/* $OpenBSD: if_stge.c,v 1.66 2015/11/25 03:09:59 dlg Exp $ */ /* $NetBSD: if_stge.c,v 1.27 2005/05/16 21:35:32 bouyer Exp $ */ /*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Device driver for the Sundance Tech. TC9021 10/100/1000 * Ethernet controller. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #include #include #include void stge_start(struct ifnet *); void stge_watchdog(struct ifnet *); int stge_ioctl(struct ifnet *, u_long, caddr_t); int stge_init(struct ifnet *); void stge_stop(struct ifnet *, int); void stge_reset(struct stge_softc *); void stge_rxdrain(struct stge_softc *); int stge_add_rxbuf(struct stge_softc *, int); void stge_read_eeprom(struct stge_softc *, int, uint16_t *); void stge_tick(void *); void stge_stats_update(struct stge_softc *); void stge_iff(struct stge_softc *); int stge_intr(void *); void stge_txintr(struct stge_softc *); void stge_rxintr(struct stge_softc *); int stge_mii_readreg(struct device *, int, int); void stge_mii_writereg(struct device *, int, int, int); void stge_mii_statchg(struct device *); int stge_mediachange(struct ifnet *); void stge_mediastatus(struct ifnet *, struct ifmediareq *); int stge_match(struct device *, void *, void *); void stge_attach(struct device *, struct device *, void *); int stge_copy_small = 0; struct cfattach stge_ca = { sizeof(struct stge_softc), stge_match, stge_attach, }; struct cfdriver stge_cd = { NULL, "stge", DV_IFNET }; uint32_t stge_mii_bitbang_read(struct device *); void stge_mii_bitbang_write(struct device *, uint32_t); const struct mii_bitbang_ops stge_mii_bitbang_ops = { stge_mii_bitbang_read, stge_mii_bitbang_write, { PC_MgmtData, /* MII_BIT_MDO */ PC_MgmtData, /* MII_BIT_MDI */ PC_MgmtClk, /* MII_BIT_MDC */ PC_MgmtDir, /* MII_BIT_DIR_HOST_PHY */ 0, /* MII_BIT_DIR_PHY_HOST */ } }; /* * Devices supported by this driver. */ const struct pci_matchid stge_devices[] = { { PCI_VENDOR_ANTARES, PCI_PRODUCT_ANTARES_TC9021 }, { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE550T }, { PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST1023 }, { PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_ST2021 }, { PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021 }, { PCI_VENDOR_SUNDANCE, PCI_PRODUCT_SUNDANCE_TC9021_ALT }, { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021 }, { PCI_VENDOR_TAMARACK, PCI_PRODUCT_TAMARACK_TC9021_ALT } }; int stge_match(struct device *parent, void *match, void *aux) { return (pci_matchbyid((struct pci_attach_args *)aux, stge_devices, sizeof(stge_devices) / sizeof(stge_devices[0]))); } void stge_attach(struct device *parent, struct device *self, void *aux) { struct stge_softc *sc = (struct stge_softc *) self; struct pci_attach_args *pa = aux; struct ifnet *ifp = &sc->sc_arpcom.ac_if; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; bus_space_tag_t iot, memt; bus_space_handle_t ioh, memh; bus_dma_segment_t seg; bus_size_t iosize; int ioh_valid, memh_valid; int i, rseg, error; timeout_set(&sc->sc_timeout, stge_tick, sc); sc->sc_rev = PCI_REVISION(pa->pa_class); /* * Map the device. */ ioh_valid = (pci_mapreg_map(pa, STGE_PCI_IOBA, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, &iosize, 0) == 0); memh_valid = (pci_mapreg_map(pa, STGE_PCI_MMBA, PCI_MAPREG_TYPE_MEM|PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &iosize, 0) == 0); if (memh_valid) { sc->sc_st = memt; sc->sc_sh = memh; } else if (ioh_valid) { sc->sc_st = iot; sc->sc_sh = ioh; } else { printf(": unable to map device registers\n"); return; } sc->sc_dmat = pa->pa_dmat; /* Get it out of power save mode if needed. */ pci_set_powerstate(pc, pa->pa_tag, PCI_PMCSR_STATE_D0); /* * Map and establish our interrupt. */ if (pci_intr_map(pa, &ih)) { printf(": unable to map interrupt\n"); goto fail_0; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, stge_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": unable to establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail_0; } printf(": %s", intrstr); /* * Allocate the control data structures, and create and load the * DMA map for it. */ if ((error = bus_dmamem_alloc(sc->sc_dmat, sizeof(struct stge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) { printf("%s: unable to allocate control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_0; } if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct stge_control_data), (caddr_t *)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) { printf("%s: unable to map control data, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_1; } if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct stge_control_data), 1, sizeof(struct stge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { printf("%s: unable to create control data DMA map, " "error = %d\n", sc->sc_dev.dv_xname, error); goto fail_2; } if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, sc->sc_control_data, sizeof(struct stge_control_data), NULL, 0)) != 0) { printf("%s: unable to load control data DMA map, error = %d\n", sc->sc_dev.dv_xname, error); goto fail_3; } /* * Create the transmit buffer DMA maps. Note that rev B.3 * and earlier seem to have a bug regarding multi-fragment * packets. We need to limit the number of Tx segments on * such chips to 1. */ for (i = 0; i < STGE_NTXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, STGE_JUMBO_FRAMELEN, STGE_NTXFRAGS, MCLBYTES, 0, 0, &sc->sc_txsoft[i].ds_dmamap)) != 0) { printf("%s: unable to create tx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_4; } } /* * Create the receive buffer DMA maps. */ for (i = 0; i < STGE_NRXDESC; i++) { if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].ds_dmamap)) != 0) { printf("%s: unable to create rx DMA map %d, " "error = %d\n", sc->sc_dev.dv_xname, i, error); goto fail_5; } sc->sc_rxsoft[i].ds_mbuf = NULL; } /* * Determine if we're copper or fiber. It affects how we * reset the card. */ if (CSR_READ_4(sc, STGE_AsicCtrl) & AC_PhyMedia) sc->sc_usefiber = 1; else sc->sc_usefiber = 0; /* * Reset the chip to a known state. */ stge_reset(sc); /* * Reading the station address from the EEPROM doesn't seem * to work, at least on my sample boards. Instead, since * the reset sequence does AutoInit, read it from the station * address registers. For Sundance 1023 you can only read it * from EEPROM. */ if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_SUNDANCE_ST1023) { sc->sc_arpcom.ac_enaddr[0] = CSR_READ_2(sc, STGE_StationAddress0) & 0xff; sc->sc_arpcom.ac_enaddr[1] = CSR_READ_2(sc, STGE_StationAddress0) >> 8; sc->sc_arpcom.ac_enaddr[2] = CSR_READ_2(sc, STGE_StationAddress1) & 0xff; sc->sc_arpcom.ac_enaddr[3] = CSR_READ_2(sc, STGE_StationAddress1) >> 8; sc->sc_arpcom.ac_enaddr[4] = CSR_READ_2(sc, STGE_StationAddress2) & 0xff; sc->sc_arpcom.ac_enaddr[5] = CSR_READ_2(sc, STGE_StationAddress2) >> 8; sc->sc_stge1023 = 0; } else { uint16_t myaddr[ETHER_ADDR_LEN / 2]; for (i = 0; i < ETHER_ADDR_LEN / 2; i++) { stge_read_eeprom(sc, STGE_EEPROM_StationAddress0 + i, &myaddr[i]); myaddr[i] = letoh16(myaddr[i]); } (void)memcpy(sc->sc_arpcom.ac_enaddr, myaddr, sizeof(sc->sc_arpcom.ac_enaddr)); sc->sc_stge1023 = 1; } printf(", address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); /* * Read some important bits from the PhyCtrl register. */ sc->sc_PhyCtrl = CSR_READ_1(sc, STGE_PhyCtrl) & (PC_PhyDuplexPolarity | PC_PhyLnkPolarity); /* * Initialize our media structures and probe the MII. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = stge_mii_readreg; sc->sc_mii.mii_writereg = stge_mii_writereg; sc->sc_mii.mii_statchg = stge_mii_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, stge_mediachange, stge_mediastatus); mii_attach(&sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); ifp = &sc->sc_arpcom.ac_if; strlcpy(ifp->if_xname, sc->sc_dev.dv_xname, sizeof ifp->if_xname); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = stge_ioctl; ifp->if_start = stge_start; ifp->if_watchdog = stge_watchdog; #ifdef STGE_JUMBO ifp->if_hardmtu = STGE_JUMBO_MTU; #endif IFQ_SET_MAXLEN(&ifp->if_snd, STGE_NTXDESC - 1); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = IFCAP_VLAN_MTU; #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif /* * The manual recommends disabling early transmit, so we * do. It's disabled anyway, if using IP checksumming, * since the entire packet must be in the FIFO in order * for the chip to perform the checksum. */ sc->sc_txthresh = 0x0fff; /* * Disable MWI if the PCI layer tells us to. */ sc->sc_DMACtrl = 0; #ifdef fake if ((pa->pa_flags & PCI_FLAGS_MWI_OKAY) == 0) sc->sc_DMACtrl |= DMAC_MWIDisable; #endif #ifdef