/* $OpenBSD: if_wi_pci.c,v 1.44 2009/03/29 21:53:52 sthen Exp $ */ /* * Copyright (c) 2001-2003 Todd C. Miller * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. * * Sponsored in part by the Defense Advanced Research Projects * Agency (DARPA) and Air Force Research Laboratory, Air Force * Materiel Command, USAF, under agreement number F39502-99-1-0512. */ /* * PCI attachment for the Wavelan driver. There are two basic types * of PCI card supported: * * 1) Cards based on the Prism2.5 Mini-PCI chipset * 2) Cards that use a dumb PCMCIA->PCI bridge * * Only the first type are "true" PCI cards. * * The latter are simply PCMCIA cards (or the guts of same) with some * type of dumb PCMCIA->PCI bridge. They are "dumb" in that they * are not true PCMCIA bridges and really just serve to deal with * the different interrupt types and timings of the ISA vs. PCI bus. * * The following bridge types are supported: * o PLX 9052 (the most common) * o TMD 7160 (found in some NDC/Sohoware NCP130 cards) * o ACEX EP1K30 (really a PLD, found in Symbol cards and their OEMs) */ #include #include #include #include #include #include #include #include #include #ifdef INET #include #include #endif #include #include #include #include #include #include #include #include #include /* For printing CIS of the actual PCMCIA card */ #define CIS_MFG_NAME_OFFSET 0x16 #define CIS_INFO_SIZE 256 const struct wi_pci_product *wi_pci_lookup(struct pci_attach_args *pa); int wi_pci_match(struct device *, void *, void *); void wi_pci_attach(struct device *, struct device *, void *); int wi_pci_acex_attach(struct pci_attach_args *pa, struct wi_softc *sc); int wi_pci_plx_attach(struct pci_attach_args *pa, struct wi_softc *sc); int wi_pci_tmd_attach(struct pci_attach_args *pa, struct wi_softc *sc); int wi_pci_native_attach(struct pci_attach_args *pa, struct wi_softc *sc); int wi_pci_common_attach(struct pci_attach_args *pa, struct wi_softc *sc); void wi_pci_plx_print_cis(struct wi_softc *); void wi_pci_power(int, void *); struct wi_pci_softc { struct wi_softc sc_wi; /* real softc */ void *sc_powerhook; }; struct cfattach wi_pci_ca = { sizeof (struct wi_pci_softc), wi_pci_match, wi_pci_attach }; static const struct wi_pci_product { pci_vendor_id_t pp_vendor; pci_product_id_t pp_product; int (*pp_attach)(struct pci_attach_args *pa, struct wi_softc *sc); } wi_pci_products[] = { { PCI_VENDOR_GLOBALSUN, PCI_PRODUCT_GLOBALSUN_GL24110P, wi_pci_plx_attach }, { PCI_VENDOR_GLOBALSUN, PCI_PRODUCT_GLOBALSUN_GL24110P02, wi_pci_plx_attach }, { PCI_VENDOR_GLOBALSUN, PCI_PRODUCT_GLOBALSUN_GL24110P03, wi_pci_plx_attach }, { PCI_VENDOR_GLOBALSUN, PCI_PRODUCT_GLOBALSUN_8031, wi_pci_plx_attach }, { PCI_VENDOR_EUMITCOM, PCI_PRODUCT_EUMITCOM_WL11000P, wi_pci_plx_attach }, { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_WL11000P, wi_pci_plx_attach }, { PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3CRWE777A, wi_pci_plx_attach }, { PCI_VENDOR_NETGEAR, PCI_PRODUCT_NETGEAR_MA301, wi_pci_plx_attach }, { PCI_VENDOR_EFFICIENTNETS, PCI_PRODUCT_EFFICIENTNETS_SS1023, wi_pci_plx_attach }, { PCI_VENDOR_ADDTRON, PCI_PRODUCT_ADDTRON_AWA100, wi_pci_plx_attach }, { PCI_VENDOR_BELKIN, PCI_PRODUCT_BELKIN_F5D6000, wi_pci_plx_attach }, { PCI_VENDOR_NDC, PCI_PRODUCT_NDC_NCP130, wi_pci_plx_attach }, { PCI_VENDOR_NDC, PCI_PRODUCT_NDC_NCP130A2, wi_pci_tmd_attach }, { PCI_VENDOR_INTERSIL, PCI_PRODUCT_INTERSIL_MINI_PCI_WLAN, wi_pci_native_attach }, { PCI_VENDOR_INTERSIL, PCI_PRODUCT_INTERSIL_ISL3872, wi_pci_native_attach }, { PCI_VENDOR_SAMSUNG, PCI_PRODUCT_SAMSUNG_SWL2210P, wi_pci_native_attach }, { PCI_VENDOR_NORTEL, PCI_PRODUCT_NORTEL_211818A, wi_pci_acex_attach }, { PCI_VENDOR_SYMBOL, PCI_PRODUCT_SYMBOL_LA41X3, wi_pci_acex_attach }, { 0, 0, 0 } }; const struct wi_pci_product * wi_pci_lookup(struct pci_attach_args *pa) { const struct wi_pci_product *pp; for (pp = wi_pci_products; pp->pp_product != 0; pp++) { if (PCI_VENDOR(pa->pa_id) == pp->pp_vendor && PCI_PRODUCT(pa->pa_id) == pp->pp_product) return (pp); } return (NULL); } int wi_pci_match(struct device *parent, void *match, void *aux) { return (wi_pci_lookup(aux) != NULL); } void wi_pci_attach(struct device *parent, struct device *self, void *aux) { struct wi_pci_softc *psc = (struct wi_pci_softc *)self; struct wi_softc *sc = (struct wi_softc *)self; struct pci_attach_args *pa = aux; const struct wi_pci_product *pp; pp = wi_pci_lookup(pa); if (pp->pp_attach(pa, sc) != 0) return; printf("\n"); wi_attach(sc, &wi_func_io); psc->sc_powerhook = powerhook_establish(wi_pci_power, sc); } void wi_pci_power(int why, void *arg) { struct wi_softc *sc = (struct wi_softc *)arg; if (why == PWR_RESUME) { if (sc->sc_ic.ic_if.if_flags & IFF_UP) wi_init(sc); } } /* * ACEX EP1K30-based PCMCIA->PCI bridge attachment. * * The ACEX EP1K30 is a programmable logic device (PLD) used as a * PCMCIA->PCI bridge on the Symbol LA4123 and its OEM equivalents * (such as the Nortel E-mobility 211818-A). There are 3 I/O ports: * BAR0 at 0x10 appears to be a command port. * BAR1 at 0x14 contains COR at offset 0xe0. * BAR2 at 0x18 maps the actual PCMCIA card. * * The datasheet for the ACEX EP1K30 is available from Altera but that * doesn't really help much since we don't know how it is programmed. * Details for this attachment were gleaned from a version of the * Linux orinoco driver modified by Tobias Hoffmann based on * what he discoverd from the Windows driver. */ int wi_pci_acex_attach(struct pci_attach_args *pa, struct wi_softc *sc) { bus_space_handle_t commandh, localh, ioh; bus_space_tag_t commandt, localt; bus_space_tag_t iot = pa->pa_iot; bus_size_t commandsize, localsize, iosize; int i; if (pci_mapreg_map(pa, WI_ACEX_CMDRES, PCI_MAPREG_TYPE_IO, 0, &commandt, &commandh, NULL, &commandsize, 0) != 0) { printf(": can't map command i/o space\n"); return (ENXIO); } if (pci_mapreg_map(pa, WI_ACEX_LOCALRES, PCI_MAPREG_TYPE_IO, 0, &localt, &localh, NULL, &localsize, 0) != 0) { printf(": can't map local i/o space\n"); bus_space_unmap(commandt, commandh, commandsize); return (ENXIO); } sc->wi_ltag = localt; sc->wi_lhandle = localh; if (pci_mapreg_map(pa, WI_TMD_IORES, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, &iosize, 0) != 0) { printf(": can't