/* $OpenBSD: if_xl.c,v 1.14 1998/11/16 15:29:18 jason Exp $ */ /* * Copyright (c) 1997, 1998 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. * * $FreeBSD: if_xl.c,v 1.16 1998/10/22 16:46:26 wpaul Exp $ */ /* * 3Com 3c90x Etherlink XL PCI NIC driver * * Supports the 3Com "boomerang" and "cyclone" PCI * bus-master chips (3c90x cards and embedded controllers) including * the following: * * 3Com 3c900-TPO 10Mbps/RJ-45 * 3Com 3c900-COMBO 10Mbps/RJ-45,AUI,BNC * 3Com 3c905-TX 10/100Mbps/RJ-45 * 3Com 3c905-T4 10/100Mbps/RJ-45 * 3Com 3c900B-TPO 10Mbps/RJ-45 * 3Com 3c900B-COMBO 10Mbps/RJ-45,AUI,BNC * 3Com 3c905B-TX 10/100Mbps/RJ-45 * 3Com 3c900-FL 10Mbps FL Fiber-optic * 3Com 3c980-TX 10/100Mbps server adapter * 3Com 3c905B-FX 100Mbs FX Fiber-optic * Dell Optiplex GX1 on-board 3c918 10/100Mbps/RJ-45 * Dell Precision on-board 3c905B 10/100Mbps/RJ-45 * Dell Latitude laptop docking station embedded 3c905-TX * * Written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The 3c90x series chips use a bus-master DMA interface for transfering * packets to and from the controller chip. Some of the "vortex" cards * (3c59x) also supported a bus master mode, however for those chips * you could only DMA packets to/from a contiguous memory buffer. For * transmission this would mean copying the contents of the queued mbuf * chain into a an mbuf cluster and then DMAing the cluster. This extra * copy would sort of defeat the purpose of the bus master support for * any packet that doesn't fit into a single mbuf. * * By contrast, the 3c90x cards support a fragment-based bus master * mode where mbuf chains can be encapsulated using TX descriptors. * This is similar to other PCI chips such as the Texas Instruments * ThunderLAN and the Intel 82557/82558. * * The "vortex" driver (if_vx.c) happens to work for the "boomerang" * bus master chips because they maintain the old PIO interface for * backwards compatibility, but starting with the 3c905B and the * "cyclone" chips, the compatibility interface has been dropped. * Since using bus master DMA is a big win, we use this driver to * support the PCI "boomerang" chips even though they work with the * "vortex" driver in order to obtain better performance. * * This driver is in the /sys/pci directory because it only supports * PCI-based NICs. */ #include "bpfilter.h" #include #include #include #include #include #include #include #include #include #include /* only for declaration of wakeup() used by vm.h */ #if defined(__FreeBSD__) #include #elif defined(__bsdi__) || defined(__NetBSD__) || defined(__OpenBSD__) #include #endif #if defined(__FreeBSD__) #include #include #include #include #elif defined(__OpenBSD__) #define bootverbose 0 #include #include #include #ifdef INET #include #include #include #include #include #endif #include #include #include #endif #include #if NBPFILTER > 0 #include #endif #include /* for vtophys */ #include /* for vtophys */ #ifdef __FreeBSD__ #include #include #endif #ifdef __OpenBSD__ #ifdef __alpha__ #undef vtophys #define vtophys(va) alpha_XXX_dmamap((vm_offset_t)(va)) #endif #endif /* * The following #define causes the code to use PIO to access the * chip's registers instead of memory mapped mode. The reason PIO mode * is on by default is that the Etherlink XL manual seems to indicate * that only the newer revision chips (3c905B) support both PIO and * memory mapped access. Since we want to be compatible with the older * bus master chips, we use PIO here. If you comment this out, the * driver will use memory mapped I/O, which may be faster but which * might not work on some devices. */ #define XL_USEIOSPACE /* * This #define controls the behavior of autonegotiation during the * bootstrap phase. It's possible to have the driver initiate an * autonegotiation session and then set a timeout which will cause the * autoneg results to be polled later, usually once the kernel has * finished booting. This is clever and all, but it can have bad side * effects in some cases, particularly where NFS is involved. For * example, if we're booting diskless with an NFS rootfs, the network * interface has to be up and running before we hit the mountroot() * code, otherwise mounting the rootfs will fail and we'll probably * panic. * * Consequently, the 'backgrounded' autoneg behavior is turned off * by default and we actually sit and wait 5 seconds for autonegotiation * to complete before proceeding with the other device probes. If you * choose to use the other behavior, you can uncomment this #define and * recompile. */ /* #define XL_BACKGROUND_AUTONEG */ #if defined(__FreeBSD__) #include #elif defined(__OpenBSD__) #include #endif #if !defined(lint) && !defined(__OpenBSD__) static char rcsid[] = "$FreeBSD: if_xl.c,v 1.16 1998/10/22 16:46:26 wpaul Exp $"; #endif #ifdef __FreeBSD__ /* * Various supported device vendors/types and their names. */ static struct xl_type xl_devs[] = { { TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT, "3Com 3c900 Etherlink XL 10BaseT" }, { TC_VENDORID, TC_DEVICEID_BOOMERANG_10BT_COMBO, "3Com 3c900 Etherlink XL 10BaseT Combo" }, { TC_VENDORID, TC_DEVICEID_BOOMERANG_10_100BT, "3Com 3c905 Fast Etherlink XL 10/100BaseTX" }, { TC_VENDORID, TC_DEVICEID_BOOMERANG_100BT4, "3Com 3c905 Fast Etherlink XL 10/100BaseT4" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10BT, "3Com 3c900B Etherlink XL 10BaseT" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10BT_COMBO, "3Com 3c900B Etherlink XL 10BaseT Combo" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT, "3Com 3c905B Fast Etherlink XL 10/100BaseTX" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT4, "3Com 3c905B Fast Etherlink XL 10/100BaseT4" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10_100FX, "3Com 3c905B Fast Etherlink XL 10/100BaseFX/SC" }, { TC_VENDORID, TC_DEVICEID_CYCLONE_10_100BT_SERV, "3Com 3c980 Fast Etherlink XL 10/100BaseTX" }, { 0, 0, NULL } }; #endif /* * Various supported PHY vendors/types and their names. Note that * this driver will work with pretty much any MII-compliant PHY, * so failure to positively identify the chip is not a fatal error. */ static struct xl_type xl_phys[] = { { TI_PHY_VENDORID, TI_PHY_10BT, "" }, { TI_PHY_VENDORID, TI_PHY_100VGPMI, "" }, { NS_PHY_VENDORID, NS_PHY_83840A, ""}, { LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "" }, { INTEL_PHY_VENDORID, INTEL_PHY_82555, "" }, { SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "" }, { 0, 0, "" } }; #if defined(__FreeBSD__) static unsigned long xl_count = 0; static char *xl_probe __P((pcici_t, pcidi_t)); static void xl_attach __P((pcici_t, int)); static void xl_intr __P((void *)); static void xl_shutdown __P((int, void *)); #elif defined(__OpenBSD__) static int xl_probe __P((struct device *, void *, void *)); static void xl_attach __P((struct device *, struct device *, void *)); static int xl_intr __P((void *)); static void xl_shutdown __P((void *)); #endif static int xl_newbuf __P((struct xl_softc *, struct xl_chain_onefrag *)); static void xl_stats_update __P((void *)); static int xl_encap __P((struct xl_softc *, struct xl_chain *, struct mbuf * )); static void xl_rxeof __P((struct xl_softc *)); static void xl_txeof __P((struct xl_softc *)); static void xl_txeoc __P((struct xl_softc *)); static void xl_start __P((struct ifnet *)); static int xl_ioctl __P((struct ifnet *, u_long, caddr_t)); static void xl_init __P((void *)); static void xl_stop __P((struct xl_softc *)); static void xl_watchdog __P((struct ifnet *)); static u_int8_t xl_calchash __P((u_int8_t *)); static void xl_mediacheck __P((struct xl_softc *)); static void xl_autoneg_mii __P((struct xl_softc *, int, int)); static void xl_setmode_mii __P((struct xl_softc *, int)); static void xl_ifmedia_sts __P((struct ifnet *, struct ifmediareq *)); static void xl_getmode_mii __P((struct xl_softc *)); static void xl_autoneg_xmit __P((struct xl_softc *)); static int xl_ifmedia_upd __P((struct ifnet *)); static void xl_setmode __P((struct xl_softc *, int)); static int xl_eeprom_wait __P((struct xl_softc *)); static int xl_read_eeprom __P((struct xl_softc *, caddr_t, int, int, int)); static void xl_mii_sync __P((struct xl_softc *)); static void xl_mii_send __P((struct xl_softc *, u_int32_t, int)); static int xl_mii_readreg __P((struct xl_softc *, struct xl_mii_frame *)); static int xl_mii_writereg __P((struct xl_softc *, struct xl_mii_frame *)); static u_int16_t xl_phy_readreg __P((struct xl_softc *, int)); static void xl_phy_writereg __P((struct xl_softc *, u_int16_t, u_int16_t)); static void xl_setmulti __P((struct xl_softc *)); static void xl_setmulti_hash __P((struct xl_softc *)); static void xl_reset __P((struct xl_softc *)); static int xl_list_rx_init __P((struct xl_softc *)); static int xl_list_tx_init __P((struct xl_softc *)); static void xl_wait __P((struct xl_softc *)); #ifdef notdef static void xl_testpacket __P((struct xl_softc *)); #endif /* * Murphy's law says that it's possible the chip can wedge and * the 'command in progress' bit may never clear. Hence, we wait * only a finite amount of time to avoid getting caught in an * infinite loop. Normally this delay routine would be a macro, * but it isn't called during normal operation so we can afford * to make it a function. */ static void xl_wait(sc) struct xl_softc *sc; { register int i; for (i = 0; i < XL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_2(sc, XL_STATUS) & XL_STAT_CMDBUSY)) break; } if (i == XL_TIMEOUT) printf("xl%d: command never completed!