/* $OpenBSD: if_tl.c,v 1.44 2008/09/10 14:01:23 blambert Exp $ */ /* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_tl.c,v 1.64 2001/02/06 10:11:48 phk Exp $ */ /* * Texas Instruments ThunderLAN driver for FreeBSD 2.2.6 and 3.x. * Supports many Compaq PCI NICs based on the ThunderLAN ethernet controller, * the National Semiconductor DP83840A physical interface and the * Microchip Technology 24Cxx series serial EEPROM. * * Written using the following four documents: * * Texas Instruments ThunderLAN Programmer's Guide (www.ti.com) * National Semiconductor DP83840A data sheet (www.national.com) * Microchip Technology 24C02C data sheet (www.microchip.com) * Micro Linear ML6692 100BaseTX only PHY data sheet (www.microlinear.com) * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * Some notes about the ThunderLAN: * * The ThunderLAN controller is a single chip containing PCI controller * logic, approximately 3K of on-board SRAM, a LAN controller, and media * independent interface (MII) bus. The MII allows the ThunderLAN chip to * control up to 32 different physical interfaces (PHYs). The ThunderLAN * also has a built-in 10baseT PHY, allowing a single ThunderLAN controller * to act as a complete ethernet interface. * * Other PHYs may be attached to the ThunderLAN; the Compaq 10/100 cards * use a National Semiconductor DP83840A PHY that supports 10 or 100Mb/sec * in full or half duplex. Some of the Compaq Deskpro machines use a * Level 1 LXT970 PHY with the same capabilities. Certain Olicom adapters * use a Micro Linear ML6692 100BaseTX only PHY, which can be used in * concert with the ThunderLAN's internal PHY to provide full 10/100 * support. This is cheaper than using a standalone external PHY for both * 10/100 modes and letting the ThunderLAN's internal PHY go to waste. * A serial EEPROM is also attached to the ThunderLAN chip to provide * power-up default register settings and for storing the adapter's * station address. Although not supported by this driver, the ThunderLAN * chip can also be connected to token ring PHYs. * * The ThunderLAN has a set of registers which can be used to issue * commands, acknowledge interrupts, and to manipulate other internal * registers on its DIO bus. The primary registers can be accessed * using either programmed I/O (inb/outb) or via PCI memory mapping, * depending on how the card is configured during the PCI probing * phase. It is even possible to have both PIO and memory mapped * access turned on at the same time. * * Frame reception and transmission with the ThunderLAN chip is done * using frame 'lists.' A list structure looks more or less like this: * * struct tl_frag { * u_int32_t fragment_address; * u_int32_t fragment_size; * }; * struct tl_list { * u_int32_t forward_pointer; * u_int16_t cstat; * u_int16_t frame_size; * struct tl_frag fragments[10]; * }; * * The forward pointer in the list header can be either a 0 or the address * of another list, which allows several lists to be linked together. Each * list contains up to 10 fragment descriptors. This means the chip allows * ethernet frames to be broken up into up to 10 chunks for transfer to * and from the SRAM. Note that the forward pointer and fragment buffer * addresses are physical memory addresses, not virtual. Note also that * a single ethernet frame can not span lists: if the host wants to * transmit a frame and the frame data is split up over more than 10 * buffers, the frame has to collapsed before it can be transmitted. * * To receive frames, the driver sets up a number of lists and populates * the fragment descriptors, then it sends an RX GO command to the chip. * When a frame is received, the chip will DMA it into the memory regions * specified by the fragment descriptors and then trigger an RX 'end of * frame interrupt' when done. The driver may choose to use only one * fragment per list; this may result is slighltly less efficient use * of memory in exchange for improving performance. * * To transmit frames, the driver again sets up lists and fragment * descriptors, only this time the buffers contain frame data that * is to be DMA'ed into the chip instead of out of it. Once the chip * has transferred the data into its on-board SRAM, it will trigger a * TX 'end of frame' interrupt. It will also generate an 'end of channel' * interrupt when it reaches the end of the list. */ /* * Some notes about this driver: * * The ThunderLAN chip provides a couple of different ways to organize * reception, transmission and interrupt handling. The simplest approach * is to use one list each for transmission and reception. In this mode, * the ThunderLAN will generate two interrupts for every received frame * (one RX EOF and one RX EOC) and two for each transmitted frame (one * TX EOF and one TX EOC). This may make the driver simpler but it hurts * performance to have to handle so many interrupts. * * Initially I wanted to create a circular list of receive buffers so * that the ThunderLAN chip would think there was an infinitely long * receive channel and never deliver an RXEOC interrupt. However this * doesn't work correctly under heavy load: while the manual says the * chip will trigger an RXEOF interrupt each time a frame is copied into * memory, you can't count on the chip waiting around for you to acknowledge * the interrupt before it starts trying to DMA the next frame. The result * is that the chip might traverse the entire circular list and then wrap * around before you have a chance to do anything about it. Consequently, * the receive list is terminated (with a 0 in the forward pointer in the * last element). Each time an RXEOF interrupt arrives, the used list * is shifted to the end of the list. This gives the appearance of an * infinitely large RX chain so long as the driver doesn't fall behind * the chip and allow all of the lists to be filled up. * * If all the lists are filled, the adapter will deliver an RX 'end of * channel' interrupt when it hits the 0 forward pointer at the end of * the chain. The RXEOC handler then cleans out the RX chain and resets * the list head pointer in the ch_parm register and restarts the receiver. * * For frame transmission, it is possible to program the ThunderLAN's * transmit interrupt threshold so that the chip can acknowledge