map i/o space\n"); bus_space_unmap(localt, localh, localsize); bus_space_unmap(commandt, commandh, commandsize); return (ENXIO); } sc->wi_btag = iot; sc->wi_bhandle = ioh; /* * Setup bridge chip. */ if (bus_space_read_4(commandt, commandh, 0) & 1) { printf(": bridge not ready\n"); bus_space_unmap(iot, ioh, iosize); bus_space_unmap(localt, localh, localsize); bus_space_unmap(commandt, commandh, commandsize); return (ENXIO); } bus_space_write_4(commandt, commandh, 2, 0x118); bus_space_write_4(commandt, commandh, 2, 0x108); DELAY(30 * 1000); bus_space_write_4(commandt, commandh, 2, 0x8); for (i = 0; i < 30; i++) { DELAY(30 * 1000); if (bus_space_read_4(commandt, commandh, 0) & 0x10) break; } if (i == 30) { printf(": bridge timeout\n"); bus_space_unmap(iot, ioh, iosize); bus_space_unmap(localt, localh, localsize); bus_space_unmap(commandt, commandh, commandsize); return (ENXIO); } if ((bus_space_read_4(localt, localh, 0xe0) & 1) || (bus_space_read_4(localt, localh, 0xe2) & 1) || (bus_space_read_4(localt, localh, 0xe4) & 1)) { printf(": failed bridge setup\n"); bus_space_unmap(iot, ioh, iosize); bus_space_unmap(localt, localh, localsize); bus_space_unmap(commandt, commandh, commandsize); return (ENXIO); } if (wi_pci_common_attach(pa, sc) != 0) { bus_space_unmap(iot, ioh, iosize); bus_space_unmap(localt, localh, localsize); bus_space_unmap(commandt, commandh, commandsize); return (ENXIO); } /* * Enable I/O mode and level interrupts on the embedded PCMCIA * card. */ bus_space_write_1(localt, localh, WI_ACEX_COR_OFFSET, WI_COR_IOMODE); sc->wi_cor_offset = WI_ACEX_COR_OFFSET; /* Unmap registers we no longer need access to. */ bus_space_unmap(commandt, commandh, commandsize); return (0); } /* * PLX 9052-based PCMCIA->PCI bridge attachment. * * These are often sold as "PCI wireless card adapters" and are * sold by several vendors. Most are simply rebadged versions of the * Eumitcom WL11000P or Global Sun Technology GL24110P02. * These cards use the PLX 9052 dumb bridge chip to connect a PCMCIA * wireless card to the PCI bus. Because it is a dumb bridge and * not a true PCMCIA bridge, the PCMCIA subsystem is not involved * (or even required). The PLX 9052 provides multiple PCI address * space mappings. The primary mappings at PCI registers 0x10 (mem) * and 0x14 (I/O) are for the PLX chip itself, *NOT* the PCMCIA card. * The mem and I/O spaces for the PCMCIA card are mapped to 0x18 and * 0x1C respectively. * The PLX 9050/9052 datasheet may be downloaded from PLX at * http://www.plxtech.com/products/toolbox/9050.htm */ int wi_pci_plx_attach(struct pci_attach_args *pa, struct wi_softc *sc) { bus_space_handle_t localh, ioh, memh; bus_space_tag_t localt; bus_space_tag_t iot = pa->pa_iot; bus_space_tag_t memt = pa->pa_memt; bus_size_t localsize, memsize, iosize; u_int32_t intcsr; if (pci_mapreg_map(pa, WI_PLX_MEMRES, PCI_MAPREG_TYPE_MEM, 0, &memt, &memh, NULL, &memsize, 0) != 0) { printf(": can't map mem space\n"); return (ENXIO); } sc->wi_ltag = memt; sc->wi_lhandle = memh; if (pci_mapreg_map(pa, WI_PLX_IORES, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, &iosize, 