/* $OpenBSD: isp_pci.c,v 1.57 2011/06/23 22:02:26 oga Exp $ */ /* $FreeBSD: src/sys/dev/isp/isp_pci.c,v 1.148 2007/06/26 23:08:57 mjacob Exp $*/ /*- * Copyright (c) 1997-2006 by Matthew Jacob * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * PCI specific probe and attach routines for Qlogic ISP SCSI adapters. * FreeBSD Version. */ #include #include #include #include #ifdef __sparc64__ #include #endif #ifdef __sgi__ #include #include #endif #ifndef ISP_NOFIRMWARE #define ISP_FIRMWARE_1040 #define ISP_FIRMWARE_1080 #define ISP_FIRMWARE_12160 #define ISP_FIRMWARE_2100 #define ISP_FIRMWARE_2200 #define ISP_FIRMWARE_2300 #endif #if defined(ISP_FIRMWARE_1040) #define ISP_1040_RISC_CODE (u_int16_t *) isp_1040_risc_code #include #else #define ISP_1040_RISC_CODE NULL #endif #if defined(ISP_FIRMWARE_1080) #define ISP_1080_RISC_CODE (u_int16_t *) isp_1080_risc_code #include #else #define ISP_1080_RISC_CODE NULL #endif #if defined(ISP_FIRMWARE_12160) #define ISP_12160_RISC_CODE (u_int16_t *) isp_12160_risc_code #include #else #define ISP_12160_RISC_CODE NULL #endif #if defined(ISP_FIRMWARE_2100) #define ISP_2100_RISC_CODE (u_int16_t *) isp_2100_risc_code #include #else #define ISP_2100_RISC_CODE NULL #endif #if defined(ISP_FIRMWARE_2200) #define ISP_2200_RISC_CODE (u_int16_t *) isp_2200_risc_code #include #else #define ISP_2200_RISC_CODE NULL #endif #if defined(ISP_FIRMWARE_2300) #define ISP_2300_RISC_CODE (u_int16_t *) isp_2300_risc_code #include #else #define ISP_2300_RISC_CODE NULL #endif #if defined(ISP_FIRMWARE_2400) #define ISP_2400_RISC_CODE (u_int16_t *) isp_2400_risc_code #include #else #define ISP_2400_RISC_CODE NULL #endif uint32_t isp_pci_rd_reg(ispsoftc_t *, int); void isp_pci_wr_reg(ispsoftc_t *, int, uint32_t); uint32_t isp_pci_rd_reg_1080(ispsoftc_t *, int); void isp_pci_wr_reg_1080(ispsoftc_t *, int, uint32_t); uint32_t isp_pci_rd_reg_2400(ispsoftc_t *, int); void isp_pci_wr_reg_2400(ispsoftc_t *, int, uint32_t); int isp_pci_rd_isr(ispsoftc_t *, uint32_t *, uint16_t *, uint16_t *); int isp_pci_rd_isr_2300(ispsoftc_t *, uint32_t *, uint16_t *, uint16_t *); int isp_pci_rd_isr_2400(ispsoftc_t *, uint32_t *, uint16_t *, uint16_t *); int isp_pci_mbxdma(ispsoftc_t *); int isp_pci_dmasetup(ispsoftc_t *, XS_T *, ispreq_t *, uint32_t *, uint32_t); void isp_pci_reset0(ispsoftc_t *); void isp_pci_reset1(ispsoftc_t *); void isp_pci_dumpregs(ispsoftc_t *, const char *); int isp_pci_rd_debounced(struct ispsoftc *, int, u_int16_t *); int isp_pci_intr (void *); void isp_pci_dmateardown(struct ispsoftc *, XS_T *, u_int32_t); static struct ispmdvec mdvec = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_1040_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; static struct ispmdvec mdvec_1080 = { isp_pci_rd_isr, isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_1080_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; static struct ispmdvec mdvec_12160 = { isp_pci_rd_isr, isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_12160_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; static struct ispmdvec mdvec_2100 = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_2100_RISC_CODE }; static struct ispmdvec mdvec_2200 = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_2200_RISC_CODE }; static struct ispmdvec mdvec_2300 = { isp_pci_rd_isr_2300, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, isp_pci_dumpregs, ISP_2300_RISC_CODE }; static struct ispmdvec mdvec_2400 = { isp_pci_rd_isr_2400, isp_pci_rd_reg_2400, isp_pci_wr_reg_2400, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, isp_pci_reset0, isp_pci_reset1, NULL, ISP_2400_RISC_CODE }; #ifndef PCIM_CMD_INVEN #define PCIM_CMD_INVEN 0x10 #endif #ifndef PCIM_CMD_BUSMASTEREN #define PCIM_CMD_BUSMASTEREN 0x0004 #endif #ifndef PCIM_CMD_PERRESPEN #define PCIM_CMD_PERRESPEN 0x0040 #endif #ifndef PCIM_CMD_SEREN #define PCIM_CMD_SEREN 0x0100 #endif #ifndef PCIM_CMD_INTX_DISABLE #define PCIM_CMD_INTX_DISABLE 0x0400 #endif #ifndef PCIR_COMMAND #define PCIR_COMMAND 0x04 #endif #ifndef PCIR_CACHELNSZ #define PCIR_CACHELNSZ 0x0c #endif #ifndef PCIR_LATTIMER #define PCIR_LATTIMER 0x0d #endif #ifndef PCIR_ROMADDR #define PCIR_ROMADDR 0x30 #endif #ifndef PCI_VENDOR_QLOGIC #define PCI_VENDOR_QLOGIC 0x1077 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1020 #define PCI_PRODUCT_QLOGIC_ISP1020 0x1020 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1080 #define PCI_PRODUCT_QLOGIC_ISP1080 0x1080 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP10160 #define PCI_PRODUCT_QLOGIC_ISP10160 0x1016 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP12160 #define PCI_PRODUCT_QLOGIC_ISP12160 0x1216 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1240 #define PCI_PRODUCT_QLOGIC_ISP1240 0x1240 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1280 #define PCI_PRODUCT_QLOGIC_ISP1280 0x1280 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2100 #define PCI_PRODUCT_QLOGIC_ISP2100 0x2100 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2200 #define PCI_PRODUCT_QLOGIC_ISP2200 0x2200 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2300 #define PCI_PRODUCT_QLOGIC_ISP2300 0x2300 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2312 #define PCI_PRODUCT_QLOGIC_ISP2312 0x2312 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2322 #define PCI_PRODUCT_QLOGIC_ISP2322 0x2322 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2422 #define PCI_PRODUCT_QLOGIC_ISP2422 0x2422 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2432 #define PCI_PRODUCT_QLOGIC_ISP2432 0x2432 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP6312 #define PCI_PRODUCT_QLOGIC_ISP6312 0x6312 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP6322 #define PCI_PRODUCT_QLOGIC_ISP6322 0x6322 #endif #define PCI_QLOGIC_ISP1020 \ ((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1080 \ ((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP10160 \ ((PCI_PRODUCT_QLOGIC_ISP10160 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP12160 \ ((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1240 \ ((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1280 \ ((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2100 \ ((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2200 \ ((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2300 \ ((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2312 \ ((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2322 \ ((PCI_PRODUCT_QLOGIC_ISP2322 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2422 \ ((PCI_PRODUCT_QLOGIC_ISP2422 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2432 \ ((PCI_PRODUCT_QLOGIC_ISP2432 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP6312 \ ((PCI_PRODUCT_QLOGIC_ISP6312 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP6322 \ ((PCI_PRODUCT_QLOGIC_ISP6322 << 16) | PCI_VENDOR_QLOGIC) /* * Odd case for some AMI raid cards... We need to *not* attach to this. */ #define AMI_RAID_SUBVENDOR_ID 0x101e #define IO_MAP_REG 0x10 #define MEM_MAP_REG 0x14 #define PCI_DFLT_LTNCY 0x40 #define PCI_DFLT_LNSZ 0x10 #ifndef SCSI_ISP_PREFER_MEM_MAP #ifdef __alpha__ #define SCSI_ISP_PREFER_MEM_MAP 1 #else #define SCSI_ISP_PREFER_MEM_MAP 0 #endif #endif #ifdef DEBUG const char vstring[] = "QLogic ISP Driver, OpenBSD (pci) Platform Version %d.%d Core Version %d.%d"; #endif const struct pci_matchid ispdev[] = { { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP1020 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP1080 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP1240 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP1280 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP10160 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP12160 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP2100 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP2200 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP2300 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP2312 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP2322 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP2422 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP2432 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP6312 }, { PCI_VENDOR_QLOGIC, PCI_PRODUCT_QLOGIC_ISP6322 }, { 0, 0 } }; int isp_pci_probe (struct device *, void *, void *); void isp_pci_attach (struct device *, struct device *, void *); #define ISP_PCD(isp) ((struct isp_pcisoftc *)isp)->pci_dev struct isp_pcisoftc { struct ispsoftc pci_isp; pci_chipset_tag_t pci_pc; pcitag_t pci_tag; bus_space_tag_t pci_st; bus_space_handle_t pci_sh; bus_dmamap_t *pci_xfer_dmap; void * pci_ih; int16_t pci_poff[_NREG_BLKS]; }; struct cfattach isp_pci_ca = { sizeof (struct isp_pcisoftc), isp_pci_probe, isp_pci_attach }; int isp_pci_probe(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; #ifndef ISP_DISABLE_12160_SUPPORT /* * Sigh. Check for subvendor id match here. Too bad we * can't give an exclude mask in matchbyid. */ if (pa->pa_id == PCI_QLOGIC_ISP12160) { pcireg_t subvid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBVEND_0); if (PCI_VENDOR(subvid) == AMI_RAID_SUBVENDOR_ID) { return (0); } } #endif return (pci_matchbyid(pa, ispdev, nitems(ispdev))); } void isp_pci_attach(struct device *parent, struct device *self, void *aux) { #ifdef DEBUG static char oneshot = 1; #endif static const char nomem[] = ": no mem for sdparam table\n"; u_int32_t data, rev, linesz = PCI_DFLT_LNSZ; struct pci_attach_args *pa = aux; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)self; struct ispsoftc *isp = &pcs->pci_isp; bus_space_tag_t st, iot, memt; bus_space_handle_t sh, ioh, memh; pci_intr_handle_t ih; const char *intrstr; int ioh_valid, memh_valid; bus_size_t iosize, msize; u_int32_t confopts = 0; #ifdef __sparc64__ int node, iid; u_int64_t wwn; #endif DEFAULT_IID(isp) = 7; #ifdef __sparc64__ /* * Walk up the Open Firmware device tree until we find a * "scsi-initiator-id" property. */ node = PCITAG_NODE(pa->pa_tag); while (node) { if (OF_getprop(node, "scsi-initiator-id", &iid, sizeof(iid)) == sizeof(iid)) { DEFAULT_IID(isp) = iid; confopts |= ISP_CFG_OWNLOOPID; break; } node = OF_parent(node); } node = PCITAG_NODE(pa->pa_tag); if (OF_getprop(node, "node-wwn", &wwn, sizeof(wwn)) == sizeof(wwn)) { DEFAULT_NODEWWN(isp) = wwn; confopts |= ISP_CFG_OWNWWNN; } if (OF_getprop(node, "port-wwn", &wwn, sizeof(wwn)) == sizeof(wwn)) { DEFAULT_PORTWWN(isp) = wwn; confopts |= ISP_CFG_OWNWWPN; } #endif #ifdef __sgi__ /* * The on-board isp controllers found on Octane, Origin 200 and * Origin 300 families use id #0. * XXX We'll need to be able to tell apart onboard isp from * XXX other isp... */ if (sys_config.system_type == SGI_OCTANE || sys_config.system_type == SGI_IP27 || sys_config.system_type == SGI_IP35) DEFAULT_IID(isp) = 0; #endif ioh_valid = memh_valid = 0; #if SCSI_ISP_PREFER_MEM_MAP == 1 if (pci_mapreg_map(pa, MEM_MAP_REG, PCI_MAPREG_TYPE_MEM, 0, &memt, &memh, NULL, &msize, 0)) { printf(": can't map mem space\n"); } else { st = memt; sh = memh; memh_valid = 1; } if (memh_valid == 0) { if (pci_mapreg_map(pa, IO_MAP_REG, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, &iosize, 0)) { } else { st = iot; sh = ioh; ioh_valid = 1; } } #else if (pci_mapreg_map(pa, IO_MAP_REG, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, &iosize, 0)) { printf(": can't map i/o space\n"); } else { st = iot; sh = ioh; ioh_valid = 1; } if (ioh_valid == 0) { if (pci_mapreg_map(pa, MEM_MAP_REG, PCI_MAPREG_TYPE_MEM, 0, &memt, &memh, NULL, &msize, 0)) { printf(": can't map mem space\n"); } else { st = memt; sh = memh; memh_valid = 1; } } #endif if (ioh_valid == 0 && memh_valid == 0) { printf(": unable to map device registers\n"); return; } #if 0 printf("\n"); #endif pcs->pci_st = isp->isp_bus_tag = st; pcs->pci_sh = isp->isp_bus_handle = sh; pcs->pci_pc = pa->pa_pc; pcs->pci_tag = pa->pa_tag; pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF; pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF; pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF; pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF; pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF; rev = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG) & 0xff; if (pa->pa_id == PCI_QLOGIC_ISP1020) { isp->isp_mdvec = &mdvec; isp->isp_type = ISP_HA_SCSI_UNKNOWN; isp->isp_param = malloc(sizeof(sdparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } } if (pa->pa_id == PCI_QLOGIC_ISP1080) { isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1080; isp->isp_param = malloc(sizeof(sdparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP1240) { isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1240; isp->isp_param = malloc(2 * sizeof(sdparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP1280) { isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1280; isp->isp_param = malloc(2 * sizeof(sdparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP10160) { isp->isp_mdvec = &mdvec_12160; isp->isp_type = ISP_HA_SCSI_10160; isp->isp_param = malloc(sizeof(sdparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP12160) { isp->isp_mdvec = &mdvec_12160; isp->isp_type = ISP_HA_SCSI_12160; isp->isp_param = malloc(2 * sizeof(sdparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP2100) { isp->isp_mdvec = &mdvec_2100; isp->isp_type = ISP_HA_FC_2100; isp->isp_param = malloc(sizeof(fcparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; if (rev < 3) { /* * XXX: Need to get the actual revision * XXX: number of the 2100 FB. At any rate, * XXX: lower cache line size for early revision * XXX; boards. */ linesz = 1; } } if (pa->pa_id == PCI_QLOGIC_ISP2200) { isp->isp_mdvec = &mdvec_2200; isp->isp_type = ISP_HA_FC_2200; isp->isp_param = malloc(sizeof(fcparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; #ifdef __sparc64__ { char name[32]; bzero(name, sizeof(name)); OF_getprop(PCITAG_NODE(pa->pa_tag), "name", name, sizeof(name)); if (strcmp(name, "SUNW,qlc") == 0) confopts |= ISP_CFG_NONVRAM; } #endif } if (pa->pa_id == PCI_QLOGIC_ISP2300) { isp->isp_mdvec = &mdvec_2300; isp->isp_type = ISP_HA_FC_2300; isp->isp_param = malloc(sizeof(fcparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP2312 || pa->pa_id == PCI_QLOGIC_ISP6312) { isp->isp_mdvec = &mdvec_2300; isp->isp_type = ISP_HA_FC_2312; isp->isp_port = pa->pa_function; isp->isp_param = malloc(sizeof(fcparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP2322 || pa->pa_id == PCI_QLOGIC_ISP6322) { isp->isp_mdvec = &mdvec_2300; isp->isp_type = ISP_HA_FC_2322; isp->isp_port = pa->pa_function; isp->isp_param = malloc(sizeof(fcparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP2422 || pa->pa_id == PCI_QLOGIC_ISP2432) { isp->isp_mdvec = &mdvec_2400; isp->isp_type = ISP_HA_FC_2400; isp->isp_port = pa->pa_function; isp->isp_param = malloc(sizeof(fcparam), M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_param == NULL) { printf(nomem); return; } pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2400_OFF; } /* * Set up logging levels. */ #ifdef ISP_LOGDEFAULT isp->isp_dblev = ISP_LOGDEFAULT; #else isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR; #if 0 isp->isp_dblev |= ISP_LOGDEBUG1|ISP_LOGDEBUG2; #endif #ifdef DEBUG isp->isp_dblev |= ISP_LOGDEBUG0|ISP_LOGCONFIG|ISP_LOGINFO; #endif #endif #ifdef DEBUG if (oneshot) { oneshot = 0; isp_prt(isp, ISP_LOGCONFIG, vstring, ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR, ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR); } #endif isp->isp_dmatag = pa->pa_dmat; isp->isp_revision = rev; /* * Make sure that command register set sanely. */ data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); if (IS_2300(isp)) { /* per QLogic errata */ data &= ~PCI_COMMAND_PARITY_ENABLE; } if (IS_23XX(isp)) { isp->isp_touched = 1; } data |= PCI_COMMAND_INVALIDATE_ENABLE; /* * Not so sure about these- but I think it's important that they get * enabled...... */ data |= PCI_COMMAND_PARITY_ENABLE | PCI_COMMAND_SERR_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, data); /* * Make sure that the latency timer, cache line size, * and ROM is disabled. */ data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG); data &= ~(PCI_LATTIMER_MASK << PCI_LATTIMER_SHIFT); data &= ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT); data |= (0x40 << PCI_LATTIMER_SHIFT); data |= (0x10 << PCI_CACHELINE_SHIFT); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG, data); data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCIR_ROMADDR); data &= ~1; pci_conf_write(pa->pa_pc, pa->pa_tag, PCIR_ROMADDR, data); if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); free(isp->isp_param, M_DEVBUF); return; } intrstr = pci_intr_string(pa->pa_pc, ih); if (intrstr == NULL) intrstr = ""; pcs->pci_ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO, isp_pci_intr, isp, isp->isp_name); if (pcs->pci_ih == NULL) { printf(": couldn't establish interrupt at %s\n", intrstr); free(isp->isp_param, M_DEVBUF); return; } printf(": %s\n", intrstr); if (IS_FC(isp)) { if (DEFAULT_NODEWWN(isp) == 0) DEFAULT_NODEWWN(isp) = 0x400000007F000003ULL; if (DEFAULT_PORTWWN(isp) == 0) DEFAULT_PORTWWN(isp) = 0x400000007F000003ULL; } isp->isp_confopts = confopts | self->dv_cfdata->cf_flags; isp->isp_role = ISP_DEFAULT_ROLES; ISP_LOCK(isp); isp->isp_osinfo.no_mbox_ints = 1; isp_reset(isp); if (isp->isp_state != ISP_RESETSTATE) { ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); return; } ISP_ENABLE_INTS(isp); isp_init(isp); if (isp->isp_state != ISP_INITSTATE) { isp_uninit(isp); ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); return; } /* * Do Generic attach now. */ isp_attach(isp); if (isp->isp_state != ISP_RUNSTATE) { isp_uninit(isp); ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); } else { ISP_UNLOCK(isp); } } #define IspVirt2Off(a, x) \ (((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \ _BLK_REG_SHFT] + ((x) & 0xfff)) #define BXR2(pcs, off) \ bus_space_read_2(pcs->pci_st, pcs->pci_sh, off) #define BXW2(pcs, off, v) \ bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v) #define BXR4(pcs, off) \ bus_space_read_4(pcs->pci_st, pcs->pci_sh, off) #define BXW4(pcs, off, v) \ bus_space_write_4(pcs->pci_st, pcs->pci_sh, off, v) int isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; u_int32_t val0, val1; int i = 0; do { val0 = BXR2(pcs, IspVirt2Off(isp, off)); val1 = BXR2(pcs, IspVirt2Off(isp, off)); } while (val0 != val1 && ++i < 1000); if (val0 != val1) { return (1); } *rp = val0; return (0); } int isp_pci_rd_isr(struct ispsoftc *isp, u_int32_t *isrp, u_int16_t *semap, u_int16_t *mbp) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; u_int16_t isr, sema; if (IS_2100(isp)) { if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) { return (0); } if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) { return (0); } } else { isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR)); sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA)); } isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema); isr &= INT_PENDING_MASK(isp); sema &= BIU_SEMA_LOCK; if (isr == 0 && sema == 0) { return (0); } *isrp = isr; if ((*semap = sema) != 0) { if (IS_2100(isp)) { if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) { return (0); } } else { *mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0)); } } return (1); } int isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int32_t *isrp, u_int16_t *semap, u_int16_t *mbox0p) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; u_int32_t hccr; u_int32_t r2hisr; if (!(BXR2(pcs, IspVirt2Off(isp, BIU_ISR)) & BIU2100_ISR_RISC_INT)) { *isrp = 0; return (0); } r2hisr = BXR4(pcs, IspVirt2Off(isp, BIU_R2HSTSLO)); isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr); if ((r2hisr & BIU_R2HST_INTR) == 0) { *isrp = 0; return (0); } switch (r2hisr & BIU_R2HST_ISTAT_MASK) { case ISPR2HST_ROM_MBX_OK: case ISPR2HST_ROM_MBX_FAIL: case ISPR2HST_MBX_OK: case ISPR2HST_MBX_FAIL: case ISPR2HST_ASYNC_EVENT: *isrp = r2hisr & 0xffff; *mbox0p = (r2hisr >> 16); *semap = 1; return (1); case ISPR2HST_RIO_16: *isrp = r2hisr & 0xffff; *mbox0p = ASYNC_RIO1; *semap = 1; return (1); case ISPR2HST_FPOST: *isrp = r2hisr & 0xffff; *mbox0p = ASYNC_CMD_CMPLT; *semap = 1; return (1); case ISPR2HST_FPOST_CTIO: *isrp = r2hisr & 0xffff; *mbox0p = ASYNC_CTIO_DONE; *semap = 1; return (1); case ISPR2HST_RSPQ_UPDATE: *isrp = r2hisr & 0xffff; *mbox0p = 0; *semap = 0; return (1); default: hccr = ISP_READ(isp, HCCR); if (hccr & HCCR_PAUSE) { ISP_WRITE(isp, HCCR, HCCR_RESET); isp_prt(isp, ISP_LOGERR, "RISC paused at interrupt (%x->%x)", hccr, ISP_READ(isp, HCCR)); ISP_WRITE(isp, BIU_ICR, 0); } else { isp_prt(isp, ISP_LOGERR, "unknown interrupt 0x%x\n", r2hisr); } return (0); } } u_int32_t isp_pci_rd_reg(struct ispsoftc *isp, int regoff) { u_int16_t rv; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; int oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf | BIU_PCI_CONF1_SXP); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } rv = BXR2(pcs, IspVirt2Off(isp, regoff)); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf); } MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); return (rv); } int isp_pci_rd_isr_2400(ispsoftc_t *isp, uint32_t *isrp, uint16_t *semap, uint16_t *mbox0p) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; uint32_t r2hisr; r2hisr = BXR4(pcs, IspVirt2Off(isp, BIU2400_R2HSTSLO)); isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr); if ((r2hisr & BIU2400_R2HST_INTR) == 0) { *isrp = 0; return (0); } switch (r2hisr & BIU2400_R2HST_ISTAT_MASK) { case ISP2400R2HST_ROM_MBX_OK: case ISP2400R2HST_ROM_MBX_FAIL: case ISP2400R2HST_MBX_OK: case ISP2400R2HST_MBX_FAIL: case ISP2400R2HST_ASYNC_EVENT: *isrp = r2hisr & 0xffff; *mbox0p = (r2hisr >> 16); *semap = 1; return (1); case ISP2400R2HST_RSPQ_UPDATE: case ISP2400R2HST_ATIO_RSPQ_UPDATE: case ISP2400R2HST_ATIO_RQST_UPDATE: *isrp = r2hisr & 0xffff; *mbox0p = 0; *semap = 0; return (1); default: ISP_WRITE(isp, BIU2400_HCCR, HCCR_2400_CMD_CLEAR_RISC_INT); isp_prt(isp, ISP_LOGERR, "unknown interrupt 0x%x\n", r2hisr); return (0); } } void isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int32_t val) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; int oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf | BIU_PCI_CONF1_SXP); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } BXW2(pcs, IspVirt2Off(isp, regoff), val); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, regoff), 2); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } } u_int32_t isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; u_int32_t rv, oc = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { u_int32_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc | BIU_PCI1080_CONF1_DMA); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } rv = BXR2(pcs, IspVirt2Off(isp, regoff)); if (oc) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } return (rv); } void isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int32_t val) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; int oc = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { u_int32_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc | BIU_PCI1080_CONF1_DMA); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } BXW2(pcs, IspVirt2Off(isp, regoff), val); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, regoff), 2); if (oc) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, BIU_CONF1), 2); } } uint32_t isp_pci_rd_reg_2400(ispsoftc_t *isp, int regoff) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; uint32_t rv; int block = regoff & _BLK_REG_MASK; switch (block) { case BIU_BLOCK: break; case MBOX_BLOCK: return (BXR2(pcs, IspVirt2Off(isp, regoff))); case SXP_BLOCK: isp_prt(isp, ISP_LOGWARN, "SXP_BLOCK read at 0x%x", regoff); return (0xffffffff); case RISC_BLOCK: isp_prt(isp, ISP_LOGWARN, "RISC_BLOCK read at 0x%x", regoff); return (0xffffffff); case DMA_BLOCK: isp_prt(isp, ISP_LOGWARN, "DMA_BLOCK read at 0x%x", regoff); return (0xffffffff); default: isp_prt(isp, ISP_LOGWARN, "unknown block read at 0x%x", regoff); return (0xffffffff); } switch (regoff) { case BIU2400_FLASH_ADDR: case BIU2400_FLASH_DATA: case BIU2400_ICR: case BIU2400_ISR: case BIU2400_CSR: case BIU2400_REQINP: case BIU2400_REQOUTP: case BIU2400_RSPINP: case BIU2400_RSPOUTP: case BIU2400_PRI_RQINP: case BIU2400_PRI_RSPINP: case BIU2400_ATIO_RSPINP: case BIU2400_ATIO_REQINP: case BIU2400_HCCR: case BIU2400_GPIOD: case BIU2400_GPIOE: case BIU2400_HSEMA: rv = BXR4(pcs, IspVirt2Off(isp, regoff)); break; case BIU2400_R2HSTSLO: rv = BXR4(pcs, IspVirt2Off(isp, regoff)); break; case BIU2400_R2HSTSHI: rv = BXR4(pcs, IspVirt2Off(isp, regoff)) >> 16; break; default: isp_prt(isp, ISP_LOGERR, "isp_pci_rd_reg_2400: unknown offset %x", regoff); rv = 0xffffffff; break; } return (rv); } void isp_pci_wr_reg_2400(ispsoftc_t *isp, int regoff, uint32_t val) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; int block = regoff & _BLK_REG_MASK; switch (block) { case BIU_BLOCK: break; case MBOX_BLOCK: BXW2(pcs, IspVirt2Off(isp, regoff), val); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, regoff), 2); return; case SXP_BLOCK: isp_prt(isp, ISP_LOGWARN, "SXP_BLOCK write at 0x%x", regoff); return; case RISC_BLOCK: isp_prt(isp, ISP_LOGWARN, "RISC_BLOCK write at 0x%x", regoff); return; case DMA_BLOCK: isp_prt(isp, ISP_LOGWARN, "DMA_BLOCK write at 0x%x", regoff); return; default: isp_prt(isp, ISP_LOGWARN, "unknown block write at 0x%x", regoff); break; } switch (regoff) { case BIU2400_FLASH_ADDR: case BIU2400_FLASH_DATA: case BIU2400_ICR: case BIU2400_ISR: case BIU2400_CSR: case BIU2400_REQINP: case BIU2400_REQOUTP: case BIU2400_RSPINP: case BIU2400_RSPOUTP: case BIU2400_PRI_RQINP: case BIU2400_PRI_RSPINP: case BIU2400_ATIO_RSPINP: case BIU2400_ATIO_REQINP: case BIU2400_HCCR: case BIU2400_GPIOD: case BIU2400_GPIOE: case BIU2400_HSEMA: BXW4(pcs, IspVirt2Off(isp, regoff), val); MEMORYBARRIER(isp, SYNC_REG, IspVirt2Off(isp, regoff), 4); break; default: isp_prt(isp, ISP_LOGERR, "isp_pci_wr_reg_2400: bad offset 0x%x", regoff); break; } } struct imush { ispsoftc_t *isp; int error; }; int isp_pci_mbxdma(struct ispsoftc *isp) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; bus_dma_tag_t dmat = isp->isp_dmatag; bus_dma_segment_t sg; bus_addr_t addr; bus_size_t len; caddr_t base; int rs, i; if (isp->isp_rquest_dma) /* been here before? */ return (0); len = isp->isp_maxcmds * sizeof (XS_T *); isp->isp_xflist = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO); if (isp->isp_xflist == NULL) { isp_prt(isp, ISP_LOGERR, "cannot malloc xflist array"); return (1); } len = isp->isp_maxcmds * sizeof (bus_dmamap_t); pcs->pci_xfer_dmap = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_NOWAIT); if (pcs->pci_xfer_dmap == NULL) { free(isp->isp_xflist, M_DEVBUF); isp->isp_xflist = NULL; isp_prt(isp, ISP_LOGERR, "cannot malloc dma map array"); return (1); } for (i = 0; i < isp->isp_maxcmds; i++) { if (bus_dmamap_create(dmat, MAXPHYS, (MAXPHYS / NBPG) + 1, MAXPHYS, 0, BUS_DMA_NOWAIT, &pcs->pci_xfer_dmap[i])) { isp_prt(isp, ISP_LOGERR, "cannot create dma maps"); break; } } if (i < isp->isp_maxcmds) { while (--i >= 0) { bus_dmamap_destroy(dmat, pcs->pci_xfer_dmap[i]); } free(isp->isp_xflist, M_DEVBUF); free(pcs->pci_xfer_dmap, M_DEVBUF); isp->isp_xflist = NULL; pcs->pci_xfer_dmap = NULL; return (1); } /* * Allocate and map the request, result queues, plus FC scratch area. */ len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); len += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); if (IS_FC(isp)) { len += ISP2100_SCRLEN; } if (bus_dmamem_alloc(dmat, len, PAGE_SIZE, 0, &sg, 1, &rs, BUS_DMA_NOWAIT)) goto dmafail; if (bus_dmamem_map(isp->isp_dmatag, &sg, rs, len, &base, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) goto dmafree; if (bus_dmamap_create(dmat, len, 1, len, 0, BUS_DMA_NOWAIT, &isp->isp_cdmap)) goto dmaunmap; if (bus_dmamap_load(dmat, isp->isp_cdmap, base, len, NULL, BUS_DMA_NOWAIT)) goto dmadestroy; addr = isp->isp_cdmap->dm_segs[0].ds_addr; isp->isp_rquest_dma = addr; addr += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); isp->isp_result_dma = addr; if (IS_FC(isp)) { addr += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); FCPARAM(isp)->isp_scdma = addr; } isp->isp_rquest = base; base += ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); isp->isp_result = base; if (IS_FC(isp)) { base += ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); FCPARAM(isp)->isp_scratch = base; } return (0); dmadestroy: bus_dmamap_destroy(dmat, isp->isp_cdmap); dmaunmap: bus_dmamem_unmap(dmat, base, len); dmafree: bus_dmamem_free(dmat, &sg, rs); dmafail: isp_prt(isp, ISP_LOGERR, "mailbox dma setup failure"); for (i = 0; i < isp->isp_maxcmds; i++) { bus_dmamap_destroy(dmat, pcs->pci_xfer_dmap[i]); } free(isp->isp_xflist, M_DEVBUF); free(pcs->pci_xfer_dmap, M_DEVBUF); isp->isp_xflist = NULL; pcs->pci_xfer_dmap = NULL; return (1); } int isp_pci_dmasetup(struct ispsoftc *isp, XS_T *xs, ispreq_t *rq, u_int32_t *nxtip, u_int32_t optr) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; bus_dmamap_t dmap; u_int16_t nxti = *nxtip; ispreq_t *qep; int segcnt, seg, error, ovseg, seglim, drq; qep = (ispreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, isp->isp_reqidx); dmap = pcs->pci_xfer_dmap[isp_handle_index(rq->req_handle)]; if (xs->datalen == 0) { rq->req_seg_count = 1; goto mbxsync; } if (xs->flags & SCSI_DATA_IN) { drq = REQFLAG_DATA_IN; } else { drq = REQFLAG_DATA_OUT; } if (IS_FC(isp)) { seglim = ISP_RQDSEG_T2; ((ispreqt2_t *)rq)->req_totalcnt = xs->datalen; ((ispreqt2_t *)rq)->req_flags |= drq; } else { rq->req_flags |= drq; if (XS_CDBLEN(xs) > 12) seglim = 0; else seglim = ISP_RQDSEG; } error = bus_dmamap_load(isp->isp_dmatag, dmap, xs->data, xs->datalen, NULL, (xs->flags & SCSI_NOSLEEP) ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); if (error) { XS_SETERR(xs, HBA_BOTCH); return (CMD_COMPLETE); } segcnt = dmap->dm_nsegs; isp_prt(isp, ISP_LOGDEBUG2, "%d byte %s %p in %d segs", xs->datalen, (xs->flags & SCSI_DATA_IN)? "read to" : "write from", xs->data, segcnt); for (seg = 0, rq->req_seg_count = 0; seg < segcnt && rq->req_seg_count < seglim; seg++, rq->req_seg_count++) { if (isp->isp_type & ISP_HA_FC) { ispreqt2_t *rq2 = (ispreqt2_t *)rq; rq2->req_dataseg[rq2->req_seg_count].ds_count = dmap->dm_segs[seg].ds_len; rq2->req_dataseg[rq2->req_seg_count].ds_base = dmap->dm_segs[seg].ds_addr; } else { rq->req_dataseg[rq->req_seg_count].ds_count = dmap->dm_segs[seg].ds_len; rq->req_dataseg[rq->req_seg_count].ds_base = dmap->dm_segs[seg].ds_addr; } isp_prt(isp, ISP_LOGDEBUG2, "seg0.