/* $OpenBSD: if_vr.c,v 1.156 2020/07/10 13:26:38 patrick Exp $ */ /* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_vr.c,v 1.73 2003/08/22 07:13:22 imp Exp $ */ /* * VIA Rhine fast ethernet PCI NIC driver * * Supports various network adapters based on the VIA Rhine * and Rhine II PCI controllers, including the D-Link DFE530TX. * Datasheets are available at ftp://ftp.vtbridge.org/Docs/LAN/. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The VIA Rhine controllers are similar in some respects to the * the DEC tulip chips, except less complicated. The controller * uses an MII bus and an external physical layer interface. The * receiver has a one entry perfect filter and a 64-bit hash table * multicast filter. Transmit and receive descriptors are similar * to the tulip. * * Early Rhine has a serious flaw in its transmit DMA mechanism: * transmit buffers must be longword aligned. Unfortunately, * OpenBSD doesn't guarantee that mbufs will be filled in starting * at longword boundaries, so we have to do a buffer copy before * transmission. */ #include "bpfilter.h" #include "vlan.h" #include #include #include #include #include #include #include #include #include #include #include #include #if NBPFILTER > 0 #include #endif #include #include #include #include #include #define VR_USEIOSPACE #include int vr_probe(struct device *, void *, void *); int vr_quirks(struct pci_attach_args *); void vr_attach(struct device *, struct device *, void *); int vr_activate(struct device *, int); struct cfattach vr_ca = { sizeof(struct vr_softc), vr_probe, vr_attach, NULL, vr_activate }; struct cfdriver vr_cd = { NULL, "vr", DV_IFNET }; int vr_encap(struct vr_softc *, struct vr_chain **, struct mbuf *); void vr_rxeof(struct vr_softc *); void vr_rxeoc(struct vr_softc *); void vr_txeof(struct vr_softc *); void vr_tick(void *); void vr_rxtick(void *); int vr_intr(void *); int vr_dmamem_alloc(struct vr_softc *, struct vr_dmamem *, bus_size_t, u_int); void vr_dmamem_free(struct vr_softc *, struct vr_dmamem *); void vr_start(struct ifnet *); int vr_ioctl(struct ifnet *, u_long, caddr_t); void vr_chipinit(struct vr_softc *); void vr_init(void *); void vr_stop(struct vr_softc *); void vr_watchdog(struct ifnet *); int vr_ifmedia_upd(struct ifnet *); void vr_ifmedia_sts(struct ifnet *, struct ifmediareq *); int vr_mii_readreg(struct vr_softc *, struct vr_mii_frame *); int vr_mii_writereg(struct vr_softc *, struct vr_mii_frame *); int vr_miibus_readreg(struct device *, int, int); void vr_miibus_writereg(struct device *, int, int, int); void vr_miibus_statchg(struct device *); void vr_setcfg(struct vr_softc *, uint64_t); void vr_iff(struct vr_softc *); void vr_reset(struct vr_softc *); int vr_list_rx_init(struct vr_softc *); void vr_fill_rx_ring(struct vr_softc *); int vr_list_tx_init(struct vr_softc *); #ifndef SMALL_KERNEL int vr_wol(struct ifnet *, int); #endif int vr_alloc_mbuf(struct vr_softc *, struct vr_chain_onefrag *); /* * Supported devices & quirks */ #define VR_Q_NEEDALIGN (1<<0) #define VR_Q_CSUM (1<<1) #define VR_Q_CAM (1<<2) #define VR_Q_HWTAG (1<<3) #define VR_Q_INTDISABLE (1<<4) #define VR_Q_BABYJUMBO (1<<5) /* others may work too */ struct vr_type { pci_vendor_id_t vr_vid; pci_product_id_t vr_pid; int vr_quirks; } vr_devices[] = { { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINE, VR_Q_NEEDALIGN }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINEII, VR_Q_NEEDALIGN }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_RHINEII_2, VR_Q_BABYJUMBO }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105, VR_Q_BABYJUMBO }, { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6105M, VR_Q_CSUM | VR_Q_CAM | VR_Q_HWTAG | VR_Q_INTDISABLE | VR_Q_BABYJUMBO }, { PCI_VENDOR_DELTA, PCI_PRODUCT_DELTA_RHINEII, VR_Q_NEEDALIGN }, { PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_RHINEII, VR_Q_NEEDALIGN } }; #define VR_SETBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) | (x)) #define VR_CLRBIT(sc, reg, x) \ CSR_WRITE_1(sc, reg, \ CSR_READ_1(sc, reg) & ~(x)) #define VR_SETBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) | (x)) #define VR_CLRBIT16(sc, reg, x) \ CSR_WRITE_2(sc, reg, \ CSR_READ_2(sc, reg) & ~(x)) #define VR_SETBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | (x)) #define VR_CLRBIT32(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~(x)) #define SIO_SET(x) \ CSR_WRITE_1(sc, VR_MIICMD, \ CSR_READ_1(sc, VR_MIICMD) | (x)) #define SIO_CLR(x) \ CSR_WRITE_1(sc, VR_MIICMD, \ CSR_READ_1(sc, VR_MIICMD) & ~(x)) /* * Read