multiple * lists with only a single TX EOF interrupt. This allows the driver to * queue several frames in one shot, and only have to handle a total * two interrupts (one TX EOF and one TX EOC) no matter how many frames * are transmitted. Frame transmission is done directly out of the * mbufs passed to the tl_start() routine via the interface send queue. * The driver simply sets up the fragment descriptors in the transmit * lists to point to the mbuf data regions and sends a TX GO command. * * Note that since the RX and TX lists themselves are always used * only by the driver, the are malloc()ed once at driver initialization * time and never free()ed. * * Also, in order to remain as platform independent as possible, this * driver uses memory mapped register access to manipulate the card * as opposed to programmed I/O. This avoids the use of the inb/outb * (and related) instructions which are specific to the i386 platform. * * Using these techniques, this driver achieves very high performance * by minimizing the amount of interrupts generated during large * transfers and by completely avoiding buffer copies. Frame transfer * to and from the ThunderLAN chip is performed entirely by the chip * itself thereby reducing the load on the host CPU. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #define VTOPHYS(v) vtophys((vaddr_t)(v)) #include #include #include #include #include /* * Default to using PIO register access mode to pacify certain * laptop docking stations with built-in ThunderLAN chips that * don't seem to handle memory mapped mode properly. */ #define TL_USEIOSPACE #include #include const struct tl_products tl_prods[] = { { PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_N100TX, TLPHY_MEDIA_NO_10_T }, { PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_N10T, TLPHY_MEDIA_10_5 }, { PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_IntNF3P, TLPHY_MEDIA_10_2 }, { PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_IntPL100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T }, { PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_DPNet100TX, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T }, { PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_DP4000, TLPHY_MEDIA_10_5|TLPHY_MEDIA_NO_10_T }, { PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_NF3P_BNC, TLPHY_MEDIA_10_2 }, { PCI_VENDOR_COMPAQ, PCI_PRODUCT_COMPAQ_NF3P, TLPHY_MEDIA_10_5 }, { PCI_VENDOR_TI, PCI_PRODUCT_TI_TLAN, 0 }, { 0, 0, 0 } }; int tl_probe(struct device *, void *, void *); void tl_attach(struct device *, struct device *, void *); void tl_wait_up(void *); int tl_intvec_rxeoc(void *, u_int32_t); int tl_intvec_txeoc(void *, u_int32_t); int tl_intvec_txeof(void *, u_int32_t); int tl_intvec_rxeof(void *, u_int32_t); int tl_intvec_adchk(void *, u_int32_t); int tl_intvec_netsts(void *, u_int32_t); int tl_newbuf(struct tl_softc *, struct tl_chain_onefrag *); void tl_stats_update(void *); int tl_encap(struct tl_softc *, struct tl_chain *, struct mbuf *); int tl_intr(void *); void tl_start(struct ifnet *); int tl_ioctl(struct ifnet *, u_long, caddr_t); void tl_init(void *); void tl_stop(struct tl_softc *); void tl_watchdog(struct ifnet *); void tl_shutdown(void *); int tl_ifmedia_upd(struct ifnet *); void tl_ifmedia_sts(struct ifnet *, struct ifmediareq *); u_int8_t tl_eeprom_putbyte(struct tl_softc *, int); u_int8_t tl_eeprom_getbyte(struct tl_softc *, int, u_int8_t *); int tl_read_eeprom(struct tl_softc *, caddr_t, int, int); void tl_mii_sync(struct tl_softc *); void tl_mii_send(struct tl_softc *, u_int32_t, int); int tl_mii_readreg(struct tl_softc *, struct tl_mii_frame *); int tl_mii_writereg(struct tl_softc *, struct tl_mii_frame *); int tl_miibus_readreg(struct device *, int, int); void tl_miibus_writereg(struct device *, int, int, int); void tl_miibus_statchg(struct device *); void tl_setmode(struct tl_softc *, int); #if 0 int tl_calchash(caddr_t); #endif void tl_setmulti(struct tl_softc *); void tl_setfilt(struct tl_softc *, caddr_t, int); void tl_softreset(struct tl_softc *, int); void tl_hardreset(struct device *); int tl_list_rx_init(struct tl_softc *); int tl_list_tx_init(struct tl_softc *); u_int8_t tl_dio_read8(struct tl_softc *, int); u_int16_t tl_dio_read16(struct tl_softc *, int); u_int32_t tl_dio_read32(struct tl_softc *, int); void tl_dio_write8(struct tl_softc *, int, int); void tl_dio_write16(struct tl_softc *, int, int); void tl_dio_write32(struct tl_softc *, int, int); void tl_dio_setbit(struct tl_softc *, int, int); void tl_dio_clrbit(struct tl_softc *, int, int); void tl_dio_setbit16(struct tl_softc *, int, int); void tl_dio_clrbit16(struct tl_softc *, int, int); u_int8_t tl_dio_read8(sc, reg) struct tl_softc *sc; int reg; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); return(CSR_READ_1(sc, TL_DIO_DATA + (reg & 3))); } u_int16_t tl_dio_read16(sc, reg) struct tl_softc *sc; int reg; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); return(CSR_READ_2(sc, TL_DIO_DATA + (reg & 3))); } u_int32_t tl_dio_read32(sc, reg) struct tl_softc *sc; int reg; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); return(CSR_READ_4(sc, TL_DIO_DATA + (reg & 3))); } void tl_dio_write8(sc, reg, val) struct tl_softc *sc; int reg; int val; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), val); return; } void tl_dio_write16(sc, reg, val) struct tl_softc *sc; int reg; int val; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), val); return; } void tl_dio_write32(sc, reg, val) struct tl_softc *sc; int reg; int val; { CSR_WRITE_2(sc, TL_DIO_ADDR, reg); CSR_WRITE_4(sc, TL_DIO_DATA + (reg & 3), val); return; } void tl_dio_setbit(sc, reg, bit) struct tl_softc *sc; int reg; int bit; { u_int8_t f; CSR_WRITE_2(sc, TL_DIO_ADDR, reg); f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); f |= bit; CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); return; } void tl_dio_clrbit(sc, reg, bit) struct tl_softc *sc; int reg; int bit; { u_int8_t f; CSR_WRITE_2(sc, TL_DIO_ADDR, reg); f = CSR_READ_1(sc, TL_DIO_DATA + (reg & 3)); f &= ~bit; CSR_WRITE_1(sc, TL_DIO_DATA + (reg & 3), f); return; } void tl_dio_setbit16(sc, reg, bit) struct tl_softc *sc; int reg; int bit; { u_int16_t f; CSR_WRITE_2(sc, TL_DIO_ADDR, reg); f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); f |= bit; CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); return; } void tl_dio_clrbit16(sc, reg, bit) struct tl_softc *sc; int reg; int bit; { u_int16_t f; CSR_WRITE_2(sc, TL_DIO_ADDR, reg); f = CSR_READ_2(sc, TL_DIO_DATA + (reg & 3)); f &= ~bit; CSR_WRITE_2(sc, TL_DIO_DATA + (reg & 3), f); return; } /* * Send an instruction or address to the EEPROM, check for ACK. */ u_int8_t tl_eeprom_putbyte(sc, byte) struct tl_softc *sc; int byte; { int i, ack = 0; /* * Make sure we're in TX mode. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* * Feed in each bit and strobe the clock. */ for (i = 0x80; i; i >>= 1) { if (byte & i) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_EDATA); } else { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_EDATA); } DELAY(1); tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); DELAY(1); tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); } /* * Turn off TX mode. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); /* * Check for ack. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA; tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); return(ack); } /* * Read a byte of data stored in the EEPROM at address 'addr.' */ u_int8_t tl_eeprom_getbyte(sc, addr, dest) struct tl_softc *sc; int addr; u_int8_t *dest; { int i; u_int8_t byte = 0; tl_dio_write8(sc, TL_NETSIO, 0); EEPROM_START; /* * Send write control code to EEPROM. */ if (tl_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) { printf("%s: failed to send write command, status: %x\n", sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO)); return(1); } /* * Send address of byte we want to read. */ if (tl_eeprom_putbyte(sc, addr)) { printf("%s: failed to send address, status: %x\n", sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO)); return(1); } EEPROM_STOP; EEPROM_START; /* * Send read control code to EEPROM. */ if (tl_eeprom_putbyte(sc, EEPROM_CTL_READ)) { printf("%s: failed to send write command, status: %x\n", sc->sc_dev.dv_xname, tl_dio_read8(sc, TL_NETSIO)); return(1); } /* * Start reading bits from EEPROM. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ETXEN); for (i = 0x80; i; i >>= 1) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_ECLOK); DELAY(1); if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_EDATA) byte |= i; tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_ECLOK); DELAY(1); } EEPROM_STOP; /* * No ACK generated for read, so just return byte. */ *dest = byte; return(0); } /* * Read a sequence of bytes from the EEPROM. */ int tl_read_eeprom(sc, dest, off, cnt) struct tl_softc *sc; caddr_t dest; int off; int cnt; { int err = 0, i; u_int8_t byte = 0; for (i = 0; i < cnt; i++) { err = tl_eeprom_getbyte(sc, off + i, &byte); if (err) break; *(dest + i) = byte; } return(err ? 1 : 0); } void tl_mii_sync(sc) struct tl_softc *sc; { int i; tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); for (i = 0; i < 32; i++) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); } return; } void tl_mii_send(sc, bits, cnt) struct tl_softc *sc; u_int32_t bits; int cnt; { int i; for (i = (0x1 << (cnt - 1)); i; i >>= 1) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); if (bits & i) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MDATA); } else { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MDATA); } tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); } } int tl_mii_readreg(sc, frame) struct tl_softc *sc; struct tl_mii_frame *frame; { int i, ack, s; int minten = 0; s = splnet(); tl_mii_sync(sc); /* * Set up frame for RX. */ frame->mii_stdelim = TL_MII_STARTDELIM; frame->mii_opcode = TL_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Turn off MII interrupt by forcing MINTEN low. */ minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; if (minten) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); } /* * Turn on data xmit. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN); /* * Send command/address info. */ tl_mii_send(sc, frame->mii_stdelim, 2); tl_mii_send(sc, frame->mii_opcode, 2); tl_mii_send(sc, frame->mii_phyaddr, 5); tl_mii_send(sc, frame->mii_regaddr, 5); /* * Turn off xmit. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); /* Idle bit */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); /* Check for ack */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); ack = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA; /* Complete the cycle */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHYs in sync. */ if (ack) { for(i = 0; i < 16; i++) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); } goto fail; } for (i = 0x8000; i; i >>= 1) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); if (!ack) { if (tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MDATA) frame->mii_data |= i; } tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); } fail: tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); /* Reenable interrupts */ if (minten) { tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); } splx(s); if (ack) return(1); return(0); } int tl_mii_writereg(sc, frame) struct tl_softc *sc; struct tl_mii_frame *frame; { int s; int minten; tl_mii_sync(sc); s = splnet(); /* * Set up frame for TX. */ frame->mii_stdelim = TL_MII_STARTDELIM; frame->mii_opcode = TL_MII_WRITEOP; frame->mii_turnaround = TL_MII_TURNAROUND; /* * Turn off MII interrupt by forcing MINTEN low. */ minten = tl_dio_read8(sc, TL_NETSIO) & TL_SIO_MINTEN; if (minten) { tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MINTEN); } /* * Turn on data output. */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MTXEN); tl_mii_send(sc, frame->mii_stdelim, 2); tl_mii_send(sc, frame->mii_opcode, 2); tl_mii_send(sc, frame->mii_phyaddr, 5); tl_mii_send(sc, frame->mii_regaddr, 5); tl_mii_send(sc, frame->mii_turnaround, 2); tl_mii_send(sc, frame->mii_data, 16); tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MCLK); tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MCLK); /* * Turn off xmit. */ tl_dio_clrbit(sc, TL_NETSIO, TL_SIO_MTXEN); /* Reenable interrupts */ if (minten) tl_dio_setbit(sc, TL_NETSIO, TL_SIO_MINTEN); splx(s); return(0); } int tl_miibus_readreg(dev, phy, reg) struct device *dev; int phy, reg; { struct tl_softc *sc = (struct tl_softc *)dev; struct