\n", sc->xl_unit); return; } /* * MII access routines are provided for adapters with external * PHYs (3c905-TX, 3c905-T4, 3c905B-T4) and those with built-in * autoneg logic that's faked up to look like a PHY (3c905B-TX). * Note: if you don't perform the MDIO operations just right, * it's possible to end up with code that works correctly with * some chips/CPUs/processor speeds/bus speeds/etc but not * with others. */ #define MII_SET(x) \ CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \ CSR_READ_2(sc, XL_W4_PHY_MGMT) | x) #define MII_CLR(x) \ CSR_WRITE_2(sc, XL_W4_PHY_MGMT, \ CSR_READ_2(sc, XL_W4_PHY_MGMT) & ~x) /* * Sync the PHYs by setting data bit and strobing the clock 32 times. */ static void xl_mii_sync(sc) struct xl_softc *sc; { register int i; XL_SEL_WIN(4); MII_SET(XL_MII_DIR|XL_MII_DATA); for (i = 0; i < 32; i++) { MII_SET(XL_MII_CLK); DELAY(1); MII_CLR(XL_MII_CLK); DELAY(1); } return; } /* * Clock a series of bits through the MII. */ static void xl_mii_send(sc, bits, cnt) struct xl_softc *sc; u_int32_t bits; int cnt; { int i; XL_SEL_WIN(4); MII_CLR(XL_MII_CLK); for (i = (0x1 << (cnt - 1)); i; i >>= 1) { if (bits & i) { MII_SET(XL_MII_DATA); } else { MII_CLR(XL_MII_DATA); } DELAY(1); MII_CLR(XL_MII_CLK); DELAY(1); MII_SET(XL_MII_CLK); } } /* * Read an PHY register through the MII. */ static int xl_mii_readreg(sc, frame) struct xl_softc *sc; struct xl_mii_frame *frame; { int i, ack, s; s = splimp(); /* * Set up frame for RX. */ frame->mii_stdelim = XL_MII_STARTDELIM; frame->mii_opcode = XL_MII_READOP; frame->mii_turnaround = 0; frame->mii_data = 0; /* * Select register window 4. */ XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_PHY_MGMT, 0); /* * Turn on data xmit. */ MII_SET(XL_MII_DIR); xl_mii_sync(sc); /* * Send command/address info. */ xl_mii_send(sc, frame->mii_stdelim, 2); xl_mii_send(sc, frame->mii_opcode, 2); xl_mii_send(sc, frame->mii_phyaddr, 5); xl_mii_send(sc, frame->mii_regaddr, 5); /* Idle bit */ MII_CLR((XL_MII_CLK|XL_MII_DATA)); DELAY(1); MII_SET(XL_MII_CLK); DELAY(1); /* Turn off xmit. */ MII_CLR(XL_MII_DIR); /* Check for ack */ MII_CLR(XL_MII_CLK); DELAY(1); MII_SET(XL_MII_CLK); DELAY(1); ack = CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA; /* * Now try reading data bits. If the ack failed, we still * need to clock through 16 cycles to keep the PHY(s) in sync. */ if (ack) { for(i = 0; i < 16; i++) { MII_CLR(XL_MII_CLK); DELAY(1); MII_SET(XL_MII_CLK); DELAY(1); } goto fail; } for (i = 0x8000; i; i >>= 1) { MII_CLR(XL_MII_CLK); DELAY(1); if (!ack) { if (CSR_READ_2(sc, XL_W4_PHY_MGMT) & XL_MII_DATA) frame->mii_data |= i; DELAY(1); } MII_SET(XL_MII_CLK); DELAY(1); } fail: MII_CLR(XL_MII_CLK); DELAY(1); MII_SET(XL_MII_CLK); DELAY(1); splx(s); if (ack) return(1); return(0); } /* * Write to a PHY register through the MII. */ static int xl_mii_writereg(sc, frame) struct xl_softc *sc; struct xl_mii_frame *frame; { int s; s = splimp(); /* * Set up frame for TX. */ frame->mii_stdelim = XL_MII_STARTDELIM; frame->mii_opcode = XL_MII_WRITEOP; frame->mii_turnaround = XL_MII_TURNAROUND; /* * Select the window 4. */ XL_SEL_WIN(4); /* * Turn on data output. */ MII_SET(XL_MII_DIR); xl_mii_sync(sc); xl_mii_send(sc, frame->mii_stdelim, 2); xl_mii_send(sc, frame->mii_opcode, 2); xl_mii_send(sc, frame->mii_phyaddr, 5); xl_mii_send(sc, frame->mii_regaddr, 5); xl_mii_send(sc, frame->mii_turnaround, 2); xl_mii_send(sc, frame->mii_data, 16); /* Idle bit. */ MII_SET(XL_MII_CLK); DELAY(1); MII_CLR(XL_MII_CLK); DELAY(1); /* * Turn off xmit. */ MII_CLR(XL_MII_DIR); splx(s); return(0); } static u_int16_t xl_phy_readreg(sc, reg) struct xl_softc *sc; int reg; { struct xl_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = sc->xl_phy_addr; frame.mii_regaddr = reg; xl_mii_readreg(sc, &frame); return(frame.mii_data); } static void xl_phy_writereg(sc, reg, data) struct xl_softc *sc; u_int16_t reg; u_int16_t data; { struct xl_mii_frame frame; bzero((char *)&frame, sizeof(frame)); frame.mii_phyaddr = sc->xl_phy_addr; frame.mii_regaddr = reg; frame.mii_data = data; xl_mii_writereg(sc, &frame); return; } /* * The EEPROM is slow: give it time to come ready after issuing * it a command. */ static int xl_eeprom_wait(sc) struct xl_softc *sc; { int i; for (i = 0; i < 100; i++) { if (CSR_READ_2(sc, XL_W0_EE_CMD) & XL_EE_BUSY) DELAY(162); else break; } if (i == 100) { printf("xl%d: eeprom failed to come ready\n", sc->xl_unit); return(1); } return(0); } /* * Read a sequence of words from the EEPROM. Note that ethernet address * data is stored in the EEPROM in network byte order. */ static int xl_read_eeprom(sc, dest, off, cnt, swap) struct xl_softc *sc; caddr_t dest; int off; int cnt; int swap; { int err = 0, i; u_int16_t word = 0, *ptr; XL_SEL_WIN(0); if (xl_eeprom_wait(sc)) return(1); for (i = 0; i < cnt; i++) { CSR_WRITE_2(sc, XL_W0_EE_CMD, XL_EE_READ | (off + i)); err = xl_eeprom_wait(sc); if (err) break; word = CSR_READ_2(sc, XL_W0_EE_DATA); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } return(err ? 1 : 0); } /* * This routine is taken from the 3Com Etherlink XL manual, * page 10-7. It calculates a CRC of the supplied multicast * group address and returns the lower 8 bits, which are used * as the multicast filter position. * Note: the 3c905B currently only supports a 64-bit hash table, * which means we really only need 6 bits, but the manual indicates * that future chip revisions will have a 256-bit hash table, * hence the routine is set up to calculate 8 bits of position * info in case we need it some day. * Note II, The Sequel: _CURRENT_ versions of the 3c905B have a * 256 bit hash table. This means we have to use all 8 bits regardless. * On older cards, the upper 2 bits will be ignored. Grrrr.... */ static u_int8_t xl_calchash(addr) u_int8_t *addr; { u_int32_t crc, carry; int i, j; u_int8_t c; /* Compute CRC for the address value. */ crc = 0xFFFFFFFF; /* initial value */ for (i = 0; i < 6; i++) { c = *(addr + i); for (j = 0; j < 8; j++) { carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01); crc <<= 1; c >>= 1; if (carry) crc = (crc ^ 0x04c11db6) | carry; } } /* return the filter bit position */ return(crc & 0x000000FF); } /* * NICs older than the 3c905B have only one multicast option, which * is to enable reception of all multicast frames. */ static void xl_setmulti(sc) struct xl_softc *sc; { struct ifnet *ifp; #ifdef __FreeBSD__ struct ifmultiaddr *ifma; #else struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; #endif u_int8_t rxfilt; int mcnt = 0; ifp = &sc->arpcom.ac_if; XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); if (ifp->if_flags & IFF_ALLMULTI) { rxfilt |= XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } #ifdef __FreeBSD__ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) mcnt++; #else ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { mcnt++; ETHER_NEXT_MULTI(step, enm); } #endif if (mcnt) rxfilt |= XL_RXFILTER_ALLMULTI; else rxfilt &= ~XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } /* * 3c905B adapters have a hash filter that we can program. */ static void xl_setmulti_hash(sc) struct xl_softc *sc; { struct ifnet *ifp; int h = 0, i; #ifdef __FreeBSD__ struct ifmultiaddr *ifma; #else struct arpcom *ac = &sc->arpcom; struct ether_multi *enm; struct ether_multistep step; #endif u_int8_t rxfilt; int mcnt = 0; ifp = &sc->arpcom.ac_if; XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); if (ifp->if_flags & IFF_ALLMULTI) { rxfilt |= XL_RXFILTER_ALLMULTI; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } else rxfilt &= ~XL_RXFILTER_ALLMULTI; /* first, zot all the existing hash bits */ for (i = 0; i < XL_HASHFILT_SIZE; i++) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|i); /* now program new ones */ #ifdef __FreeBSD__ for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL; ifma = ifma->ifma_link.le_next) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = xl_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr)); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_HASH|XL_HASH_SET|h); mcnt++; } #else ETHER_FIRST_MULTI(step, ac, enm); while (enm != NULL) { h = xl_calchash(enm->enm_addrlo); mcnt++; ETHER_NEXT_MULTI(step, enm); } #endif if (mcnt) rxfilt |= XL_RXFILTER_MULTIHASH; else rxfilt &= ~XL_RXFILTER_MULTIHASH; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); return; } #ifdef notdef static void xl_testpacket(sc) struct xl_softc *sc; { struct mbuf *m; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) return; bcopy(&sc->arpcom.ac_enaddr, mtod(m, struct ether_header *)->ether_dhost, ETHER_ADDR_LEN); bcopy(&sc->arpcom.ac_enaddr, mtod(m, struct ether_header *)->ether_shost, ETHER_ADDR_LEN); mtod(m, struct ether_header *)->ether_type = htons(3); mtod(m, unsigned char *)[14] = 0; mtod(m, unsigned char *)[15] = 0; mtod(m, unsigned char *)[16] = 0xE3; m->m_len = m->m_pkthdr.len = sizeof(struct ether_header) + 3; IF_ENQUEUE(&ifp->if_snd, m); xl_start(ifp); return; } #endif /* * Initiate an autonegotiation session. */ static void xl_autoneg_xmit(sc) struct xl_softc *sc; { u_int16_t phy_sts; xl_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET); DELAY(500); while(xl_phy_readreg(sc, XL_PHY_GENCTL) & PHY_BMCR_RESET); phy_sts = xl_phy_readreg(sc, PHY_BMCR); phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR; xl_phy_writereg(sc, PHY_BMCR, phy_sts); return; } /* * Invoke autonegotiation on a PHY. Also used with the 3Com internal * autoneg logic which is mapped onto the MII. */ static void xl_autoneg_mii(sc, flag, verbose) struct xl_softc *sc; int flag; int verbose; { u_int16_t phy_sts = 0, media, advert, ability; struct ifnet *ifp; struct ifmedia *ifm; ifm = &sc->ifmedia; ifp = &sc->arpcom.ac_if; ifm->ifm_media = IFM_ETHER | IFM_AUTO; /* * The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported' * bit cleared in the status register, but has the 'autoneg enabled' * bit set in the control register. This is a contradiction, and * I'm not sure how to handle it. If you want to force an attempt * to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR * and see what happens. */ #ifndef FORCE_AUTONEG_TFOUR /* * First, see if autoneg is supported. If not, there's * no point in continuing. */ phy_sts = xl_phy_readreg(sc, PHY_BMSR); if (!