an PHY register through the MII. */ int vr_mii_readreg(struct vr_softc *sc, struct vr_mii_frame *frame) { int s, i; s = splnet(); /* Set the PHY-address */ CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)| frame->mii_phyaddr); /* Set the register-address */ CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_READ_ENB); for (i = 0; i < 10000; i++) { if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_READ_ENB) == 0) break; DELAY(1); } frame->mii_data = CSR_READ_2(sc, VR_MIIDATA); splx(s); return(0); } /* * Write to a PHY register through the MII. */ int vr_mii_writereg(struct vr_softc *sc, struct vr_mii_frame *frame) { int s, i; s = splnet(); /* Set the PHY-address */ CSR_WRITE_1(sc, VR_PHYADDR, (CSR_READ_1(sc, VR_PHYADDR)& 0xe0)| frame->mii_phyaddr); /* Set the register-address and data to write */ CSR_WRITE_1(sc, VR_MIIADDR, frame->mii_regaddr); CSR_WRITE_2(sc, VR_MIIDATA, frame->mii_data); VR_SETBIT(sc, VR_MIICMD, VR_MIICMD_WRITE_ENB); for (i = 0; i < 10000; i++) { if ((CSR_READ_1(sc, VR_MIICMD) & VR_MIICMD_WRITE_ENB) == 0) break; DELAY(1); } splx(s); return(0); } int vr_miibus_readreg(struct device *dev, int phy, int reg) { struct vr_softc *sc = (struct vr_softc *)dev; struct vr_mii_frame frame; switch (sc->vr_revid) { case REV_ID_VT6102_APOLLO: case REV_ID_VT6103: if (phy != 1) return 0; default: break; } bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; vr_mii_readreg(sc, &frame); return(frame.mii_data); } void vr_miibus_writereg(struct device *dev, int phy, int reg, int data) { struct vr_softc *sc = (struct vr_softc *)dev; struct vr_mii_frame frame; switch (sc->vr_revid) { case REV_ID_VT6102_APOLLO: case REV_ID_VT6103: if (phy != 1) return; default: break; } bzero(&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; vr_mii_writereg(sc, &frame); } void vr_miibus_statchg(struct device *dev) { struct vr_softc *sc = (struct vr_softc *)dev; vr_setcfg(sc, sc->sc_mii.mii_media_active); } void vr_iff(struct vr_softc *sc) { struct arpcom *ac = &sc->arpcom; struct ifnet *ifp = &sc->arpcom.ac_if; int h = 0; u_int32_t hashes[2]; struct ether_multi *enm; struct ether_multistep step; u_int8_t rxfilt; rxfilt = CSR_READ_1(sc, VR_RXCFG); rxfilt &= ~(VR_RXCFG_RX_BROAD | VR_RXCFG_RX_MULTI | VR_RXCFG_RX_PROMISC); ifp->if_flags &= ~IFF_ALLMULTI; /* * Always accept broadcast frames. */ rxfilt |= VR_RXCFG_RX_BROAD; if (ifp->if_flags & IFF_PROMISC || ac->ac_multirangecnt > 0) { ifp->if_flags |= IFF_ALLMULTI; rxfilt |= VR_RXCFG_RX_MULTI; if (ifp->if_flags & IFF_PROMISC) rxfilt |= VR_RXCFG_RX_PROMISC; hashes[0] = hashes[1] = 0xFFFFFFFF; } else { /* Program new filter. */ rxfilt |= VR_RXCFG_RX_MULTI; bzero(hashes, sizeof(hashes)); ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); ETHER_NEXT_MULTI(step, enm); } } CSR_WRITE_4(sc, VR_MAR0, hashes[0]); CSR_WRITE_4(sc, VR_MAR1, hashes[1]); CSR_WRITE_1(sc, VR_RXCFG, rxfilt); } /* * In order to fiddle with the * 'full-duplex' and '100Mbps' bits in the netconfig register, we * first have to put the transmit and/or receive logic in the idle state. */ void vr_setcfg(struct vr_softc *sc, uint64_t media) { int i; if (sc->sc_mii.mii_media_status & IFM_ACTIVE && IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE) { sc->vr_link = 1; if (CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON)) VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON)); if ((media & IFM_GMASK) == IFM_FDX) VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); else VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON); } else { sc->vr_link = 0; VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON)); for (i = VR_TIMEOUT; i > 0; i--) { DELAY(10); if (!(CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON))) break; } if (i == 0) { #ifdef VR_DEBUG printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname); #endif sc->vr_flags |= VR_F_RESTART; } } } void vr_reset(struct vr_softc *sc) { int i; VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET); for (i = 0; i < VR_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET)) break; } if (i == VR_TIMEOUT) { if (sc->vr_revid < REV_ID_VT3065_A) printf("%s: reset never completed!\n", sc->sc_dev.dv_xname); else { #ifdef VR_DEBUG /* Use newer force reset command */ printf("%s: Using force reset command.