/* $OpenBSD: if_txp.c,v 1.51 2001/08/17 00:01:46 jason Exp $ */ /* * Copyright (c) 2001 * Jason L. Wright , Theo de Raadt, and * Aaron Campbell . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Jason L. Wright, * Theo de Raadt and Aaron Campbell. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * Driver for 3c990 (Typhoon) Ethernet ASIC */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #if NVLAN > 0 #include #endif #include /* for vtophys */ #include #include #include #include #include #include #include #include #include int txp_probe __P((struct device *, void *, void *)); void txp_attach __P((struct device *, struct device *, void *)); int txp_intr __P((void *)); void txp_tick __P((void *)); void txp_shutdown __P((void *)); int txp_ioctl __P((struct ifnet *, u_long, caddr_t)); void txp_start __P((struct ifnet *)); void txp_stop __P((struct txp_softc *)); void txp_init __P((struct txp_softc *)); void txp_watchdog __P((struct ifnet *)); int txp_chip_init __P((struct txp_softc *)); int txp_reset_adapter __P((struct txp_softc *)); int txp_download_fw __P((struct txp_softc *)); int txp_download_fw_wait __P((struct txp_softc *)); int txp_download_fw_section __P((struct txp_softc *, struct txp_fw_section_header *, int)); int txp_alloc_rings __P((struct txp_softc *)); void txp_dma_free __P((struct txp_softc *, struct txp_dma_alloc *)); int txp_dma_malloc __P((struct txp_softc *, bus_size_t, struct txp_dma_alloc *, int)); void txp_set_filter __P((struct txp_softc *)); int txp_cmd_desc_numfree __P((struct txp_softc *)); int txp_command __P((struct txp_softc *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, u_int16_t *, u_int32_t *, u_int32_t *, int)); int txp_command2 __P((struct txp_softc *, u_int16_t, u_int16_t, u_int32_t, u_int32_t, struct txp_ext_desc *, u_int8_t, struct txp_rsp_desc **, int)); int txp_response __P((struct txp_softc *, u_int32_t, u_int16_t, u_int16_t, struct txp_rsp_desc **)); void txp_rsp_fixup __P((struct txp_softc *, struct txp_rsp_desc *, struct txp_rsp_desc *)); void txp_capabilities __P((struct txp_softc *)); void txp_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); int txp_ifmedia_upd __P((struct ifnet *)); void txp_show_descriptor __P((void *)); void txp_tx_reclaim __P((struct txp_softc *, struct txp_tx_ring *)); void txp_rxbuf_reclaim __P((struct txp_softc *)); void txp_rx_reclaim __P((struct txp_softc *, struct txp_rx_ring *)); struct cfattach txp_ca = { sizeof(struct txp_softc), txp_probe, txp_attach, }; struct cfdriver txp_cd = { 0, "txp", DV_IFNET }; int txp_probe(parent, match, aux) struct device *parent; void *match, *aux; { struct pci_attach_args *pa = (struct pci_attach_args *)aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_3COM) return (0); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_3COM_3CR990TX95: case PCI_PRODUCT_3COM_3CR990TX97: case PCI_PRODUCT_3COM_3CR990SVR95: case PCI_PRODUCT_3COM_3CR990SVR97: case PCI_PRODUCT_3COM_3C990BTXM: case PCI_PRODUCT_3COM_3C990BSVR: return (1); } return (0); } void txp_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct txp_softc *sc = (struct txp_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; struct ifnet *ifp = &sc->sc_arpcom.ac_if; bus_size_t iosize; u_int32_t command; u_int16_t p1; u_int32_t p2; sc->sc_cold = 1; command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (!(command & PCI_COMMAND_MASTER_ENABLE)) { printf(": failed to enable bus mastering\n"); return; } if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping\n"); return; } if (pci_mapreg_map(pa, TXP_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, &sc->sc_bt, &sc->sc_bh, NULL, &iosize, 0)) { printf(": can't map mem space %d\n", 0); return; } sc->sc_dmat = pa->pa_dmat; /* * Allocate our interrupt. */ if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, txp_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } printf(": %s", intrstr); if (txp_chip_init(sc)) return; if (txp_download_fw(sc)) return; if (txp_alloc_rings(sc)) return; if (txp_command(sc, TXP_CMD_MAX_PKT_SIZE_WRITE, TXP_MAX_PKTLEN, 0, 0, NULL, NULL, NULL, 1)) return; if (txp_command(sc, TXP_CMD_STATION_ADDRESS_READ, 0, 0, 0, &p1, &p2, NULL, 1)) return; txp_set_filter(sc); sc->sc_arpcom.ac_enaddr[0] = ((u_int8_t *)&p1)[1]; sc->sc_arpcom.ac_enaddr[1] = ((u_int8_t *)&p1)[0]; sc->sc_arpcom.ac_enaddr[2] = ((u_int8_t *)&p2)[3]; sc->sc_arpcom.ac_enaddr[3] = ((u_int8_t *)&p2)[2]; sc->sc_arpcom.ac_enaddr[4] = ((u_int8_t *)&p2)[1]; sc->sc_arpcom.ac_enaddr[5] = ((u_int8_t *)&p2)[0]; printf(" address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr)); sc->sc_cold = 0; ifmedia_init(&sc->sc_ifmedia, 0, txp_ifmedia_upd, txp_ifmedia_sts); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); sc->sc_xcvr = TXP_XCVR_AUTO; txp_command(sc, TXP_CMD_XCVR_SELECT, TXP_XCVR_AUTO, 0, 0, NULL, NULL, NULL, 0); ifmedia_set(&sc->sc_ifmedia, IFM_ETHER|IFM_AUTO); ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = txp_ioctl; ifp->if_output = ether_output; ifp->if_start = txp_start; ifp->if_watchdog = txp_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, TX_ENTRIES); IFQ_SET_READY(&ifp->if_snd); ifp->if_capabilities = 0; bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); txp_capabilities(sc); timeout_set(&sc->sc_tick, txp_tick, sc); /* * Attach us everywhere */ if_attach(ifp); ether_ifattach(ifp); shutdownhook_establish(txp_shutdown, sc); } int