(phy_sts & PHY_BMSR_CANAUTONEG)) { if (verbose) printf("xl%d: autonegotiation not supported\n", sc->xl_unit); ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; media = xl_phy_readreg(sc, PHY_BMCR); media &= ~PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; xl_phy_writereg(sc, PHY_BMCR, media); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); return; } #endif switch (flag) { case XL_FLAG_FORCEDELAY: /* * XXX Never use this option anywhere but in the probe * routine: making the kernel stop dead in its tracks * for three whole seconds after we've gone multi-user * is really bad manners. */ xl_autoneg_xmit(sc); DELAY(5000000); break; case XL_FLAG_SCHEDDELAY: /* * Wait for the transmitter to go idle before starting * an autoneg session, otherwise xl_start() may clobber * our timeout, and we don't want to allow transmission * during an autoneg session since that can screw it up. */ if (sc->xl_cdata.xl_tx_head != NULL) { sc->xl_want_auto = 1; return; } xl_autoneg_xmit(sc); ifp->if_timer = 5; sc->xl_autoneg = 1; sc->xl_want_auto = 0; return; break; case XL_FLAG_DELAYTIMEO: ifp->if_timer = 0; sc->xl_autoneg = 0; break; default: printf("xl%d: invalid autoneg flag: %d\n", sc->xl_unit, flag); return; } if (xl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) { if (verbose) printf("xl%d: autoneg complete, ", sc->xl_unit); phy_sts = xl_phy_readreg(sc, PHY_BMSR); } else { if (verbose) printf("xl%d: autoneg not complete, ", sc->xl_unit); } media = xl_phy_readreg(sc, PHY_BMCR); /* Link is good. Report modes and set duplex mode. */ if (xl_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) { if (verbose) printf("link status good "); advert = xl_phy_readreg(sc, XL_PHY_ANAR); ability = xl_phy_readreg(sc, XL_PHY_LPAR); if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { ifm->ifm_media = IFM_ETHER|IFM_100_T4; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(100baseT4)\n"); } else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; media |= PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) { ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; media |= PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(half-duplex, 100Mbps)\n"); } else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; media &= ~PHY_BMCR_SPEEDSEL; media |= PHY_BMCR_DUPLEX; printf("(full-duplex, 10Mbps)\n"); } else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF) { ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; media &= ~PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; printf("(half-duplex, 10Mbps)\n"); } /* Set ASIC's duplex mode to match the PHY. */ XL_SEL_WIN(3); if (media & PHY_BMCR_DUPLEX) CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX); else CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); xl_phy_writereg(sc, PHY_BMCR, media); } else { if (verbose) printf("no carrier (forcing half-duplex, 10Mbps)\n"); ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; media &= ~PHY_BMCR_SPEEDSEL; media &= ~PHY_BMCR_DUPLEX; xl_phy_writereg(sc, PHY_BMCR, media); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); } xl_init(sc); if (sc->xl_tx_pend) { sc->xl_autoneg = 0; sc->xl_tx_pend = 0; xl_start(ifp); } return; } static void xl_getmode_mii(sc) struct xl_softc *sc; { u_int16_t bmsr; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; bmsr = xl_phy_readreg(sc, PHY_BMSR); if (bootverbose) printf("xl%d: PHY status word: %x\n", sc->xl_unit, bmsr); /* fallback */ sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX; if (bmsr & PHY_BMSR_10BTHALF) { if (bootverbose) printf("xl%d: 10Mbps half-duplex mode supported\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); } if (bmsr & PHY_BMSR_10BTFULL) { if (bootverbose) printf("xl%d: 10Mbps full-duplex mode supported\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX; } if (bmsr & PHY_BMSR_100BTXHALF) { if (bootverbose) printf("xl%d: 100Mbps half-duplex mode supported\n", sc->xl_unit); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX; } if (bmsr & PHY_BMSR_100BTXFULL) { if (bootverbose) printf("xl%d: 100Mbps full-duplex mode supported\n", sc->xl_unit); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX; } /* Some also support 100BaseT4. */ if (bmsr & PHY_BMSR_100BT4) { if (bootverbose) printf("xl%d: 100baseT4 mode supported\n", sc->xl_unit); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4; #ifdef FORCE_AUTONEG_TFOUR if (bootverbose) printf("xl%d: forcing on autoneg support for BT4\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO; #endif } if (bmsr & PHY_BMSR_CANAUTONEG) { if (bootverbose) printf("xl%d: autoneg supported\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO; } return; } /* * Set speed and duplex mode. */ static void xl_setmode_mii(sc, media) struct xl_softc *sc; int media; { u_int16_t bmcr; u_int32_t icfg; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* * If an autoneg session is in progress, stop it. */ if (sc->xl_autoneg) { printf("xl%d: canceling autoneg session\n", sc->xl_unit); ifp->if_timer = sc->xl_autoneg = sc->xl_want_auto = 0; bmcr = xl_phy_readreg(sc, PHY_BMCR); bmcr &= ~PHY_BMCR_AUTONEGENBL; xl_phy_writereg(sc, PHY_BMCR, bmcr); } printf("xl%d: selecting MII, ", sc->xl_unit); XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG); icfg &= ~XL_ICFG_CONNECTOR_MASK; if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS); if (sc->xl_media & XL_MEDIAOPT_BTX) { if (sc->xl_type == XL_TYPE_905B) icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS); else icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS); } CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); if (IFM_SUBTYPE(media) == IFM_100_FX) { icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS); CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); return; } bmcr = xl_phy_readreg(sc, PHY_BMCR); bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL| PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK); if (IFM_SUBTYPE(media) == IFM_100_T4) { printf("100Mbps/T4, half-duplex\n"); bmcr |= PHY_BMCR_SPEEDSEL; bmcr &= ~PHY_BMCR_DUPLEX; } if (IFM_SUBTYPE(media) == IFM_100_TX) { printf("100Mbps, "); bmcr |= PHY_BMCR_SPEEDSEL; } if (IFM_SUBTYPE(media) == IFM_10_T) { printf("10Mbps, "); bmcr &= ~PHY_BMCR_SPEEDSEL; } if ((media & IFM_GMASK) == IFM_FDX) { printf("full duplex\n"); bmcr |= PHY_BMCR_DUPLEX; XL_SEL_WIN(3); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX); } else { printf("half duplex\n"); bmcr &= ~PHY_BMCR_DUPLEX; XL_SEL_WIN(3); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); } xl_phy_writereg(sc, PHY_BMCR, bmcr); return; } static void xl_setmode(sc, media) struct xl_softc *sc; int media; { u_int32_t icfg; u_int16_t mediastat; printf("xl%d: selecting ", sc->xl_unit); XL_SEL_WIN(4); mediastat = CSR_READ_2(sc, XL_W4_MEDIA_STATUS); XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG); if (sc->xl_media & XL_MEDIAOPT_BT) { if (IFM_SUBTYPE(media) == IFM_10_T) { printf("10baseT transceiver, "); sc->xl_xcvr = XL_XCVR_10BT; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_10BT << XL_ICFG_CONNECTOR_BITS); mediastat |= XL_MEDIASTAT_LINKBEAT| XL_MEDIASTAT_JABGUARD; mediastat &= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & XL_MEDIAOPT_BFX) { if (IFM_SUBTYPE(media) == IFM_100_FX) { printf("100baseFX port, "); sc->xl_xcvr = XL_XCVR_100BFX; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS); mediastat |= XL_MEDIASTAT_LINKBEAT; mediastat &= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & XL_MEDIAOPT_AUI) { if (IFM_SUBTYPE(media) == IFM_10_5) { printf("AUI port, "); sc->xl_xcvr = XL_XCVR_AUI; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_AUI << XL_ICFG_CONNECTOR_BITS); mediastat &= ~(XL_MEDIASTAT_LINKBEAT| XL_MEDIASTAT_JABGUARD); mediastat |= ~XL_MEDIASTAT_SQEENB; } } if (sc->xl_media & XL_MEDIAOPT_BNC) { if (IFM_SUBTYPE(media) == IFM_10_2) { printf("BNC port, "); sc->xl_xcvr = XL_XCVR_COAX; icfg &= ~XL_ICFG_CONNECTOR_MASK; icfg |= (XL_XCVR_COAX << XL_ICFG_CONNECTOR_BITS); mediastat &= ~(XL_MEDIASTAT_LINKBEAT| XL_MEDIASTAT_JABGUARD| XL_MEDIASTAT_SQEENB); } } if ((media & IFM_GMASK) == IFM_FDX || IFM_SUBTYPE(media) == IFM_100_FX) { printf("full duplex\n"); XL_SEL_WIN(3); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, XL_MACCTRL_DUPLEX); } else { printf("half duplex\n"); XL_SEL_WIN(3); CSR_WRITE_1(sc, XL_W3_MAC_CTRL, (CSR_READ_1(sc, XL_W3_MAC_CTRL) & ~XL_MACCTRL_DUPLEX)); } if (IFM_SUBTYPE(media) == IFM_10_2) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START); else CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_MEDIA_STATUS, mediastat); DELAY(800); XL_SEL_WIN(7); return; } static void xl_reset(sc) struct xl_softc *sc; { XL_SEL_WIN(0); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RESET); xl_wait(sc); /* Wait a little while for the chip to get its brains in order. */ DELAY(1000); return; } #if defined(__FreeBSD__) /* * Probe for a 3Com Etherlink XL chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static char * xl_probe(config_id, device_id) pcici_t config_id; pcidi_t device_id; { struct xl_type *t; t = xl_devs; while(t->xl_name != NULL) { if ((device_id & 0xFFFF) == t->xl_vid && ((device_id >> 16) & 0xFFFF) == t->xl_did) { return(t->xl_name); } t++; } return(NULL); } #endif /* * This routine is a kludge to work around possible hardware faults * or manufacturing defects that can cause the media options register * (or reset options register, as it's called for the first generation * 3cx90x adapters) to return an incorrect result. I have encountered * one Dell Latitude laptop docking station with an integrated 3c905-TX * which doesn't have any of the 'mediaopt' bits set. This screws up * the attach routine pretty badly because it doesn't know what media * to look for. If we find ourselves in this predicament, this routine * will try to guess the media options values and warn the user of a * possible manufacturing defect with his adapter/system/whatever. */ static void xl_mediacheck(sc) struct xl_softc *sc; { u_int16_t devid; /* * If some of the media options bits are set, assume they are * correct. If not, try to figure it out down below. * XXX I should check for 10baseFL, but I don't have an adapter * to test with. */ if (sc->xl_media & (XL_MEDIAOPT_MASK & ~XL_MEDIAOPT_VCO)) { /* * Check the XCVR value. If it's not in the normal range * of values, we need to fake it up here. */ if (sc->xl_xcvr <= XL_XCVR_AUTO) return; else { printf("xl%d: bogus xcvr value " "in EEPROM (%x)\n", sc->xl_unit, sc->xl_xcvr); printf("xl%d: choosing new default based " "on card type\n", sc->xl_unit); } } else { printf("xl%d: WARNING: no media options bits set in " "the media options register!!