\n", sc->sc_dev.dv_xname); #endif VR_SETBIT(sc, VR_MISC_CR1, VR_MISCCR1_FORSRST); } } /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); } /* * Probe for a VIA Rhine chip. */ int vr_probe(struct device *parent, void *match, void *aux) { const struct vr_type *vr; struct pci_attach_args *pa = (struct pci_attach_args *)aux; int i, nent = nitems(vr_devices); for (i = 0, vr = vr_devices; i < nent; i++, vr++) if (PCI_VENDOR(pa->pa_id) == vr->vr_vid && PCI_PRODUCT(pa->pa_id) == vr->vr_pid) return(1); return(0); } int vr_quirks(struct pci_attach_args *pa) { const struct vr_type *vr; int i, nent = nitems(vr_devices); for (i = 0, vr = vr_devices; i < nent; i++, vr++) if (PCI_VENDOR(pa->pa_id) == vr->vr_vid && PCI_PRODUCT(pa->pa_id) == vr->vr_pid) return(vr->vr_quirks); return(0); } int vr_dmamem_alloc(struct vr_softc *sc, struct vr_dmamem *vrm, bus_size_t size, u_int align) { vrm->vrm_size = size; if (bus_dmamap_create(sc->sc_dmat, vrm->vrm_size, 1, vrm->vrm_size, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &vrm->vrm_map) != 0) return (1); if (bus_dmamem_alloc(sc->sc_dmat, vrm->vrm_size, align, 0, &vrm->vrm_seg, 1, &vrm->vrm_nsegs, BUS_DMA_WAITOK | BUS_DMA_ZERO) != 0) goto destroy; if (bus_dmamem_map(sc->sc_dmat, &vrm->vrm_seg, vrm->vrm_nsegs, vrm->vrm_size, &vrm->vrm_kva, BUS_DMA_WAITOK) != 0) goto free; if (bus_dmamap_load(sc->sc_dmat, vrm->vrm_map, vrm->vrm_kva, vrm->vrm_size, NULL, BUS_DMA_WAITOK) != 0) goto unmap; return (0); unmap: bus_dmamem_unmap(sc->sc_dmat, vrm->vrm_kva, vrm->vrm_size); free: bus_dmamem_free(sc->sc_dmat, &vrm->vrm_seg, 1); destroy: bus_dmamap_destroy(sc->sc_dmat, vrm->vrm_map); return (1); } void vr_dmamem_free(struct vr_softc *sc, struct vr_dmamem *vrm) { bus_dmamap_unload(sc->sc_dmat, vrm->vrm_map); bus_dmamem_unmap(sc->sc_dmat, vrm->vrm_kva, vrm->vrm_size); bus_dmamem_free(sc->sc_dmat, &vrm->vrm_seg, 1); bus_dmamap_destroy(sc->sc_dmat, vrm->vrm_map); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void vr_attach(struct device *parent, struct device *self, void *aux) { int i; struct vr_softc *sc = (struct vr_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; struct ifnet *ifp = &sc->arpcom.ac_if; bus_size_t size; pci_set_powerstate(pa->pa_pc, pa->pa_tag, PCI_PMCSR_STATE_D0); /* * Map control/status registers. */ #ifdef VR_USEIOSPACE if (pci_mapreg_map(pa, VR_PCI_LOIO, PCI_MAPREG_TYPE_IO, 0, &sc->vr_btag, &sc->vr_bhandle, NULL, &size, 0)) { printf(": can't map i/o space\n"); return; } #else if (pci_mapreg_map(pa, VR_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0, &sc->vr_btag, &sc->vr_bhandle, NULL, &size, 0)) { printf(": can't map mem space\n"); return; } #endif /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": can't map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, vr_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": can't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } printf(": %s", intrstr); sc->vr_revid = PCI_REVISION(pa->pa_class); sc->sc_pc = pa->pa_pc; sc->sc_tag = pa->pa_tag; vr_chipinit(sc); /* * Get station address. The way the Rhine chips work, * you're not allowed to directly access the EEPROM once * they've been programmed a special way. Consequently, * we need to read the node address from the PAR0 and PAR1 * registers. */ VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD); DELAY(1000); for (i = 0; i < ETHER_ADDR_LEN; i++) sc->arpcom.ac_enaddr[i] = CSR_READ_1(sc, VR_PAR0 + i); /* * A Rhine chip was detected. Inform the world. */ printf(", address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); sc->sc_dmat = pa->pa_dmat; if (vr_dmamem_alloc(sc, &sc->sc_zeromap, 64, PAGE_SIZE) != 0) { printf(": failed to allocate zero pad memory\n"); return; } bzero(sc->sc_zeromap.vrm_kva, 64); bus_dmamap_sync(sc->sc_dmat, sc->sc_zeromap.vrm_map, 0, sc->sc_zeromap.vrm_map->dm_mapsize, BUS_DMASYNC_PREREAD); if (vr_dmamem_alloc(sc, &sc->sc_listmap, sizeof(struct vr_list_data), PAGE_SIZE) != 0) { printf(": failed to allocate dma map\n"); goto free_zero; } sc->vr_ldata = (struct vr_list_data *)sc->sc_listmap.vrm_kva; sc->vr_quirks = vr_quirks(pa); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = vr_ioctl; ifp->if_start = vr_start; ifp->if_watchdog = vr_watchdog; if (sc->vr_quirks & VR_Q_BABYJUMBO) ifp->if_hardmtu = VR_RXLEN_BABYJUMBO - ETHER_HDR_LEN - ETHER_CRC_LEN; bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); ifp->if_capabilities = IFCAP_VLAN_MTU; if (sc->vr_quirks & VR_Q_CSUM) ifp->if_capabilities |= IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4; #if NVLAN > 0 /* if the hardware can do VLAN tagging, say so. */ if (sc->vr_quirks & VR_Q_HWTAG) ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING; #endif #ifndef SMALL_KERNEL if (sc->vr_revid >= REV_ID_VT3065_A) { ifp->if_capabilities |= IFCAP_WOL; ifp->if_wol = vr_wol; vr_wol(ifp, 0); } #endif /* * Do MII setup. */ sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = vr_miibus_readreg; sc->sc_mii.mii_writereg = vr_miibus_writereg; sc->sc_mii.mii_statchg = vr_miibus_statchg; ifmedia_init(&sc->sc_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts); mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); timeout_set(&sc->sc_to, vr_tick, sc); timeout_set(&sc->sc_rxto, vr_rxtick, sc); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); return; free_zero: bus_dmamap_sync(sc->sc_dmat, sc->sc_zeromap.vrm_map, 0, sc->sc_zeromap.vrm_map->dm_mapsize, BUS_DMASYNC_POSTREAD); vr_dmamem_free(sc, &sc->sc_zeromap); fail: bus_space_unmap(sc->vr_btag, sc->vr_bhandle, size); } int vr_activate(struct device *self, int act) { struct vr_softc *sc = (struct vr_softc *)self; struct ifnet *ifp = &sc->arpcom.ac_if; int rv = 0; switch (act) { case DVACT_SUSPEND: if (ifp->if_flags & IFF_RUNNING) vr_stop(sc); rv = config_activate_children(self, act); break; case DVACT_RESUME: if (ifp->if_flags & IFF_UP) vr_init(sc); break; default: rv = config_activate_children(self, act); break; } return (rv); } /* * Initialize the transmit descriptors. */ int vr_list_tx_init(struct vr_softc *sc) { struct vr_chain_data *cd; struct vr_list_data *ld; int i; cd = &sc->vr_cdata; ld = sc->vr_ldata; cd->vr_tx_cnt = cd->vr_tx_pkts = 0; for (i = 0; i < VR_TX_LIST_CNT; i++) { cd->vr_tx_chain[i].vr_ptr = &ld->vr_tx_list[i]; cd->vr_tx_chain[i].vr_paddr = sc->sc_listmap.vrm_map->dm_segs[0].ds_addr + offsetof(struct vr_list_data, vr_tx_list[i]); if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, VR_MAXFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT, &cd->vr_tx_chain[i].vr_map)) return (ENOBUFS); if (i == (VR_TX_LIST_CNT - 1)) cd->vr_tx_chain[i].vr_nextdesc = &cd->vr_tx_chain[0]; else cd->vr_tx_chain[i].vr_nextdesc = &cd->vr_tx_chain[i + 1]; } cd->vr_tx_cons = cd->vr_tx_prod = &cd->vr_tx_chain[0]; return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int vr_list_rx_init(struct vr_softc *sc) { struct vr_chain_data *cd; struct vr_list_data *ld; struct vr_desc *d; int i, nexti; cd = &sc->vr_cdata; ld = sc->vr_ldata; for (i = 0; i < VR_RX_LIST_CNT; i++) { if (bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_READ, &cd->vr_rx_chain[i].vr_map)) return (ENOBUFS); d = (struct vr_desc *)&ld->vr_rx_list[i]; cd->vr_rx_chain[i].vr_ptr = d; cd->vr_rx_chain[i].vr_paddr = sc->sc_listmap.vrm_map->dm_segs[0].ds_addr + offsetof(struct vr_list_data, vr_rx_list[i]); if (i == (VR_RX_LIST_CNT - 1)) nexti = 0; else nexti = i + 1; cd->vr_rx_chain[i].vr_nextdesc = &cd->vr_rx_chain[nexti]; ld->vr_rx_list[i].vr_next = htole32(sc->sc_listmap.vrm_map->dm_segs[0].ds_addr + offsetof(struct vr_list_data, vr_rx_list[nexti])); } cd->vr_rx_prod = cd->vr_rx_cons = &cd->vr_rx_chain[0]; if_rxr_init(&sc->sc_rxring, 2, VR_RX_LIST_CNT - 1); vr_fill_rx_ring(sc); return (0); } void vr_fill_rx_ring(struct vr_softc *sc) { struct vr_chain_data *cd; struct vr_list_data *ld; u_int slots; cd = &sc->vr_cdata; ld = sc->vr_ldata; for (slots = if_rxr_get(&sc->sc_rxring, VR_RX_LIST_CNT); slots > 0; slots--) { if (vr_alloc_mbuf(sc, cd->vr_rx_prod)) break; cd->vr_rx_prod = cd->vr_rx_prod->vr_nextdesc; } if_rxr_put(&sc->sc_rxring, slots); if (if_rxr_inuse(&sc->sc_rxring) == 0) timeout_add(&sc->sc_rxto, 0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void vr_rxeof(struct vr_softc *sc) { struct mbuf *m; struct mbuf_list ml = MBUF_LIST_INITIALIZER(); struct ifnet *ifp; struct vr_chain_onefrag *cur_rx; int total_len = 0; u_int32_t rxstat, rxctl; ifp = &sc->arpcom.ac_if; while (if_rxr_inuse(&sc->sc_rxring) > 0) { bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0, sc->sc_listmap.vrm_map->dm_mapsize, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); rxstat = letoh32(sc->vr_cdata.vr_rx_cons->vr_ptr->vr_status); if (rxstat & VR_RXSTAT_OWN) break; rxctl = letoh32(sc->vr_cdata.vr_rx_cons->vr_ptr->vr_ctl); cur_rx = sc->vr_cdata.vr_rx_cons; m = cur_rx->vr_mbuf; cur_rx->vr_mbuf = NULL; sc->vr_cdata.vr_rx_cons = cur_rx->vr_nextdesc; if_rxr_put(&sc->sc_rxring, 1); /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if ((rxstat & VR_RXSTAT_RX_OK) == 0) { ifp->if_ierrors++; #ifdef VR_DEBUG printf("%s: rx error (%02x):", sc->sc_dev.dv_xname, rxstat & 0x000000ff); if (rxstat & VR_RXSTAT_CRCERR) printf(" crc error"); if (rxstat & VR_RXSTAT_FRAMEALIGNERR) printf(" frame alignment error"); if (rxstat & VR_RXSTAT_FIFOOFLOW) printf(" FIFO