txp_chip_init(sc) struct txp_softc *sc; { /* disable interrupts */ WRITE_REG(sc, TXP_IER, 0); WRITE_REG(sc, TXP_IMR, TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 | TXP_INT_LATCH); /* ack all interrupts */ WRITE_REG(sc, TXP_ISR, TXP_INT_RESERVED | TXP_INT_LATCH | TXP_INT_A2H_7 | TXP_INT_A2H_6 | TXP_INT_A2H_5 | TXP_INT_A2H_4 | TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 | TXP_INT_A2H_3 | TXP_INT_A2H_2 | TXP_INT_A2H_1 | TXP_INT_A2H_0); if (txp_reset_adapter(sc)) return (-1); /* disable interrupts */ WRITE_REG(sc, TXP_IER, 0); WRITE_REG(sc, TXP_IMR, TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 | TXP_INT_LATCH); /* ack all interrupts */ WRITE_REG(sc, TXP_ISR, TXP_INT_RESERVED | TXP_INT_LATCH | TXP_INT_A2H_7 | TXP_INT_A2H_6 | TXP_INT_A2H_5 | TXP_INT_A2H_4 | TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 | TXP_INT_A2H_3 | TXP_INT_A2H_2 | TXP_INT_A2H_1 | TXP_INT_A2H_0); return (0); } int txp_reset_adapter(sc) struct txp_softc *sc; { u_int32_t r; int i; WRITE_REG(sc, TXP_SRR, TXP_SRR_ALL); DELAY(1000); WRITE_REG(sc, TXP_SRR, 0); /* Should wait max 6 seconds */ for (i = 0; i < 6000; i++) { r = READ_REG(sc, TXP_A2H_0); if (r == STAT_WAITING_FOR_HOST_REQUEST) break; DELAY(1000); } if (r != STAT_WAITING_FOR_HOST_REQUEST) { printf("%s: reset hung\n", TXP_DEVNAME(sc)); return (-1); } return (0); } int txp_download_fw(sc) struct txp_softc *sc; { struct txp_fw_file_header *fileheader; struct txp_fw_section_header *secthead; int sect; u_int32_t r, i, ier, imr; ier = READ_REG(sc, TXP_IER); WRITE_REG(sc, TXP_IER, ier | TXP_INT_A2H_0); imr = READ_REG(sc, TXP_IMR); WRITE_REG(sc, TXP_IMR, imr | TXP_INT_A2H_0); for (i = 0; i < 10000; i++) { r = READ_REG(sc, TXP_A2H_0); if (r == STAT_WAITING_FOR_HOST_REQUEST) break; DELAY(50); } if (r != STAT_WAITING_FOR_HOST_REQUEST) { printf(": not waiting for host request\n"); return (-1); } /* Ack the status */ WRITE_REG(sc, TXP_ISR, TXP_INT_A2H_0); fileheader = (struct txp_fw_file_header *)tc990image; if (bcmp("TYPHOON", fileheader->magicid, sizeof(fileheader->magicid))) { printf(": fw invalid magic\n"); return (-1); } /* Tell boot firmware to get ready for image */ WRITE_REG(sc, TXP_H2A_1, fileheader->addr); WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_RUNTIME_IMAGE); if (txp_download_fw_wait(sc)) { printf(": fw wait failed, initial\n"); return (-1); } secthead = (struct txp_fw_section_header *)(((u_int8_t *)tc990image) + sizeof(struct txp_fw_file_header)); for (sect = 0; sect < fileheader->nsections; sect++) { if (txp_download_fw_section(sc, secthead, sect)) return (-1); secthead = (struct txp_fw_section_header *) (((u_int8_t *)secthead) + secthead->nbytes + sizeof(*secthead)); } WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_DOWNLOAD_COMPLETE); for (i = 0; i < 10000; i++) { r = READ_REG(sc, TXP_A2H_0); if (r == STAT_WAITING_FOR_BOOT) break; DELAY(50); } if (r != STAT_WAITING_FOR_BOOT) { printf(": not waiting for boot\n"); return (-1); } WRITE_REG(sc, TXP_IER, ier); WRITE_REG(sc, TXP_IMR, imr); return (0); } int txp_download_fw_wait(sc) struct txp_softc *sc; { u_int32_t i, r; for (i = 0; i < 10000; i++) { r = READ_REG(sc, TXP_ISR); if (r & TXP_INT_A2H_0) break; DELAY(50); } if (!(r & TXP_INT_A2H_0)) { printf(": fw wait failed comm0\n", sc->sc_dev.dv_xname); return (-1); } WRITE_REG(sc, TXP_ISR, TXP_INT_A2H_0); r = READ_REG(sc, TXP_A2H_0); if (r != STAT_WAITING_FOR_SEGMENT) { printf(": fw not waiting for segment\n", sc->sc_dev.dv_xname); return (-1); } return (0); } int txp_download_fw_section(sc, sect, sectnum) struct txp_softc *sc; struct txp_fw_section_header *sect; int sectnum; { struct txp_dma_alloc dma; int rseg, err = 0; struct mbuf m; u_int16_t csum; /* Skip zero length sections */ if (sect->nbytes == 0) return (0); /* Make sure we aren't past the end of the image */ rseg = ((u_int8_t *)sect) - ((u_int8_t *)tc990image); if (rseg >= sizeof(tc990image)) { printf(": fw invalid section address, section %d\n", sectnum); return (-1); } /* Make sure this section doesn't go past the end */ rseg += sect->nbytes; if (rseg >= sizeof(tc990image)) { printf(": fw truncated section %d\n", sectnum); return (-1); } /* map a buffer, copy segment to it, get physaddr */ if (txp_dma_malloc(sc, sect->nbytes, &dma, 0)) { printf(": fw dma malloc failed, section %d\n", sectnum); return (-1); } bcopy(((u_int8_t *)sect) + sizeof(*sect), dma.dma_vaddr, sect->nbytes); /* * dummy up mbuf and verify section checksum */ m.m_type = MT_DATA; m.m_next = m.m_nextpkt = NULL; m.m_len = sect->nbytes; m.m_data = dma.dma_vaddr; m.m_flags = 0; csum = in_cksum(&m, sect->nbytes); if (csum != sect->cksum) { printf(": fw section %d, bad cksum (expected 0x%x got 0x%x)\n", sectnum, sect->cksum, csum); err = -1; goto bail; } bus_dmamap_sync(sc->sc_dmat, dma.dma_map, BUS_DMASYNC_PREREAD); WRITE_REG(sc, TXP_H2A_1, sect->nbytes); WRITE_REG(sc, TXP_H2A_2, sect->cksum); WRITE_REG(sc, TXP_H2A_3, sect->addr); WRITE_REG(sc, TXP_H2A_4, dma.dma_paddr >> 32); WRITE_REG(sc, TXP_H2A_5, dma.dma_paddr & 0xffffffff); WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_SEGMENT_AVAILABLE); if (txp_download_fw_wait(sc)) { printf(": fw wait failed, section %d\n", sectnum); err = -1; } bus_dmamap_sync(sc->sc_dmat, dma.dma_map, BUS_DMASYNC_POSTREAD); bail: txp_dma_free(sc, &dma); return (err); } int txp_intr(vsc) void *vsc; { struct txp_softc *sc = vsc; struct txp_hostvar *hv = sc->sc_hostvar; u_int32_t isr; int claimed = 0; /* mask all interrupts */ WRITE_REG(sc, TXP_IMR, TXP_INT_RESERVED | TXP_INT_SELF | TXP_INT_A2H_7 | TXP_INT_A2H_6 | TXP_INT_A2H_5 | TXP_INT_A2H_4 | TXP_INT_A2H_2 | TXP_INT_A2H_1 | TXP_INT_A2H_0 | TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_LATCH); isr = READ_REG(sc, TXP_ISR); while (isr) { claimed = 1; WRITE_REG(sc, TXP_ISR, isr); if ((*sc->sc_rxhir.r_roff) != (*sc->sc_rxhir.r_woff)) txp_rx_reclaim(sc, &sc->sc_rxhir); if ((*sc->sc_rxlor.r_roff) != (*sc->sc_rxlor.r_woff)) txp_rx_reclaim(sc, &sc->sc_rxlor); if (hv->hv_rx_buf_write_idx == hv->hv_rx_buf_read_idx) txp_rxbuf_reclaim(sc); if (sc->sc_txhir.r_cnt && (sc->sc_txhir.r_cons != TXP_OFFSET2IDX(*(sc->sc_txhir.r_off)))) txp_tx_reclaim(sc, &sc->sc_txhir); if (sc->sc_txlor.r_cnt && (sc->sc_txlor.r_cons != TXP_OFFSET2IDX(*(sc->sc_txlor.r_off)))) txp_tx_reclaim(sc, &sc->sc_txlor); isr = READ_REG(sc, TXP_ISR); } /* unmask all interrupts */ WRITE_REG(sc, TXP_IMR, TXP_INT_A2H_3); txp_start(&sc->sc_arpcom.ac_if); return (claimed); } void txp_rx_reclaim(sc, r) struct txp_softc *sc; struct txp_rx_ring *r; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct txp_rx_desc *rxd; struct mbuf *m; struct txp_swdesc *sd; u_int32_t roff, woff; int sumflags = 0; roff = *r->r_roff; woff = *r->r_woff; rxd = r->r_desc + (roff / sizeof(struct txp_rx_desc)); while (roff != woff) { if (rxd->rx_flags & RX_FLAGS_ERROR) { printf("%s: error 0x%x\n", sc->sc_dev.dv_xname, rxd->rx_stat); ifp->if_ierrors++; goto next; } /* retrieve stashed pointer */ bcopy((u_long *)&rxd->rx_vaddrlo, &sd, sizeof(sd)); bus_dmamap_sync(sc->sc_dmat, sd->sd_map, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, sd->sd_map); bus_dmamap_destroy(sc->sc_dmat, sd->sd_map); m = sd->sd_mbuf; free(sd, M_DEVBUF); m->m_pkthdr.len = m->m_len = rxd->rx_len; #ifdef __STRICT_ALIGNMENT { /* * XXX Nice chip, except it won't accept "off by 2" * buffers, so we're force to copy. Supposedly * this will be fixed in a newer firmware rev * and this will be temporary. */ struct mbuf *mnew; MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) { m_freem(m); goto next; } if (m->m_len > (MHLEN - 2)) { MCLGET(mnew, M_DONTWAIT); if (!(mnew->m_flags & M_EXT)) { m_freem(mnew); m_freem(m); goto next; } } mnew->m_pkthdr.rcvif = ifp; mnew->m_pkthdr.len = mnew->m_len = m->m_len; mnew->m_data += 2; bcopy(m->m_data, mnew->m_data, m->m_len); m_freem(m); m = mnew; } #endif #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif if (rxd->rx_stat & RX_STAT_IPCKSUMBAD) sumflags |= M_IPV4_CSUM_IN_BAD; else if (rxd->rx_stat & RX_STAT_IPCKSUMGOOD) sumflags |= M_IPV4_CSUM_IN_OK; if (rxd->rx_stat & RX_STAT_TCPCKSUMBAD) sumflags |= M_TCP_CSUM_IN_BAD; else if (rxd->rx_stat & RX_STAT_TCPCKSUMGOOD) sumflags |= M_TCP_CSUM_IN_OK; if (rxd->rx_stat & RX_STAT_UDPCKSUMBAD) sumflags |= M_UDP_CSUM_IN_BAD; else if (rxd->rx_stat & RX_STAT_UDPCKSUMGOOD) sumflags |= M_UDP_CSUM_IN_OK; m->m_pkthdr.csum = sumflags; #if NVLAN > 0 if (rxd->rx_stat & RX_STAT_VLAN) { if (vlan_input_tag(m, htons(rxd->rx_vlan >> 16)) < 0) ifp->if_noproto++; goto next; } #endif ether_input_mbuf(ifp, m); next: roff += sizeof(struct txp_rx_desc); if (roff == (RX_ENTRIES * sizeof(struct txp_rx_desc))) { roff = 0; rxd = r->r_desc; } else rxd++; woff = *r->r_woff; } *r->r_roff = woff; } void txp_rxbuf_reclaim(sc) struct txp_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct txp_hostvar *hv = sc->sc_hostvar; struct txp_rxbuf_desc *rbd; struct txp_swdesc *sd; u_int32_t i, end; end = TXP_OFFSET2IDX(hv->hv_rx_buf_read_idx); i = TXP_OFFSET2IDX(hv->hv_rx_buf_write_idx); if (++i == RXBUF_ENTRIES) i = 0; rbd = sc->sc_rxbufs + i; while (i != end) { sd = (struct txp_swdesc *)malloc(sizeof(struct txp_swdesc), M_DEVBUF, M_NOWAIT); if (sd == NULL) break; MGETHDR(sd->sd_mbuf, M_DONTWAIT, MT_DATA); if (sd->sd_mbuf == NULL) goto err_sd; MCLGET(sd->sd_mbuf, M_DONTWAIT); if ((sd->sd_mbuf->m_flags & M_EXT) == 0) goto err_mbuf; sd->sd_mbuf->m_pkthdr.rcvif = ifp; sd->sd_mbuf->m_pkthdr.len = sd->sd_mbuf->m_len = MCLBYTES; if (bus_dmamap_create(sc->sc_dmat, TXP_MAX_PKTLEN, 1, TXP_MAX_PKTLEN, 0, BUS_DMA_NOWAIT, &sd->sd_map)) goto err_mbuf; if (bus_dmamap_load_mbuf(sc->sc_dmat, sd->sd_map, sd->sd_mbuf, BUS_DMA_NOWAIT)) { bus_dmamap_destroy(sc->sc_dmat, sd->sd_map); goto err_mbuf; } bus_dmamap_sync(sc->sc_dmat, sd->sd_map, BUS_DMASYNC_PREWRITE); /* stash away pointer */ bcopy(&sd, (u_long *)&rbd->rb_vaddrlo, sizeof(sd)); rbd->rb_paddrlo = ((u_int64_t)sd->sd_map->dm_segs[0].ds_addr) & 0xffffffff; rbd->rb_paddrhi = ((u_int64_t)sd->sd_map->dm_segs[0].ds_addr) >> 32; hv->hv_rx_buf_write_idx = TXP_IDX2OFFSET(i); if (++i == RXBUF_ENTRIES) { i = 0; rbd = sc->sc_rxbufs; } else rbd++; } return; err_mbuf: m_freem(sd->sd_mbuf); err_sd: free(sd, M_DEVBUF); } /* * Reclaim mbufs and entries from a transmit ring. */ void txp_tx_reclaim(sc, r) struct txp_softc *sc; struct txp_tx_ring *r; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_int32_t idx = TXP_OFFSET2IDX(*(r->r_off)); u_int32_t cons = r->r_cons, cnt = r->r_cnt; struct txp_tx_desc *txd = r->r_desc + cons; struct txp_swdesc *sd = sc->sc_txd + cons; struct mbuf *m; while (cons != idx) { if (cnt == 0) break; if ((txd->tx_flags & TX_FLAGS_TYPE_M) == TX_FLAGS_TYPE_DATA) { bus_dmamap_sync(sc->sc_dmat, sd->sd_map, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, sd->sd_map); m = sd->sd_mbuf; if (m != NULL) { m_freem(m); txd->tx_addrlo = 0; txd->tx_addrhi = 0; ifp->if_opackets++; } } ifp->if_flags &= ~IFF_OACTIVE; if (++cons == TX_ENTRIES) { txd = r->r_desc; cons = 0; sd = sc->sc_txd; } else { txd++; sd++; } cnt--; } r->r_cons = cons; r->r_cnt = cnt; if (cnt == 0) ifp->if_timer = 0; } void txp_shutdown(vsc) void *vsc; { struct txp_softc *sc = (struct txp_softc *)vsc; /* mask all interrupts */ WRITE_REG(sc, TXP_IMR, TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 | TXP_INT_LATCH); txp_command(sc, TXP_CMD_TX_DISABLE, 0, 0, 0, NULL, NULL, NULL, 0); txp_command(sc, TXP_CMD_RX_DISABLE, 0, 0, 0, NULL, NULL, NULL, 0); txp_command(sc, TXP_CMD_HALT, 0, 0, 0, NULL, NULL, NULL, 0); } int txp_alloc_rings(sc) struct txp_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct txp_boot_record *boot; struct txp_swdesc *sd; u_int32_t r; int i, j; /* boot record */ if (txp_dma_malloc(sc, sizeof(struct txp_boot_record), &sc->sc_boot_dma, BUS_DMA_COHERENT)) { printf(": can't allocate boot record\n"); return (-1); } boot = (struct txp_boot_record *)sc->sc_boot_dma.dma_vaddr; bzero(boot, sizeof(*boot)); sc->sc_boot = boot; /* host variables */ if (txp_dma_malloc(sc, sizeof(struct txp_hostvar), &sc->sc_host_dma, BUS_DMA_COHERENT)) { printf(": can't allocate host ring\n"); goto bail_boot; } bzero(sc->sc_host_dma.dma_vaddr, sizeof(struct txp_hostvar)); boot->br_hostvar_lo = sc->sc_host_dma.dma_paddr & 0xffffffff; boot->br_hostvar_hi = sc->sc_host_dma.dma_paddr >> 32; sc->sc_hostvar = (struct txp_hostvar *)sc->sc_host_dma.dma_vaddr; /* high priority tx ring */ if (txp_dma_malloc(sc, sizeof(struct txp_tx_desc) * TX_ENTRIES, &sc->sc_txhiring_dma, BUS_DMA_COHERENT)) { printf(": can't allocate high tx ring\n"); goto bail_host; } bzero(sc->sc_txhiring_dma.dma_vaddr, sizeof(struct txp_tx_desc) * TX_ENTRIES); boot->br_txhipri_lo = sc->sc_txhiring_dma.dma_paddr & 0xffffffff; boot->br_txhipri_hi = sc->sc_txhiring_dma.dma_paddr >> 32; boot->br_txhipri_siz = TX_ENTRIES * sizeof(struct txp_tx_desc); sc->sc_txhir.r_reg = TXP_H2A_1; sc->sc_txhir.r_desc = (struct txp_tx_desc *)sc->sc_txhiring_dma.dma_vaddr; sc->sc_txhir.r_cons = sc->sc_txhir.r_prod = sc->sc_txhir.r_cnt = 0; sc->sc_txhir.r_off = &sc->sc_hostvar->hv_tx_hi_desc_read_idx; for (i = 0; i < TX_ENTRIES; i++) { if (bus_dmamap_create(sc->sc_dmat, TXP_MAX_PKTLEN, TX_ENTRIES - 4, TXP_MAX_SEGLEN, 0, BUS_DMA_NOWAIT, &sc->sc_txd[i].sd_map) != 0) { for (j = 0; j < i; j++) { bus_dmamap_destroy(sc->sc_dmat, sc->sc_txd[j].sd_map); sc->sc_txd[j].sd_map = NULL; } goto bail_txhiring; } } /* low priority tx ring */ if (txp_dma_malloc(sc, sizeof(struct txp_tx_desc) * TX_ENTRIES, &sc->sc_txloring_dma, BUS_DMA_COHERENT)) { printf(": can't allocate low tx ring\n"); goto bail_txhiring; } bzero(sc->sc_txloring_dma.dma_vaddr, sizeof(struct txp_tx_desc) * TX_ENTRIES); boot->br_txlopri_lo = sc->sc_txloring_dma.dma_paddr & 0xffffffff; boot->br_txlopri_hi = sc->sc_txloring_dma.dma_paddr >> 32; boot->br_txlopri_siz = TX_ENTRIES * sizeof(struct txp_tx_desc); sc->sc_txlor.r_reg = TXP_H2A_3; sc->sc_txlor.r_desc = (struct txp_tx_desc *)sc->sc_txloring_dma.dma_vaddr; sc->sc_txlor.r_cons = sc->sc_txlor.r_prod = sc->sc_txlor.r_cnt = 0; sc->sc_txlor.r_off = &sc->sc_hostvar->hv_tx_lo_desc_read_idx; /* high priority rx ring */ if (txp_dma_malloc(sc, sizeof(struct txp_rx_desc) * RX_ENTRIES, &sc->sc_rxhiring_dma, BUS_DMA_COHERENT)) { printf(": can't allocate high rx ring\n"); goto bail_txloring; } bzero(sc->sc_rxhiring_dma.dma_vaddr, sizeof(struct txp_rx_desc) * RX_ENTRIES); boot->br_rxhipri_lo = sc->sc_rxhiring_dma.dma_paddr & 0xffffffff; boot->br_rxhipri_hi = sc->sc_rxhiring_dma.dma_paddr >> 32; boot->br_rxhipri_siz = RX_ENTRIES * sizeof(struct txp_rx_desc); sc->sc_rxhir.r_desc = (struct txp_rx_desc *)sc->sc_rxhiring_dma.dma_vaddr; sc->sc_rxhir.r_roff = &sc->sc_hostvar->hv_rx_hi_read_idx; sc->sc_rxhir.r_woff = &sc->sc_hostvar->hv_rx_hi_write_idx; /* low priority ring */ if (txp_dma_malloc(sc, sizeof(struct txp_rx_desc) * RX_ENTRIES, &sc->sc_rxloring_dma, BUS_DMA_COHERENT)) { printf(": can't allocate low rx ring\n"); goto bail_rxhiring; } bzero(sc->sc_rxloring_dma.dma_vaddr, sizeof(struct txp_rx_desc) * RX_ENTRIES); boot->br_rxlopri_lo = sc->sc_rxloring_dma.dma_paddr & 0xffffffff; boot->br_rxlopri_hi = sc->sc_rxloring_dma.dma_paddr >> 32; boot->br_rxlopri_siz = RX_ENTRIES * sizeof(struct txp_rx_desc); sc->sc_rxlor.r_desc = (struct txp_rx_desc *)sc->sc_rxloring_dma.dma_vaddr; sc->sc_rxlor.r_roff = &sc->sc_hostvar->hv_rx_lo_read_idx; sc->sc_rxlor.r_woff = &sc->sc_hostvar->hv_rx_lo_write_idx; /* command ring */ if (txp_dma_malloc(sc, sizeof(struct txp_cmd_desc) * CMD_ENTRIES, &sc->sc_cmdring_dma, BUS_DMA_COHERENT)) { printf(": can't allocate command ring\n"); goto bail_rxloring; } bzero(sc->sc_cmdring_dma.dma_vaddr, sizeof(struct txp_cmd_desc) * CMD_ENTRIES); boot->br_cmd_lo = sc->sc_cmdring_dma.dma_paddr & 0xffffffff; boot->br_cmd_hi = sc->sc_cmdring_dma.dma_paddr >> 32; boot->br_cmd_siz = CMD_ENTRIES * sizeof(struct txp_cmd_desc); sc->sc_cmdring.base = (struct txp_cmd_desc *)sc->sc_cmdring_dma.dma_vaddr; sc->sc_cmdring.size = CMD_ENTRIES * sizeof(struct txp_cmd_desc); sc->sc_cmdring.lastwrite = 0; /* response ring */ if (txp_dma_malloc(sc, sizeof(struct txp_rsp_desc) * RSP_ENTRIES, &sc->sc_rspring_dma, BUS_DMA_COHERENT)) { printf(": can't allocate response ring\n"); goto