\n", sc->xl_unit); printf("xl%d: this could be a manufacturing defect in " "your adapter or system\n", sc->xl_unit); printf("xl%d: attempting to guess media type; you " "should probably consult your vendor\n", sc->xl_unit); } /* * Read the device ID from the EEPROM. * This is what's loaded into the PCI device ID register, so it has * to be correct otherwise we wouldn't have gotten this far. */ xl_read_eeprom(sc, (caddr_t)&devid, XL_EE_PRODID, 1, 0); switch(devid) { case TC_DEVICEID_BOOMERANG_10BT: /* 3c900-TP */ case TC_DEVICEID_CYCLONE_10BT: /* 3c900B-TP */ sc->xl_media = XL_MEDIAOPT_BT; sc->xl_xcvr = XL_XCVR_10BT; printf("xl%d: guessing 10BaseT transceiver\n", sc->xl_unit); break; case TC_DEVICEID_BOOMERANG_10BT_COMBO: /* 3c900-COMBO */ case TC_DEVICEID_CYCLONE_10BT_COMBO: /* 3c900B-COMBO */ sc->xl_media = XL_MEDIAOPT_BT|XL_MEDIAOPT_BNC|XL_MEDIAOPT_AUI; sc->xl_xcvr = XL_XCVR_10BT; printf("xl%d: guessing COMBO (AUI/BNC/TP)\n", sc->xl_unit); break; case TC_DEVICEID_BOOMERANG_10_100BT: /* 3c905-TX */ sc->xl_media = XL_MEDIAOPT_MII; sc->xl_xcvr = XL_XCVR_MII; printf("xl%d: guessing MII\n", sc->xl_unit); break; case TC_DEVICEID_BOOMERANG_100BT4: /* 3c905-T4 */ case TC_DEVICEID_CYCLONE_10_100BT4: /* 3c905B-T4 */ sc->xl_media = XL_MEDIAOPT_BT4; sc->xl_xcvr = XL_XCVR_MII; printf("xl%d: guessing 100BaseT4/MII\n", sc->xl_unit); break; case TC_DEVICEID_CYCLONE_10_100BT: /* 3c905B-TX */ case TC_DEVICEID_CYCLONE_10_100BT_SERV: /* 3c980-TX */ sc->xl_media = XL_MEDIAOPT_BTX; sc->xl_xcvr = XL_XCVR_AUTO; printf("xl%d: guessing 10/100 internal\n", sc->xl_unit); break; default: printf("xl%d: unknown device ID: %x -- " "defaulting to 10baseT\n", sc->xl_unit, devid); sc->xl_media = XL_MEDIAOPT_BT; break; } return; } #if defined(__FreeBSD__) /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static void xl_attach(config_id, unit) pcici_t config_id; int unit; { int s, i; #ifndef XL_USEIOSPACE vm_offset_t pbase, vbase; #endif u_char eaddr[ETHER_ADDR_LEN]; u_int32_t command; struct xl_softc *sc; struct ifnet *ifp; int media = IFM_ETHER|IFM_100_TX|IFM_FDX; unsigned int round; caddr_t roundptr; struct xl_type *p; u_int16_t phy_vid, phy_did, phy_sts; s = splimp(); sc = malloc(sizeof(struct xl_softc), M_DEVBUF, M_NOWAIT); if (sc == NULL) { printf("xl%d: no memory for softc struct!\n", unit); return; } bzero(sc, sizeof(struct xl_softc)); /* * If this is a 3c905B, we have to check one extra thing. * The 905B supports power management and may be placed in * a low-power mode (D3 mode), typically by certain operating * systems which shall not be named. The PCI BIOS is supposed * to reset the NIC and bring it out of low-power mode, but * some do not. Consequently, we have to see if this chip * supports power management, and if so, make sure it's not * in low-power mode. If power management is available, the * capid byte will be 0x01. * * I _think_ that what actually happens is that the chip * loses its PCI configuration during the transition from * D3 back to D0; this means that it should be possible for * us to save the PCI iobase, membase and IRQ, put the chip * back in the D0 state, then restore the PCI config ourselves. */ command = pci_conf_read(config_id, XL_PCI_CAPID) & 0x000000FF; if (command == 0x01) { command = pci_conf_read(config_id, XL_PCI_PWRMGMTCTRL); if (command & XL_PSTATE_MASK) { u_int32_t iobase, membase, irq; /* Save important PCI config data. */ iobase = pci_conf_read(config_id, XL_PCI_LOIO); membase = pci_conf_read(config_id, XL_PCI_LOMEM); irq = pci_conf_read(config_id, XL_PCI_INTLINE); /* Reset the power state. */ printf("xl%d: chip is in D%d power mode " "-- setting to D0\n", unit, command & XL_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(config_id, XL_PCI_PWRMGMTCTRL, command); /* Restore PCI config data. */ pci_conf_write(config_id, XL_PCI_LOIO, iobase); pci_conf_write(config_id, XL_PCI_LOMEM, membase); pci_conf_write(config_id, XL_PCI_INTLINE, irq); } } /* * Map control/status registers. */ command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG); command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN); pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG); #ifdef XL_USEIOSPACE if (!(command & PCIM_CMD_PORTEN)) { printf("xl%d: failed to enable I/O ports!\n", unit); free(sc, M_DEVBUF); goto fail; } sc->iobase = pci_conf_read(config_id, XL_PCI_LOIO) & 0xFFFFFFE0; #else if (!(command & PCIM_CMD_MEMEN)) { printf("xl%d: failed to enable memory mapping!\n", unit); goto fail; } if (!pci_map_mem(config_id, XL_PCI_LOMEM, &vbase, &pbase)) { printf ("xl%d: couldn't map memory\n", unit); goto fail; } sc->csr = (volatile caddr_t)vbase; #endif /* Allocate interrupt */ if (!pci_map_int(config_id, xl_intr, sc, &net_imask)) { printf("xl%d: couldn't map interrupt\n", unit); goto fail; } /* Reset the adapter. */ xl_reset(sc); /* * Get station address from the EEPROM. */ if (xl_read_eeprom(sc, (caddr_t)&eaddr, XL_EE_OEM_ADR0, 3, 1)) { printf("xl%d: failed to read station address\n", sc->xl_unit); free(sc, M_DEVBUF); goto fail; } /* * A 3Com chip was detected. Inform the world. */ printf("xl%d: Ethernet address: %6D\n", unit, eaddr, ":"); sc->xl_unit = unit; callout_handle_init(&sc->xl_stat_ch); bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); sc->xl_ldata_ptr = malloc(sizeof(struct xl_list_data) + 8, M_DEVBUF, M_NOWAIT); if (sc->xl_ldata_ptr == NULL) { free(sc, M_DEVBUF); printf("xl%d: no memory for list buffers!\n", unit); return; } sc->xl_ldata = (struct xl_list_data *)sc->xl_ldata_ptr; round = (unsigned int)sc->xl_ldata_ptr & 0xF; roundptr = sc->xl_ldata_ptr; for (i = 0; i < 8; i++) { if (round % 8) { round++; roundptr++; } else break; } sc->xl_ldata = (struct xl_list_data *)roundptr; bzero(sc->xl_ldata, sizeof(struct xl_list_data)); ifp = &sc->arpcom.ac_if; ifp->if_softc = sc; ifp->if_unit = unit; ifp->if_name = "xl"; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = xl_ioctl; ifp->if_output = ether_output; ifp->if_start = xl_start; ifp->if_watchdog = xl_watchdog; ifp->if_init = xl_init; ifp->if_baudrate = 10000000; /* * Figure out the card type. 3c905B adapters have the * 'supportsNoTxLength' bit set in the capabilities * word in the EEPROM. */ xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0); if (sc->xl_caps & XL_CAPS_NO_TXLENGTH) sc->xl_type = XL_TYPE_905B; else sc->xl_type = XL_TYPE_90X; /* * Now we have to see what sort of media we have. * This includes probing for an MII interace and a * possible PHY. */ XL_SEL_WIN(3); sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT); if (bootverbose) printf("xl%d: media options word: %x\n", sc->xl_unit, sc->xl_media); xl_read_eeprom(sc, (char *)&sc->xl_xcvr, XL_EE_ICFG_0, 2, 0); sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK; sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS; xl_mediacheck(sc); if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX || sc->xl_media & XL_MEDIAOPT_BT4) { /* * In theory I shouldn't need this, but... if this * card supports an MII, either an external one or * an internal fake one, select it in the internal * config register before trying to probe it. */ u_int32_t icfg; XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG); icfg &= ~XL_ICFG_CONNECTOR_MASK; if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS); if (sc->xl_media & XL_MEDIAOPT_BTX) icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS); if (sc->xl_media & XL_MEDIAOPT_BFX) icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS); CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); if (bootverbose) printf("xl%d: probing for a PHY\n", sc->xl_unit); for (i = XL_PHYADDR_MIN; i < XL_PHYADDR_MAX + 1; i++) { if (bootverbose) printf("xl%d: checking address: %d\n", sc->xl_unit, i); sc->xl_phy_addr = i; xl_phy_writereg(sc, XL_PHY_GENCTL, PHY_BMCR_RESET); DELAY(500); while(xl_phy_readreg(sc, XL_PHY_GENCTL) & PHY_BMCR_RESET); if ((phy_sts = xl_phy_readreg(sc, XL_PHY_GENSTS))) break; } if (phy_sts) { phy_vid = xl_phy_readreg(sc, XL_PHY_VENID); phy_did = xl_phy_readreg(sc, XL_PHY_DEVID); if (bootverbose) printf("xl%d: found PHY at address %d, ", sc->xl_unit, sc->xl_phy_addr); if (bootverbose) printf("vendor id: %x device id: %x\n", phy_vid, phy_did); p = xl_phys; while(p->xl_vid) { if (phy_vid == p->xl_vid && (phy_did | 0x000F) == p->xl_did) { sc->xl_pinfo = p; break; } p++; } if (sc->xl_pinfo == NULL) sc->xl_pinfo = &xl_phys[PHY_UNKNOWN]; if (bootverbose) printf("xl%d: PHY type: %s\n", sc->xl_unit, sc->xl_pinfo->xl_name); } else { printf("xl%d: MII without any phy!