overflow"); if (rxstat & VR_RXSTAT_GIANT) printf(" received giant packet"); if (rxstat & VR_RXSTAT_RUNT) printf(" received runt packet"); if (rxstat & VR_RXSTAT_BUSERR) printf(" system bus error"); if (rxstat & VR_RXSTAT_BUFFERR) printf(" rx buffer error"); printf("\n"); #endif m_freem(m); continue; } /* No errors; receive the packet. */ total_len = VR_RXBYTES(letoh32(cur_rx->vr_ptr->vr_status)); bus_dmamap_sync(sc->sc_dmat, cur_rx->vr_map, 0, cur_rx->vr_map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, cur_rx->vr_map); /* * The VIA Rhine chip includes the CRC with every * received frame, and there's no way to turn this * behavior off so trim the CRC manually. */ total_len -= ETHER_CRC_LEN; #ifdef __STRICT_ALIGNMENT { struct mbuf *m0; m0 = m_devget(mtod(m, caddr_t), total_len, ETHER_ALIGN); m_freem(m); if (m0 == NULL) { ifp->if_ierrors++; continue; } m = m0; } #else m->m_pkthdr.len = m->m_len = total_len; #endif if (sc->vr_quirks & VR_Q_CSUM && (rxstat & VR_RXSTAT_FRAG) == 0 && (rxctl & VR_RXCTL_IP) != 0) { /* Checksum is valid for non-fragmented IP packets. */ if ((rxctl & VR_RXCTL_IPOK) == VR_RXCTL_IPOK) m->m_pkthdr.csum_flags |= M_IPV4_CSUM_IN_OK; if (rxctl & (VR_RXCTL_TCP | VR_RXCTL_UDP) && ((rxctl & VR_RXCTL_TCPUDPOK) != 0)) m->m_pkthdr.csum_flags |= M_TCP_CSUM_IN_OK | M_UDP_CSUM_IN_OK; } #if NVLAN > 0 /* * If there's a tagged packet, the 802.1q header will be at the * 4-byte boundary following the CRC. There will be 2 bytes * TPID (0x8100) and 2 bytes TCI (including VLAN ID). * This isn't in the data sheet. */ if (rxctl & VR_RXCTL_TAG) { int offset = ((total_len + 3) & ~3) + ETHER_CRC_LEN + 2; m->m_pkthdr.ether_vtag = htons(*(u_int16_t *) ((u_int8_t *)m->m_data + offset)); m->m_flags |= M_VLANTAG; } #endif ml_enqueue(&ml, m); } if (ifiq_input(&ifp->if_rcv, &ml)) if_rxr_livelocked(&sc->sc_rxring); vr_fill_rx_ring(sc); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0, sc->sc_listmap.vrm_map->dm_mapsize, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } void vr_rxeoc(struct vr_softc *sc) { struct ifnet *ifp; int i; ifp = &sc->arpcom.ac_if; ifp->if_ierrors++; VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); DELAY(10000); for (i = 0x400; i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RX_ON); i--) ; /* Wait for receiver to stop */ if (!i) { printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname); sc->vr_flags |= VR_F_RESTART; return; } vr_rxeof(sc); CSR_WRITE_4(sc, VR_RXADDR, sc->vr_cdata.vr_rx_cons->vr_paddr); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO); } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void vr_txeof(struct vr_softc *sc) { struct vr_chain *cur_tx; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ cur_tx = sc->vr_cdata.vr_tx_cons; while (cur_tx != sc->vr_cdata.vr_tx_prod) { u_int32_t txstat, txctl; int i; txstat = letoh32(cur_tx->vr_ptr->vr_status); txctl = letoh32(cur_tx->vr_ptr->vr_ctl); if ((txstat & VR_TXSTAT_ABRT) || (txstat & VR_TXSTAT_UDF)) { for (i = 0x400; i && (CSR_READ_2(sc, VR_COMMAND) & VR_CMD_TX_ON); i--) ; /* Wait for chip to shutdown */ if (!i) { printf("%s: tx shutdown timeout\n", sc->sc_dev.dv_xname); sc->vr_flags |= VR_F_RESTART; break; } cur_tx->vr_ptr->vr_status = htole32(VR_TXSTAT_OWN); CSR_WRITE_4(sc, VR_TXADDR, cur_tx->vr_paddr); break; } if (txstat & VR_TXSTAT_OWN) break; sc->vr_cdata.vr_tx_cnt--; /* Only the first descriptor in the chain is valid. */ if ((txctl & VR_TXCTL_FIRSTFRAG) == 0) goto next; if (txstat & VR_TXSTAT_ERRSUM) { ifp->if_oerrors++; if (txstat & VR_TXSTAT_DEFER) ifp->if_collisions++; if (txstat & VR_TXSTAT_LATECOLL) ifp->if_collisions++; } ifp->if_collisions +=(txstat & VR_TXSTAT_COLLCNT) >> 3; if (cur_tx->vr_map != NULL && cur_tx->vr_map->dm_nsegs > 0) bus_dmamap_unload(sc->sc_dmat, cur_tx->vr_map); m_freem(cur_tx->vr_mbuf); cur_tx->vr_mbuf = NULL; ifq_clr_oactive(&ifp->if_snd); next: cur_tx = cur_tx->vr_nextdesc; } sc->vr_cdata.vr_tx_cons = cur_tx; if (sc->vr_cdata.vr_tx_cnt == 0) ifp->if_timer = 0; } void vr_tick(void *xsc) { struct vr_softc *sc = xsc; int s; s = splnet(); if (sc->vr_flags & VR_F_RESTART) { printf("%s: restarting\n", sc->sc_dev.dv_xname); vr_init(sc); sc->vr_flags &= ~VR_F_RESTART; } mii_tick(&sc->sc_mii); timeout_add_sec(&sc->sc_to, 1); splx(s); } void vr_rxtick(void *xsc) { struct vr_softc *sc = xsc; int s; s = splnet(); if (if_rxr_inuse(&sc->sc_rxring) == 0) { vr_fill_rx_ring(sc); if (if_rxr_inuse(&sc->sc_rxring) == 0) timeout_add(&sc->sc_rxto, 1); } splx(s); } int vr_intr(void *arg) { struct vr_softc *sc; struct ifnet *ifp; u_int16_t status; int claimed = 0; sc = arg; ifp = &sc->arpcom.ac_if; /* Suppress unwanted interrupts. */ if (!