STGE_CHECKSUM /* * We can do IPv4/TCPv4/UDPv4 checksums in hardware. */ sc->sc_arpcom.ac_if.if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; #endif /* * Attach the interface. */ if_attach(ifp); ether_ifattach(ifp); return; /* * Free any resources we've allocated during the failed attach * attempt. Do this in reverse order and fall through. */ fail_5: for (i = 0; i < STGE_NRXDESC; i++) { if (sc->sc_rxsoft[i].ds_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxsoft[i].ds_dmamap); } fail_4: for (i = 0; i < STGE_NTXDESC; i++) { if (sc->sc_txsoft[i].ds_dmamap != NULL) bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsoft[i].ds_dmamap); } bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); fail_3: bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); fail_2: bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data, sizeof(struct stge_control_data)); fail_1: bus_dmamem_free(sc->sc_dmat, &seg, rseg); fail_0: bus_space_unmap(sc->sc_st, sc->sc_sh, iosize); return; } static void stge_dma_wait(struct stge_softc *sc) { int i; for (i = 0; i < STGE_TIMEOUT; i++) { delay(2); if ((CSR_READ_4(sc, STGE_DMACtrl) & DMAC_TxDMAInProg) == 0) break; } if (i == STGE_TIMEOUT) printf("%s: DMA wait timed out\n", sc->sc_dev.dv_xname); } /* * stge_start: [ifnet interface function] * * Start packet transmission on the interface. */ void stge_start(struct ifnet *ifp) { struct stge_softc *sc = ifp->if_softc; struct mbuf *m0; struct stge_descsoft *ds; struct stge_tfd *tfd; bus_dmamap_t dmamap; int error, firsttx, nexttx, opending, seg, totlen; uint64_t csum_flags = 0, tfc; if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) return; /* * Remember the previous number of pending transmissions * and the first descriptor we will use. */ opending = sc->sc_txpending; firsttx = STGE_NEXTTX(sc->sc_txlast); /* * Loop through the send queue, setting up transmit descriptors * until we drain the queue, or use up all available transmit * descriptors. */ for (;;) { /* * Grab a packet off the queue. */ m0 = ifq_deq_begin(&ifp->if_snd); if (m0 == NULL) break; /* * Leave one unused descriptor at the end of the * list to prevent wrapping completely around. */ if (sc->sc_txpending == (STGE_NTXDESC - 1)) { ifq_deq_rollback(&ifp->if_snd, m0); break; } /* * Get the last and next available transmit descriptor. */ nexttx = STGE_NEXTTX(sc->sc_txlast); tfd = &sc->sc_txdescs[nexttx]; ds = &sc->sc_txsoft[nexttx]; dmamap = ds->ds_dmamap; /* * Load the DMA map. If this fails, the packet either * didn't fit in the alloted number of segments, or we * were short on resources. For the too-many-segments * case, we simply report an error and drop the packet, * since we can't sanely copy a jumbo packet to a single * buffer. */ error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, BUS_DMA_NOWAIT); if (error) { if (error == EFBIG) { printf("%s: Tx packet consumes too many " "DMA segments (%u), dropping...\n", sc->sc_dev.dv_xname, dmamap->dm_nsegs); ifq_deq_commit(&ifp->if_snd, m0); m_freem(m0); continue; } /* * Short on resources, just stop for now. */ ifq_deq_rollback(&ifp->if_snd, m0); break; } ifq_deq_commit(&ifp->if_snd, m0); /* * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. */ /* Sync the DMA map. */ bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE); /* Initialize the fragment list. */ for (totlen = 0, seg = 0; seg < dmamap->dm_nsegs; seg++) { tfd->tfd_frags[seg].frag_word0 = htole64(FRAG_ADDR(dmamap->dm_segs[seg].ds_addr) | FRAG_LEN(dmamap->dm_segs[seg].ds_len)); totlen += dmamap->dm_segs[seg].ds_len; } #ifdef STGE_CHECKSUM /* * Initialize checksumming flags in the descriptor. * Byte-swap constants so the compiler can optimize. */ if (m0->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) csum_flags |= TFD_IPChecksumEnable; if (m0->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) csum_flags |= TFD_TCPChecksumEnable; else if (m0->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) csum_flags |= TFD_UDPChecksumEnable; #endif /* * Initialize the descriptor and give it to the chip. */ tfc = TFD_FrameId(nexttx) | TFD_WordAlign(/*totlen & */3) | TFD_FragCount(seg) | csum_flags; if ((nexttx & STGE_TXINTR_SPACING_MASK) == 0) tfc |= TFD_TxDMAIndicate; #if NVLAN > 0 /* Check if we have a VLAN tag to insert. */ if (m0->m_flags & M_VLANTAG) tfc |= (TFD_VLANTagInsert | TFD_VID(m0->m_pkthdr.ether_vtag)); #endif tfd->tfd_control = htole64(tfc); /* Sync the descriptor. */ STGE_CDTXSYNC(sc, nexttx, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); /* * Kick the transmit DMA logic. */ CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxDMAPollNow); /* * Store a pointer to the packet so we can free it later. */ ds->ds_mbuf = m0; /* Advance the tx pointer. */ sc->sc_txpending++; sc->sc_txlast = nexttx; #if NBPFILTER > 0 /* * Pass the packet to any BPF listeners. */ if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m0, BPF_DIRECTION_OUT); #endif /* NBPFILTER > 0 */ } if (sc->sc_txpending == (STGE_NTXDESC - 1)) { /* No more slots left; notify upper layer. */ ifq_set_oactive(&ifp->if_snd); } if (sc->sc_txpending != opending) { /* * We enqueued packets. If the transmitter was idle, * reset the txdirty pointer. */ if (opending == 0) sc->sc_txdirty = firsttx; /* Set a watchdog timer in case the chip flakes out. */ ifp->if_timer = 5; } } /* * stge_watchdog: [ifnet interface function] * * Watchdog timer handler. */ void stge_watchdog(struct ifnet *ifp) { struct stge_softc *sc = ifp->if_softc; /* * Sweep up first, since we don't interrupt every frame. */ stge_txintr(sc); if (sc->sc_txpending != 0) { printf("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; (void) stge_init(ifp); /* Try to get more packets going. */ stge_start(ifp); } } /* * stge_ioctl: [ifnet interface function] * * Handle control requests from the operator. */ int stge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) { struct stge_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) stge_init(ifp); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else stge_init(ifp); } else { if (ifp->if_flags & IFF_RUNNING) stge_stop(ifp, 1); } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd); break; default: error = ether_ioctl(ifp, &sc->sc_arpcom, cmd, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) stge_iff(sc); error = 0; } splx(s); return (error); } /* * stge_intr: * * Interrupt service routine. */ int stge_intr(void *arg) { struct stge_softc *sc = arg; struct ifnet *ifp = &sc->sc_arpcom.ac_if; uint32_t txstat; int wantinit; uint16_t isr; if ((CSR_READ_2(sc, STGE_IntStatus) & IS_InterruptStatus) == 0) return (0); for (wantinit = 0; wantinit == 0;) { isr = CSR_READ_2(sc, STGE_IntStatusAck); if ((isr & sc->sc_IntEnable) == 0) break; /* Host interface errors. */ if (isr & IS_HostError) { printf("%s: Host interface error\n", sc->sc_dev.dv_xname); wantinit = 1; continue; } /* Receive interrupts. */ if (isr & (IS_RxDMAComplete|IS_RFDListEnd)) { stge_rxintr(sc); if (isr & IS_RFDListEnd) { printf("%s: receive ring overflow\n", sc->sc_dev.dv_xname); /* * XXX Should try to recover from this * XXX more gracefully. */ wantinit = 1; } } /* Transmit interrupts. */ if (isr & (IS_TxDMAComplete|IS_TxComplete)) stge_txintr(sc); /* Statistics overflow. */ if (isr & IS_UpdateStats) stge_stats_update(sc); /* Transmission errors. */ if (isr & IS_TxComplete) { for (;;) { txstat = CSR_READ_4(sc, STGE_TxStatus); if ((txstat & TS_TxComplete) == 0) break; if (txstat & TS_TxUnderrun) { sc->sc_txthresh++; if (sc->sc_txthresh > 0x0fff) sc->sc_txthresh = 0x0fff; printf("%s: transmit underrun, new " "threshold: %d bytes\n", sc->sc_dev.dv_xname, sc->sc_txthresh << 5); } if (txstat & TS_MaxCollisions) printf("%s: excessive collisions\n", sc->sc_dev.dv_xname); } wantinit = 1; } } if (wantinit) stge_init(ifp); CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable); /* Try to get more packets going. */ stge_start(ifp); return (1); } /* * stge_txintr: * * Helper; handle transmit interrupts. */ void stge_txintr(struct stge_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct stge_descsoft *ds; uint64_t control; int i; ifq_clr_oactive(&ifp->if_snd); /* * Go through our Tx list and free mbufs for those * frames which have been transmitted. */ for (i = sc->sc_txdirty; sc->sc_txpending != 0; i = STGE_NEXTTX(i), sc->sc_txpending--) { ds = &sc->sc_txsoft[i]; STGE_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); control = letoh64(sc->sc_txdescs[i].tfd_control); if ((control & TFD_TFDDone) == 0) break; bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); m_freem(ds->ds_mbuf); ds->ds_mbuf = NULL; } /* Update the dirty transmit buffer pointer. */ sc->sc_txdirty = i; /* * If there are no more pending transmissions, cancel the watchdog * timer. */ if (sc->sc_txpending == 0) ifp->if_timer = 0; } /* * stge_rxintr: * * Helper; handle receive interrupts. */ void stge_rxintr(struct stge_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct stge_descsoft *ds; struct mbuf *m, *tailm; struct mbuf_list ml = MBUF_LIST_INITIALIZER(); uint64_t status; int i, len; for (i = sc->sc_rxptr;; i = STGE_NEXTRX(i)) { ds = &sc->sc_rxsoft[i]; STGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); status = letoh64(sc->sc_rxdescs[i].rfd_status); if ((status & RFD_RFDDone) == 0) break; if (__predict_false(sc->sc_rxdiscard)) { STGE_INIT_RXDESC(sc, i); if (status & RFD_FrameEnd) { /* Reset our state. */ sc->sc_rxdiscard = 0; } continue; } bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); m = ds->ds_mbuf; /* * Add a new receive buffer to the ring. */ if (stge_add_rxbuf(sc, i) != 0) { /* * Failed, throw away what we've done so * far, and discard the rest of the packet. */ ifp->if_ierrors++; bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); STGE_INIT_RXDESC(sc, i); if ((status & RFD_FrameEnd) == 0) sc->sc_rxdiscard = 1; if (sc->sc_rxhead != NULL) m_freem(sc->sc_rxhead); STGE_RXCHAIN_RESET(sc); continue; } #ifdef DIAGNOSTIC if (status & RFD_FrameStart) { KASSERT(sc->sc_rxhead == NULL); KASSERT(sc->sc_rxtailp == &sc->sc_rxhead); } #endif STGE_RXCHAIN_LINK(sc, m); /* * If this is not the end of the packet, keep * looking. */ if ((status & RFD_FrameEnd) == 0) { sc->sc_rxlen += m->m_len; continue; } /* * Okay, we have the entire packet now... */ *sc->sc_rxtailp = NULL; m = sc->sc_rxhead; tailm = sc->sc_rxtail; STGE_RXCHAIN_RESET(sc); /* * If the packet had an error, drop it. Note we * count the error later in the periodic stats update. */ if (status & (RFD_RxFIFOOverrun | RFD_RxRuntFrame | RFD_RxAlignmentError | RFD_RxFCSError | RFD_RxLengthError)) { m_freem(m); continue; } /* * No errors. * * Note we have configured the chip to not include * the CRC at the end of the packet. */ len = RFD_RxDMAFrameLen(status); tailm->m_len = len - sc->sc_rxlen; /* * If the packet is small enough to fit in a * single header mbuf, allocate one and copy * the data into it. This greatly reduces * memory consumption when we receive lots * of small packets. */ if (stge_copy_small != 0 && len <= (MHLEN - 2)) { struct mbuf *nm; MGETHDR(nm, M_DONTWAIT, MT_DATA); if (nm == NULL) { ifp->if_ierrors++; m_freem(m); continue; } nm->m_data += 2; nm->m_pkthdr.len = nm->m_len = len; m_copydata(m, 0, len, mtod(nm, caddr_t)); m_freem(m); m = nm; } /* * Set the incoming checksum information for the packet. */ if ((status & RFD_IPDetected) && (!(status & RFD_IPError))) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; if ((status & RFD_TCPDetected) && (!(status & RFD_TCPError))) m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK; else if ((status & RFD_UDPDetected) && (!(status & RFD_UDPError))) m->m_pkthdr.csum_flags |= M_UDP_CSUM_IN_OK; #if NVLAN > 0 /* Check for VLAN tagged packets. */ if (status & RFD_VLANDetected) { m->m_pkthdr.ether_vtag = RFD_TCI(status); m->m_flags |= M_VLANTAG; } #endif m->m_pkthdr.len = len; ml_enqueue(&ml, m); } /* Update the receive pointer. */ sc->sc_rxptr = i; if_input(ifp, &ml); } /* * stge_tick: * * One second timer, used to tick the MII. */ void stge_tick(void *arg) { struct stge_softc *sc = arg; int s; s = splnet(); mii_tick(&sc->sc_mii); stge_stats_update(sc); splx(s); timeout_add_sec(&sc->sc_timeout, 1); } /* * stge_stats_update: * * Read the TC9021 statistics counters. */ void stge_stats_update(struct stge_softc *sc) { struct ifnet *ifp = &sc->sc_arpcom.ac_if; (void) CSR_READ_4(sc, STGE_OctetRcvOk); ifp->if_ierrors += (u_int) CSR_READ_2(sc, STGE_FramesLostRxErrors); (void) CSR_READ_4(sc, STGE_OctetXmtdOk); ifp->if_opackets += CSR_READ_4(sc, STGE_FramesXmtdOk); ifp->if_collisions += CSR_READ_4(sc, STGE_LateCollisions) + CSR_READ_4(sc, STGE_MultiColFrames) + CSR_READ_4(sc, STGE_SingleColFrames); ifp->if_oerrors += (u_int) CSR_READ_2(sc, STGE_FramesAbortXSColls) + (u_int) CSR_READ_2(sc, STGE_FramesWEXDeferal); } /* * stge_reset: * * Perform a soft reset on the TC9021. */ void stge_reset(struct