\n", sc->xl_unit); } } /* * Do ifmedia setup. */ ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts); if (sc->xl_media & XL_MEDIAOPT_BT) { if (bootverbose) printf("xl%d: found 10baseT\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); } if (sc->xl_media & XL_MEDIAOPT_AUI) { if (bootverbose) printf("xl%d: found AUI\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL); } if (sc->xl_media & XL_MEDIAOPT_BNC) { if (bootverbose) printf("xl%d: found BNC\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL); } /* * Technically we could use xl_getmode_mii() to scan the * modes, but the built-in BTX mode on the 3c905B implies * 10/100 full/half duplex support anyway, so why not just * do it and get it over with. */ if (sc->xl_media & XL_MEDIAOPT_BTX) { if (bootverbose) printf("xl%d: found 100baseTX\n", sc->xl_unit); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); if (sc->xl_pinfo != NULL) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); } if (sc->xl_media & XL_MEDIAOPT_BFX) { if (bootverbose) printf("xl%d: found 100baseFX\n", sc->xl_unit); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL); } /* * If there's an MII, we have to probe its modes * separately. */ if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) { if (bootverbose) printf("xl%d: found MII\n", sc->xl_unit); xl_getmode_mii(sc); } /* Choose a default media. */ switch(sc->xl_xcvr) { case XL_XCVR_10BT: media = IFM_ETHER|IFM_10_T; xl_setmode(sc, media); break; case XL_XCVR_AUI: media = IFM_ETHER|IFM_10_5; xl_setmode(sc, media); break; case XL_XCVR_COAX: media = IFM_ETHER|IFM_10_2; xl_setmode(sc, media); break; case XL_XCVR_AUTO: #ifdef XL_BACKGROUND_AUTONEG xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1); #else xl_autoneg_mii(sc, XL_FLAG_FORCEDELAY, 1); #endif media = sc->ifmedia.ifm_media; break; case XL_XCVR_100BTX: case XL_XCVR_MII: #ifdef XL_BACKGROUND_AUTONEG xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1); #else xl_autoneg_mii(sc, XL_FLAG_FORCEDELAY, 1); #endif media = sc->ifmedia.ifm_media; break; case XL_XCVR_100BFX: media = IFM_ETHER|IFM_100_FX; break; default: printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, sc->xl_xcvr); /* * This will probably be wrong, but it prevents * the ifmedia code from panicking. */ media = IFM_ETHER|IFM_10_T; break; } ifmedia_set(&sc->ifmedia, media); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); #if NBPFILTER > 0 bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif at_shutdown(xl_shutdown, sc, SHUTDOWN_POST_SYNC); fail: splx(s); return; } #endif /* * Initialize the transmit descriptors. */ static int xl_list_tx_init(sc) struct xl_softc *sc; { struct xl_chain_data *cd; struct xl_list_data *ld; int i; cd = &sc->xl_cdata; ld = sc->xl_ldata; for (i = 0; i < XL_TX_LIST_CNT; i++) { cd->xl_tx_chain[i].xl_ptr = &ld->xl_tx_list[i]; if (i == (XL_TX_LIST_CNT - 1)) cd->xl_tx_chain[i].xl_next = NULL; else cd->xl_tx_chain[i].xl_next = &cd->xl_tx_chain[i + 1]; } cd->xl_tx_free = &cd->xl_tx_chain[0]; cd->xl_tx_tail = cd->xl_tx_head = NULL; return(0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int xl_list_rx_init(sc) struct xl_softc *sc; { struct xl_chain_data *cd; struct xl_list_data *ld; int i; cd = &sc->xl_cdata; ld = sc->xl_ldata; for (i = 0; i < XL_RX_LIST_CNT; i++) { cd->xl_rx_chain[i].xl_ptr = (struct xl_list_onefrag *)&ld->xl_rx_list[i]; if (xl_newbuf(sc, &cd->xl_rx_chain[i]) == ENOBUFS) return(ENOBUFS); if (i == (XL_RX_LIST_CNT - 1)) { cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[0]; ld->xl_rx_list[i].xl_next = vtophys(&ld->xl_rx_list[0]); } else { cd->xl_rx_chain[i].xl_next = &cd->xl_rx_chain[i + 1]; ld->xl_rx_list[i].xl_next = vtophys(&ld->xl_rx_list[i + 1]); } } cd->xl_rx_head = &cd->xl_rx_chain[0]; return(0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int xl_newbuf(sc, c) struct xl_softc *sc; struct xl_chain_onefrag *c; { struct mbuf *m_new = NULL; #if defined(__alpha__) && defined(__OpenBSD__) int pad; #endif MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("xl%d: no memory for rx list -- packet dropped!\n", sc->xl_unit); return(ENOBUFS); } #if defined(__alpha__) && defined(__OpenBSD__) pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header); m_new->m_data += pad; m_new->m_len -= pad; #endif MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { printf("xl%d: no memory for rx list -- packet dropped!\n", sc->xl_unit); m_freem(m_new); return(ENOBUFS); } #if defined(__alpha__) && defined(__OpenBSD__) pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header); m_new->m_data += pad; m_new->m_len -= pad; #endif c->xl_mbuf = m_new; c->xl_ptr->xl_status = 0; c->xl_ptr->xl_frag.xl_addr = vtophys(mtod(m_new, caddr_t)); c->xl_ptr->xl_frag.xl_len = MCLBYTES | XL_LAST_FRAG; return(0); } /* * A frame has been uploaded: pass the resulting mbuf chain up to * the higher level protocols. */ static void xl_rxeof(sc) struct xl_softc *sc; { struct ether_header *eh; struct mbuf *m; struct ifnet *ifp; struct xl_chain_onefrag *cur_rx; int total_len = 0; u_int16_t rxstat; ifp = &sc->arpcom.ac_if; again: while((rxstat = sc->xl_cdata.xl_rx_head->xl_ptr->xl_status)) { cur_rx = sc->xl_cdata.xl_rx_head; sc->xl_cdata.xl_rx_head = cur_rx->xl_next; /* * If an error occurs, update stats, clear the * status word and leave the mbuf cluster in place: * it should simply get re-used next time this descriptor * comes up in the ring. */ if (rxstat & XL_RXSTAT_UP_ERROR) { ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; continue; } /* * If there error bit was not set, the upload complete * bit should be set which means we have a valid packet. * If not, something truly strange has happened. */ if (!(rxstat & XL_RXSTAT_UP_CMPLT)) { printf("xl%d: bad receive status -- packet dropped", sc->xl_unit); ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; continue; } /* No errors; receive the packet. */ m = cur_rx->xl_mbuf; total_len = cur_rx->xl_ptr->xl_status & XL_RXSTAT_LENMASK; /* * Try to conjure up a new mbuf cluster. If that * fails, it means we have an out of memory condition and * should leave the buffer in place and continue. This will * result in a lost packet, but there's little else we * can do in this situation. */ if (xl_newbuf(sc, cur_rx) == ENOBUFS) { ifp->if_ierrors++; cur_rx->xl_ptr->xl_status = 0; continue; } eh = mtod(m, struct ether_header *); m->m_pkthdr.rcvif = ifp; #if NBPFILTER > 0 /* * Handle BPF listeners. Let the BPF user see the packet, but * don't pass it up to the ether_input() layer unless it's * a broadcast packet, multicast packet, matches our ethernet * address or the interface is in promiscuous mode. */ if (ifp->if_bpf) { m->m_pkthdr.len = m->m_len = total_len; #ifdef __FreeBSD__ bpf_mtap(ifp, m); #else bpf_mtap(ifp->if_bpf, m); #endif if (ifp->if_flags & IFF_PROMISC && (bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr, ETHER_ADDR_LEN) && (eh->ether_dhost[0] & 1) == 0)) { m_freem(m); continue; } } #endif /* Remove header from mbuf and pass it on. */ m->m_pkthdr.len = m->m_len = total_len - sizeof(struct ether_header); m->m_data += sizeof(struct ether_header); ether_input(ifp, eh, m); } /* * Handle the 'end of channel' condition. When the upload * engine hits the end of the RX ring, it will stall. This * is our cue to flush the RX ring, reload the uplist pointer * register and unstall the engine. * XXX This is actually a little goofy. With the ThunderLAN * chip, you get an interrupt when the receiver hits the end * of the receive ring, which tells you exactly when you * you need to reload the ring pointer. Here we have to * fake it. I'm mad at myself for not being clever enough * to avoid the use of a goto here. */ if (CSR_READ_4(sc, XL_UPLIST_PTR) == 0 || CSR_READ_4(sc, XL_UPLIST_STATUS) & XL_PKTSTAT_UP_STALLED) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL); xl_wait(sc); CSR_WRITE_4(sc, XL_UPLIST_PTR, vtophys(&sc->xl_ldata->xl_rx_list[0])); sc->xl_cdata.xl_rx_head = &sc->xl_cdata.xl_rx_chain[0]; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL); goto again; } return; } /* * A frame was downloaded to the chip. It's safe for us to clean up * the list buffers. */ static void xl_txeof(sc) struct xl_softc *sc; { struct xl_chain *cur_tx; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; /* Clear the timeout timer. */ ifp->if_timer = 0; /* * Go through our tx list and free mbufs for those * frames that have been uploaded. Note: the 3c905B * sets a special bit in the status word to let us * know that a frame has been downloaded, but the * original 3c900/3c905 adapters don't do that. * Consequently, we have to use a different test if * xl_type != XL_TYPE_905B. */ while(sc->xl_cdata.xl_tx_head != NULL) { cur_tx = sc->xl_cdata.xl_tx_head; if ((sc->xl_type == XL_TYPE_905B && !