tl_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; tl_mii_readreg(sc, &frame); return(frame.mii_data); } void tl_miibus_writereg(dev, phy, reg, data) struct device *dev; int phy, reg, data; { struct tl_softc *sc = (struct tl_softc *)dev; struct tl_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; tl_mii_writereg(sc, &frame); } void tl_miibus_statchg(dev) struct device *dev; { struct tl_softc *sc = (struct tl_softc *)dev; if ((sc->sc_mii.mii_media_active & IFM_GMASK) == IFM_FDX) { tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } else { tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } } /* * Set modes for bitrate devices. */ void tl_setmode(sc, media) struct tl_softc *sc; int media; { if (IFM_SUBTYPE(media) == IFM_10_5) tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD1); if (IFM_SUBTYPE(media) == IFM_10_T) { tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD1); if ((media & IFM_GMASK) == IFM_FDX) { tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_MTXD3); tl_dio_setbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } else { tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_MTXD3); tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_DUPLEX); } } } #if 0 /* * Calculate the hash of a MAC address for programming the multicast hash * table. This hash is simply the address split into 6-bit chunks * XOR'd, e.g. * byte: 000000|00 1111|1111 22|222222|333333|33 4444|4444 55|555555 * bit: 765432|10 7654|3210 76|543210|765432|10 7654|3210 76|543210 * Bytes 0-2 and 3-5 are symmetrical, so are folded together. Then * the folded 24-bit value is split into 6-bit portions and XOR'd. */ int tl_calchash(addr) caddr_t addr; { int t; t = (addr[0] ^ addr[3]) << 16 | (addr[1] ^ addr[4]) << 8 | (addr[2] ^ addr[5]); return ((t >> 18) ^ (t >> 12) ^ (t >> 6) ^ t) & 0x3f; } #endif /* * The ThunderLAN has a perfect MAC address filter in addition to * the multicast hash filter. The perfect filter can be programmed * with up to four MAC addresses. The first one is always used to * hold the station address, which leaves us free to use the other * three for multicast addresses. */ void tl_setfilt(sc, addr, slot) struct tl_softc *sc; caddr_t addr; int slot; { int i; u_int16_t regaddr; regaddr = TL_AREG0_B5 + (slot * ETHER_ADDR_LEN); for (i = 0; i < ETHER_ADDR_LEN; i++) tl_dio_write8(sc, regaddr + i, *(addr + i)); return; } /* * XXX In FreeBSD 3.0, multicast addresses are managed using a doubly * linked list. This is fine, except addresses are added from the head * end of the list. We want to arrange for 224.0.0.1 (the "all hosts") * group to always be in the perfect filter, but as more groups are added, * the 224.0.0.1 entry (which is always added first) gets pushed down * the list and ends up at the tail. So after 3 or 4 multicast groups * are added, the all-hosts entry gets pushed out of the perfect filter * and into the hash table. * * Because the multicast list is a doubly-linked list as opposed to a * circular queue, we don't have the ability to just grab the tail of * the list and traverse it backwards. Instead, we have to traverse * the list once to find the tail, then traverse it again backwards to * update the multicast filter. */ void tl_setmulti(sc) struct tl_softc *sc; { struct ifnet *ifp; u_int32_t hashes[2] = { 0, 0 }; int h; struct arpcom *ac = &sc->arpcom; struct ether_multistep step; struct ether_multi *enm; ifp = &sc->arpcom.ac_if; tl_dio_write32(sc, TL_HASH1, 0); tl_dio_write32(sc, TL_HASH2, 0); ifp->if_flags &= ~IFF_ALLMULTI; #if 0 ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) { h = tl_calchash(enm->enm_addrlo); hashes[h/32] |= (1 << (h % 32)); } else { hashes[0] = hashes[1] = 0xffffffff; ifp->if_flags |= IFF_ALLMULTI; break; } ETHER_NEXT_MULTI(step, enm); } #else ETHER_FIRST_MULTI(step, ac, enm); h = 0; while (enm != NULL) { h++; ETHER_NEXT_MULTI(step, enm); } if (h) { hashes[0] = hashes[1] = 0xffffffff; ifp->if_flags |= IFF_ALLMULTI; } else { hashes[0] = hashes[1] = 0x00000000; } #endif tl_dio_write32(sc, TL_HASH1, hashes[0]); tl_dio_write32(sc, TL_HASH2, hashes[1]); return; } /* * This routine is recommended by the ThunderLAN manual to insure that * the internal PHY is powered up correctly. It also recommends a one * second pause at the end to 'wait for the clocks to start' but in my * experience this isn't necessary. */ void tl_hardreset(dev) struct device *dev; { struct tl_softc *sc = (struct tl_softc *)dev; int i; u_int16_t flags; flags = BMCR_LOOP|BMCR_ISO|BMCR_PDOWN; for (i =0 ; i < MII_NPHY; i++) tl_miibus_writereg(dev, i, MII_BMCR, flags); tl_miibus_writereg(dev, 31, MII_BMCR, BMCR_ISO); tl_mii_sync(sc); while(tl_miibus_readreg(dev, 31, MII_BMCR) & BMCR_RESET); DELAY(5000); return; } void tl_softreset(sc, internal) struct tl_softc *sc; int internal; { u_int32_t cmd, dummy, i; /* Assert the adapter reset bit. */ CMD_SET(sc, TL_CMD_ADRST); /* Turn off interrupts */ CMD_SET(sc, TL_CMD_INTSOFF); /* First, clear the stats registers. */ for (i = 0; i < 5; i++) dummy = tl_dio_read32(sc, TL_TXGOODFRAMES); /* Clear Areg and Hash registers */ for (i = 0; i < 8; i++) tl_dio_write32(sc, TL_AREG0_B5, 0x00000000); /* * Set up Netconfig register. Enable one channel and * one fragment mode. */ tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_ONECHAN|TL_CFG_ONEFRAG); if (internal && !sc->tl_bitrate) { tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); } else { tl_dio_clrbit16(sc, TL_NETCONFIG, TL_CFG_PHYEN); } /* Handle cards with bitrate devices. */ if (sc->tl_bitrate) tl_dio_setbit16(sc, TL_NETCONFIG, TL_CFG_BITRATE); /* * Load adapter irq pacing timer and tx threshold. * We make the transmit threshold 1 initially but we may * change that later. */ cmd = CSR_READ_4(sc, TL_HOSTCMD); cmd |= TL_CMD_NES; cmd &= ~(TL_CMD_RT|TL_CMD_EOC|TL_CMD_ACK_MASK|TL_CMD_CHSEL_MASK); CMD_PUT(sc, cmd | (TL_CMD_LDTHR | TX_THR)); CMD_PUT(sc, cmd | (TL_CMD_LDTMR | 0x00000003)); /* Unreset the MII */ tl_dio_setbit(sc, TL_NETSIO, TL_SIO_NMRST); /* Take the adapter out of reset */ tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NRESET|TL_CMD_NWRAP); /* Wait for things to settle down a little. */ DELAY(500); return; } /* * Initialize the transmit lists. */ int tl_list_tx_init(sc) struct tl_softc *sc; { struct tl_chain_data *cd; struct