/* $OpenBSD: if_wb.c,v 1.29 2005/08/09 04:10:12 mickey Exp $ */ /* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: src/sys/pci/if_wb.c,v 1.26 1999/09/25 17:29:02 wpaul Exp $ */ /* * Winbond fast ethernet PCI NIC driver * * Supports various cheap network adapters based on the Winbond W89C840F * fast ethernet controller chip. This includes adapters manufactured by * Winbond itself and some made by Linksys. * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The Winbond W89C840F chip is a bus master; in some ways it resembles * a DEC 'tulip' chip, only not as complicated. Unfortunately, it has * one major difference which is that while the registers do many of * the same things as a tulip adapter, the offsets are different: where * tulip registers are typically spaced 8 bytes apart, the Winbond * registers are spaced 4 bytes apart. The receiver filter is also * programmed differently. * * Like the tulip, the Winbond chip uses small descriptors containing * a status word, a control word and 32-bit areas that can either be used * to point to two external data blocks, or to point to a single block * and another descriptor in a linked list. Descriptors can be grouped * together in blocks to form fixed length rings or can be chained * together in linked lists. A single packet may be spread out over * several descriptors if necessary. * * For the receive ring, this driver uses a linked list of descriptors, * each pointing to a single mbuf cluster buffer, which us large enough * to hold an entire packet. The link list is looped back to created a * closed ring. * * For transmission, the driver creates a linked list of 'super descriptors' * which each contain several individual descriptors linked toghether. * Each 'super descriptor' contains WB_MAXFRAGS descriptors, which we * abuse as fragment pointers. This allows us to use a buffer management * scheme very similar to that used in the ThunderLAN and Etherlink XL * drivers. * * Autonegotiation is performed using the external PHY via the MII bus. * The sample boards I have all use a Davicom PHY. * * Note: the author of the Linux driver for the Winbond chip alludes * to some sort of flaw in the chip's design that seems to mandate some * drastic workaround which signigicantly impairs transmit performance. * I have no idea what he's on about: transmit performance with all * three of my test boards seems fine. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include #include #include #include #include #define WB_USEIOSPACE /* #define WB_BACKGROUND_AUTONEG */ #include int wb_probe(struct device *, void *, void *); void wb_attach(struct device *, struct device *, void *); void wb_bfree(caddr_t, u_int, void *); int wb_newbuf(struct wb_softc *, struct wb_chain_onefrag *, struct mbuf *); int wb_encap(struct wb_softc *, struct wb_chain *, struct mbuf *); void wb_rxeof(struct wb_softc *); void wb_rxeoc(struct wb_softc *); void wb_txeof(struct wb_softc *); void wb_txeoc(struct wb_softc *); int wb_intr(void *); void wb_tick(void *); void wb_start(struct ifnet *); int wb_ioctl(struct ifnet *, u_long, caddr_t); void wb_init(void *); void wb_stop(struct wb_softc *); void wb_watchdog(struct ifnet *); void wb_shutdown(void *); int wb_ifmedia_upd(struct ifnet *); void wb_ifmedia_sts(struct ifnet *, struct ifmediareq *); void wb_eeprom_putbyte(struct wb_softc *, int); void wb_eeprom_getword(struct wb_softc *, int, u_int16_t *); void wb_read_eeprom(struct wb_softc *, caddr_t, int, int, int); void wb_mii_sync(struct wb_softc *); void wb_mii_send(struct wb_softc *, u_int32_t, int); int wb_mii_readreg(struct wb_softc *, struct wb_mii_frame *); int wb_mii_writereg(struct wb_softc *, struct wb_mii_frame *); void wb_setcfg(struct wb_softc *, u_int32_t); u_int8_t wb_calchash(caddr_t); void wb_setmulti(struct wb_softc *); void wb_reset(struct wb_softc *); void wb_fixmedia(struct wb_softc *); int wb_list_rx_init(struct wb_softc *); int wb_list_tx_init(struct wb_softc *); int wb_miibus_readreg(struct device *, int, int); void wb_miibus_writereg(struct device *, int, int, int); void wb_miibus_statchg(struct device *); #define WB_SETBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) | x) #define WB_CLRBIT(sc, reg, x) \ CSR_WRITE_4(sc, reg, \ CSR_READ_4(sc, reg) & ~x) #define SIO_SET(x) \ CSR_WRITE_4(sc, WB_SIO, \ CSR_READ_4(sc, WB_SIO) | x) #define SIO_CLR(x) \ CSR_WRITE_4(sc, WB_SIO, \ CSR_READ_4(sc, WB_SIO) & ~x) /* * Send a read command and address to the EEPROM, check for ACK. */ void wb_eeprom_putbyte(sc, addr) struct wb_softc *sc; int addr; { register int d, i; d = addr | WB_EECMD_READ; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { SIO_SET(WB_SIO_EE_DATAIN); } else { SIO_CLR(WB_SIO_EE_DATAIN); } DELAY(100); SIO_SET(WB_SIO_EE_CLK); DELAY(150); SIO_CLR(WB_SIO_EE_CLK); DELAY(100); } return; } /* * Read a word of data stored in the EEPROM at address 'addr.' */ void wb_eeprom_getword(sc, addr, dest) struct wb_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Enter EEPROM access mode. */ CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS); /* * Send address of word we want to read. */ wb_eeprom_putbyte(sc, addr); CSR_WRITE_4(sc, WB_SIO, WB_SIO_EESEL|WB_SIO_EE_CS); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { SIO_SET(WB_SIO_EE_CLK); DELAY(100); if (CSR_READ_4(sc, WB_SIO) & WB_SIO_EE_DATAOUT) word |= i; SIO_CLR(WB_SIO_EE_CLK); DELAY(100); } /* Turn off EEPROM access mode. */ CSR_WRITE_4(sc, WB_SIO, 0); *dest = word; return; } /* * Read a sequence of words from the EEPROM. */ void wb_read_eeprom(sc, dest, off, cnt, swap) struct wb_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { wb_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return; } /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ void wb_mii_sync(sc) struct wb_softc *sc; { register int i; SIO_SET(WB_SIO_MII_DIR|WB_SIO_MII_DATAIN); for (i = 0; i < 32; i++) { SIO_SET(WB_SIO_MII_CLK); DELAY(1); SIO_CLR(WB_SIO_MII_CLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ void wb_mii_send(sc, bits, cnt) struct wb_softc *sc; u_int32_t bits; int cnt; { int i; SIO_CLR(WB_SIO_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { SIO_SET(WB_SIO_MII_DATAIN); } else { SIO_CLR(WB_SIO_MII_DATAIN); } DELAY(1); SIO_CLR(WB_SIO_MII_CLK); DELAY(1); SIO_SET(WB_SIO_MII_CLK); } } /* * Read an PHY register through the MII. */ int wb_mii_readreg(sc, frame) struct wb_softc *sc; struct wb_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = WB_MII_STARTDELIM; frame->mii_opcode = WB_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; CSR_WRITE_4(sc, WB_SIO, 0); /* * Turn on data xmit. */ SIO_SET(WB_SIO_MII_DIR); wb_mii_sync(sc); /* * Send command/address info. */ wb_mii_send(sc, frame->mii_stdelim, 2); wb_mii_send(sc, frame->mii_opcode, 2); wb_mii_send(sc, frame->mii_phyaddr, 5); wb_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ SIO_CLR((WB_SIO_MII_CLK|WB_SIO_MII_DATAIN)); DELAY(1); SIO_SET(WB_SIO_MII_CLK); DELAY(1); /* Turn off xmit. */ SIO_CLR(WB_SIO_MII_DIR); /* Check for ack */ SIO_CLR(WB_SIO_MII_CLK); DELAY(1); ack = CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT; SIO_SET(WB_SIO_MII_CLK); DELAY(1); SIO_CLR(WB_SIO_MII_CLK); DELAY(1); SIO_SET(WB_SIO_MII_CLK); DELAY(1); /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { SIO_CLR(WB_SIO_MII_CLK); DELAY(1); SIO_SET(WB_SIO_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { SIO_CLR(WB_SIO_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_4(sc, WB_SIO) & WB_SIO_MII_DATAOUT) frame->mii_data |= i; DELAY(1); } SIO_SET(WB_SIO_MII_CLK); DELAY(1); } fail: SIO_CLR(WB_SIO_MII_CLK); DELAY(1); SIO_SET(WB_SIO_MII_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ int wb_mii_writereg(sc, frame) struct wb_softc *sc; struct wb_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = WB_MII_STARTDELIM; frame->mii_opcode = WB_MII_WRITEOP; frame->mii_turnaround = WB_MII_TURNAROUND; /* * Turn on data output. */ SIO_SET(WB_SIO_MII_DIR); wb_mii_sync(sc); wb_mii_send(sc, frame->mii_stdelim, 2); wb_mii_send(sc, frame->mii_opcode, 2); wb_mii_send(sc, frame->mii_phyaddr, 5); wb_mii_send(sc, frame->mii_regaddr, 5); wb_mii_send(sc, frame->mii_turnaround, 2); wb_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ SIO_SET(WB_SIO_MII_CLK); DELAY(1); SIO_CLR(WB_SIO_MII_CLK); DELAY(1); /* * Turn off xmit. */ SIO_CLR(WB_SIO_MII_DIR); splx(s); return(0); } int wb_miibus_readreg(dev, phy, reg) struct device *dev; int phy, reg; { struct wb_softc *sc = (struct wb_softc *)dev; struct wb_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; wb_mii_readreg(sc, &frame); return(frame.mii_data); } void wb_miibus_writereg(dev, phy, reg, data) struct device *dev; int phy, reg, data; { struct wb_softc *sc = (struct wb_softc *)dev; struct wb_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = phy; frame.mii_regaddr = reg; frame.mii_data = data; wb_mii_writereg(sc, &frame); return; } void wb_miibus_statchg(dev) struct device *dev; { struct wb_softc *sc = (struct wb_softc *)dev; wb_setcfg(sc, sc->sc_mii.mii_media_active); } /* * Program the 64-bit multicast hash filter. */ void wb_setmulti(sc) struct wb_softc *sc; { struct ifnet *ifp; int h = 0; u_int32_t hashes[2] = { 0, 0 }; struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; u_int32_t rxfilt; int mcnt = 0; ifp = &sc->arpcom.ac_if; rxfilt = CSR_READ_4(sc, WB_NETCFG); allmulti: if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= WB_NETCFG_RX_MULTI; CSR_WRITE_4(sc, WB_NETCFG, rxfilt); CSR_WRITE_4(sc, WB_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, WB_MAR1, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, WB_MAR0, 0); CSR_WRITE_4(sc, WB_MAR1, 0); /* now program new ones */ ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { ifp->if_flags |= IFF_ALLMULTI; goto allmulti; } h = ~(ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) >> 26); if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mcnt++; ETHER_NEXT_MULTI(step, enm); } if (mcnt) rxfilt |= WB_NETCFG_RX_MULTI; else rxfilt &= ~WB_NETCFG_RX_MULTI; CSR_WRITE_4(sc, WB_MAR0, hashes[0]); CSR_WRITE_4(sc, WB_MAR1, hashes[1]); CSR_WRITE_4(sc, WB_NETCFG, rxfilt); return; } /* * The Winbond manual states that in order to fiddle with the * 'full-duplex' and '100Mbps' bits in the netconfig register, we * first have to put the transmit and/or receive logic in the idle state. */ void wb_setcfg(sc, media) struct wb_softc *sc; u_int32_t media; { int i, restart = 0; if (CSR_READ_4(sc, WB_NETCFG) & (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)) { restart = 1; WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_TX_ON|WB_NETCFG_RX_ON)); for (i = 0; i < WB_TIMEOUT; i++) { DELAY(10); if ((CSR_READ_4(sc, WB_ISR) & WB_ISR_TX_IDLE) && (CSR_READ_4(sc, WB_ISR) & WB_ISR_RX_IDLE)) break; } if (i == WB_TIMEOUT) printf("%s: failed to force tx and " "rx to idle state\n", sc->sc_dev.dv_xname); } if (IFM_SUBTYPE(media) == IFM_10_T) WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS); else WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_100MBPS); if ((media & IFM_GMASK) == IFM_FDX) WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX); else WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_FULLDUPLEX); if (restart) WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON|WB_NETCFG_RX_ON); return; } void wb_reset(sc) struct wb_softc *sc; { register int i; struct mii_data *mii = &sc->sc_mii; CSR_WRITE_4(sc, WB_NETCFG, 0); CSR_WRITE_4(sc, WB_BUSCTL, 0); CSR_WRITE_4(sc, WB_TXADDR, 0); CSR_WRITE_4(sc, WB_RXADDR, 0); WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET); WB_SETBIT(sc, WB_BUSCTL, WB_BUSCTL_RESET); for (i = 0; i < WB_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_4(sc, WB_BUSCTL) & WB_BUSCTL_RESET)) break; } if (i == WB_TIMEOUT) printf("%s: reset never completed!\n", sc->sc_dev.dv_xname); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); if (mii->mii_instance) { struct mii_softc *miisc; for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL; miisc = LIST_NEXT(miisc, mii_list)) mii_phy_reset(miisc); } } void wb_fixmedia(sc) struct wb_softc *sc; { struct mii_data *mii = &sc->sc_mii; u_int32_t media; if (LIST_FIRST(&mii->mii_phys) == NULL) return; mii_pollstat(mii); if (IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T) { media = mii->mii_media_active & ~IFM_10_T; media |= IFM_100_TX; } if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) { media = mii->mii_media_active & ~IFM_100_TX; media |= IFM_10_T; } else return; ifmedia_set(&mii->mii_media, media); } const struct pci_matchid wb_devices[] = { { PCI_VENDOR_WINBOND, PCI_PRODUCT_WINBOND_W89C840F }, { PCI_VENDOR_COMPEX, PCI_PRODUCT_COMPEX_RL100ATX }, }; /* * Probe for a Winbond chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ int wb_probe(parent, match, aux) struct device *parent; void *match, *aux; { return (pci_matchbyid((struct pci_attach_args *)aux, wb_devices, sizeof(wb_devices)/sizeof(wb_devices[0]))); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ void wb_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct wb_softc *sc = (struct wb_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; struct ifnet *ifp = &sc->arpcom.ac_if; bus_addr_t iobase; bus_size_t iosize; int s, rseg; pcireg_t command; bus_dma_segment_t seg; bus_dmamap_t dmamap; caddr_t kva; s = splimp(); /* * Handle power management nonsense. */ command = pci_conf_read(pc, pa->pa_tag, WB_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(pc, pa->pa_tag, WB_PCI_PWRMGMTCTRL); if (command & WB_PSTATE_MASK) { u_int32_t io, mem, irq; /* Save important PCI config data. */ io = pci_conf_read(pc, pa->pa_tag, WB_PCI_LOIO); mem = pci_conf_read(pc, pa->pa_tag, WB_PCI_LOMEM); irq = pci_conf_read(pc, pa->pa_tag, WB_PCI_INTLINE); /* Reset the power state. */ printf("%s: chip is in D%d power mode " "-- setting to D0\n", sc->sc_dev.dv_xname, command & WB_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pc, pa->pa_tag, WB_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(pc, pa->pa_tag, WB_PCI_LOIO, io); pci_conf_write(pc, pa->pa_tag, WB_PCI_LOMEM, mem); pci_conf_write(pc, pa->pa_tag, WB_PCI_INTLINE, irq); } } /* * Map control/status registers. */ command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef WB_USEIOSPACE if (!(command & PCI_COMMAND_IO_ENABLE)) { printf(": failed to enable I/O ports!\n"); goto fail; } if (pci_io_find(pc, pa->pa_tag, WB_PCI_LOIO, &iobase, &iosize)) { printf(": can't find i/o space\n"); goto fail; } if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->wb_bhandle)) { printf(": can't map i/o space\n"); goto fail; } sc->wb_btag = pa->pa_iot; #else if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf(": failed to enable memory mapping!\n"); goto fail; } if (pci_mem_find(pc, pa->pa_tag, WB_PCI_LOMEM, &iobase, &iosize, NULL)){ printf(": can't find mem space\n"); goto fail; } if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->wb_bhandle)) { printf(": can't map mem space\n"); goto fail; } sc->wb_btag = pa->pa_memt; #endif /* Allocate interrupt */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); goto fail; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wb_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); goto fail; } printf(": %s", intrstr); sc->wb_cachesize = pci_conf_read(pc, pa->pa_tag, WB_PCI_CACHELEN)&0xff; /* Reset the adapter. */ wb_reset(sc); /* * Get station address from the EEPROM. */ wb_read_eeprom(sc, (caddr_t)&sc->arpcom.ac_enaddr, 0, 3, 0); printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); if (bus_dmamem_alloc(pa->pa_dmat, sizeof(struct wb_list_data), PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) { printf("%s: can't alloc list data\n", sc->sc_dev.dv_xname); goto fail; } if (bus_dmamem_map(pa->pa_dmat, &seg, rseg, sizeof(struct wb_list_data), &kva, BUS_DMA_NOWAIT)) { printf("%s: can't map list data, size %d\n", sc->sc_dev.dv_xname, sizeof(struct wb_list_data)); bus_dmamem_free(pa->pa_dmat, &seg, rseg); goto fail; } if (bus_dmamap_create(pa->pa_dmat, sizeof(struct wb_list_data), 1, sizeof(struct wb_list_data), 0, BUS_DMA_NOWAIT, &dmamap)) { printf("%s: can't create dma map\n", sc->sc_dev.dv_xname); bus_dmamem_unmap(pa->pa_dmat, kva, sizeof(struct wb_list_data)); bus_dmamem_free(pa->pa_dmat, &seg, rseg); goto fail; } if (bus_dmamap_load(pa->pa_dmat, dmamap, kva, sizeof(struct wb_list_data), NULL, BUS_DMA_NOWAIT)) { printf("%s: can't load dma map\n", sc->sc_dev.dv_xname); bus_dmamap_destroy(pa->pa_dmat, dmamap); bus_dmamem_unmap(pa->pa_dmat, kva, sizeof(struct wb_list_data)); bus_dmamem_free(pa->pa_dmat, &seg, rseg); goto fail; } sc->wb_ldata = (struct wb_list_data *)kva; bzero(sc->wb_ldata, sizeof(struct wb_list_data)); ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = wb_ioctl; ifp->if_start = wb_start; ifp->if_watchdog = wb_watchdog; ifp->if_baudrate = 10000000; IFQ_SET_MAXLEN(&ifp->if_snd, WB_TX_LIST_CNT - 1); IFQ_SET_READY(&ifp->if_snd); bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); /* * Do