NULL) { m_freem(sc->ste_cdata.ste_tx_chain[i].ste_mbuf); sc->ste_cdata.ste_tx_chain[i].ste_mbuf = NULL; } } ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE); return; } void ste_reset(sc) struct ste_softc *sc; { int i; STE_SETBIT4(sc, STE_ASICCTL, STE_ASICCTL_GLOBAL_RESET|STE_ASICCTL_RX_RESET| STE_ASICCTL_TX_RESET|STE_ASICCTL_DMA_RESET| STE_ASICCTL_FIFO_RESET|STE_ASICCTL_NETWORK_RESET| STE_ASICCTL_AUTOINIT_RESET|STE_ASICCTL_HOST_RESET| STE_ASICCTL_EXTRESET_RESET); DELAY(100000); for (i = 0; i < STE_TIMEOUT; i++) { if (!(CSR_READ_4(sc, STE_ASICCTL) & STE_ASICCTL_RESET_BUSY)) break; } if (i == STE_TIMEOUT) printf("ste%d: global reset never completed\n", sc->ste_unit); return; } int ste_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct ste_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; struct mii_data *mii; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { case AF_INET: ste_init(sc); arp_ifinit(&sc->arpcom, ifa); break; default: ste_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->ste_if_flags & IFF_PROMISC)) { STE_SETBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->ste_if_flags & IFF_PROMISC) { STE_CLRBIT1(sc, STE_RX_MODE, STE_RXMODE_PROMISC); } else if (!(ifp->if_flags & IFF_RUNNING)) { sc->ste_tx_thresh = STE_MIN_FRAMELEN; ste_init(sc); } } else { if (ifp->if_flags & IFF_RUNNING) ste_stop(sc); } sc->ste_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ ste_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = &sc->sc_mii; error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; default: error = EINVAL; break; } splx(s); return(error); } int ste_encap(sc, c, m_head) struct ste_softc *sc; struct ste_chain *c; struct mbuf *m_head; { int frag = 0; struct ste_frag *f = NULL; struct mbuf *m; struct ste_desc *d; int total_len = 0; d = c->ste_ptr; d->ste_ctl = 0; d->ste_next = 0; for (m = m_head, frag = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (frag == STE_MAXFRAGS) break; total_len += m->m_len; f = &c->ste_ptr->ste_frags[frag]; f->ste_addr = vtophys(mtod(m, vm_offset_t)); f->ste_len = m->m_len; frag++; } } c->ste_mbuf = m_head; c->ste_ptr->ste_frags[frag - 1].ste_len |= STE_FRAG_LAST; c->ste_ptr->ste_ctl = total_len; return(0); } void ste_start(ifp) struct ifnet *ifp; { struct ste_softc *sc; struct mbuf *m_head = NULL; struct ste_chain *prev = NULL, *cur_tx = NULL, *start_tx; int idx; sc = ifp->if_softc; if (!sc->ste_link) return; if (ifp->if_flags & IFF_OACTIVE) return; idx = sc->ste_cdata.ste_tx_prod; start_tx = &sc->ste_cdata.ste_tx_chain[idx]; while(sc->ste_cdata.ste_tx_chain[idx].ste_mbuf == NULL) { if ((STE_TX_LIST_CNT - sc->ste_cdata.ste_tx_cnt) < 3) { ifp->if_flags |= IFF_OACTIVE; break; } IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; cur_tx = &sc->ste_cdata.ste_tx_chain[idx]; ste_encap(sc, cur_tx, m_head); if (prev != NULL) prev->ste_ptr->ste_next = cur_tx->ste_phys; prev = cur_tx; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, cur_tx->ste_mbuf); #endif STE_INC(idx, STE_TX_LIST_CNT); sc->ste_cdata.ste_tx_cnt++; } if (cur_tx == NULL) return; cur_tx->ste_ptr->ste_ctl |= STE_TXCTL_DMAINTR; /* Start transmission */ sc->ste_cdata.ste_tx_prod = idx; start_tx->ste_prev->ste_ptr->ste_next = start_tx->ste_phys; ifp->if_timer = 5; return; } void ste_watchdog(ifp) struct ifnet *ifp; { struct ste_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("ste%d: watchdog timeout\n", sc->ste_unit); ste_txeoc(sc); ste_txeof(sc); ste_rxeof(sc); ste_reset(sc); ste_init(sc); if (ifp->if_snd.ifq_head != NULL) ste_start(ifp); return; } void ste_shutdown(v) void *v; { struct ste_softc *sc = (struct ste_softc *)v; ste_stop(sc); } struct cfattach ste_ca = { sizeof(struct ste_softc), ste_probe, ste_attach }; struct cfdriver ste_cd = { 0, "ste", DV_IFNET };