tl_list_data *ld; int i; cd = &sc->tl_cdata; ld = sc->tl_ldata; for (i = 0; i < TL_TX_LIST_CNT; i++) { cd->tl_tx_chain[i].tl_ptr = &ld->tl_tx_list[i]; if (i == (TL_TX_LIST_CNT - 1)) cd->tl_tx_chain[i].tl_next = NULL; else cd->tl_tx_chain[i].tl_next = &cd->tl_tx_chain[i + 1]; } cd->tl_tx_free = &cd->tl_tx_chain[0]; cd->tl_tx_tail = cd->tl_tx_head = NULL; sc->tl_txeoc = 1; return(0); } /* * Initialize the RX lists and allocate mbufs for them. */ int tl_list_rx_init(sc) struct tl_softc *sc; { struct tl_chain_data *cd; struct tl_list_data *ld; int i; cd = &sc->tl_cdata; ld = sc->tl_ldata; for (i = 0; i < TL_RX_LIST_CNT; i++) { cd->tl_rx_chain[i].tl_ptr = (struct tl_list_onefrag *)&ld->tl_rx_list[i]; if (tl_newbuf(sc, &cd->tl_rx_chain[i]) == ENOBUFS) return(ENOBUFS); if (i == (TL_RX_LIST_CNT - 1)) { cd->tl_rx_chain[i].tl_next = NULL; ld->tl_rx_list[i].tlist_fptr = 0; } else { cd->tl_rx_chain[i].tl_next = &cd->tl_rx_chain[i + 1]; ld->tl_rx_list[i].tlist_fptr = VTOPHYS(&ld->tl_rx_list[i + 1]); } } cd->tl_rx_head = &cd->tl_rx_chain[0]; cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1]; return(0); } int tl_newbuf(sc, c) struct tl_softc *sc; struct tl_chain_onefrag *c; { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { return(ENOBUFS); } MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(ENOBUFS); } #ifdef __alpha__ m_new->m_data += 2; #endif c->tl_mbuf = m_new; c->tl_next = NULL; c->tl_ptr->tlist_frsize = MCLBYTES; c->tl_ptr->tlist_fptr = 0; c->tl_ptr->tl_frag.tlist_dadr = VTOPHYS(mtod(m_new, caddr_t)); c->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; c->tl_ptr->tlist_cstat = TL_CSTAT_READY; return(0); } /* * Interrupt handler for RX 'end of frame' condition (EOF). This * tells us that a full ethernet frame has been captured and we need * to handle it. * * Reception is done using 'lists' which consist of a header and a * series of 10 data count/data address pairs that point to buffers. * Initially you're supposed to create a list, populate it with pointers * to buffers, then load the physical address of the list into the * ch_parm register. The adapter is then supposed to DMA the received * frame into the buffers for you. * * To make things as fast as possible, we have the chip DMA directly * into mbufs. This saves us from having to do a buffer copy: we can * just hand the mbufs directly to ether_input(). Once the frame has * been sent on its way, the 'list' structure is assigned a new buffer * and moved to the end of the RX chain. As long we we stay ahead of * the chip, it will always think it has an endless receive channel. * * If we happen to fall behind and the chip manages to fill up all of * the buffers, it will generate an end of channel interrupt and wait * for us to empty the chain and restart the receiver. */ int tl_intvec_rxeof(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; int r = 0, total_len = 0; struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct tl_chain_onefrag *cur_rx; sc = xsc; ifp = &sc->arpcom.ac_if; while(sc->tl_cdata.tl_rx_head != NULL) { cur_rx = sc->tl_cdata.tl_rx_head; if (!(cur_rx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP)) break; r++; sc->tl_cdata.tl_rx_head = cur_rx->tl_next; m = cur_rx->tl_mbuf; total_len = cur_rx->tl_ptr->tlist_frsize; if (tl_newbuf(sc, cur_rx) == ENOBUFS) { ifp->if_ierrors++; cur_rx->tl_ptr->tlist_frsize = MCLBYTES; cur_rx->tl_ptr->tlist_cstat = TL_CSTAT_READY; cur_rx->tl_ptr->tl_frag.tlist_dcnt = MCLBYTES; continue; } sc->tl_cdata.tl_rx_tail->tl_ptr->tlist_fptr = VTOPHYS(cur_rx->tl_ptr); sc->tl_cdata.tl_rx_tail->tl_next = cur_rx; sc->tl_cdata.tl_rx_tail = cur_rx; eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; /* * Note: when the ThunderLAN chip is in 'capture all * frames' mode, it will receive its own transmissions. * We drop don't need to process our own transmissions, * so we drop them here and continue. */ /*if (ifp->if_flags & IFF_PROMISC && */ if (!bcmp(eh->ether_shost, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN)) { m_freem(m); continue; } m->m_pkthdr.len = m->m_len = total_len; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. If we don't * want the packet, just forget it. We leave the mbuf in place * since it can be used again later. */ if (ifp->if_bpf) { bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_IN); } #endif /* pass it on. */ ether_input_mbuf(ifp, m); } return(r); } /* * The RX-EOC condition hits when the ch_parm address hasn't been * initialized or the adapter reached a list with a forward pointer * of 0 (which indicates the end of the chain). In our case, this means * the card has hit the end of the receive buffer chain and we need to * empty out the buffers and shift the pointer back to the beginning again. */ int tl_intvec_rxeoc(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; int r; struct tl_chain_data *cd; sc = xsc; cd = &sc->tl_cdata; /* Flush out the receive queue and ack RXEOF interrupts. */ r = tl_intvec_rxeof(xsc, type); CMD_PUT(sc, TL_CMD_ACK | r | (type & ~(0x00100000))); r = 1; cd->tl_rx_head = &cd->tl_rx_chain[0]; cd->tl_rx_tail = &cd->tl_rx_chain[TL_RX_LIST_CNT - 1]; CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(sc->tl_cdata.tl_rx_head->tl_ptr)); r |= (TL_CMD_GO|TL_CMD_RT); return(r); } int tl_intvec_txeof(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; int r = 0; struct tl_chain *cur_tx; sc = xsc; /* * Go through our tx list and free mbufs for those * frames that have been sent. */ while (sc->tl_cdata.tl_tx_head != NULL) { cur_tx = sc->tl_cdata.tl_tx_head; if (!