0) != 0) { printf(": can't map i/o space\n"); bus_space_unmap(memt, memh, memsize); return (ENXIO); } sc->wi_btag = iot; sc->wi_bhandle = ioh; /* * Some cards, such as the PLX version of the NDC NCP130, * don't have the PLX local registers mapped. In general * this is OK since on those cards the serial EEPROM has * already set things up for us. * As such, we don't consider an error here to be fatal. */ localsize = 0; if (pci_mapreg_type(pa->pa_pc, pa->pa_tag, WI_PLX_LOCALRES) == PCI_MAPREG_TYPE_IO) { if (pci_mapreg_map(pa, WI_PLX_LOCALRES, PCI_MAPREG_TYPE_IO, 0, &localt, &localh, NULL, &localsize, 0) != 0) printf(": can't map PLX I/O space\n"); } if (wi_pci_common_attach(pa, sc) != 0) { if (localsize) bus_space_unmap(localt, localh, localsize); bus_space_unmap(iot, ioh, iosize); bus_space_unmap(memt, memh, memsize); return (ENXIO); } if (localsize != 0) { intcsr = bus_space_read_4(localt, localh, WI_PLX_INTCSR); /* * The Netgear MA301 has local interrupt 1 active * when there is no card in the adapter. We bail * early in this case since our attempt to check * for the presence of a card later will hang the * MA301. */ if (intcsr & WI_PLX_LINT1STAT) { printf("\n%s: no PCMCIA card detected in bridge card\n", WI_PRT_ARG(sc)); pci_intr_disestablish(pa->pa_pc, sc->sc_ih); if (localsize) bus_space_unmap(localt, localh, localsize); bus_space_unmap(iot, ioh, iosize); bus_space_unmap(memt, memh, memsize); return (ENXIO); } /* * Enable PCI interrupts on the PLX chip if they are * not already enabled. On most adapters the serial * EEPROM has done this for us but some (such as * the Netgear MA301) do not. */ if (!(intcsr & WI_PLX_INTEN)) { intcsr |= WI_PLX_INTEN; bus_space_write_4(localt, localh, WI_PLX_INTCSR, intcsr); } } /* * Enable I/O mode and level interrupts on the PCMCIA card. * The PCMCIA card's COR is the first byte after the CIS. */ bus_space_write_1(memt, memh, WI_PLX_COR_OFFSET, WI_COR_IOMODE); sc->wi_cor_offset = WI_PLX_COR_OFFSET; if (localsize != 0) { /* * Test the presence of a wi(4) card by writing * a magic number to the first software support * register and then reading it back. */ CSR_WRITE_2(sc, WI_SW0, WI_DRVR_MAGIC); DELAY(1000); if (CSR_READ_2(sc, WI_SW0) != WI_DRVR_MAGIC) { printf("\n%s: no PCMCIA card detected in bridge card\n", WI_PRT_ARG(sc)); pci_intr_disestablish(pa->pa_pc, sc->sc_ih); if (localsize) bus_space_unmap(localt, localh, localsize); bus_space_unmap(iot, ioh, iosize); bus_space_unmap(memt, memh, memsize); return (ENXIO); } /* Unmap registers we no longer need access to. */ bus_space_unmap(localt, localh, localsize); /* Print PCMCIA card's CIS strings. */ wi_pci_plx_print_cis(sc); } return (0); } /* * TMD 7160-based PCMCIA->PCI bridge attachment. * * The TMD7160 dumb bridge chip is used on some versions of the * NDC/Sohoware NCP130. The TMD7160 provides two PCI I/O registers. * The first, at 0x14, maps to the Prism2 COR. * The second, at 0x18, is for the Prism2 chip itself. * * The datasheet for the TMD7160 does not seem to be publicly available. * Details for this attachment were gleaned from a version