bail_cmdring; } bzero(sc->sc_rspring_dma.dma_vaddr, sizeof(struct txp_rsp_desc) * RSP_ENTRIES); boot->br_resp_lo = sc->sc_rspring_dma.dma_paddr & 0xffffffff; boot->br_resp_hi = sc->sc_rspring_dma.dma_paddr >> 32; boot->br_resp_siz = CMD_ENTRIES * sizeof(struct txp_rsp_desc); sc->sc_rspring.base = (struct txp_rsp_desc *)sc->sc_rspring_dma.dma_vaddr; sc->sc_rspring.size = RSP_ENTRIES * sizeof(struct txp_rsp_desc); sc->sc_rspring.lastwrite = 0; /* receive buffer ring */ if (txp_dma_malloc(sc, sizeof(struct txp_rxbuf_desc) * RXBUF_ENTRIES, &sc->sc_rxbufring_dma, BUS_DMA_COHERENT)) { printf(": can't allocate rx buffer ring\n"); goto bail_rspring; } bzero(sc->sc_rxbufring_dma.dma_vaddr, sizeof(struct txp_rxbuf_desc) * RXBUF_ENTRIES); boot->br_rxbuf_lo = sc->sc_rxbufring_dma.dma_paddr & 0xffffffff; boot->br_rxbuf_hi = sc->sc_rxbufring_dma.dma_paddr >> 32; boot->br_rxbuf_siz = RXBUF_ENTRIES * sizeof(struct txp_rxbuf_desc); sc->sc_rxbufs = (struct txp_rxbuf_desc *)sc->sc_rxbufring_dma.dma_vaddr; for (i = 0; i < RXBUF_ENTRIES; i++) { sd = (struct txp_swdesc *)malloc(sizeof(struct txp_swdesc), M_DEVBUF, M_NOWAIT); if (sd == NULL) break; MGETHDR(sd->sd_mbuf, M_DONTWAIT, MT_DATA); if (sd->sd_mbuf == NULL) { goto bail_rxbufring; } MCLGET(sd->sd_mbuf, M_DONTWAIT); if ((sd->sd_mbuf->m_flags & M_EXT) == 0) { goto bail_rxbufring; } sd->sd_mbuf->m_pkthdr.len = sd->sd_mbuf->m_len = MCLBYTES; sd->sd_mbuf->m_pkthdr.rcvif = ifp; if (bus_dmamap_create(sc->sc_dmat, TXP_MAX_PKTLEN, 1, TXP_MAX_PKTLEN, 0, BUS_DMA_NOWAIT, &sd->sd_map)) { goto bail_rxbufring; } if (bus_dmamap_load_mbuf(sc->sc_dmat, sd->sd_map, sd->sd_mbuf, BUS_DMA_NOWAIT)) { bus_dmamap_destroy(sc->sc_dmat, sd->sd_map); goto bail_rxbufring; } bus_dmamap_sync(sc->sc_dmat, sd->sd_map, BUS_DMASYNC_PREWRITE); /* stash away pointer */ bcopy(&sd, (u_long *)&sc->sc_rxbufs[i].rb_vaddrlo, sizeof(sd)); sc->sc_rxbufs[i].rb_paddrlo = ((u_int64_t)sd->sd_map->dm_segs[0].ds_addr) & 0xffffffff; sc->sc_rxbufs[i].rb_paddrhi = ((u_int64_t)sd->sd_map->dm_segs[0].ds_addr) >> 32; } sc->sc_hostvar->hv_rx_buf_write_idx = (RXBUF_ENTRIES - 1) * sizeof(struct txp_rxbuf_desc); /* zero dma */ if (txp_dma_malloc(sc, sizeof(u_int32_t), &sc->sc_zero_dma, BUS_DMA_COHERENT)) { printf(": can't allocate response ring\n"); goto bail_rxbufring; } bzero(sc->sc_zero_dma.dma_vaddr, sizeof(u_int32_t)); boot->br_zero_lo = sc->sc_zero_dma.dma_paddr & 0xffffffff; boot->br_zero_hi = sc->sc_zero_dma.dma_paddr >> 32; /* See if it's waiting for boot, and try to boot it */ for (i = 0; i < 10000; i++) { r = READ_REG(sc, TXP_A2H_0); if (r == STAT_WAITING_FOR_BOOT) break; DELAY(50); } if (r != STAT_WAITING_FOR_BOOT) { printf(": not waiting for boot\n"); goto bail; } WRITE_REG(sc, TXP_H2A_2, sc->sc_boot_dma.dma_paddr >> 32); WRITE_REG(sc, TXP_H2A_1, sc->sc_boot_dma.dma_paddr & 0xffffffff); WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_REGISTER_BOOT_RECORD); /* See if it booted */ for (i = 0; i < 10000; i++) { r = READ_REG(sc, TXP_A2H_0); if (r == STAT_RUNNING) break; DELAY(50); } if (r != STAT_RUNNING) { printf(": fw not running\n"); goto bail; } /* Clear TX and CMD ring write registers */ WRITE_REG(sc, TXP_H2A_1, TXP_BOOTCMD_NULL); WRITE_REG(sc, TXP_H2A_2, TXP_BOOTCMD_NULL); WRITE_REG(sc, TXP_H2A_3, TXP_BOOTCMD_NULL); WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_NULL); return (0); bail: txp_dma_free(sc, &sc->sc_zero_dma); bail_rxbufring: txp_dma_free(sc, &sc->sc_rxbufring_dma); bail_rspring: txp_dma_free(sc, &sc->sc_rspring_dma); bail_cmdring: txp_dma_free(sc, &sc->sc_cmdring_dma); bail_rxloring: txp_dma_free(sc, &sc->sc_rxloring_dma); bail_rxhiring: txp_dma_free(sc, &sc->sc_rxhiring_dma); bail_txloring: txp_dma_free(sc, &sc->sc_txloring_dma); bail_txhiring: txp_dma_free(sc, &sc->sc_txhiring_dma); bail_host: txp_dma_free(sc, &sc->sc_host_dma); bail_boot: txp_dma_free(sc, &sc->sc_boot_dma); return (-1); } int txp_dma_malloc(sc, size, dma, mapflags) struct txp_softc *sc; bus_size_t size; struct txp_dma_alloc *dma; int mapflags; { int r; if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &dma->dma_seg, 1, &dma->dma_nseg, 0)) != 0) goto fail_0; if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg, size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0) goto fail_1; if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->dma_map)) != 0) goto fail_2; if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, size, NULL, BUS_DMA_NOWAIT)) != 0) goto fail_3; dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; return (0); fail_3: bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); fail_2: bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); fail_1: bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); fail_0: return (r); } void txp_dma_free(sc, dma) struct txp_softc *sc; struct txp_dma_alloc *dma; { bus_dmamap_unload(sc->sc_dmat, dma->dma_map); bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_map->dm_mapsize); bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg); bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); } int txp_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct txp_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *)data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splnet(); if ((error = ether_ioctl(ifp, &sc->sc_arpcom, command, data)) > 0) { splx(s); return error; } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: txp_init(sc); arp_ifinit(&sc->sc_arpcom, ifa); break; #endif /* INET */ default: txp_init(sc); break; } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { txp_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) txp_stop(sc); } break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->sc_arpcom) : ether_delmulti(ifr, &sc->sc_arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ txp_set_filter(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_ifmedia, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } void txp_init(sc) struct txp_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; int s; txp_stop(sc); s = splnet(); txp_set_filter(sc); txp_command(sc, TXP_CMD_TX_ENABLE, 0, 0, 0, NULL, NULL, NULL, 1); txp_command(sc, TXP_CMD_RX_ENABLE, 0, 0, 0, NULL, NULL, NULL, 1); WRITE_REG(sc, TXP_IER, TXP_INT_RESERVED | TXP_INT_SELF | TXP_INT_A2H_7 | TXP_INT_A2H_6 | TXP_INT_A2H_5 | TXP_INT_A2H_4 | TXP_INT_A2H_2 | TXP_INT_A2H_1 | TXP_INT_A2H_0 | TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_LATCH); WRITE_REG(sc, TXP_IMR, TXP_INT_A2H_3); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ifp->if_timer = 0; if (!timeout_pending(&sc->sc_tick)) timeout_add(&sc->sc_tick, hz); splx(s); } void txp_tick(vsc) void *vsc; { struct txp_softc *sc = vsc; struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct txp_rsp_desc *rsp = NULL; struct txp_ext_desc *ext; int s; s = splnet(); txp_rxbuf_reclaim(sc); if (txp_command2(sc, TXP_CMD_READ_STATISTICS, 0, 0, 0, NULL, 0, &rsp, 1)) goto out; if (rsp->rsp_numdesc != 6) goto out; if (txp_command(sc, TXP_CMD_CLEAR_STATISTICS, 0, 0, 0, NULL, NULL, NULL, 1)) goto out; ext = (struct txp_ext_desc *)(rsp + 1); ifp->if_ierrors += ext[3].ext_2 + ext[3].ext_3 + ext[3].ext_4 + ext[4].ext_1 + ext[4].ext_4; ifp->if_oerrors += ext[0].ext_1 + ext[1].ext_1 + ext[1].ext_4 + ext[2].ext_1; ifp->if_collisions += ext[0].ext_2 + ext[0].ext_3 + ext[1].ext_2 + ext[1].ext_3; ifp->if_opackets += rsp->rsp_par2; ifp->if_ipackets += ext[2].ext_3; out: if (rsp != NULL) free(rsp, M_DEVBUF); splx(s); timeout_add(&sc->sc_tick, hz); } void txp_start(ifp) struct ifnet *ifp; { struct txp_softc *sc = ifp->if_softc; struct txp_tx_ring *r = &sc->sc_txhir; struct txp_tx_desc *txd; struct txp_frag_desc *fxd; struct mbuf *m, *mnew; struct txp_swdesc *sd; u_int32_t firstprod, firstcnt, prod, cnt, i; #if NVLAN > 0 struct ifvlan *ifv; #endif if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; prod = r->r_prod; cnt = r->r_cnt; while (1) { IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; firstprod = prod; firstcnt = cnt; sd = sc->sc_txd + prod; sd->sd_mbuf = m; if (bus_dmamap_load_mbuf(sc->sc_dmat, sd->sd_map, m, BUS_DMA_NOWAIT)) { MGETHDR(mnew, M_DONTWAIT, MT_DATA); if (mnew == NULL) goto oactive1; if (m->m_pkthdr.len > MHLEN) { MCLGET(mnew, M_DONTWAIT); if ((mnew->m_flags & M_EXT) == 0) { m_freem(mnew); goto oactive1; } } m_copydata(m, 0, m->m_pkthdr.len, mtod(mnew, caddr_t)); mnew->m_pkthdr.len = mnew->m_len = m->m_pkthdr.len; m_freem(m); m = mnew; if (bus_dmamap_load_mbuf(sc->sc_dmat, sd->sd_map, m, BUS_DMA_NOWAIT)) goto oactive1; } if ((TX_ENTRIES - cnt) < 4) goto oactive; txd = r->r_desc + prod; txd->tx_flags = TX_FLAGS_TYPE_DATA; txd->tx_numdesc = 0; txd->tx_addrlo = 0; txd->tx_addrhi = 0; txd->tx_totlen = 0; txd->tx_pflags = 0; if (++prod == TX_ENTRIES) prod = 0; if (++cnt >= (TX_ENTRIES - 4)) goto oactive; #if NVLAN > 0 if ((m->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) && m->m_pkthdr.rcvif != NULL) { ifv = m->m_pkthdr.rcvif->if_softc; txd->tx_pflags = TX_PFLAGS_VLAN | (htons(ifv->ifv_tag) << TX_PFLAGS_VLANTAG_S); } #endif if (m->m_pkthdr.csum & M_IPV4_CSUM_OUT) txd->tx_pflags |= TX_PFLAGS_IPCKSUM; #if 0 if (m->m_pkthdr.csum & M_TCPV4_CSUM_OUT) txd->tx_pflags |= TX_PFLAGS_TCPCKSUM; if (m->m_pkthdr.csum & M_UDPV4_CSUM_OUT) txd->tx_pflags |= TX_PFLAGS_UDPCKSUM; #endif fxd = (struct txp_frag_desc *)(r->r_desc + prod); for (i = 0; i < sd->sd_map->dm_nsegs; i++) { if (++cnt >= (TX_ENTRIES - 4)) goto oactive; txd->tx_numdesc++; fxd->frag_flags = FRAG_FLAGS_TYPE_FRAG; fxd->frag_rsvd1 = 0; fxd->frag_len = sd->sd_map->dm_segs[i].ds_len; fxd->frag_addrlo = ((u_int64_t)sd->sd_map->dm_segs[i].ds_addr) & 0xffffffff; fxd->frag_addrhi = ((u_int64_t)sd->sd_map->dm_segs[i].ds_addr) >> 32; fxd->frag_rsvd2 = 0; if (++prod == TX_ENTRIES) { fxd = (struct txp_frag_desc *)r->r_desc; prod = 0; } else fxd++; } ifp->if_timer = 5; #if NBPFILTER > 0 if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif bus_dmamap_sync(sc->sc_dmat, sd->sd_map, BUS_DMASYNC_PREREAD); WRITE_REG(sc, r->r_reg, TXP_IDX2OFFSET(prod)); } r->r_prod = prod; r->r_cnt = cnt; return; oactive: bus_dmamap_unload(sc->sc_dmat, sd->sd_map); oactive1: ifp->if_flags |= IFF_OACTIVE; r->r_prod = firstprod; r->r_cnt = firstcnt; IF_PREPEND(&ifp->if_snd, m); } /* * Handle simple commands sent to the typhoon */ int txp_command(sc, id, in1, in2, in3, out1, out2, out3, wait) struct txp_softc *sc; u_int16_t id, in1, *out1; u_int32_t in2, in3, *out2, *out3; int wait; { struct txp_rsp_desc *rsp = NULL; if (txp_command2(sc, id, in1, in2, in3, NULL, 0, &rsp, wait)) return (-1); if (!wait) return (0); if (out1 != NULL) *out1 = rsp->rsp_par1; if (out2 != NULL) *out2 = rsp->rsp_par2; if (out3 != NULL) *out3 = rsp->rsp_par3; free(rsp, M_DEVBUF); return (0); } int txp_command2(sc, id, in1, in2, in3, in_extp, in_extn, rspp, wait) struct txp_softc *sc; u_int16_t