ifmedia setup. */ wb_stop(sc); ifmedia_init(&sc->sc_mii.mii_media, 0, wb_ifmedia_upd, wb_ifmedia_sts); sc->sc_mii.mii_ifp = ifp; sc->sc_mii.mii_readreg = wb_miibus_readreg; sc->sc_mii.mii_writereg = wb_miibus_writereg; sc->sc_mii.mii_statchg = wb_miibus_statchg; mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0); if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) { ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE,0,NULL); ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE); } else ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); shutdownhook_establish(wb_shutdown, sc); fail: splx(s); return; } /* * Initialize the transmit descriptors. */ int wb_list_tx_init(sc) struct wb_softc *sc; { struct wb_chain_data *cd; struct wb_list_data *ld; int i; cd = &sc->wb_cdata; ld = sc->wb_ldata; for (i = 0; i < WB_TX_LIST_CNT; i++) { cd->wb_tx_chain[i].wb_ptr = &ld->wb_tx_list[i]; if (i == (WB_TX_LIST_CNT - 1)) { cd->wb_tx_chain[i].wb_nextdesc = &cd->wb_tx_chain[0]; } else { cd->wb_tx_chain[i].wb_nextdesc = &cd->wb_tx_chain[i + 1]; } } cd->wb_tx_free = &cd->wb_tx_chain[0]; cd->wb_tx_tail = cd->wb_tx_head = NULL; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ int wb_list_rx_init(sc) struct wb_softc *sc; { struct wb_chain_data *cd; struct wb_list_data *ld; int i; cd = &sc->wb_cdata; ld = sc->wb_ldata; for (i = 0; i < WB_RX_LIST_CNT; i++) { cd->wb_rx_chain[i].wb_ptr = (struct wb_desc *)&ld->wb_rx_list[i]; cd->wb_rx_chain[i].wb_buf = (void *)&ld->wb_rxbufs[i]; if (wb_newbuf(sc, &cd->wb_rx_chain[i], NULL) == ENOBUFS) return(ENOBUFS); if (i == (WB_RX_LIST_CNT - 1)) { cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[0]; ld->wb_rx_list[i].wb_next = vtophys(&ld->wb_rx_list[0]); } else { cd->wb_rx_chain[i].wb_nextdesc = &cd->wb_rx_chain[i + 1]; ld->wb_rx_list[i].wb_next = vtophys(&ld->wb_rx_list[i + 1]); } } cd->wb_rx_head = &cd->wb_rx_chain[0]; return(0); } void wb_bfree(buf, size, arg) caddr_t buf; u_int size; void *arg; { } /* * Initialize an RX descriptor and attach an MBUF cluster. */ int wb_newbuf(sc, c, m) struct wb_softc *sc; struct wb_chain_onefrag *c; struct mbuf *m; { struct mbuf *m_new = NULL; if (m == NULL) { MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(ENOBUFS); m_new->m_data = m_new->m_ext.ext_buf = c->wb_buf; m_new->m_flags |= M_EXT; m_new->m_ext.ext_size = m_new->m_pkthdr.len = m_new->m_len = WB_BUFBYTES; m_new->m_ext.ext_free = wb_bfree; m_new->m_ext.ext_arg = NULL; MCLINITREFERENCE(m_new); } else { m_new = m; m_new->m_len = m_new->m_pkthdr.len = WB_BUFBYTES; m_new->m_data = m_new->m_ext.ext_buf; } m_adj(m_new, sizeof(u_int64_t)); c->wb_mbuf = m_new; c->wb_ptr->wb_data = vtophys(mtod(m_new, caddr_t)); c->wb_ptr->wb_ctl = WB_RXCTL_RLINK | ETHER_MAX_DIX_LEN; c->wb_ptr->wb_status = WB_RXSTAT; return(0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ void wb_rxeof(sc) struct wb_softc *sc; { struct mbuf *m = NULL; struct ifnet *ifp; struct wb_chain_onefrag *cur_rx; int total_len = 0; u_int32_t rxstat; ifp = &sc->arpcom.ac_if; while(!((rxstat = sc->wb_cdata.wb_rx_head->wb_ptr->wb_status) & WB_RXSTAT_OWN)) { struct mbuf *m0 = NULL; cur_rx = sc->wb_cdata.wb_rx_head; sc->wb_cdata.wb_rx_head = cur_rx->wb_nextdesc; m = cur_rx->wb_mbuf; if ((rxstat & WB_RXSTAT_MIIERR) || (WB_RXBYTES(cur_rx->wb_ptr->wb_status) < WB_MIN_FRAMELEN) || (WB_RXBYTES(cur_rx->wb_ptr->wb_status) > ETHER_MAX_DIX_LEN) || !(rxstat & WB_RXSTAT_LASTFRAG) || !(rxstat & WB_RXSTAT_RXCMP)) { ifp->if_ierrors++; wb_newbuf(sc, cur_rx, m); printf("%s: receiver babbling: possible chip " "bug, forcing reset\n", sc->sc_dev.dv_xname); wb_fixmedia(sc); wb_reset(sc); wb_init(sc); return; } if (rxstat & WB_RXSTAT_RXERR) { ifp->if_ierrors++; wb_newbuf(sc, cur_rx, m); break; } /* No errors; receive the packet. */ total_len = WB_RXBYTES(cur_rx->wb_ptr->wb_status); /* * XXX The Winbond chip includes the CRC with every * received frame, and there's no way to turn this * behavior off (at least, I can't find anything in * the manual that explains how to do it) so we have * to trim off the CRC manually. */ total_len -= ETHER_CRC_LEN; m0 = m_devget(mtod(m, char *) - ETHER_ALIGN, total_len + ETHER_ALIGN, 0, ifp, NULL); wb_newbuf(sc, cur_rx, m); if (m0 == NULL) { ifp->if_ierrors++; break; } m_adj(m0, ETHER_ALIGN); m = m0; ifp->if_ipackets++; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, m); #endif /* pass it on. */ ether_input_mbuf(ifp, m); } return; } void wb_rxeoc(sc) struct wb_softc *sc; { wb_rxeof(sc); WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON); CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0])); WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON); if (CSR_READ_4(sc, WB_ISR) & WB_RXSTATE_SUSPEND) CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF); return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ void wb_txeof(sc) struct wb_softc *sc; { struct wb_chain *cur_tx; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; if (sc->wb_cdata.wb_tx_head == NULL) return; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ while(sc->wb_cdata.wb_tx_head->wb_mbuf != NULL) { u_int32_t txstat; cur_tx = sc->wb_cdata.wb_tx_head; txstat = WB_TXSTATUS(cur_tx); if ((txstat & WB_TXSTAT_OWN) || txstat == WB_UNSENT) break; if (txstat & WB_TXSTAT_TXERR) { ifp->if_oerrors++; if (txstat & WB_TXSTAT_ABORT) ifp->if_collisions++; if (txstat & WB_TXSTAT_LATECOLL) ifp->if_collisions++; } ifp->if_collisions += (txstat & WB_TXSTAT_COLLCNT) >> 3; ifp->if_opackets++; m_freem(cur_tx->wb_mbuf); cur_tx->wb_mbuf = NULL; if (sc->wb_cdata.wb_tx_head == sc->wb_cdata.wb_tx_tail) { sc->wb_cdata.wb_tx_head = NULL; sc->wb_cdata.wb_tx_tail = NULL; break; } sc->wb_cdata.wb_tx_head = cur_tx->wb_nextdesc; } return; } /* * TX 'end of channel' interrupt handler. */ void wb_txeoc(sc) struct wb_softc *sc; { struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; if (sc->wb_cdata.wb_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->wb_cdata.wb_tx_tail = NULL; } else { if (WB_TXOWN(sc->wb_cdata.wb_tx_head) == WB_UNSENT) { WB_TXOWN(sc->wb_cdata.wb_tx_head) = WB_TXSTAT_OWN; ifp->if_timer = 5; CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF); } } return; } int wb_intr(arg) void *arg; { struct wb_softc *sc; struct ifnet *ifp; u_int32_t status; int r = 0; sc = arg; ifp = &sc->arpcom.ac_if; if (!(ifp->if_flags & IFF_UP)) return (r); /* Disable interrupts. */ CSR_WRITE_4(sc, WB_IMR, 0x00000000); for (;;) { status = CSR_READ_4(sc, WB_ISR); if (status) CSR_WRITE_4(sc, WB_ISR, status); if ((status & WB_INTRS) == 0) break; r = 1; if ((status & WB_ISR_RX_NOBUF) || (status & WB_ISR_RX_ERR)) { ifp->if_ierrors++; wb_reset(sc); if (status & WB_ISR_RX_ERR) wb_fixmedia(sc); wb_init(sc); continue; } if (status & WB_ISR_RX_OK) wb_rxeof(sc); if (status & WB_ISR_RX_IDLE) wb_rxeoc(sc); if (status & WB_ISR_TX_OK) wb_txeof(sc); if (status & WB_ISR_TX_NOBUF) wb_txeoc(sc); if (status & WB_ISR_TX_IDLE) { wb_txeof(sc); if (sc->wb_cdata.wb_tx_head != NULL) { WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON); CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF); } } if (status & WB_ISR_TX_UNDERRUN) { ifp->if_oerrors++; wb_txeof(sc); WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON); /* Jack up TX threshold */ sc->wb_txthresh += WB_TXTHRESH_CHUNK; WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH); WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh)); WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON); } if (status & WB_ISR_BUS_ERR) { wb_reset(sc); wb_init(sc); } } /* Re-enable interrupts. */ CSR_WRITE_4(sc, WB_IMR, WB_INTRS); if (!IFQ_IS_EMPTY(&ifp->if_snd)) { wb_start(ifp); } return (r); } void wb_tick(xsc) void *xsc; { struct wb_softc *sc = xsc; int s; s = splimp(); mii_tick(&sc->sc_mii); splx(s); timeout_add(&sc->wb_tick_tmo, hz); } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ int wb_encap(sc, c, m_head) struct wb_softc *sc; struct wb_chain *c; struct mbuf *m_head; { int frag = 0; struct wb_desc *f = NULL; int total_len; struct mbuf *m; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; total_len = 0; for (m = m_head, frag = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (frag == WB_MAXFRAGS) break; total_len += m->m_len; f = &c->wb_ptr->wb_frag[frag]; f->wb_ctl = WB_TXCTL_TLINK | m->m_len; if (frag == 0) { f->wb_ctl |= WB_TXCTL_FIRSTFRAG; f->wb_status = 0; } else f->wb_status = WB_TXSTAT_OWN; f->wb_next = vtophys(&c->wb_ptr->wb_frag[frag + 1]); f->wb_data = vtophys(mtod(m, vaddr_t)); frag++; } } /* * Handle special case: we used up all 16 fragments, * but we have more mbufs left in the chain. Copy the * data into an mbuf cluster. Note that we don't * bother clearing the values in the other fragment * pointers/counters; it wouldn't gain us anything, * and would waste cycles. */ if (m != NULL) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) return(1); if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; f = &c->wb_ptr->wb_frag[0]; f->wb_status = 0; f->wb_data = vtophys(mtod(m_new, caddr_t)); f->wb_ctl = total_len = m_new->m_len; f->wb_ctl |= WB_TXCTL_TLINK|WB_TXCTL_FIRSTFRAG; frag = 1; } if (total_len < WB_MIN_FRAMELEN) { f = &c->wb_ptr->wb_frag[frag]; f->wb_ctl = WB_MIN_FRAMELEN - total_len; f->wb_data = vtophys(&sc->wb_cdata.wb_pad); f->wb_ctl |= WB_TXCTL_TLINK; f->wb_status = WB_TXSTAT_OWN; frag++; } c->wb_mbuf = m_head; c->wb_lastdesc = frag - 1; WB_TXCTL(c) |= WB_TXCTL_LASTFRAG; WB_TXNEXT(c) = vtophys(&c->wb_nextdesc->wb_ptr->wb_frag[0]); return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ void wb_start(ifp) struct ifnet *ifp; { struct wb_softc *sc; struct mbuf *m_head = NULL; struct wb_chain *cur_tx = NULL, *start_tx; sc = ifp->if_softc; /* * Check for an available queue slot. If there are none, * punt. */ if (sc->wb_cdata.wb_tx_free->wb_mbuf != NULL) { ifp->if_flags |= IFF_OACTIVE; return; } start_tx = sc->wb_cdata.wb_tx_free; while(sc->wb_cdata.wb_tx_free->wb_mbuf == NULL) { IFQ_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ cur_tx = sc->wb_cdata.wb_tx_free; sc->wb_cdata.wb_tx_free = cur_tx->wb_nextdesc; /* Pack the data into the descriptor. */ wb_encap(sc, cur_tx, m_head); if (cur_tx != start_tx) WB_TXOWN(cur_tx) = WB_TXSTAT_OWN; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) bpf_mtap(ifp->if_bpf, cur_tx->wb_mbuf); #endif } /* * If there are no packets queued, bail. */ if (cur_tx == NULL) return; /* * Place the request for the upload interrupt * in the last descriptor in the chain. This way, if * we're chaining several packets at once, we'll only * get an interupt once for the whole chain rather than * once for each packet. */ WB_TXCTL(cur_tx) |= WB_TXCTL_FINT; cur_tx->wb_ptr->wb_frag[0].wb_ctl |= WB_TXCTL_FINT; sc->wb_cdata.wb_tx_tail = cur_tx; if (sc->wb_cdata.wb_tx_head == NULL) { sc->wb_cdata.wb_tx_head = start_tx; WB_TXOWN(start_tx) = WB_TXSTAT_OWN; CSR_WRITE_4(sc, WB_TXSTART, 0xFFFFFFFF); } else { /* * We need to distinguish between the case where * the own bit is clear because the chip cleared it * and where the own bit is clear because we haven't * set it yet. The magic value WB_UNSET is just some * ramdomly chosen number which doesn't have the own * bit set. When we actually transmit the frame, the * status word will have _only_ the own bit set, so * the txeoc handler will be able to tell if it needs * to initiate another transmission to flush out pending * frames. */ WB_TXOWN(start_tx) = WB_UNSENT; } /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; return; } void wb_init(xsc) void *xsc; { struct wb_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s, i; s = splimp(); /* * Cancel pending I/O and free all RX/TX buffers. */ wb_stop(sc); wb_reset(sc); sc->wb_txthresh = WB_TXTHRESH_INIT; /* * Set cache alignment and burst length. */ #ifdef foo CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_CONFIG); WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_THRESH); WB_SETBIT(sc, WB_NETCFG, WB_TXTHRESH(sc->wb_txthresh)); #endif CSR_WRITE_4(sc, WB_BUSCTL, WB_BUSCTL_MUSTBEONE|WB_BUSCTL_ARBITRATION); WB_SETBIT(sc, WB_BUSCTL, WB_BURSTLEN_16LONG); switch(sc->wb_cachesize) { case 32: WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_32LONG); break; case 16: WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_16LONG); break; case 8: WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_8LONG); break; case 0: default: WB_SETBIT(sc, WB_BUSCTL, WB_CACHEALIGN_NONE); break; } /* This doesn't tend to work too well at 100Mbps. */ WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_EARLY_ON); /* Init our MAC address */ for (i = 0; i < ETHER_ADDR_LEN; i++) { CSR_WRITE_1(sc, WB_NODE0 + i, sc->arpcom.ac_enaddr[i]); } /* Init circular RX list. */ if (wb_list_rx_init(sc) == ENOBUFS) { printf("%s: initialization failed: no " "memory for rx buffers\n", sc->sc_dev.dv_xname); wb_stop(sc); splx(s); return; } /* Init TX descriptors. */ wb_list_tx_init(sc); /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS); } else { WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ALLPHYS); } /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD); } else { WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_BROAD); } /* * Program the multicast filter, if necessary. */ wb_setmulti(sc); /* * Load the address of the RX list. */ WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON); CSR_WRITE_4(sc, WB_RXADDR, vtophys(&sc->wb_ldata->wb_rx_list[0])); /* * Enable interrupts. */ CSR_WRITE_4(sc, WB_IMR, WB_INTRS); CSR_WRITE_4(sc, WB_ISR, 0xFFFFFFFF); /* Enable receiver and transmitter. */ WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_RX_ON); CSR_WRITE_4(sc, WB_RXSTART, 0xFFFFFFFF); WB_CLRBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON); CSR_WRITE_4(sc, WB_TXADDR, vtophys(&sc->wb_ldata->wb_tx_list[0])); WB_SETBIT(sc, WB_NETCFG, WB_NETCFG_TX_ON); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; splx(s); timeout_set(&sc->wb_tick_tmo, wb_tick, sc); timeout_add(&sc->wb_tick_tmo, hz); return; } /* * Set media options. */ int wb_ifmedia_upd(ifp) struct ifnet *ifp; { struct wb_softc *sc = ifp->if_softc; if (ifp->if_flags & IFF_UP) wb_init(sc); return(0); } /* * Report current media status. */ void wb_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct wb_softc *sc = ifp->if_softc; struct mii_data *mii = &sc->sc_mii; mii_pollstat(mii); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } int wb_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct wb_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splimp(); if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return (error); } switch(command) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: wb_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: wb_init(sc); } break; case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { wb_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) wb_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: error = (command == SIOCADDMULTI) ? ether_addmulti(ifr, &sc->arpcom) : ether_delmulti(ifr, &sc->arpcom); if (error == ENETRESET) { /* * Multicast list has changed; set the hardware * filter accordingly. */ if (ifp->if_flags & IFF_RUNNING) wb_setmulti(sc); error = 0; } break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command); break; default: error = EINVAL; break; } splx(s); return(error); } void wb_watchdog(ifp) struct ifnet *ifp; { struct wb_softc *sc; sc = ifp->if_softc; ifp->if_oerrors++; printf("%s: watchdog timeout\n", sc->sc_dev.dv_xname); #ifdef foo if (!(wb_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT)) printf("%s: no carrier - transceiver cable problem?\n", sc->sc_dev.dv_xname); #endif wb_stop(sc); wb_reset(sc); wb_init(sc); if (!IFQ_IS_EMPTY(&ifp->if_snd)) wb_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ void wb_stop(sc) struct wb_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; timeout_del(&sc->wb_tick_tmo); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); WB_CLRBIT(sc, WB_NETCFG, (WB_NETCFG_RX_ON|WB_NETCFG_TX_ON)); CSR_WRITE_4(sc, WB_IMR, 0x00000000); CSR_WRITE_4(sc, WB_TXADDR, 0x00000000); CSR_WRITE_4(sc, WB_RXADDR, 0x00000000); /* * Free data in the RX lists. */ for (i = 0; i < WB_RX_LIST_CNT; i++) { if (sc->wb_cdata.wb_rx_chain[i].wb_mbuf != NULL) { m_freem(sc->wb_cdata.wb_rx_chain[i].wb_mbuf); sc->wb_cdata.wb_rx_chain[i].wb_mbuf = NULL; } } bzero((char *)&sc->wb_ldata->wb_rx_list, sizeof(sc->wb_ldata->wb_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < WB_TX_LIST_CNT; i++) { if (sc->wb_cdata.wb_tx_chain[i].wb_mbuf != NULL) { m_freem(sc->wb_cdata.wb_tx_chain[i].wb_mbuf); sc->wb_cdata.wb_tx_chain[i].wb_mbuf = NULL; } } bzero((char *)&sc->wb_ldata->wb_tx_list, sizeof(sc->wb_ldata->wb_tx_list)); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ void wb_shutdown(arg) void *arg; { struct wb_softc *sc = (struct wb_softc *)arg; wb_stop(sc); return; } struct cfattach wb_ca = { sizeof(struct wb_softc), wb_probe, wb_attach }; struct cfdriver wb_cd = { 0, "wb", DV_IFNET };