of the * Linux WLAN driver modified by NDC. */ int wi_pci_tmd_attach(struct pci_attach_args *pa, struct wi_softc *sc) { bus_space_handle_t localh, ioh; bus_space_tag_t localt; bus_space_tag_t iot = pa->pa_iot; bus_size_t localsize, iosize; if (pci_mapreg_map(pa, WI_TMD_LOCALRES, PCI_MAPREG_TYPE_IO, 0, &localt, &localh, NULL, &localsize, 0) != 0) { printf(": can't map TMD I/O space\n"); return (ENXIO); } sc->wi_ltag = localt; sc->wi_lhandle = localh; if (pci_mapreg_map(pa, WI_TMD_IORES, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, &iosize, 0) != 0) { printf(": can't map i/o space\n"); bus_space_unmap(localt, localh, localsize); return (ENXIO); } sc->wi_btag = iot; sc->wi_bhandle = ioh; if (wi_pci_common_attach(pa, sc) != 0) { bus_space_unmap(iot, ioh, iosize); bus_space_unmap(localt, localh, localsize); return (ENXIO); } /* * Enable I/O mode and level interrupts on the embedded PCMCIA * card. The PCMCIA card's COR is the first byte of BAR 0. */ bus_space_write_1(localt, localh, 0, WI_COR_IOMODE); sc->wi_cor_offset = 0; return (0); } int wi_pci_native_attach(struct pci_attach_args *pa, struct wi_softc *sc) { bus_space_handle_t ioh; bus_space_tag_t iot = pa->pa_iot; bus_size_t iosize; if (pci_mapreg_map(pa, WI_PCI_CBMA, PCI_MAPREG_TYPE_MEM, 0, &iot, &ioh, NULL, &iosize, 0) != 0) { printf(": can't map mem space\n"); return (ENXIO); } sc->wi_ltag = iot; sc->wi_lhandle = ioh; sc->wi_btag = iot; sc->wi_bhandle = ioh; sc->sc_pci = 1; if (wi_pci_common_attach(pa, sc) != 0) { bus_space_unmap(iot, ioh, iosize); return (ENXIO); } /* Do a soft reset of the HFA3842 MAC core */ bus_space_write_2(iot, ioh, WI_PCI_COR_OFFSET, WI_COR_SOFT_RESET); DELAY(100*1000); /* 100 m sec */ bus_space_write_2(iot, ioh, WI_PCI_COR_OFFSET, WI_COR_CLEAR); DELAY(100*1000); /* 100 m sec */ sc->wi_cor_offset = WI_PCI_COR_OFFSET; return (0); } int wi_pci_common_attach(struct pci_attach_args *pa, struct wi_softc *sc) { pci_intr_handle_t ih; pci_chipset_tag_t pc = pa->pa_pc; const char *intrstr; /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, 0xFFFF); /* Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); return (ENXIO); } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, wi_intr, sc, sc->sc_dev.dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return (ENXIO); } printf(": %s", intrstr); return (0); } void wi_pci_plx_print_cis(struct wi_softc *sc) { int i, stringno; char cisbuf[CIS_INFO_SIZE]; char *cis_strings[3]; u_int8_t value; const u_int8_t cis_magic[] = { 0x01, 0x03, 0x00, 0x00, 0xff, 0x17, 0x04, 0x67 }; /* Make sure the CIS data is valid. */ for (i = 0; i < 8; i++) { value = bus_space_read_1(sc->wi_ltag, sc->wi_lhandle, i * 2); if (value != cis_magic[i]) return; } cis_strings[0] = cisbuf; stringno = 0; for (i = 0; i < CIS_INFO_SIZE && stringno < 3; i++) { cisbuf[i] = bus_space_read_1(sc->wi_ltag, sc->wi_lhandle, (CIS_MFG_NAME_OFFSET + i) * 2); if (cisbuf[i] == '\0' && ++stringno < 3) cis_strings[stringno] = &cisbuf[i + 1]; } cisbuf[CIS_INFO_SIZE - 1] = '\0'; printf("\n%s: \"%s, %s, %s\"", WI_PRT_ARG(sc), cis_strings[0], cis_strings[1], cis_strings[2]); }