(ifp->if_flags & IFF_UP)) { vr_stop(sc); return 0; } status = CSR_READ_2(sc, VR_ISR); if (status) CSR_WRITE_2(sc, VR_ISR, status); if (status & VR_INTRS) { claimed = 1; if (status & VR_ISR_RX_OK) vr_rxeof(sc); if (status & VR_ISR_RX_DROPPED) { #ifdef VR_DEBUG printf("%s: rx packet lost\n", sc->sc_dev.dv_xname); #endif ifp->if_ierrors++; } if ((status & VR_ISR_RX_ERR) || (status & VR_ISR_RX_NOBUF) || (status & VR_ISR_RX_OFLOW)) { #ifdef VR_DEBUG printf("%s: receive error (%04x)", sc->sc_dev.dv_xname, status); if (status & VR_ISR_RX_NOBUF) printf(" no buffers"); if (status & VR_ISR_RX_OFLOW) printf(" overflow"); printf("\n"); #endif vr_rxeoc(sc); } if ((status & VR_ISR_BUSERR) || (status & VR_ISR_TX_UNDERRUN)) { if (status & VR_ISR_BUSERR) printf("%s: PCI bus error\n", sc->sc_dev.dv_xname); if (status & VR_ISR_TX_UNDERRUN) printf("%s: transmit underrun\n", sc->sc_dev.dv_xname); vr_init(sc); status = 0; } if ((status & VR_ISR_TX_OK) || (status & VR_ISR_TX_ABRT) || (status & VR_ISR_TX_ABRT2) || (status & VR_ISR_UDFI)) { vr_txeof(sc); if ((status & VR_ISR_UDFI) || (status & VR_ISR_TX_ABRT2) || (status & VR_ISR_TX_ABRT)) { #ifdef VR_DEBUG if (status & (VR_ISR_TX_ABRT | VR_ISR_TX_ABRT2)) printf("%s: transmit aborted\n", sc->sc_dev.dv_xname); if (status & VR_ISR_UDFI) printf("%s: transmit underflow\n", sc->sc_dev.dv_xname); #endif ifp->if_oerrors++; if (sc->vr_cdata.vr_tx_cons->vr_mbuf != NULL) { VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO); } } } } if (!ifq_empty(&ifp->if_snd)) vr_start(ifp); return (claimed); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int vr_encap(struct vr_softc *sc, struct vr_chain **cp, struct mbuf *m) { struct vr_chain *c = *cp; struct vr_desc *f = NULL; u_int32_t vr_ctl = 0, vr_status = 0, intdisable = 0; bus_dmamap_t txmap; int i, runt = 0; int error; if (sc->vr_quirks & VR_Q_CSUM) { if (m->m_pkthdr.csum_flags & M_IPV4_CSUM_OUT) vr_ctl |= VR_TXCTL_IPCSUM; if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) vr_ctl |= VR_TXCTL_TCPCSUM; if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) vr_ctl |= VR_TXCTL_UDPCSUM; } if (sc->vr_quirks & VR_Q_NEEDALIGN) { /* Deep copy for chips that need alignment */ error = EFBIG; } else { error = bus_dmamap_load_mbuf(sc->sc_dmat, c->vr_map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); } switch (error) { case 0: break; case EFBIG: if (m_defrag(m, M_DONTWAIT) == 0 && bus_dmamap_load_mbuf(sc->sc_dmat, c->vr_map, m, BUS_DMA_NOWAIT) == 0) break; /* FALLTHROUGH */ default: return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmat, c->vr_map, 0, c->vr_map->dm_mapsize, BUS_DMASYNC_PREWRITE); if (c->vr_map->dm_mapsize < VR_MIN_FRAMELEN) runt = 1; #if NVLAN > 0 /* * Tell chip to insert VLAN tag if needed. * This chip expects the VLAN ID (0x0FFF) and the PCP (0xE000) * in only 15 bits without the gap at 0x1000 (reserved for DEI). * Therefore we need to de- / re-construct the VLAN header. */ if (m->m_flags & M_VLANTAG) { u_int32_t vtag = m->m_pkthdr.ether_vtag; vtag = EVL_VLANOFTAG(vtag) | EVL_PRIOFTAG(vtag) << 12; vr_status |= vtag << VR_TXSTAT_PQSHIFT; vr_ctl |= htole32(VR_TXCTL_INSERTTAG); } #endif /* * We only want TX completion interrupts on every Nth packet. * We need to set VR_TXNEXT_INTDISABLE on every descriptor except * for the last discriptor of every Nth packet, where we set * VR_TXCTL_FINT. The former is in the specs for only some chips. * present: VT6102 VT6105M VT8235M * not present: VT86C100 6105LOM */ if (++sc->vr_cdata.vr_tx_pkts % VR_TX_INTR_THRESH != 0 && sc->vr_quirks & VR_Q_INTDISABLE) intdisable = VR_TXNEXT_INTDISABLE; c->vr_mbuf = m; txmap = c->vr_map; for (i = 0; i < txmap->dm_nsegs; i++) { if (i != 0) *cp = c = c->vr_nextdesc; f = c->vr_ptr; f->vr_ctl = htole32(txmap->dm_segs[i].ds_len | VR_TXCTL_TLINK | vr_ctl); if (i == 0) f->vr_ctl |= htole32(VR_TXCTL_FIRSTFRAG); f->vr_status = htole32(vr_status); f->vr_data = htole32(txmap->dm_segs[i].ds_addr); f->vr_next = htole32(c->vr_nextdesc->vr_paddr | intdisable); sc->vr_cdata.vr_tx_cnt++; } /* Pad runt frames */ if (runt) { *cp = c = c->vr_nextdesc; f = c->vr_ptr; f->vr_ctl = htole32((VR_MIN_FRAMELEN - txmap->dm_mapsize) | VR_TXCTL_TLINK | vr_ctl); f->vr_status = htole32(vr_status); f->vr_data = htole32(sc->sc_zeromap.vrm_map->dm_segs[0].ds_addr); f->vr_next = htole32(c->vr_nextdesc->vr_paddr | intdisable); sc->vr_cdata.vr_tx_cnt++; } /* Set EOP on the