stge_softc *sc) { uint32_t ac; int i; ac = CSR_READ_4(sc, STGE_AsicCtrl); /* * Only assert RstOut if we're fiber. We need GMII clocks * to be present in order for the reset to complete on fiber * cards. */ CSR_WRITE_4(sc, STGE_AsicCtrl, ac | AC_GlobalReset | AC_RxReset | AC_TxReset | AC_DMA | AC_FIFO | AC_Network | AC_Host | AC_AutoInit | (sc->sc_usefiber ? AC_RstOut : 0)); delay(50000); for (i = 0; i < STGE_TIMEOUT; i++) { delay(5000); if ((CSR_READ_4(sc, STGE_AsicCtrl) & AC_ResetBusy) == 0) break; } if (i == STGE_TIMEOUT) printf("%s: reset failed to complete\n", sc->sc_dev.dv_xname); delay(1000); } /* * stge_init: [ ifnet interface function ] * * Initialize the interface. Must be called at splnet(). */ int stge_init(struct ifnet *ifp) { struct stge_softc *sc = ifp->if_softc; struct stge_descsoft *ds; int i, error = 0; /* * Cancel any pending I/O. */ stge_stop(ifp, 0); /* * Reset the chip to a known state. */ stge_reset(sc); /* * Initialize the transmit descriptor ring. */ memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); for (i = 0; i < STGE_NTXDESC; i++) { sc->sc_txdescs[i].tfd_next = htole64( STGE_CDTXADDR(sc, STGE_NEXTTX(i))); sc->sc_txdescs[i].tfd_control = htole64(TFD_TFDDone); } sc->sc_txpending = 0; sc->sc_txdirty = 0; sc->sc_txlast = STGE_NTXDESC - 1; /* * Initialize the receive descriptor and receive job * descriptor rings. */ for (i = 0; i < STGE_NRXDESC; i++) { ds = &sc->sc_rxsoft[i]; if (ds->ds_mbuf == NULL) { if ((error = stge_add_rxbuf(sc, i)) != 0) { printf("%s: unable to allocate or map rx " "buffer %d, error = %d\n", sc->sc_dev.dv_xname, i, error); /* * XXX Should attempt to run with fewer receive * XXX buffers instead of just failing. */ stge_rxdrain(sc); goto out; } } else STGE_INIT_RXDESC(sc, i); } sc->sc_rxptr = 0; sc->sc_rxdiscard = 0; STGE_RXCHAIN_RESET(sc); /* Set the station address. */ if (sc->sc_stge1023) { CSR_WRITE_2(sc, STGE_StationAddress0, sc->sc_arpcom.ac_enaddr[0] | sc->sc_arpcom.ac_enaddr[1] << 8); CSR_WRITE_2(sc, STGE_StationAddress1, sc->sc_arpcom.ac_enaddr[2] | sc->sc_arpcom.ac_enaddr[3] << 8); CSR_WRITE_2(sc, STGE_StationAddress2, sc->sc_arpcom.ac_enaddr[4] | sc->sc_arpcom.ac_enaddr[5] << 8); } else { for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, STGE_StationAddress0 + i, sc->sc_arpcom.ac_enaddr[i]); } /* * Set the statistics masks. Disable all the RMON stats, * and disable selected stats in the non-RMON stats registers. */ CSR_WRITE_4(sc, STGE_RMONStatisticsMask, 0xffffffff); CSR_WRITE_4(sc, STGE_StatisticsMask, (1U << 1) | (1U << 2) | (1U << 3) | (1U << 4) | (1U << 5) | (1U << 6) | (1U << 7) | (1U << 8) | (1U << 9) | (1U << 10) | (1U << 13) | (1U << 14) | (1U << 15) | (1U << 19) | (1U << 20) | (1U << 21)); /* Program promiscuous mode and multicast filters. */ stge_iff(sc); /* * Give the transmit and receive ring to the chip. */ CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); /* NOTE: 32-bit DMA */ CSR_WRITE_4(sc, STGE_TFDListPtrLo, STGE_CDTXADDR(sc, sc->sc_txdirty)); CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); /* NOTE: 32-bit DMA */ CSR_WRITE_4(sc, STGE_RFDListPtrLo, STGE_CDRXADDR(sc, sc->sc_rxptr)); /* * Initialize the Tx auto-poll period. It's OK to make this number * large (255 is the max, but we use 127) -- we explicitly kick the * transmit engine when there's actually a packet. */ CSR_WRITE_1(sc, STGE_TxDMAPollPeriod, 127); /* ..and the Rx auto-poll period. */ CSR_WRITE_1(sc, STGE_RxDMAPollPeriod, 64); /* Initialize the Tx start threshold. */ CSR_WRITE_2(sc, STGE_TxStartThresh, sc->sc_txthresh); /* RX DMA thresholds, from linux */ CSR_WRITE_1(sc, STGE_RxDMABurstThresh, 0x30); CSR_WRITE_1(sc, STGE_RxDMAUrgentThresh, 0x30); /* Rx early threhold, from Linux */ CSR_WRITE_2(sc, STGE_RxEarlyThresh, 0x7ff); /* Tx DMA thresholds, from Linux */ CSR_WRITE_1(sc, STGE_TxDMABurstThresh, 0x30); CSR_WRITE_1(sc, STGE_TxDMAUrgentThresh, 0x04); /* * Initialize the Rx DMA interrupt control register. We * request an interrupt after every incoming packet, but * defer it for 32us (64 * 512 ns). When the number of * interrupts pending reaches 8, we stop deferring the * interrupt, and signal it immediately. */ CSR_WRITE_4(sc, STGE_RxDMAIntCtrl, RDIC_RxFrameCount(8) | RDIC_RxDMAWaitTime(512)); /* * Initialize the interrupt mask. */ sc->sc_IntEnable = IS_HostError | IS_TxComplete | IS_UpdateStats | IS_TxDMAComplete | IS_RxDMAComplete | IS_RFDListEnd; CSR_WRITE_2(sc, STGE_IntStatus, 0xffff); CSR_WRITE_2(sc, STGE_IntEnable, sc->sc_IntEnable); /* * Configure the DMA engine. * XXX Should auto-tune TxBurstLimit. */ CSR_WRITE_4(sc, STGE_DMACtrl, sc->sc_DMACtrl | DMAC_TxBurstLimit(3)); /* * Send a PAUSE frame when we reach 29,696 bytes in the Rx * FIFO, and send an un-PAUSE frame when we reach 3056 bytes * in the Rx FIFO. */ CSR_WRITE_2(sc, STGE_FlowOnTresh, 29696 / 16); CSR_WRITE_2(sc, STGE_FlowOffThresh, 3056 / 16); /* * Set the maximum frame size. */ #ifdef STGE_JUMBO CSR_WRITE_2(sc, STGE_MaxFrameSize, STGE_JUMBO_FRAMELEN); #else CSR_WRITE_2(sc, STGE_MaxFrameSize, ETHER_MAX_LEN); #endif /* * Initialize MacCtrl -- do it before setting the media, * as setting the media will actually program the register. * * Note: We have to poke the IFS value before poking * anything else. */ sc->sc_MACCtrl = MC_IFSSelect(0); CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl); if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) sc->sc_MACCtrl |= MC_AutoVLANuntagging; sc->sc_MACCtrl |= MC_StatisticsEnable | MC_TxEnable | MC_RxEnable; if (sc->sc_rev >= 6) { /* >= B.2 */ /* Multi-frag frame bug work-around. */ CSR_WRITE_2(sc, STGE_DebugCtrl, CSR_READ_2(sc, STGE_DebugCtrl) | 0x0200); /* Tx Poll Now bug work-around. */ CSR_WRITE_2(sc, STGE_DebugCtrl, CSR_READ_2(sc, STGE_DebugCtrl) | 0x0010); /* Rx Poll Now bug work-around. */ CSR_WRITE_2(sc, STGE_DebugCtrl, CSR_READ_2(sc, STGE_DebugCtrl) | 0x0020); } /* * Set the current media. */ mii_mediachg(&sc->sc_mii); /* * Start the one second MII clock. */ timeout_add_sec(&sc->sc_timeout, 1); /* * ...all done! */ ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); out: if (error) printf("%s: interface not running\n", sc->sc_dev.dv_xname); return (error); } /* * stge_drain: * * Drain the receive queue. */ void stge_rxdrain(struct stge_softc *sc) { struct stge_descsoft *ds; int i; for (i = 0; i < STGE_NRXDESC; i++) { ds = &sc->sc_rxsoft[i]; if (ds->ds_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); ds->ds_mbuf->m_next = NULL; m_freem(ds->ds_mbuf); ds->ds_mbuf = NULL; } } } /* * stge_stop: [ ifnet interface function ] * * Stop transmission on the interface. */ void stge_stop(struct ifnet *ifp, int disable) { struct stge_softc *sc = ifp->if_softc; struct stge_descsoft *ds; int i; /* * Stop the one second clock. */ timeout_del(&sc->sc_timeout); /* * Mark the interface down and cancel the watchdog timer. */ ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); ifp->if_timer = 0; /* Down the MII. */ mii_down(&sc->sc_mii); /* * Disable interrupts. */ CSR_WRITE_2(sc, STGE_IntEnable, 0); /* * Stop receiver, transmitter, and stats update. */ CSR_WRITE_4(sc, STGE_MACCtrl, MC_StatisticsDisable | MC_TxDisable | MC_RxDisable); /* * Stop the transmit and receive DMA. */ stge_dma_wait(sc); CSR_WRITE_4(sc, STGE_TFDListPtrHi, 0); CSR_WRITE_4(sc, STGE_TFDListPtrLo, 0); CSR_WRITE_4(sc, STGE_RFDListPtrHi, 0); CSR_WRITE_4(sc, STGE_RFDListPtrLo, 0); /* * Release any queued transmit buffers. */ for (i = 0; i < STGE_NTXDESC; i++) { ds = &sc->sc_txsoft[i]; if (ds->ds_mbuf != NULL) { bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); m_freem(ds->ds_mbuf); ds->ds_mbuf = NULL; } } if (disable) stge_rxdrain(sc); } static int stge_eeprom_wait(struct stge_softc *sc) { int i; for (i = 0; i < STGE_TIMEOUT; i++) { delay(1000); if ((CSR_READ_2(sc, STGE_EepromCtrl) & EC_EepromBusy) == 0) return (0); } return (1); } /* * stge_read_eeprom: * * Read data from the serial EEPROM. */ void stge_read_eeprom(struct stge_softc *sc, int offset, uint16_t *data) { if (stge_eeprom_wait(sc)) printf("%s: EEPROM failed to come ready\n", sc->sc_dev.dv_xname); CSR_WRITE_2(sc, STGE_EepromCtrl, EC_EepromAddress(offset) | EC_EepromOpcode(EC_OP_RR)); if (stge_eeprom_wait(sc)) printf("%s: EEPROM read timed out\n", sc->sc_dev.dv_xname); *data = CSR_READ_2(sc, STGE_EepromData); } /* * stge_add_rxbuf: * * Add a receive buffer to the indicated descriptor. */ int stge_add_rxbuf(struct stge_softc *sc, int idx) { struct stge_descsoft *ds = &sc->sc_rxsoft[idx]; struct mbuf *m; int error; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return (ENOBUFS); MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); return (ENOBUFS); } m->m_data = m->m_ext.ext_buf + 2; m->m_len = MCLBYTES - 2; if (ds->ds_mbuf != NULL) bus_dmamap_unload(sc->sc_dmat, ds->ds_dmamap); ds->ds_mbuf = m; error = bus_dmamap_load(sc->sc_dmat, ds->ds_dmamap, m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT); if (error) { printf("%s: can't load rx DMA map %d, error = %d\n", sc->sc_dev.dv_xname, idx, error); panic("stge_add_rxbuf"); /* XXX */ } bus_dmamap_sync(sc->sc_dmat, ds->ds_dmamap, 0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); STGE_INIT_RXDESC(sc, idx); return (0); } /* * stge_iff: * * Set up the receive filter. */ void stge_iff(struct stge_softc *sc) { struct arpcom *ac = &sc->sc_arpcom; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct ether_multi *enm; struct ether_multistep step; uint32_t crc; uint32_t mchash[2]; memset(mchash, 0, sizeof(mchash)); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept broadcast packets. * Always accept frames destined to our station address. */ sc->sc_ReceiveMode = RM_ReceiveBroadcast | RM_ReceiveUnicast; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; if (ifp->if_flags & IFF_PROMISC) sc->sc_ReceiveMode |= RM_ReceiveAllFrames; else sc->sc_ReceiveMode |= RM_ReceiveMulticast; } else { /* * Set up the multicast address filter by passing all * multicast addresses through a CRC generator, and then * using the low-order 6 bits as an index into the 64 bit * multicast hash table. The high order bits select the * register, while the rest of the bits select the bit * within the register. */ sc->sc_ReceiveMode |= RM_ReceiveMulticastHash; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN); /* Just want the 6 least significant bits. */ crc &= 0x3f; /* Set the corresponding bit in the hash table. */ mchash[crc >> 5] |= 1 << (crc & 0x1f); ETHER_NEXT_MULTI(step, enm); } } CSR_WRITE_4(sc, STGE_HashTable0, mchash[0]); CSR_WRITE_4(sc, STGE_HashTable1, mchash[1]); CSR_WRITE_2(sc, STGE_ReceiveMode, sc->sc_ReceiveMode); } /* * stge_mii_readreg: [mii interface function] * * Read a PHY register on the MII of the TC9021. */ int stge_mii_readreg(struct device *self, int phy, int reg) { return (mii_bitbang_readreg(self, &stge_mii_bitbang_ops, phy, reg)); } /* * stge_mii_writereg: [mii interface function] * * Write a PHY register on the MII of the TC9021. */ void stge_mii_writereg(struct device *self, int phy, int reg, int val) { mii_bitbang_writereg(self, &stge_mii_bitbang_ops, phy, reg, val); } /* * stge_mii_statchg: [mii interface function] * * Callback from MII layer when media changes. */ void stge_mii_statchg(struct device *self) { struct stge_softc *sc = (struct stge_softc *) self; struct mii_data *mii = &sc->sc_mii; sc->sc_MACCtrl &= ~(MC_DuplexSelect | MC_RxFlowControlEnable | MC_TxFlowControlEnable); if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0) sc->sc_MACCtrl |= MC_DuplexSelect; if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_RXPAUSE) != 0) sc->sc_MACCtrl |= MC_RxFlowControlEnable; if (((mii->mii_media_active & IFM_GMASK) & IFM_ETH_TXPAUSE) != 0) sc->sc_MACCtrl |= MC_TxFlowControlEnable; CSR_WRITE_4(sc, STGE_MACCtrl, sc->sc_MACCtrl); } /* * sste_mii_bitbang_read: [mii bit-bang interface function] * * Read the MII serial port for the MII bit-bang module. */ uint32_t stge_mii_bitbang_read(struct device *self) { struct stge_softc *sc = (void *) self; return (CSR_READ_1(sc, STGE_PhyCtrl)); } /* * stge_mii_bitbang_write: [mii big-bang interface function] * * Write the MII serial port for the MII bit-bang module. */ void stge_mii_bitbang_write(struct device *self, uint32_t val) { struct stge_softc *sc = (void *) self; CSR_WRITE_1(sc, STGE_PhyCtrl, val | sc->sc_PhyCtrl); } /* * stge_mediastatus: [ifmedia interface function] * * Get the current interface media status. */ void stge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) { struct stge_softc *sc = ifp->if_softc; mii_pollstat(&sc->sc_mii); ifmr->ifm_status = sc->sc_mii.mii_media_status; ifmr->ifm_active = sc->sc_mii.mii_media_active; } /* * stge_mediachange: [ifmedia interface function] * * Set hardware to newly-selected media. */ int stge_mediachange(struct ifnet *ifp) { struct stge_softc *sc = ifp->if_softc; if (ifp->if_flags & IFF_UP) mii_mediachg(&sc->sc_mii); return (0); }