(cur_tx->tl_ptr->tlist_cstat & TL_CSTAT_FRAMECMP)) break; sc->tl_cdata.tl_tx_head = cur_tx->tl_next; r++; m_freem(cur_tx->tl_mbuf); cur_tx->tl_mbuf = NULL; cur_tx->tl_next = sc->tl_cdata.tl_tx_free; sc->tl_cdata.tl_tx_free = cur_tx; if (!cur_tx->tl_ptr->tlist_fptr) break; } return(r); } /* * The transmit end of channel interrupt. The adapter triggers this * interrupt to tell us it hit the end of the current transmit list. * * A note about this: it's possible for a condition to arise where * tl_start() may try to send frames between TXEOF and TXEOC interrupts. * You have to avoid this since the chip expects things to go in a * particular order: transmit, acknowledge TXEOF, acknowledge TXEOC. * When the TXEOF handler is called, it will free all of the transmitted * frames and reset the tx_head pointer to NULL. However, a TXEOC * interrupt should be received and acknowledged before any more frames * are queued for transmission. If tl_statrt() is called after TXEOF * resets the tx_head pointer but _before_ the TXEOC interrupt arrives, * it could attempt to issue a transmit command prematurely. * * To guard against this, tl_start() will only issue transmit commands * if the tl_txeoc flag is set, and only the TXEOC interrupt handler * can set this flag once tl_start() has cleared it. */ int tl_intvec_txeoc(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; struct ifnet *ifp; u_int32_t cmd; sc = xsc; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; if (sc->tl_cdata.tl_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->tl_cdata.tl_tx_tail = NULL; sc->tl_txeoc = 1; } else { sc->tl_txeoc = 0; /* First we have to ack the EOC interrupt. */ CMD_PUT(sc, TL_CMD_ACK | 0x00000001 | type); /* Then load the address of the next TX list. */ CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(sc->tl_cdata.tl_tx_head->tl_ptr)); /* Restart TX channel. */ cmd = CSR_READ_4(sc, TL_HOSTCMD); cmd &= ~TL_CMD_RT; cmd |= TL_CMD_GO|TL_CMD_INTSON; CMD_PUT(sc, cmd); return(0); } return(1); } int tl_intvec_adchk(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; sc = xsc; if (type) printf("%s: adapter check: %x\n", sc->sc_dev.dv_xname, (unsigned int)CSR_READ_4(sc, TL_CH_PARM)); tl_softreset(sc, 1); tl_stop(sc); tl_init(sc); CMD_SET(sc, TL_CMD_INTSON); return(0); } int tl_intvec_netsts(xsc, type) void *xsc; u_int32_t type; { struct tl_softc *sc; u_int16_t netsts; sc = xsc; netsts = tl_dio_read16(sc, TL_NETSTS); tl_dio_write16(sc, TL_NETSTS, netsts); printf("%s: network status: %x\n", sc->sc_dev.dv_xname, netsts); return(1); } int tl_intr(xsc) void *xsc; { struct tl_softc *sc; struct ifnet *ifp; int r = 0; u_int32_t type = 0; u_int16_t ints = 0; u_int8_t ivec = 0; sc = xsc; /* Disable interrupts */ ints = CSR_READ_2(sc, TL_HOST_INT); CSR_WRITE_2(sc, TL_HOST_INT, ints); type = (ints << 16) & 0xFFFF0000; ivec = (ints & TL_VEC_MASK) >> 5; ints = (ints & TL_INT_MASK) >> 2; ifp = &sc->arpcom.ac_if; switch(ints) { case (TL_INTR_INVALID): /* Re-enable interrupts but don't ack this one. */ CMD_PUT(sc, type); r = 0; break; case (TL_INTR_TXEOF): r = tl_intvec_txeof((void *)sc, type); break; case (TL_INTR_TXEOC): r = tl_intvec_txeoc((void *)sc, type); break; case (TL_INTR_STATOFLOW): tl_stats_update(sc); r = 1; break; case (TL_INTR_RXEOF): r = tl_intvec_rxeof((void *)sc, type); break; case (TL_INTR_DUMMY): printf("%s: got a dummy interrupt\n", sc->sc_dev.dv_xname); r = 1; break; case (TL_INTR_ADCHK): if (ivec) r = tl_intvec_adchk((void *)sc, type); else r = tl_intvec_netsts((void *)sc, type); break; case (TL_INTR_RXEOC): r = tl_intvec_rxeoc((void *)sc, type); break; default: printf("%s: bogus interrupt type\n", sc->sc_dev.dv_xname); break; } /* Re-enable interrupts */ if (r) { CMD_PUT(sc, TL_CMD_ACK | r | type); } if (!IFQ_IS_EMPTY(&ifp->if_snd)) tl_start(ifp); return r; } void tl_stats_update(xsc) void *xsc; { struct tl_softc *sc; struct ifnet *ifp; struct tl_stats tl_stats; u_int32_t *p; int s; s = splnet(); bzero((char *)&tl_stats, sizeof(struct tl_stats)); sc = xsc; ifp = &sc->arpcom.ac_if; p = (u_int32_t *)&tl_stats; CSR_WRITE_2(sc, TL_DIO_ADDR, TL_TXGOODFRAMES|TL_DIO_ADDR_INC); *p++ = CSR_READ_4(sc, TL_DIO_DATA); *p++ = CSR_READ_4(sc, TL_DIO_DATA); *p++ = CSR_READ_4(sc, TL_DIO_DATA); *p++ = CSR_READ_4(sc, TL_DIO_DATA); *p++ = CSR_READ_4(sc, TL_DIO_DATA); ifp->if_opackets += tl_tx_goodframes(tl_stats); ifp->if_collisions += tl_stats.tl_tx_single_collision + tl_stats.tl_tx_multi_collision; ifp->if_ipackets += tl_rx_goodframes(tl_stats); ifp->if_ierrors += tl_stats.tl_crc_errors + tl_stats.tl_code_errors + tl_rx_overrun(tl_stats); ifp->if_oerrors += tl_tx_underrun(tl_stats); if (tl_tx_underrun(tl_stats)) { u_int8_t tx_thresh; tx_thresh = tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_TXTHRESH; if (tx_thresh != TL_AC_TXTHRESH_WHOLEPKT) { tx_thresh >>= 4; tx_thresh++; tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH); tl_dio_setbit(sc, TL_ACOMMIT, tx_thresh << 4); } } timeout_add_sec(&sc->tl_stats_tmo, 1); if (!sc->tl_bitrate) mii_tick(&sc->sc_mii); splx(s); return; } /* * Encapsulate an mbuf chain in a list by coupling the mbuf data * pointers to the fragment pointers. */ int tl_encap(sc, c, m_head) struct tl_softc *sc; struct tl_chain *c; struct mbuf *m_head; { int frag = 0; struct tl_frag *f = NULL; int total_len; struct mbuf *m; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; total_len = 0; for (m = m_head, frag = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (frag == TL_MAXFRAGS) break; total_len+= m->m_len; c->tl_ptr->tl_frag[frag].tlist_dadr = VTOPHYS(mtod(m, vaddr_t)); c->tl_ptr->tl_frag[frag].tlist_dcnt = m->m_len; frag++; } } /* * Handle special cases. * Special case #1: we used up all 10 fragments, but * we have more mbufs left in the chain. Copy the * data into an mbuf cluster. Note that we don't * bother clearing the values in the other fragment * pointers/counters; it wouldn't gain us anything, * and would waste cycles. */ if (m != NULL) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { return(1); } if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; f = &c->tl_ptr->tl_frag[0]; f->tlist_dadr = VTOPHYS(mtod(m_new, caddr_t)); f->tlist_dcnt = total_len = m_new->m_len; frag = 1; } /* * Special case #2: the frame is smaller than the minimum * frame size. We have to pad it to make the chip happy. */ if (total_len < TL_MIN_FRAMELEN) { f = &c->tl_ptr->tl_frag[frag]; f->tlist_dcnt = TL_MIN_FRAMELEN - total_len; f->tlist_dadr = VTOPHYS(&sc->tl_ldata->tl_pad); total_len += f->tlist_dcnt; frag++; } c->tl_mbuf = m_head; c->tl_ptr->tl_frag[frag - 1].tlist_dcnt |= TL_LAST_FRAG; c->tl_ptr->tlist_frsize = total_len; c->tl_ptr->tlist_cstat = TL_CSTAT_READY; c->tl_ptr->tlist_fptr = 0; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void tl_start(ifp) struct ifnet *ifp; { struct tl_softc *sc; struct mbuf *m_head = NULL; u_int32_t cmd; struct tl_chain *prev = NULL, *cur_tx = NULL, *start_tx; sc = ifp->if_softc; /* * Check for an available queue slot. If there are none, * punt. */ if (sc->tl_cdata.tl_tx_free == NULL) { ifp->if_flags |= IFF_OACTIVE; return; } start_tx = sc->tl_cdata.tl_tx_free; while(sc->tl_cdata.tl_tx_free != NULL) { IFQ_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a chain member off the free list. */ cur_tx = sc->tl_cdata.tl_tx_free; sc->tl_cdata.tl_tx_free = cur_tx->tl_next; cur_tx->tl_next = NULL; /* Pack the data into the list. */ tl_encap(sc, cur_tx, m_head); /* Chain it together */ if (prev != NULL) { prev->tl_next = cur_tx; prev->tl_ptr->tlist_fptr = VTOPHYS(cur_tx->tl_ptr); } prev = cur_tx; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, cur_tx->tl_mbuf, BPF_DIRECTION_OUT); #endif } /* * If there are no packets queued, bail. */ if (cur_tx == NULL) return; /* * That's all we can stands, we can't stands no more. * If there are no other transfers pending, then issue the * TX GO command to the adapter to start things moving. * Otherwise, just leave the data in the queue and let * the EOF/EOC interrupt handler send. */ if (sc->tl_cdata.tl_tx_head == NULL) { sc->tl_cdata.tl_tx_head = start_tx; sc->tl_cdata.tl_tx_tail = cur_tx; if (sc->tl_txeoc) { sc->tl_txeoc = 0; CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(start_tx->tl_ptr)); cmd = CSR_READ_4(sc, TL_HOSTCMD); cmd &= ~TL_CMD_RT; cmd |= TL_CMD_GO|TL_CMD_INTSON; CMD_PUT(sc, cmd); } } else { sc->tl_cdata.tl_tx_tail->tl_next = start_tx; sc->tl_cdata.tl_tx_tail = cur_tx; } /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 10; return; } void tl_init(xsc) void *xsc; { struct tl_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s; s = splnet(); /* * Cancel pending I/O. */ tl_stop(sc); /* Initialize TX FIFO threshold */ tl_dio_clrbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH); tl_dio_setbit(sc, TL_ACOMMIT, TL_AC_TXTHRESH_16LONG); /* Set PCI burst size */ tl_dio_write8(sc, TL_BSIZEREG, TL_RXBURST_16LONG|TL_TXBURST_16LONG); /* * Set 'capture all frames' bit for promiscuous mode. */ if (ifp->if_flags & IFF_PROMISC) tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF); else tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF); /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_NOBRX); else tl_dio_setbit(sc, TL_NETCMD, TL_CMD_NOBRX); tl_dio_write16(sc, TL_MAXRX, MCLBYTES); /* Init our MAC address */ tl_setfilt(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0); /* Init multicast filter, if needed. */ tl_setmulti(sc); /* Init circular RX list. */ if (tl_list_rx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no memory for rx buffers\n", sc->sc_dev.dv_xname); tl_stop(sc); splx(s); return; } /* Init TX pointers. */ tl_list_tx_init(sc); /* Enable PCI interrupts. */ CMD_SET(sc, TL_CMD_INTSON); /* Load the address of the rx list */ CMD_SET(sc, TL_CMD_RT); CSR_WRITE_4(sc, TL_CH_PARM, VTOPHYS(&sc->tl_ldata->tl_rx_list[0])); if (!sc->tl_bitrate) { mii_mediachg(&sc->sc_mii); } else { tl_ifmedia_upd(ifp); } /* Send the RX go command */ CMD_SET(sc, TL_CMD_GO|TL_CMD_NES|TL_CMD_RT); splx(s); /* Start the stats update counter */ timeout_set(&sc->tl_stats_tmo, tl_stats_update, sc); timeout_add_sec(&sc->tl_stats_tmo, 1); timeout_set(&sc->tl_wait_tmo, tl_wait_up, sc); timeout_add_sec(&sc->tl_wait_tmo, 2); return; } /* * Set media options. */ int tl_ifmedia_upd(ifp) struct ifnet *ifp; { struct tl_softc *sc = ifp->if_softc; if (sc->tl_bitrate) tl_setmode(sc, sc->ifmedia.ifm_media); else mii_mediachg(&sc->sc_mii); return(0); } /* * Report current media status. */ void tl_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct tl_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = &sc->sc_mii; ifmr->ifm_active = IFM_ETHER; if (sc->tl_bitrate) { if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD1) ifmr->ifm_active = IFM_ETHER|IFM_10_5; else ifmr->ifm_active = IFM_ETHER|IFM_10_T; if (tl_dio_read8(sc, TL_ACOMMIT) & TL_AC_MTXD3) ifmr->ifm_active |= IFM_HDX; else ifmr->ifm_active |= IFM_FDX; return; } else { mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } return; } int tl_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct tl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: tl_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: tl_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING && ifp->if_flags & IFF_PROMISC && !(sc->tl_if_flags & IFF_PROMISC)) { tl_dio_setbit(sc, TL_NETCMD, TL_CMD_CAF); tl_setmulti(sc); } else if (ifp->if_flags & IFF_RUNNING && !(ifp->if_flags & IFF_PROMISC) && sc->tl_if_flags & IFF_PROMISC) { tl_dio_clrbit(sc, TL_NETCMD, TL_CMD_CAF); tl_setmulti(sc); } else tl_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) { tl_stop(sc); } } sc->tl_if_flags = ifp->if_flags; error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ tl_setmulti(sc); error = 0; } break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: if (sc->tl_bitrate) error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); else error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); break; default: error = ENOTTY; break; } splx(s); return(error); } void tl_watchdog(ifp) struct ifnet *ifp; { struct tl_softc *sc; sc = ifp->if_softc; printf("%s: device timeout\n", sc->sc_dev.dv_xname); ifp->if_oerrors++; tl_softreset(sc, 1); tl_init(sc); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void tl_stop(sc) struct tl_softc *sc; { int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* Stop the stats updater. */ timeout_del(&sc->tl_stats_tmo); timeout_del(&sc->tl_wait_tmo); /* Stop the transmitter */ CMD_CLR(sc, TL_CMD_RT); CMD_SET(sc, TL_CMD_STOP); CSR_WRITE_4(sc, TL_CH_PARM, 0); /* Stop the receiver */ CMD_SET(sc, TL_CMD_RT); CMD_SET(sc, TL_CMD_STOP); CSR_WRITE_4(sc, TL_CH_PARM, 0); /* * Disable host interrupts. */ CMD_SET(sc, TL_CMD_INTSOFF); /* * Clear list pointer. */ CSR_WRITE_4(sc, TL_CH_PARM, 0); /* * Free the RX lists. */ for (i = 0; i < TL_RX_LIST_CNT; i++) { if (sc->tl_cdata.tl_rx_chain[i].tl_mbuf != NULL) { m_freem(sc->tl_cdata.tl_rx_chain[i].tl_mbuf); sc->tl_cdata.tl_rx_chain[i].tl_mbuf = NULL; } } bzero((char *)&sc->tl_ldata->tl_rx_list, sizeof(sc->tl_ldata->tl_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < TL_TX_LIST_CNT; i++) { if (sc->tl_cdata.tl_tx_chain[i].tl_mbuf != NULL) { m_freem(sc->tl_cdata.tl_tx_chain[i].tl_mbuf); sc->tl_cdata.tl_tx_chain[i].tl_mbuf = NULL; } } bzero((char *)&sc->tl_ldata->tl_tx_list, sizeof(sc->tl_ldata->tl_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } int tl_probe(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *) aux; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI) { if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_TI_TLAN) return 1; return 0; } if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ) { switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_COMPAQ_N100TX: case PCI_PRODUCT_COMPAQ_N10T: case PCI_PRODUCT_COMPAQ_IntNF3P: case PCI_PRODUCT_COMPAQ_DPNet100TX: case PCI_PRODUCT_COMPAQ_IntPL100TX: case PCI_PRODUCT_COMPAQ_DP4000: case PCI_PRODUCT_COMPAQ_N10T2: case PCI_PRODUCT_COMPAQ_N10_TX_UTP: case PCI_PRODUCT_COMPAQ_NF3P: case PCI_PRODUCT_COMPAQ_NF3P_BNC: return 1; } return 0; } if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) { switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_OLICOM_OC2183: case PCI_PRODUCT_OLICOM_OC2325: case PCI_PRODUCT_OLICOM_OC2326: return 1; } return 0; } return 0; } void tl_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct tl_softc *sc = (struct tl_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; struct ifnet *ifp = &sc->arpcom.ac_if; bus_size_t iosize; u_int32_t command; int i, rseg; bus_dma_segment_t seg; bus_dmamap_t dmamap; caddr_t kva; /* * Map control/status registers. */ #ifdef TL_USEIOSPACE if (pci_mapreg_map(pa, TL_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)) { if (pci_mapreg_map(pa, TL_PCI_LOMEM, PCI_MAPREG_TYPE_IO, 0, &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)) { printf(": failed to map i/o space\n"); return; } } #else if (pci_mapreg_map(pa, TL_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)){ if (pci_mapreg_map(pa, TL_PCI_LOIO, PCI_MAPREG_TYPE_MEM, 0, &sc->tl_btag, &sc->tl_bhandle, NULL, &iosize, 0)){ printf(": failed to map memory space\n"); return; } } #endif /* * Manual wants the PCI latency timer jacked up to 0xff */ command = pci_conf_read(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER); command |= 0x0000ff00; pci_conf_write(pa->pa_pc, pa->pa_tag, TL_PCI_LATENCY_TIMER, command); /* * Allocate our interrupt. */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, tl_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": could not establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize); return; } printf(": %s", intrstr); sc->sc_dmat = pa->pa_dmat; if (bus_dmamem_alloc(sc->sc_dmat, sizeof(struct tl_list_data), PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc list\n", sc->sc_dev.dv_xname); bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize); return; } if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, sizeof(struct tl_list_data), &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map dma buffers (%d bytes)\n", sc->sc_dev.dv_xname, sizeof(struct tl_list_data)); bus_dmamem_free(sc->sc_dmat, &seg, rseg); return; } if (bus_dmamap_create(sc->sc_dmat, sizeof(struct tl_list_data), 1, sizeof(struct tl_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) { printf("%s: can't create dma map\n", sc->sc_dev.dv_xname); bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(struct tl_list_data)); bus_dmamem_free(sc->sc_dmat, &seg, rseg); bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize); return; } if (bus_dmamap_load(sc->sc_dmat, dmamap, kva, sizeof(struct tl_list_data), NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc->sc_dev.dv_xname); bus_dmamap_destroy(sc->sc_dmat, dmamap); bus_dmamem_unmap(sc->sc_dmat, kva, sizeof(struct tl_list_data)); bus_dmamem_free(sc->sc_dmat, &seg, rseg); bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize); return; } sc->tl_ldata = (struct tl_list_data *)kva; bzero(sc->tl_ldata, sizeof(struct tl_list_data)); for (sc->tl_product = tl_prods; sc->tl_product->tp_vend; sc->tl_product++) { if (sc->tl_product->tp_vend == PCI_VENDOR(pa->pa_id) && sc->tl_product->tp_prod == PCI_PRODUCT(pa->pa_id)) break; } if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_COMPAQ || PCI_VENDOR(pa->pa_id) == PCI_VENDOR_TI) sc->tl_eeaddr = TL_EEPROM_EADDR; if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) sc->tl_eeaddr = TL_EEPROM_EADDR_OC; /* * Reset adapter. */ tl_softreset(sc, 1); tl_hardreset(self); DELAY(1000000); tl_softreset(sc, 1); /* * Get station address from the EEPROM. */ if (tl_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, sc->tl_eeaddr, ETHER_ADDR_LEN)) { printf("\n%s: failed to read station address\n", sc->sc_dev.dv_xname); bus_space_unmap(sc->tl_btag, sc->tl_bhandle, iosize); return; } if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_OLICOM) { for (i = 0; i < ETHER_ADDR_LEN; i += 2) { u_int16_t *p; p = (u_int16_t *)&sc->arpcom.ac_enaddr[i]; *p = ntohs(*p); } } printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = tl_ioctl; ifp->if_start = tl_start; ifp->if_watchdog = tl_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, TL_TX_LIST_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); /* * Reset adapter (again). */ tl_softreset(sc, 1); tl_hardreset(self); DELAY(1000000); tl_softreset(sc, 1); /* * Do MII setup. If no PHYs are found, then this is a * bitrate ThunderLAN chip that only supports 10baseT * and AUI/BNC. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = tl_miibus_readreg; sc->sc_mii.mii_writereg = tl_miibus_writereg; sc->sc_mii.mii_statchg = tl_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, tl_ifmedia_upd, tl_ifmedia_sts); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { struct ifmedia *ifm; sc->tl_bitrate = 1; ifmedia_init(&sc->ifmedia, 0, tl_ifmedia_upd, tl_ifmedia_sts); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL); ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_10_T); /* Reset again, this time setting bitrate mode. */ tl_softreset(sc, 1); ifm = &sc->ifmedia; ifm->ifm_media = ifm->ifm_cur->ifm_media; tl_ifmedia_upd(ifp); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Attach us everywhere. */ if_attach(ifp); ether_ifattach(ifp); shutdownhook_establish(tl_shutdown, sc); } void tl_wait_up(xsc) void *xsc; { struct tl_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; } void tl_shutdown(xsc) void *xsc; { struct tl_softc *sc = xsc; tl_stop(sc); } struct cfattach tl_ca = { sizeof(struct tl_softc), tl_probe, tl_attach }; struct cfdriver tl_cd = { 0, "tl", DV_IFNET };