last descriptor */ f->vr_ctl |= htole32(VR_TXCTL_LASTFRAG); if (sc->vr_cdata.vr_tx_pkts % VR_TX_INTR_THRESH == 0) f->vr_ctl |= htole32(VR_TXCTL_FINT); return (0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void vr_start(struct ifnet *ifp) { struct vr_softc *sc; struct mbuf *m; struct vr_chain *cur_tx, *head_tx; unsigned int queued = 0; sc = ifp->if_softc; if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) return; if (sc->vr_link == 0) return; cur_tx = sc->vr_cdata.vr_tx_prod; for (;;) { if (sc->vr_cdata.vr_tx_cnt + VR_MAXFRAGS >= VR_TX_LIST_CNT - 1) { ifq_set_oactive(&ifp->if_snd); break; } m = ifq_dequeue(&ifp->if_snd); if (m == NULL) break; /* Pack the data into the descriptor. */ head_tx = cur_tx; if (vr_encap(sc, &cur_tx, m)) { m_freem(m); ifp->if_oerrors++; continue; } queued++; /* Only set ownership bit on first descriptor */ head_tx->vr_ptr->vr_status |= htole32(VR_TXSTAT_OWN); #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap_ether(ifp->if_bpf, m, BPF_DIRECTION_OUT); #endif cur_tx = cur_tx->vr_nextdesc; } if (queued > 0) { sc->vr_cdata.vr_tx_prod = cur_tx; bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0, sc->sc_listmap.vrm_map->dm_mapsize, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); /* Tell the chip to start transmitting. */ VR_SETBIT16(sc, VR_COMMAND, /*VR_CMD_TX_ON|*/VR_CMD_TX_GO); /* Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } } void vr_chipinit(struct vr_softc *sc) { /* * Make sure it isn't suspended. */ if (pci_get_capability(sc->sc_pc, sc->sc_tag, PCI_CAP_PWRMGMT, NULL, NULL)) VR_CLRBIT(sc, VR_STICKHW, (VR_STICKHW_DS0|VR_STICKHW_DS1)); /* Reset the adapter. */ vr_reset(sc); /* * Turn on bit2 (MIION) in PCI configuration register 0x53 during * initialization and disable AUTOPOLL. */ pci_conf_write(sc->sc_pc, sc->sc_tag, VR_PCI_MODE, pci_conf_read(sc->sc_pc, sc->sc_tag, VR_PCI_MODE) | (VR_MODE3_MIION << 24)); VR_CLRBIT(sc, VR_MIICMD, VR_MIICMD_AUTOPOLL); } void vr_init(void *xsc) { struct vr_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; struct mii_data *mii = &sc->sc_mii; int s, i; s = splnet(); /* * Cancel pending I/O and free all RX/TX buffers. */ vr_stop(sc); vr_chipinit(sc); /* * Set our station address. */ for (i = 0; i < ETHER_ADDR_LEN; i++) CSR_WRITE_1(sc, VR_PAR0 + i, sc->arpcom.ac_enaddr[i]); /* Set DMA size */ VR_CLRBIT(sc, VR_BCR0, VR_BCR0_DMA_LENGTH); VR_SETBIT(sc, VR_BCR0, VR_BCR0_DMA_STORENFWD); /* * BCR0 and BCR1 can override the RXCFG and TXCFG registers, * so we must set both. */ VR_CLRBIT(sc, VR_BCR0, VR_BCR0_RX_THRESH); VR_SETBIT(sc, VR_BCR0, VR_BCR0_RXTHRESH128BYTES); VR_CLRBIT(sc, VR_BCR1, VR_BCR1_TX_THRESH); VR_SETBIT(sc, VR_BCR1, VR_BCR1_TXTHRESHSTORENFWD); VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH); VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_128BYTES); VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH); VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD); if (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) VR_SETBIT(sc, VR_TXCFG, VR_TXCFG_TXTAGEN); /* Init circular RX list. */ if (vr_list_rx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no memory for rx buffers\n", sc->sc_dev.dv_xname); vr_stop(sc); splx(s); return; } /* * Init tx descriptors. */ if (vr_list_tx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no memory for tx buffers\n", sc->sc_dev.dv_xname); vr_stop(sc); splx(s); return; } /* * Program promiscuous mode and multicast filters. */ vr_iff(sc); /* * Load the address of the RX list. */ CSR_WRITE_4(sc, VR_RXADDR, sc->vr_cdata.vr_rx_cons->vr_paddr); /* Enable receiver and transmitter. */ CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START| VR_CMD_TX_ON|VR_CMD_RX_ON| VR_CMD_RX_GO); CSR_WRITE_4(sc, VR_TXADDR, sc->sc_listmap.vrm_map->dm_segs[0].ds_addr + offsetof(struct vr_list_data, vr_tx_list[0])); /* * Enable interrupts. */ CSR_WRITE_2(sc, VR_ISR, 0xFFFF); CSR_WRITE_2(sc, VR_IMR, VR_INTRS); /* Restore state of BMCR */ sc->vr_link = 1; mii_mediachg(mii); ifp->if_flags |= IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); if (!timeout_pending(&sc->sc_to)) timeout_add_sec(&sc->sc_to, 1); splx(s); } /* * Set media options. */ int vr_ifmedia_upd(struct ifnet *ifp) { struct vr_softc *sc = ifp->if_softc; if (ifp->if_flags & IFF_UP) vr_init(sc); return (0); } /* * Report current media status. */ void vr_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct vr_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } int vr_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct vr_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; int s, error = 0; s = splnet(); switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; if (!