id, in1; u_int32_t in2, in3; struct txp_ext_desc *in_extp; u_int8_t in_extn; struct txp_rsp_desc **rspp; int wait; { struct txp_hostvar *hv = sc->sc_hostvar; struct txp_cmd_desc *cmd; struct txp_ext_desc *ext; u_int32_t idx, i; u_int16_t seq; if (txp_cmd_desc_numfree(sc) < (in_extn + 1)) { printf("%s: no free cmd descriptors\n", TXP_DEVNAME(sc)); return (-1); } idx = sc->sc_cmdring.lastwrite; cmd = (struct txp_cmd_desc *)(((u_int8_t *)sc->sc_cmdring.base) + idx); bzero(cmd, sizeof(*cmd)); cmd->cmd_numdesc = in_extn; cmd->cmd_seq = seq = sc->sc_seq++; cmd->cmd_id = id; cmd->cmd_par1 = in1; cmd->cmd_par2 = in2; cmd->cmd_par3 = in3; cmd->cmd_flags = CMD_FLAGS_TYPE_CMD | (wait ? CMD_FLAGS_RESP : 0) | CMD_FLAGS_VALID; idx += sizeof(struct txp_cmd_desc); if (idx == sc->sc_cmdring.size) idx = 0; for (i = 0; i < in_extn; i++) { ext = (struct txp_ext_desc *)(((u_int8_t *)sc->sc_cmdring.base) + idx); bcopy(in_extp, ext, sizeof(struct txp_ext_desc)); in_extp++; idx += sizeof(struct txp_cmd_desc); if (idx == sc->sc_cmdring.size) idx = 0; } sc->sc_cmdring.lastwrite = idx; WRITE_REG(sc, TXP_H2A_2, sc->sc_cmdring.lastwrite); if (!wait) return (0); for (i = 0; i < 10000; i++) { idx = hv->hv_resp_read_idx; if (idx != hv->hv_resp_write_idx) { *rspp = NULL; if (txp_response(sc, idx, id, seq, rspp)) return (-1); if (*rspp != NULL) break; } DELAY(50); } if (i == 1000 || (*rspp) == NULL) { printf("%s: 0x%x command failed\n", TXP_DEVNAME(sc), id); return (-1); } return (0); } int txp_response(sc, ridx, id, seq, rspp) struct txp_softc *sc; u_int32_t ridx; u_int16_t id; u_int16_t seq; struct txp_rsp_desc **rspp; { struct txp_hostvar *hv = sc->sc_hostvar; struct txp_rsp_desc *rsp; while (ridx != hv->hv_resp_write_idx) { rsp = (struct txp_rsp_desc *)(((u_int8_t *)sc->sc_rspring.base) + ridx); if (id == rsp->rsp_id && rsp->rsp_seq == seq) { *rspp = (struct txp_rsp_desc *)malloc( sizeof(struct txp_rsp_desc) * (rsp->rsp_numdesc + 1), M_DEVBUF, M_NOWAIT); if ((*rspp) == NULL) return (-1); txp_rsp_fixup(sc, rsp, *rspp); return (0); } if (rsp->rsp_flags & RSP_FLAGS_ERROR) { printf("%s: response error!\n", TXP_DEVNAME(sc)); txp_rsp_fixup(sc, rsp, NULL); ridx = hv->hv_resp_read_idx; continue; } switch (rsp->rsp_id) { case TXP_CMD_CYCLE_STATISTICS: case TXP_CMD_MEDIA_STATUS_READ: break; case TXP_CMD_HELLO_RESPONSE: printf("%s: hello\n", TXP_DEVNAME(sc)); break; default: printf("%s: unknown id(0x%x)\n", TXP_DEVNAME(sc), rsp->rsp_id); } txp_rsp_fixup(sc, rsp, NULL); ridx = hv->hv_resp_read_idx; hv->hv_resp_read_idx = ridx; } return (0); } void txp_rsp_fixup(sc, rsp, dst) struct txp_softc *sc; struct txp_rsp_desc *rsp, *dst; { struct txp_rsp_desc *src = rsp; struct txp_hostvar *hv = sc->sc_hostvar; u_int32_t i, ridx; ridx = hv->hv_resp_read_idx; for (i = 0; i < rsp->rsp_numdesc + 1; i++) { if (dst != NULL) bcopy(src, dst++, sizeof(struct txp_rsp_desc)); ridx += sizeof(struct txp_rsp_desc); if (ridx == sc->sc_rspring.size) { src = sc->sc_rspring.base; ridx = 0; } else src++; sc->sc_rspring.lastwrite = hv->hv_resp_read_idx = ridx; } hv->hv_resp_read_idx = ridx; } int txp_cmd_desc_numfree(sc) struct txp_softc *sc; { struct txp_hostvar *hv = sc->sc_hostvar; struct txp_boot_record *br = sc->sc_boot; u_int32_t widx, ridx, nfree; widx = sc->sc_cmdring.lastwrite; ridx = hv->hv_cmd_read_idx; if (widx == ridx) { /* Ring is completely free */ nfree = br->br_cmd_siz - sizeof(struct txp_cmd_desc); } else { if (widx > ridx) nfree = br->br_cmd_siz - (widx - ridx + sizeof(struct txp_cmd_desc)); else nfree = ridx - widx - sizeof(struct txp_cmd_desc); } return (nfree / sizeof(struct txp_cmd_desc)); } void txp_stop(sc) struct txp_softc *sc; { txp_command(sc, TXP_CMD_TX_DISABLE, 0, 0, 0, NULL, NULL, NULL, 1); txp_command(sc, TXP_CMD_RX_DISABLE, 0, 0, 0, NULL, NULL, NULL, 1); if (timeout_pending(&sc->sc_tick)) timeout_del(&sc->sc_tick); } void txp_watchdog(ifp) struct ifnet *ifp; { } int txp_ifmedia_upd(ifp) struct ifnet *ifp; { struct txp_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->sc_ifmedia; u_int16_t new_xcvr; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return (EINVAL); if (IFM_SUBTYPE(ifm->ifm_media) == IFM_10_T) { if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) new_xcvr = TXP_XCVR_10_FDX; else new_xcvr = TXP_XCVR_10_HDX; } else if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) { if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) new_xcvr = TXP_XCVR_100_FDX; else new_xcvr = TXP_XCVR_100_HDX; } else if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { new_xcvr = TXP_XCVR_AUTO; } else return (EINVAL); /* nothing to do */ if (sc->sc_xcvr == new_xcvr) return (0); txp_command(sc, TXP_CMD_XCVR_SELECT, new_xcvr, 0, 0, NULL, NULL, NULL, 0); sc->sc_xcvr = new_xcvr; return (0); } void txp_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct txp_softc *sc = ifp->if_softc; struct ifmedia *ifm = &sc->sc_ifmedia; u_int16_t bmsr, bmcr, anlpar; ifmr->ifm_status = IFM_AVALID; ifmr->ifm_active = IFM_ETHER; if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMSR, 0, &bmsr, NULL, NULL, 1)) goto bail; if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMSR, 0, &bmsr, NULL, NULL, 1)) goto bail; if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMCR, 0, &bmcr, NULL, NULL, 1)) goto bail; if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_ANLPAR, 0, &anlpar, NULL, NULL, 1)) goto bail; if (bmsr & BMSR_LINK) ifmr->ifm_status |= IFM_ACTIVE; if (bmcr & BMCR_ISO) { ifmr->ifm_active |= IFM_NONE; ifmr->ifm_status = 0; return; } if (bmcr & BMCR_LOOP) ifmr->ifm_active |= IFM_LOOP; if (bmcr & BMCR_AUTOEN) { if ((bmsr & BMSR_ACOMP) == 0) { ifmr->ifm_active |= IFM_NONE; return; } if (anlpar & ANLPAR_T4) ifmr->ifm_active |= IFM_100_T4; else if (anlpar & ANLPAR_TX_FD) ifmr->ifm_active |= IFM_100_TX|IFM_FDX; else if (anlpar & ANLPAR_TX) ifmr->ifm_active |= IFM_100_TX; else if (anlpar & ANLPAR_10_FD) ifmr->ifm_active |= IFM_10_T|IFM_FDX; else if (anlpar & ANLPAR_10) ifmr->ifm_active |= IFM_10_T; else ifmr->ifm_active |= IFM_NONE; } else ifmr->ifm_active = ifm->ifm_cur->ifm_media; return; bail: ifmr->ifm_active |= IFM_NONE; ifmr->ifm_status &= ~IFM_AVALID; } void txp_show_descriptor(d) void *d; { struct txp_cmd_desc *cmd = d; struct txp_rsp_desc *rsp = d; struct txp_tx_desc *txd = d; struct txp_frag_desc *frgd = d; switch (cmd->cmd_flags & CMD_FLAGS_TYPE_M) { case CMD_FLAGS_TYPE_CMD: /* command descriptor */ printf("[cmd flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n", cmd->cmd_flags, cmd->cmd_numdesc, cmd->cmd_id, cmd->cmd_seq, cmd->cmd_par1, cmd->cmd_par2, cmd->cmd_par3); break; case CMD_FLAGS_TYPE_RESP: /* response descriptor */ printf("[rsp flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n", rsp->rsp_flags, rsp->rsp_numdesc, rsp->rsp_id, rsp->rsp_seq, rsp->rsp_par1, rsp->rsp_par2, rsp->rsp_par3); break; case CMD_FLAGS_TYPE_DATA: /* data header (assuming tx for now) */ printf("[data flags 0x%x num %d totlen %d addr 0x%x/0x%x pflags 0x%x]", txd->tx_flags, txd->tx_numdesc, txd->tx_totlen, txd->tx_addrlo, txd->tx_addrhi, txd->tx_pflags); break; case CMD_FLAGS_TYPE_FRAG: /* fragment descriptor */ printf("[frag flags 0x%x rsvd1 0x%x len %d addr 0x%x/0x%x rsvd2 0x%x]", frgd->frag_flags, frgd->frag_rsvd1, frgd->frag_len, frgd->frag_addrlo, frgd->frag_addrhi, frgd->frag_rsvd2); break; default: printf("[unknown(%x) flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n", cmd->cmd_flags & CMD_FLAGS_TYPE_M, cmd->cmd_flags, cmd->cmd_numdesc, cmd->cmd_id, cmd->cmd_seq, cmd->cmd_par1, cmd->cmd_par2, cmd->cmd_par3); break; } } void txp_set_filter(sc) struct txp_softc *sc; { struct arpcom *ac = &sc->sc_arpcom; struct ifnet *ifp = &sc->sc_arpcom.ac_if; u_int32_t crc, carry, hashbit, hash[2]; u_int16_t filter; u_int8_t octet; int i, j, mcnt = 0; struct ether_multi *enm; struct ether_multistep step; if (ifp->if_flags & IFF_PROMISC) { filter = TXP_RXFILT_PROMISC; goto setit; } again: filter = TXP_RXFILT_DIRECT; if (ifp->if_flags & IFF_BROADCAST) filter |= TXP_RXFILT_BROADCAST; if (ifp->if_flags & IFF_ALLMULTI) filter |= TXP_RXFILT_ALLMULTI; else { hash[0] = hash[1] = 0; ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { /* * We must listen to a range of multicast * addresses. For now, just accept all * multicasts, rather than trying to set only * those filter bits needed to match the range. * (At this time, the only use of address * ranges is for IP multicast routing, for * which the range is big enough to require * all bits set.) */ ifp->if_flags |= IFF_ALLMULTI; goto again; } mcnt++; crc = 0xffffffff; for (i = 0; i < ETHER_ADDR_LEN; i++) { octet = enm->enm_addrlo[i]; for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (octet & 1); crc <<= 1; octet >>= 1; if (carry) crc = (crc ^ TXP_POLYNOMIAL) | carry; } } hashbit = (u_int16_t)(crc & (64 - 1)); hash[hashbit / 32] |= (1 << hashbit % 32); ETHER_NEXT_MULTI(step, enm); } if (mcnt > 0) { filter |= TXP_RXFILT_HASHMULTI; txp_command(sc, TXP_CMD_MCAST_HASH_MASK_WRITE, 2, hash[0], hash[1], NULL, NULL, NULL, 0); } } setit: txp_command(sc, TXP_CMD_RX_FILTER_WRITE, filter, 0, 0, NULL, NULL, NULL, 1); } void txp_capabilities(sc) struct txp_softc *sc; { struct ifnet *ifp = &sc->sc_arpcom.ac_if; struct txp_rsp_desc *rsp = NULL; struct txp_ext_desc *ext; if (txp_command2(sc, TXP_CMD_OFFLOAD_READ, 0, 0, 0, NULL, 0, &rsp, 1)) goto out; if (rsp->rsp_numdesc != 1) goto out; ext = (struct txp_ext_desc *)(rsp + 1); sc->sc_tx_capability = ext->ext_1 & OFFLOAD_MASK; sc->sc_rx_capability = ext->ext_2 & OFFLOAD_MASK; #if NVLAN > 0 ifp->if_capabilities |= IFCAP_VLAN_MTU; if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_VLAN) { sc->sc_tx_capability |= OFFLOAD_VLAN; sc->sc_rx_capability |= OFFLOAD_VLAN; ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; } #endif #if 0 /* not ready yet */ if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_IPSEC) { sc->sc_tx_capability |= OFFLOAD_IPSEC; sc->sc_rx_capability |= OFFLOAD_IPSEC; ifp->if_capabilities |= IFCAP_IPSEC; } #endif if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_IPCKSUM) { sc->sc_tx_capability |= OFFLOAD_IPCKSUM; sc->sc_rx_capability |= OFFLOAD_IPCKSUM; ifp->if_capabilities |= IFCAP_CSUM_IPv4; } if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_TCPCKSUM) { #if 0 sc->sc_tx_capability |= OFFLOAD_TCPCKSUM; #endif sc->sc_rx_capability |= OFFLOAD_TCPCKSUM; #if 0 ifp->if_capabilities |= IFCAP_CSUM_TCPv4; #endif } if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_UDPCKSUM) { #if 0 sc->sc_tx_capability |= OFFLOAD_UDPCKSUM; #endif sc->sc_rx_capability |= OFFLOAD_UDPCKSUM; #if 0 ifp->if_capabilities |= IFCAP_CSUM_UDPv4; #endif } if (txp_command(sc, TXP_CMD_OFFLOAD_WRITE, 0, sc->sc_tx_capability, sc->sc_rx_capability, NULL, NULL, NULL, 1)) goto out; out: if (rsp != NULL) free(rsp, M_DEVBUF); }