[%d]={0x%lx,%lu}", rq->req_seg_count, (long) dmap->dm_segs[seg].ds_addr, (unsigned long) dmap->dm_segs[seg].ds_len); } if (seg == segcnt) { goto dmasync; } do { u_int16_t onxti; ispcontreq_t *crq, *cqe, local; crq = &local; cqe = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, nxti); onxti = nxti; nxti = ISP_NXT_QENTRY(onxti, RQUEST_QUEUE_LEN(isp)); if (nxti == optr) { isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++"); bus_dmamap_unload(isp->isp_dmatag, dmap); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } rq->req_header.rqs_entry_count++; bzero((void *)crq, sizeof (*crq)); crq->req_header.rqs_entry_count = 1; crq->req_header.rqs_entry_type = RQSTYPE_DATASEG; for (ovseg = 0; seg < segcnt && ovseg < ISP_CDSEG; rq->req_seg_count++, seg++, ovseg++) { crq->req_dataseg[ovseg].ds_count = dmap->dm_segs[seg].ds_len; crq->req_dataseg[ovseg].ds_base = dmap->dm_segs[seg].ds_addr; isp_prt(isp, ISP_LOGDEBUG2, "seg%d.[%d]={0x%lx,%lu}", rq->req_header.rqs_entry_count - 1, rq->req_seg_count, (long)dmap->dm_segs[seg].ds_addr, (unsigned long) dmap->dm_segs[seg].ds_len); } isp_put_cont_req(isp, crq, cqe); MEMORYBARRIER(isp, SYNC_REQUEST, onxti, QENTRY_LEN); } while (seg < segcnt); dmasync: bus_dmamap_sync(isp->isp_dmatag, dmap, 0, dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); mbxsync: switch (rq->req_header.rqs_entry_type) { case RQSTYPE_REQUEST: isp_put_request(isp, rq, qep); break; case RQSTYPE_CMDONLY: isp_put_extended_request(isp, (ispextreq_t *)rq, (ispextreq_t *)qep); break; case RQSTYPE_T2RQS: if (FCPARAM(isp)->isp_2klogin) { isp_put_request_t2e(isp, (ispreqt2e_t *) rq, (ispreqt2e_t *) qep); } else { isp_put_request_t2(isp, (ispreqt2_t *) rq, (ispreqt2_t *) qep); } break; case RQSTYPE_T3RQS: if (FCPARAM(isp)->isp_2klogin) { isp_put_request_t3e(isp, (ispreqt3e_t *) rq, (ispreqt3e_t *) qep); break; } /* FALLTHROUGH */ case RQSTYPE_A64: isp_put_request_t3(isp, (ispreqt3_t *) rq, (ispreqt3_t *) qep); break; case RQSTYPE_T7RQS: isp_put_request_t7(isp, (ispreqt7_t *) rq, (ispreqt7_t *) qep); break; } *nxtip = nxti; return (CMD_QUEUED); } int isp_pci_intr(void *arg) { u_int32_t isr; u_int16_t sema, mbox; struct ispsoftc *isp = (struct ispsoftc *)arg; isp->isp_intcnt++; if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) { isp->isp_intbogus++; return (0); } else { isp->isp_osinfo.onintstack = 1; isp_intr(isp, isr, sema, mbox); isp->isp_osinfo.onintstack = 0; return (1); } } void isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int32_t handle) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; bus_dmamap_t dmap = pcs->pci_xfer_dmap[isp_handle_index(handle)]; bus_dmamap_sync(isp->isp_dmatag, dmap, 0, dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN)? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(isp->isp_dmatag, dmap); } void isp_pci_reset0(ispsoftc_t *isp) { ISP_DISABLE_INTS(isp); } void isp_pci_reset1(struct ispsoftc *isp) { if (!IS_24XX(isp)) { /* Make sure the BIOS is disabled */ isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS); } /* and enable interrupts */ ISP_ENABLE_INTS(isp); } void isp_pci_dumpregs(struct ispsoftc *isp, const char *msg) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *)isp; if (msg) isp_prt(isp, ISP_LOGERR, "%s", msg); if (IS_SCSI(isp)) isp_prt(isp, ISP_LOGERR, " biu_conf1=%x", ISP_READ(isp, BIU_CONF1)); else isp_prt(isp, ISP_LOGERR, " biu_csr=%x", ISP_READ(isp, BIU2100_CSR)); isp_prt(isp, ISP_LOGERR, " biu_icr=%x biu_isr=%x biu_sema=%x ", ISP_READ(isp, BIU_ICR), ISP_READ(isp, BIU_ISR), ISP_READ(isp, BIU_SEMA)); isp_prt(isp, ISP_LOGERR, "risc_hccr=%x\n", ISP_READ(isp, HCCR)); isp_prt(isp, ISP_LOGERR, "PCI Status Command/Status=%x\n", pci_conf_read(pcs->pci_pc, pcs->pci_tag, PCI_COMMAND_STATUS_REG)); }