(ifp->if_flags & IFF_RUNNING)) vr_init(sc); break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { if (ifp->if_flags & IFF_RUNNING) error = ENETRESET; else vr_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) vr_stop(sc); } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); break; case SIOCGIFRXR: error = if_rxr_ioctl((struct if_rxrinfo *)ifr->ifr_data, NULL, MCLBYTES, &sc->sc_rxring); break; default: error = ether_ioctl(ifp, &sc->arpcom, command, data); } if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) vr_iff(sc); error = 0; } splx(s); return(error); } void vr_watchdog(struct ifnet *ifp) { struct vr_softc *sc; sc = ifp->if_softc; /* * Since we're only asking for completion interrupts only every * few packets, occasionally the watchdog will fire when we have * some TX descriptors to reclaim, so check for that first. */ vr_txeof(sc); if (sc->vr_cdata.vr_tx_cnt == 0) return; ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); vr_init(sc); if (!ifq_empty(&ifp->if_snd)) vr_start(ifp); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void vr_stop(struct vr_softc *sc) { int i; struct ifnet *ifp; bus_dmamap_t map; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->sc_to); ifp->if_flags &= ~IFF_RUNNING; ifq_clr_oactive(&ifp->if_snd); VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP); VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON)); /* wait for xfers to shutdown */ for (i = VR_TIMEOUT; i > 0; i--) { DELAY(10); if (!(CSR_READ_2(sc, VR_COMMAND) & (VR_CMD_TX_ON|VR_CMD_RX_ON))) break; } #ifdef VR_DEBUG if (i == 0) printf("%s: rx shutdown error!\n", sc->sc_dev.dv_xname); #endif CSR_WRITE_2(sc, VR_IMR, 0x0000); CSR_WRITE_4(sc, VR_TXADDR, 0x00000000); CSR_WRITE_4(sc, VR_RXADDR, 0x00000000); /* * Free data in the RX lists. */ for (i = 0; i < VR_RX_LIST_CNT; i++) { if (sc->vr_cdata.vr_rx_chain[i].vr_mbuf != NULL) { m_freem(sc->vr_cdata.vr_rx_chain[i].vr_mbuf); sc->vr_cdata.vr_rx_chain[i].vr_mbuf = NULL; } map = sc->vr_cdata.vr_rx_chain[i].vr_map; if (map != NULL) { if (map->dm_nsegs > 0) bus_dmamap_unload(sc->sc_dmat, map); bus_dmamap_destroy(sc->sc_dmat, map); sc->vr_cdata.vr_rx_chain[i].vr_map = NULL; } } bzero(&sc->vr_ldata->vr_rx_list, sizeof(sc->vr_ldata->vr_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < VR_TX_LIST_CNT; i++) { if (sc->vr_cdata.vr_tx_chain[i].vr_mbuf != NULL) { m_freem(sc->vr_cdata.vr_tx_chain[i].vr_mbuf); sc->vr_cdata.vr_tx_chain[i].vr_mbuf = NULL; ifp->if_oerrors++; } map = sc->vr_cdata.vr_tx_chain[i].vr_map; if (map != NULL) { if (map->dm_nsegs > 0) bus_dmamap_unload(sc->sc_dmat, map); bus_dmamap_destroy(sc->sc_dmat, map); sc->vr_cdata.vr_tx_chain[i].vr_map = NULL; } } bzero(&sc->vr_ldata->vr_tx_list, sizeof(sc->vr_ldata->vr_tx_list)); } #ifndef SMALL_KERNEL int vr_wol(struct ifnet *ifp, int enable) { struct vr_softc *sc = ifp->if_softc; /* Clear WOL configuration */ CSR_WRITE_1(sc, VR_WOLCRCLR, 0xFF); /* Clear event status bits. */ CSR_WRITE_1(sc, VR_PWRCSRCLR, 0xFF); /* Disable PME# assertion upon wake event. */ VR_CLRBIT(sc, VR_STICKHW, VR_STICKHW_WOL_ENB); VR_SETBIT(sc, VR_WOLCFGCLR, VR_WOLCFG_PMEOVR); if (enable) { VR_SETBIT(sc, VR_WOLCRSET, VR_WOLCR_MAGIC); /* Enable PME# assertion upon wake event. */ VR_SETBIT(sc, VR_STICKHW, VR_STICKHW_WOL_ENB); VR_SETBIT(sc, VR_WOLCFGSET, VR_WOLCFG_PMEOVR); } return (0); } #endif int vr_alloc_mbuf(struct vr_softc *sc, struct vr_chain_onefrag *r) { struct vr_desc *d; struct mbuf *m; if (r == NULL) return (EINVAL); m = MCLGETI(NULL, M_DONTWAIT, NULL, MCLBYTES); if (!m) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, sizeof(u_int64_t)); if (bus_dmamap_load_mbuf(sc->sc_dmat, r->vr_map, m, BUS_DMA_NOWAIT)) { m_free(m); return (ENOBUFS); } bus_dmamap_sync(sc->sc_dmat, r->vr_map, 0, r->vr_map->dm_mapsize, BUS_DMASYNC_PREREAD); /* Reinitialize the RX descriptor */ r->vr_mbuf = m; d = r->vr_ptr; d->vr_data = htole32(r->vr_map->dm_segs[0].ds_addr); if (sc->vr_quirks & VR_Q_BABYJUMBO) d->vr_ctl = htole32(VR_RXCTL | VR_RXLEN_BABYJUMBO); else d->vr_ctl = htole32(VR_RXCTL | VR_RXLEN); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0, sc->sc_listmap.vrm_map->dm_mapsize, BUS_DMASYNC_PREWRITE); d->vr_status = htole32(VR_RXSTAT); bus_dmamap_sync(sc->sc_dmat, sc->sc_listmap.vrm_map, 0, sc->sc_listmap.vrm_map->dm_mapsize, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); return (0); }