(cur_tx->xl_ptr->xl_status & XL_TXSTAT_DL_COMPLETE)) || CSR_READ_4(sc, XL_DOWNLIST_PTR)) { break; } sc->xl_cdata.xl_tx_head = cur_tx->xl_next; m_freem(cur_tx->xl_mbuf); cur_tx->xl_mbuf = NULL; cur_tx->xl_next = sc->xl_cdata.xl_tx_free; sc->xl_cdata.xl_tx_free = cur_tx; if (!cur_tx->xl_ptr->xl_next); break; } if (sc->xl_cdata.xl_tx_head == NULL) { ifp->if_flags &= ~IFF_OACTIVE; sc->xl_cdata.xl_tx_tail = NULL; if (sc->xl_want_auto) xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1); } else { if (CSR_READ_4(sc, XL_DMACTL) & XL_DMACTL_DOWN_STALLED || !CSR_READ_4(sc, XL_DOWNLIST_PTR)) { CSR_WRITE_4(sc, XL_DOWNLIST_PTR, vtophys(sc->xl_cdata.xl_tx_head->xl_ptr)); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } } return; } /* * TX 'end of channel' interrupt handler. Actually, we should * only get a 'TX complete' interrupt if there's a transmit error, * so this is really TX error handler. */ static void xl_txeoc(sc) struct xl_softc *sc; { u_int8_t txstat; while((txstat = CSR_READ_1(sc, XL_TX_STATUS))) { if (txstat & XL_TXSTATUS_UNDERRUN || txstat & XL_TXSTATUS_JABBER || txstat & XL_TXSTATUS_RECLAIM) { printf("xl%d: transmission error: %x\n", sc->xl_unit, txstat); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); if (sc->xl_cdata.xl_tx_head != NULL) CSR_WRITE_4(sc, XL_DOWNLIST_PTR, vtophys(sc->xl_cdata.xl_tx_head->xl_ptr)); /* * Remember to set this for the * first generation 3c90X chips. */ CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8); if (sc->xl_type == XL_TYPE_905B) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4)); } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } else { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); } /* * Write an arbitrary byte to the TX_STATUS register * to clear this interrupt/error and advance to the next. */ CSR_WRITE_1(sc, XL_TX_STATUS, 0x01); } return; } #ifdef __OpenBSD__ static int xl_intr(arg) void *arg; #else static void xl_intr(arg) void *arg; #endif { struct xl_softc *sc; struct ifnet *ifp; u_int16_t status; #ifdef __OpenBSD__ int claimed = 0; #endif sc = arg; ifp = &sc->arpcom.ac_if; /* Disable interrupts. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB); for (;;) { status = CSR_READ_2(sc, XL_STATUS); if ((status & XL_INTRS) == 0) break; #ifdef __OpenBSD__ claimed = 1; #endif if (status & XL_STAT_UP_COMPLETE) { xl_rxeof(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_UP_COMPLETE); } if (status & XL_STAT_DOWN_COMPLETE) { xl_txeof(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_DOWN_COMPLETE); } if (status & XL_STAT_TX_COMPLETE) { ifp->if_oerrors++; xl_txeoc(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_TX_COMPLETE); } if (status & XL_STAT_ADFAIL) { xl_reset(sc); xl_init(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_ADFAIL); } if (status & XL_STAT_STATSOFLOW) { sc->xl_stats_no_timeout = 1; xl_stats_update(sc); sc->xl_stats_no_timeout = 0; } CSR_WRITE_2(sc, XL_STATUS, XL_CMD_INTR_ACK|XL_STAT_INTREQ| XL_STAT_INTLATCH); } /* Re-enable interrupts. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS); XL_SEL_WIN(7); if (ifp->if_snd.ifq_head != NULL) { xl_start(ifp); } #ifdef __OpenBSD__ return claimed; #else return; #endif } static void xl_stats_update(xsc) void *xsc; { struct xl_softc *sc; struct ifnet *ifp; struct xl_stats xl_stats; u_int8_t *p; int i; bzero((char *)&xl_stats, sizeof(struct xl_stats)); sc = xsc; ifp = &sc->arpcom.ac_if; p = (u_int8_t *)&xl_stats; /* Read all the stats registers. */ XL_SEL_WIN(6); for (i = 0; i < 16; i++) *p++ = CSR_READ_1(sc, XL_W6_CARRIER_LOST + i); ifp->if_ipackets += xl_rx_goodframes(xl_stats); ifp->if_opackets += xl_tx_goodframes(xl_stats); ifp->if_ierrors += xl_stats.xl_rx_overrun; ifp->if_collisions += xl_stats.xl_tx_multi_collision + xl_stats.xl_tx_single_collision + xl_stats.xl_tx_late_collision; /* * Boomerang and cyclone chips have an extra stats counter * in window 4 (BadSSD). We have to read this too in order * to clear out all the stats registers and avoid a statsoflow * interrupt. */ XL_SEL_WIN(4); CSR_READ_1(sc, XL_W4_BADSSD); XL_SEL_WIN(7); if (!sc->xl_stats_no_timeout) #ifdef __FreeBSD__ sc->xl_stat_ch = timeout(xl_stats_update, sc, hz); #else timeout(xl_stats_update, sc, hz); #endif return; } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int xl_encap(sc, c, m_head) struct xl_softc *sc; struct xl_chain *c; struct mbuf *m_head; { int frag = 0; struct xl_frag *f = NULL; int total_len; struct mbuf *m; /* * Start packing the mbufs in this chain into * the fragment pointers. Stop when we run out * of fragments or hit the end of the mbuf chain. */ m = m_head; total_len = 0; for (m = m_head, frag = 0; m != NULL; m = m->m_next) { if (m->m_len != 0) { if (frag == XL_MAXFRAGS) break; total_len+= m->m_len; c->xl_ptr->xl_frag[frag].xl_addr = vtophys(mtod(m, vm_offset_t)); c->xl_ptr->xl_frag[frag].xl_len = m->m_len; frag++; } } /* * Handle special case: we used up all 63 fragments, * but we have more mbufs left in the chain. Copy the * data into an mbuf cluster. Note that we don't * bother clearing the values in the other fragment * pointers/counters; it wouldn't gain us anything, * and would waste cycles. */ if (m != NULL) { struct mbuf *m_new = NULL; MGETHDR(m_new, M_DONTWAIT, MT_DATA); if (m_new == NULL) { printf("xl%d: no memory for tx list", sc->xl_unit); return(1); } if (m_head->m_pkthdr.len > MHLEN) { MCLGET(m_new, M_DONTWAIT); if (!(m_new->m_flags & M_EXT)) { m_freem(m_new); printf("xl%d: no memory for tx list", sc->xl_unit); return(1); } } m_copydata(m_head, 0, m_head->m_pkthdr.len, mtod(m_new, caddr_t)); m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len; m_freem(m_head); m_head = m_new; f = &c->xl_ptr->xl_frag[0]; f->xl_addr = vtophys(mtod(m_new, caddr_t)); f->xl_len = total_len = m_new->m_len; frag = 1; } c->xl_mbuf = m_head; c->xl_ptr->xl_frag[frag - 1].xl_len |= XL_LAST_FRAG; c->xl_ptr->xl_status = total_len; c->xl_ptr->xl_next = 0; return(0); } /* * Main transmit routine. To avoid having to do mbuf copies, we put pointers * to the mbuf data regions directly in the transmit lists. We also save a * copy of the pointers since the transmit list fragment pointers are * physical addresses. */ static void xl_start(ifp) struct ifnet *ifp; { struct xl_softc *sc; struct mbuf *m_head = NULL; struct xl_chain *prev = NULL, *cur_tx = NULL, *start_tx; sc = ifp->if_softc; if (sc->xl_autoneg) { sc->xl_tx_pend = 1; return; } /* * Check for an available queue slot. If there are none, * punt. */ if (sc->xl_cdata.xl_tx_free == NULL) { xl_txeoc(sc); xl_txeof(sc); if (sc->xl_cdata.xl_tx_free == NULL) { ifp->if_flags |= IFF_OACTIVE; return; } } start_tx = sc->xl_cdata.xl_tx_free; while(sc->xl_cdata.xl_tx_free != NULL) { IF_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* Pick a descriptor off the free list. */ cur_tx = sc->xl_cdata.xl_tx_free; sc->xl_cdata.xl_tx_free = cur_tx->xl_next; cur_tx->xl_next = NULL; /* Pack the data into the descriptor. */ xl_encap(sc, cur_tx, m_head); /* Chain it together. */ if (prev != NULL) { prev->xl_next = cur_tx; prev->xl_ptr->xl_next = vtophys(cur_tx->xl_ptr); } prev = cur_tx; #if NBPFILTER > 0 /* * If there's a BPF listener, bounce a copy of this frame * to him. */ if (ifp->if_bpf) #ifdef __FreeBSD__ bpf_mtap(ifp, cur_tx->xl_mbuf); #else bpf_mtap(ifp->if_bpf, cur_tx->xl_mbuf); #endif #endif } /* * Place the request for the upload interrupt * in the last descriptor in the chain. This way, if * we're chaining several packets at once, we'll only * get an interupt once for the whole chain rather than * once for each packet. */ cur_tx->xl_ptr->xl_status |= XL_TXSTAT_DL_INTR; /* * Queue the packets. If the TX channel is clear, update * the downlist pointer register. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_STALL); xl_wait(sc); if (CSR_READ_4(sc, XL_DOWNLIST_PTR)) { sc->xl_cdata.xl_tx_tail->xl_next = start_tx; sc->xl_cdata.xl_tx_tail->xl_ptr->xl_next = vtophys(start_tx->xl_ptr); sc->xl_cdata.xl_tx_tail->xl_ptr->xl_status &= ~XL_TXSTAT_DL_INTR; } else { sc->xl_cdata.xl_tx_head = start_tx; sc->xl_cdata.xl_tx_tail = cur_tx; CSR_WRITE_4(sc, XL_DOWNLIST_PTR, vtophys(start_tx->xl_ptr)); } CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_DOWN_UNSTALL); XL_SEL_WIN(7); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; /* * XXX Under certain conditions, usually on slower machines * where interrupts may be dropped, it's possible for the * adapter to chew up all the buffers in the receive ring * and stall, without us being able to do anything about it. * To guard against this, we need to make a pass over the * RX queue to make sure there aren't any packets pending. * Doing it here means we can flush the receive ring at the * same time the chip is DMAing the transmit descriptors we * just gave it. * * 3Com goes to some lengths to emphasize the Parallel Tasking (tm) * nature of their chips in all their marketing literature; * we may as well take advantage of it. :) */ xl_rxeof(sc); return; } static void xl_init(xsc) void *xsc; { struct xl_softc *sc = xsc; struct ifnet *ifp = &sc->arpcom.ac_if; int s, i; u_int16_t rxfilt = 0; u_int16_t phy_bmcr = 0; if (sc->xl_autoneg) return; s = splimp(); /* * XXX Hack for the 3c905B: the built-in autoneg logic's state * gets reset by xl_init() when we don't want it to. Try * to preserve it. (For 3c905 cards with real external PHYs, * the BMCR register doesn't change, but this doesn't hurt.) */ if (sc->xl_pinfo != NULL) phy_bmcr = xl_phy_readreg(sc, PHY_BMCR); /* * Cancel pending I/O and free all RX/TX buffers. */ xl_stop(sc); xl_wait(sc); /* Init our MAC address */ XL_SEL_WIN(2); for (i = 0; i < ETHER_ADDR_LEN; i++) { CSR_WRITE_1(sc, XL_W2_STATION_ADDR_LO + i, sc->arpcom.ac_enaddr[i]); } /* Clear the station mask. */ for (i = 0; i < 3; i++) CSR_WRITE_2(sc, XL_W2_STATION_MASK_LO + (i * 2), 0); /* Reset TX and RX. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); /* Init circular RX list. */ if (xl_list_rx_init(sc) == ENOBUFS) { printf("xl%d: initialization failed: no " "memory for rx buffers\n", sc->xl_unit); xl_stop(sc); return; } /* Init TX descriptors. */ xl_list_tx_init(sc); /* * Set the TX freethresh value. * Note that this has no effect on 3c905B "cyclone" * cards but is required for 3c900/3c905 "boomerang" * cards in order to enable the download engine. */ CSR_WRITE_1(sc, XL_TX_FREETHRESH, XL_PACKET_SIZE >> 8); /* * If this is a 3c905B, also set the tx reclaim threshold. * This helps cut down on the number of tx reclaim errors * that could happen on a busy network. The chip multiplies * the register value by 16 to obtain the actual threshold * in bytes, so we divide by 16 when setting the value here. * The existing threshold value can be examined by reading * the register at offset 9 in window 5. */ if (sc->xl_type == XL_TYPE_905B) { CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_SET_TX_RECLAIM|(XL_PACKET_SIZE >> 4)); } /* Set RX filter bits. */ XL_SEL_WIN(5); rxfilt = CSR_READ_1(sc, XL_W5_RX_FILTER); /* Set the individual bit to receive frames for this host only. */ rxfilt |= XL_RXFILTER_INDIVIDUAL; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) { rxfilt |= XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } else { rxfilt &= ~XL_RXFILTER_ALLFRAMES; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) { rxfilt |= XL_RXFILTER_BROADCAST; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } else { rxfilt &= ~XL_RXFILTER_BROADCAST; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_FILT|rxfilt); } /* * Program the multicast filter, if necessary. */ if (sc->xl_type == XL_TYPE_905B) xl_setmulti_hash(sc); else xl_setmulti(sc); /* * Load the address of the RX list. We have to * stall the upload engine before we can manipulate * the uplist pointer register, then unstall it when * we're finished. We also have to wait for the * stall command to complete before proceeding. * Note that we have to do this after any RX resets * have completed since the uplist register is cleared * by a reset. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_STALL); xl_wait(sc); CSR_WRITE_4(sc, XL_UPLIST_PTR, vtophys(&sc->xl_ldata->xl_rx_list[0])); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_UP_UNSTALL); /* * If the coax transceiver is on, make sure to enable * the DC-DC converter. */ XL_SEL_WIN(3); if (sc->xl_xcvr == XL_XCVR_COAX) CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_START); else CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); /* Clear out the stats counters. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE); sc->xl_stats_no_timeout = 1; xl_stats_update(sc); sc->xl_stats_no_timeout = 0; XL_SEL_WIN(4); CSR_WRITE_2(sc, XL_W4_NET_DIAG, XL_NETDIAG_UPPER_BYTES_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_ENABLE); /* * Enable interrupts. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|0xFF); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STAT_ENB|XL_INTRS); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB|XL_INTRS); /* Set the RX early threshold */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_SET_THRESH|(XL_PACKET_SIZE >>2)); CSR_WRITE_2(sc, XL_DMACTL, XL_DMACTL_UP_RX_EARLY); /* Enable receiver and transmitter. */ CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_ENABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_ENABLE); /* Restore state of BMCR */ if (sc->xl_pinfo != NULL) xl_phy_writereg(sc, PHY_BMCR, phy_bmcr); /* Select window 7 for normal operations. */ XL_SEL_WIN(7); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; (void)splx(s); #ifdef __FreeBSD__ sc->xl_stat_ch = timeout(xl_stats_update, sc, hz); #else timeout(xl_stats_update, sc, hz); #endif return; } /* * Set media options. */ static int xl_ifmedia_upd(ifp) struct ifnet *ifp; { struct xl_softc *sc; struct ifmedia *ifm; sc = ifp->if_softc; ifm = &sc->ifmedia; if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) return(EINVAL); if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX || sc->xl_media & XL_MEDIAOPT_BT4) { if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1); else xl_setmode_mii(sc, ifm->ifm_media); } else { xl_setmode(sc, ifm->ifm_media); } return(0); } /* * Report current media status. */ static void xl_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct xl_softc *sc; u_int16_t advert = 0, ability = 0; u_int32_t icfg; sc = ifp->if_softc; XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG) & XL_ICFG_CONNECTOR_MASK; icfg >>= XL_ICFG_CONNECTOR_BITS; ifmr->ifm_active = IFM_ETHER; switch(icfg) { case XL_XCVR_10BT: ifmr->ifm_active = IFM_ETHER|IFM_10_T; if (CSR_READ_1(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; break; case XL_XCVR_AUI: ifmr->ifm_active = IFM_ETHER|IFM_10_5; break; case XL_XCVR_COAX: ifmr->ifm_active = IFM_ETHER|IFM_10_2; break; /* * XXX MII and BTX/AUTO should be separate cases. */ case XL_XCVR_100BTX: case XL_XCVR_AUTO: case XL_XCVR_MII: if (!(xl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) { if (xl_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL) ifmr->ifm_active = IFM_ETHER|IFM_100_TX; else ifmr->ifm_active = IFM_ETHER|IFM_10_T; XL_SEL_WIN(3); if (CSR_READ_2(sc, XL_W3_MAC_CTRL) & XL_MACCTRL_DUPLEX) ifmr->ifm_active |= IFM_FDX; else ifmr->ifm_active |= IFM_HDX; break; } ability = xl_phy_readreg(sc, XL_PHY_LPAR); advert = xl_phy_readreg(sc, XL_PHY_ANAR); if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) { ifmr->ifm_active = IFM_ETHER|IFM_100_T4; } else if (advert & PHY_ANAR_100BTXFULL && ability & PHY_ANAR_100BTXFULL) { ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX; } else if (advert & PHY_ANAR_100BTXHALF && ability & PHY_ANAR_100BTXHALF) { ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX; } else if (advert & PHY_ANAR_10BTFULL && ability & PHY_ANAR_10BTFULL) { ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX; } else if (advert & PHY_ANAR_10BTHALF && ability & PHY_ANAR_10BTHALF) { ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX; } break; case XL_XCVR_100BFX: ifmr->ifm_active = IFM_ETHER|IFM_100_FX; break; default: printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, icfg); break; } return; } static int xl_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct xl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct ifaddr *ifa = (struct ifaddr *)data; int s, error = 0; s = splimp(); #ifdef __OpenBSD__ if ((error = ether_ioctl(ifp, &sc->arpcom, command, data)) > 0) { splx(s); return error; } #endif switch(command) { #ifdef __FreeBSD__ case SIOCSIFADDR: case SIOCGIFADDR: case SIOCSIFMTU: error = ether_ioctl(ifp, command, data); break; #else case SIOCSIFADDR: ifp->if_flags |= IFF_UP; switch (ifa->ifa_addr->sa_family) { #ifdef INET case AF_INET: xl_init(sc); arp_ifinit(&sc->arpcom, ifa); break; #endif /* INET */ default: xl_init(sc); break; } break; #endif case SIOCSIFFLAGS: if (ifp->if_flags & IFF_UP) { xl_init(sc); } else { if (ifp->if_flags & IFF_RUNNING) xl_stop(sc); } error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: if (sc->xl_type == XL_TYPE_905B) xl_setmulti_hash(sc); else xl_setmulti(sc); error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command); break; default: error = EINVAL; break; } (void)splx(s); return(error); } static void xl_watchdog(ifp) struct ifnet *ifp; { struct xl_softc *sc; u_int16_t status = 0; sc = ifp->if_softc; if (sc->xl_autoneg) { xl_autoneg_mii(sc, XL_FLAG_DELAYTIMEO, 1); return; } ifp->if_oerrors++; XL_SEL_WIN(4); status = CSR_READ_2(sc, XL_W4_MEDIA_STATUS); printf("xl%d: watchdog timeout\n", sc->xl_unit); if (status & XL_MEDIASTAT_CARRIER) printf("xl%d: no carrier - transceiver cable problem?\n", sc->xl_unit); xl_txeoc(sc); xl_txeof(sc); xl_rxeof(sc); xl_init(sc); if (ifp->if_snd.ifq_head != NULL) xl_start(ifp); return; } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void xl_stop(sc) struct xl_softc *sc; { register int i; struct ifnet *ifp; ifp = &sc->arpcom.ac_if; ifp->if_timer = 0; CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_STATS_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ENB); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_DISCARD); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_DISABLE); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_COAX_STOP); DELAY(800); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_RX_RESET); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_TX_RESET); xl_wait(sc); CSR_WRITE_2(sc, XL_COMMAND, XL_CMD_INTR_ACK|XL_STAT_INTLATCH); /* Stop the stats updater. */ #ifdef __FreeBSD__ untimeout(xl_stats_update, sc, sc->xl_stat_ch); #else untimeout(xl_stats_update, sc); #endif /* * Free data in the RX lists. */ for (i = 0; i < XL_RX_LIST_CNT; i++) { if (sc->xl_cdata.xl_rx_chain[i].xl_mbuf != NULL) { m_freem(sc->xl_cdata.xl_rx_chain[i].xl_mbuf); sc->xl_cdata.xl_rx_chain[i].xl_mbuf = NULL; } } bzero((char *)&sc->xl_ldata->xl_rx_list, sizeof(sc->xl_ldata->xl_rx_list)); /* * Free the TX list buffers. */ for (i = 0; i < XL_TX_LIST_CNT; i++) { if (sc->xl_cdata.xl_tx_chain[i].xl_mbuf != NULL) { m_freem(sc->xl_cdata.xl_tx_chain[i].xl_mbuf); sc->xl_cdata.xl_tx_chain[i].xl_mbuf = NULL; } } bzero((char *)&sc->xl_ldata->xl_tx_list, sizeof(sc->xl_ldata->xl_tx_list)); ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); return; } #ifdef __FreeBSD__ /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void xl_shutdown(howto, arg) int howto; void *arg; { struct xl_softc *sc = (struct xl_softc *)arg; xl_stop(sc); return; } static struct pci_device xl_device = { "xl", xl_probe, xl_attach, &xl_count, NULL }; DATA_SET(pcidevice_set, xl_device); #endif #ifdef __OpenBSD__ static int xl_probe(parent, match, aux) struct device *parent; void *match; void *aux; { struct pci_attach_args *pa = (struct pci_attach_args *) aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_3COM) return (0); switch (PCI_PRODUCT(pa->pa_id)) { case PCI_PRODUCT_3COM_3C900TPO: case PCI_PRODUCT_3COM_3C900COMBO: case PCI_PRODUCT_3COM_3C900B: case PCI_PRODUCT_3COM_3C900BCOMBO: case PCI_PRODUCT_3COM_3C905TX: case PCI_PRODUCT_3COM_3C905T4: case PCI_PRODUCT_3COM_3C905BTX: case PCI_PRODUCT_3COM_3C905BT4: case PCI_PRODUCT_3COM_3C980TX: case PCI_PRODUCT_3COM_3C905BFX: return (1); } return (0); } static void xl_attach(parent, self, aux) struct device *parent, *self; void *aux; { struct xl_softc *sc = (struct xl_softc *)self; struct pci_attach_args *pa = aux; pci_chipset_tag_t pc = pa->pa_pc; pci_intr_handle_t ih; const char *intrstr = NULL; u_int8_t enaddr[ETHER_ADDR_LEN]; struct ifnet *ifp = &sc->arpcom.ac_if; bus_addr_t iobase; bus_size_t iosize; u_int32_t command; u_int16_t phy_sts, phy_vid, phy_did; caddr_t roundptr; u_int round; int i, media = IFM_ETHER|IFM_100_TX|IFM_FDX; struct xl_type *p; sc->xl_unit = sc->sc_dev.dv_unit; /* * If this is a 3c905B, we have to check one extra thing. * The 905B supports power management and may be placed in * a low-power mode (D3 mode), typically by certain operating * systems which shall not be named. The PCI BIOS is supposed * to reset the NIC and bring it out of low-power mode, but * some do not. Consequently, we have to see if this chip * supports power management, and if so, make sure it's not * in low-power mode. If power management is available, the * capid byte will be 0x01. * * I _think_ that what actually happens is that the chip * loses its PCI configuration during the transition from * D3 back to D0; this means that it should be possible for * us to save the PCI iobase, membase and IRQ, put the chip * back in the D0 state, then restore the PCI config ourselves. */ command = pci_conf_read(pa->pa_pc, pa->pa_tag, XL_PCI_CAPID) & 0xff; if (command == 0x01) { command = pci_conf_read(pa->pa_pc, pa->pa_tag, XL_PCI_PWRMGMTCTRL); if (command & XL_PSTATE_MASK) { /* Reset the power state. */ printf("%s: chip is in D%d power mode " "-- setting to D0\n", sc->sc_dev.dv_xname, command & XL_PSTATE_MASK); command &= 0xFFFFFFFC; pci_conf_write(pa->pa_pc, pa->pa_tag, XL_PCI_PWRMGMTCTRL, command); } } /* * Map control/status registers. */ command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); command |= PCI_COMMAND_IO_ENABLE | PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command); command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); #ifdef XL_USEIOSPACE if (!(command & PCI_COMMAND_IO_ENABLE)) { printf("%s: failed to enable i/o ports\n", sc->sc_dev.dv_xname); return; } /* * Map control/status registers. */ if (pci_io_find(pc, pa->pa_tag, XL_PCI_LOIO, &iobase, &iosize)) { printf(": can't find i/o space\n"); return; } if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &sc->sc_sh)) { printf(": can't map i/o space\n"); return; } sc->sc_st = pa->pa_iot; #else if (!(command & PCI_COMMAND_MEM_ENABLE)) { printf("%s: failed to enable memory mapping\n", sc->sc_dev.dv_xname); return; } if (pci_mem_find(pc, pa->pa_tag, XL_PCI_LOMEM, &iobase, &iosize, NULL)){ printf(": can't find mem space\n"); return; } if (bus_space_map(pa->pa_memt, iobase, iosize, 0, &sc->sc_sh)) { printf(": can't map mem space\n"); return; } sc->csr = (volatile caddr_t)&iobase; sc->sc_st = pa->pa_memt; #endif /* * Allocate our interrupt. */ if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin, pa->pa_intrline, &ih)) { printf(": couldn't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, xl_intr, sc, self->dv_xname); if (sc->sc_ih == NULL) { printf(": couldn't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); return; } printf(": %s", intrstr); xl_reset(sc); /* * Get station address from the EEPROM. */ if (xl_read_eeprom(sc, (caddr_t)&enaddr, XL_EE_OEM_ADR0, 3, 1)) { printf("%s: failed to read station address\n", sc->sc_dev.dv_xname); return; } bcopy(enaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN); printf(" address %s\n", ether_sprintf(sc->arpcom.ac_enaddr)); sc->xl_ldata_ptr = malloc(sizeof(struct xl_list_data) + 8, M_DEVBUF, M_NOWAIT); if (sc->xl_ldata_ptr == NULL) { printf("%s: no memory for list buffers\n",sc->sc_dev.dv_xname); return; } sc->xl_ldata = (struct xl_list_data *)sc->xl_ldata_ptr; #ifdef __alpha__ round = (u_int64_t)sc->xl_ldata_ptr & 0xf; #else round = (u_int32_t)sc->xl_ldata_ptr & 0xf; #endif roundptr = sc->xl_ldata_ptr; for (i = 0; i < 8; i++) { if (round % 8) { round++; roundptr++; } else break; } sc->xl_ldata = (struct xl_list_data *)roundptr; bzero(sc->xl_ldata, sizeof(struct xl_list_data)); ifp->if_softc = sc; ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = xl_ioctl; ifp->if_output = ether_output; ifp->if_start = xl_start; ifp->if_watchdog = xl_watchdog; ifp->if_baudrate = 10000000; bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ); /* * Figure out the card type. 3c905B adapters have the * 'supportsNoTxLength' bit set in the capabilities * word in the EEPROM. */ xl_read_eeprom(sc, (caddr_t)&sc->xl_caps, XL_EE_CAPS, 1, 0); if (sc->xl_caps & XL_CAPS_NO_TXLENGTH) sc->xl_type = XL_TYPE_905B; else sc->xl_type = XL_TYPE_90X; XL_SEL_WIN(3); sc->xl_media = CSR_READ_2(sc, XL_W3_MEDIA_OPT); if (bootverbose) printf("xl%d: media options word: %x\n", sc->xl_unit, sc->xl_media); xl_read_eeprom(sc, (char *)&sc->xl_xcvr, XL_EE_ICFG_0, 2, 0); sc->xl_xcvr &= XL_ICFG_CONNECTOR_MASK; sc->xl_xcvr >>= XL_ICFG_CONNECTOR_BITS; xl_mediacheck(sc); if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BTX || sc->xl_media & XL_MEDIAOPT_BT4) { /* * In theory I shouldn't need this, but... if this * card supports an MII, either an external one or * an internal fake one, select it in the internal * config register before trying to probe it. */ u_int32_t icfg; XL_SEL_WIN(3); icfg = CSR_READ_4(sc, XL_W3_INTERNAL_CFG); icfg &= ~XL_ICFG_CONNECTOR_MASK; if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) icfg |= (XL_XCVR_MII << XL_ICFG_CONNECTOR_BITS); if (sc->xl_media & XL_MEDIAOPT_BTX) icfg |= (XL_XCVR_AUTO << XL_ICFG_CONNECTOR_BITS); if (sc->xl_media & XL_MEDIAOPT_BFX) icfg |= (XL_XCVR_100BFX << XL_ICFG_CONNECTOR_BITS); CSR_WRITE_4(sc, XL_W3_INTERNAL_CFG, icfg); for (i = XL_PHYADDR_MIN; i < XL_PHYADDR_MAX + 1; i++) { sc->xl_phy_addr = i; xl_phy_writereg(sc, XL_PHY_GENCTL, PHY_BMCR_RESET); DELAY(500); while(xl_phy_readreg(sc, XL_PHY_GENCTL) & PHY_BMCR_RESET); if ((phy_sts = xl_phy_readreg(sc, XL_PHY_GENSTS))) break; } if (phy_sts) { phy_vid = xl_phy_readreg(sc, XL_PHY_VENID); phy_did = xl_phy_readreg(sc, XL_PHY_DEVID); if (bootverbose) printf("xl%d: found PHY at address %d, ", sc->xl_unit, sc->xl_phy_addr); if (bootverbose) printf("vendor id: %x device id: %x\n", phy_vid, phy_did); p = xl_phys; while(p->xl_vid) { if (phy_vid == p->xl_vid && (phy_did | 0x000F) == p->xl_did) { sc->xl_pinfo = p; break; } p++; } if (sc->xl_pinfo == NULL) sc->xl_pinfo = &xl_phys[PHY_UNKNOWN]; if (bootverbose) printf("xl%d: PHY type: %s\n", sc->xl_unit, sc->xl_pinfo->xl_name); } else { printf("%s: MII without any phy!\n", sc->sc_dev.dv_xname); } } /* * Do ifmedia setup. */ ifmedia_init(&sc->ifmedia, 0, xl_ifmedia_upd, xl_ifmedia_sts); if (sc->xl_media & XL_MEDIAOPT_BT) { if (bootverbose) printf("xl%d: found 10baseT\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL); } if (sc->xl_media & XL_MEDIAOPT_AUI) { if (bootverbose) printf("xl%d: found AUI\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_5, 0, NULL); } if (sc->xl_media & XL_MEDIAOPT_BNC) { if (bootverbose) printf("xl%d: found BNC\n", sc->xl_unit); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_2, 0, NULL); } /* * Technically we could use xl_getmode_mii() to scan the * modes, but the built-in BTX mode on the 3c905B implies * 10/100 full/half duplex support anyway, so why not just * do it and get it over with. */ if (sc->xl_media & XL_MEDIAOPT_BTX) { if (bootverbose) printf("xl%d: found 100baseTX\n", sc->xl_unit); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL); ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL); if (sc->xl_caps & XL_CAPS_FULL_DUPLEX) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL); if (sc->xl_pinfo != NULL) ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL); } if (sc->xl_media & XL_MEDIAOPT_BFX) { if (bootverbose) printf("xl%d: found 100baseFX\n", sc->xl_unit); ifp->if_baudrate = 100000000; ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_FX, 0, NULL); } /* * If there's an MII, we have to probe its modes * separately. */ if (sc->xl_media & XL_MEDIAOPT_MII || sc->xl_media & XL_MEDIAOPT_BT4) { if (bootverbose) printf("xl%d: found MII\n", sc->xl_unit); xl_getmode_mii(sc); } /* Choose a default media. */ switch(sc->xl_xcvr) { case XL_XCVR_10BT: media = IFM_ETHER|IFM_10_T; xl_setmode(sc, media); break; case XL_XCVR_AUI: media = IFM_ETHER|IFM_10_5; xl_setmode(sc, media); break; case XL_XCVR_COAX: media = IFM_ETHER|IFM_10_2; xl_setmode(sc, media); break; case XL_XCVR_AUTO: #ifdef XL_BACKGROUND_AUTONEG xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1); #else xl_autoneg_mii(sc, XL_FLAG_FORCEDELAY, 1); #endif media = sc->ifmedia.ifm_media; break; case XL_XCVR_100BTX: case XL_XCVR_MII: #ifdef XL_BACKGROUND_AUTONEG xl_autoneg_mii(sc, XL_FLAG_SCHEDDELAY, 1); #else xl_autoneg_mii(sc, XL_FLAG_FORCEDELAY, 1); #endif media = sc->ifmedia.ifm_media; break; case XL_XCVR_100BFX: media = IFM_ETHER|IFM_100_FX; break; default: printf("xl%d: unknown XCVR type: %d\n", sc->xl_unit, sc->xl_xcvr); /* * This will probably be wrong, but it prevents * the ifmedia code from panicking. */ media = IFM_ETHER | IFM_10_T; break; } ifmedia_set(&sc->ifmedia, media); /* * Call MI attach routines. */ if_attach(ifp); ether_ifattach(ifp); #if NBPFILTER > 0 bpfattach(&sc->arpcom.ac_if.if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header)); #endif shutdownhook_establish(xl_shutdown, sc); } static void xl_shutdown(v) void *v; { struct xl_softc *sc = (struct xl_softc *)v; xl_stop(sc); } struct cfattach xl_ca = { sizeof(struct xl_softc), xl_probe, xl_attach, }; struct cfdriver xl_cd = { 0, "xl", DV_IFNET }; #endif