/* $OpenBSD: isp_pci.c,v 1.23 2001/09/01 07:16:40 mjacob Exp $ */ /* * PCI specific probe and attach routines for Qlogic ISP SCSI adapters. * *--------------------------------------- * Copyright (c) 1997, 1998, 1999 by Matthew Jacob * NASA/Ames Research Center * All rights reserved. *--------------------------------------- * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice immediately at the beginning of the file, without modification, * this list of conditions, and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include #include #include static u_int16_t isp_pci_rd_reg(struct ispsoftc *, int); static void isp_pci_wr_reg(struct ispsoftc *, int, u_int16_t); #if !(defined(ISP_DISABLE_1080_SUPPORT) && defined(ISP_DISABLE_12160_SUPPORT)) static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *, int); static void isp_pci_wr_reg_1080(struct ispsoftc *, int, u_int16_t); #endif static int isp_pci_rd_isr(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *); #ifndef ISP_DISABLE_2300_SUPPORT static int isp_pci_rd_isr_2300(struct ispsoftc *, u_int16_t *, u_int16_t *, u_int16_t *); #endif static int isp_pci_mbxdma(struct ispsoftc *); static int isp_pci_dmasetup(struct ispsoftc *, struct scsi_xfer *, ispreq_t *, u_int16_t *, u_int16_t); static void isp_pci_dmateardown (struct ispsoftc *, struct scsi_xfer *, u_int16_t); static void isp_pci_reset1 (struct ispsoftc *); static void isp_pci_dumpregs (struct ispsoftc *, const char *); static int isp_pci_intr (void *); #ifdef ISP_COMPILE_FW #define ISP_COMPILE_1040_FW 1 #define ISP_COMPILE_1080_FW 1 #define ISP_COMPILE_12160_FW 1 #define ISP_COMPILE_2100_FW 1 #define ISP_COMPILE_2200_FW 1 #define ISP_COMPILE_2300_FW 1 #endif #if defined(ISP_DISABLE_1040_SUPPORT) || !defined(ISP_COMPILE_1040_FW) #define ISP_1040_RISC_CODE NULL #else #define ISP_1040_RISC_CODE isp_1040_risc_code #include #endif #if defined(ISP_DISABLE_1080_SUPPORT) || !defined(ISP_COMPILE_1080_FW) #define ISP_1080_RISC_CODE NULL #else #define ISP_1080_RISC_CODE isp_1080_risc_code #include #endif #if defined(ISP_DISABLE_12160_SUPPORT) || !defined(ISP_COMPILE_12160_FW) #define ISP_12160_RISC_CODE NULL #else #define ISP_12160_RISC_CODE isp_12160_risc_code #include #endif #if defined(ISP_DISABLE_2100_SUPPORT) || !defined(ISP_COMPILE_2100_FW) #define ISP_2100_RISC_CODE NULL #else #define ISP_2100_RISC_CODE isp_2100_risc_code #include #endif #if defined(ISP_DISABLE_2200_SUPPORT) || !defined(ISP_COMPILE_2200_FW) #define ISP_2200_RISC_CODE NULL #else #define ISP_2200_RISC_CODE isp_2200_risc_code #include #endif #if defined(ISP_DISABLE_2300_SUPPORT) || !defined(ISP_COMPILE_2300_FW) #define ISP_2300_RISC_CODE NULL #else #define ISP_2300_RISC_CODE isp_2300_risc_code #include #endif #ifndef ISP_DISABLE_1020_SUPPORT static struct ispmdvec mdvec = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_1040_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; #endif #ifndef ISP_DISABLE_1080_SUPPORT static struct ispmdvec mdvec_1080 = { isp_pci_rd_isr, isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_1080_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; #endif #ifndef ISP_DISABLE_12160_SUPPORT static struct ispmdvec mdvec_12160 = { isp_pci_rd_isr, isp_pci_rd_reg_1080, isp_pci_wr_reg_1080, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_12160_RISC_CODE, BIU_BURST_ENABLE|BIU_PCI_CONF1_FIFO_64 }; #endif #ifndef ISP_DISABLE_2100_SUPPORT static struct ispmdvec mdvec_2100 = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_2100_RISC_CODE }; #endif #ifndef ISP_DISABLE_2200_SUPPORT static struct ispmdvec mdvec_2200 = { isp_pci_rd_isr, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_2200_RISC_CODE }; #endif #ifndef ISP_DISABLE_2300_SUPPORT static struct ispmdvec mdvec_2300 = { isp_pci_rd_isr_2300, isp_pci_rd_reg, isp_pci_wr_reg, isp_pci_mbxdma, isp_pci_dmasetup, isp_pci_dmateardown, NULL, isp_pci_reset1, isp_pci_dumpregs, ISP_2300_RISC_CODE }; #endif #ifndef PCI_VENDOR_QLOGIC #define PCI_VENDOR_QLOGIC 0x1077 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1020 #define PCI_PRODUCT_QLOGIC_ISP1020 0x1020 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1080 #define PCI_PRODUCT_QLOGIC_ISP1080 0x1080 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1240 #define PCI_PRODUCT_QLOGIC_ISP1240 0x1240 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP1280 #define PCI_PRODUCT_QLOGIC_ISP1280 0x1280 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP12160 #define PCI_PRODUCT_QLOGIC_ISP12160 0x1216 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2100 #define PCI_PRODUCT_QLOGIC_ISP2100 0x2100 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2200 #define PCI_PRODUCT_QLOGIC_ISP2200 0x2200 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2300 #define PCI_PRODUCT_QLOGIC_ISP2300 0x2300 #endif #ifndef PCI_PRODUCT_QLOGIC_ISP2312 #define PCI_PRODUCT_QLOGIC_ISP2312 0x2312 #endif #define PCI_QLOGIC_ISP ((PCI_PRODUCT_QLOGIC_ISP1020 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1080 \ ((PCI_PRODUCT_QLOGIC_ISP1080 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1240 \ ((PCI_PRODUCT_QLOGIC_ISP1240 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP1280 \ ((PCI_PRODUCT_QLOGIC_ISP1280 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP12160 \ ((PCI_PRODUCT_QLOGIC_ISP12160 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2100 \ ((PCI_PRODUCT_QLOGIC_ISP2100 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2200 \ ((PCI_PRODUCT_QLOGIC_ISP2200 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2300 \ ((PCI_PRODUCT_QLOGIC_ISP2300 << 16) | PCI_VENDOR_QLOGIC) #define PCI_QLOGIC_ISP2312 \ ((PCI_PRODUCT_QLOGIC_ISP2312 << 16) | PCI_VENDOR_QLOGIC) #define IO_MAP_REG 0x10 #define MEM_MAP_REG 0x14 #define PCIR_ROMADDR 0x30 #define PCI_DFLT_LTNCY 0x40 #define PCI_DFLT_LNSZ 0x10 #ifndef SCSI_ISP_PREFER_MEM_MAP #ifdef __alpha__ #define SCSI_ISP_PREFER_MEM_MAP 1 #else #define SCSI_ISP_PREFER_MEM_MAP 0 #endif #endif #ifndef BUS_DMA_COHERENT #define BUS_DMA_COHERENT BUS_DMAMEM_NOSYNC #endif #ifdef __HAS_NEW_BUS_DMAMAP_SYNC #define isp_bus_dmamap_sync(t, m, o, l, f) \ bus_dmamap_sync((t), (m), (o), (l), (f)) #else #define isp_bus_dmamap_sync(t, m, o, l, f) \ bus_dmamap_sync((t), (m), (f)) #endif static int isp_pci_probe (struct device *, void *, void *); static void isp_pci_attach (struct device *, struct device *, void *); struct isp_pcisoftc { struct ispsoftc pci_isp; pci_chipset_tag_t pci_pc; pcitag_t pci_tag; bus_space_tag_t pci_st; bus_space_handle_t pci_sh; bus_dma_tag_t pci_dmat; bus_dmamap_t pci_scratch_dmap; /* for fcp only */ bus_dmamap_t pci_rquest_dmap; bus_dmamap_t pci_result_dmap; bus_dmamap_t *pci_xfer_dmap; void * pci_ih; int16_t pci_poff[_NREG_BLKS]; }; struct cfattach isp_pci_ca = { sizeof (struct isp_pcisoftc), isp_pci_probe, isp_pci_attach }; #ifdef DEBUG const char vstring[] = "Qlogic ISP Driver, NetBSD (pci) Platform Version %d.%d Core Version %d.%d"; #endif static int isp_pci_probe(struct device *parent, void *match, void *aux) { struct pci_attach_args *pa = aux; switch (pa->pa_id) { #ifndef ISP_DISABLE_1020_SUPPORT case PCI_QLOGIC_ISP: return (1); #endif #ifndef ISP_DISABLE_1080_SUPPORT case PCI_QLOGIC_ISP1080: case PCI_QLOGIC_ISP1240: case PCI_QLOGIC_ISP1280: return (1); #endif #ifndef ISP_DISABLE_12160_SUPPORT case PCI_QLOGIC_ISP12160: return (1); #endif #ifndef ISP_DISABLE_2100_SUPPORT case PCI_QLOGIC_ISP2100: return (1); #endif #ifndef ISP_DISABLE_2200_SUPPORT case PCI_QLOGIC_ISP2200: return (1); #endif #ifndef ISP_DISABLE_2300_SUPPORT case PCI_QLOGIC_ISP2300: case PCI_QLOGIC_ISP2312: return (1); #endif default: return (0); } } static void isp_pci_attach(struct device *parent, struct device *self, void *aux) { #ifdef DEBUG static char oneshot = 1; #endif static const char nomem[] = ": no mem for sdparam table\n"; u_int32_t data, rev, linesz = PCI_DFLT_LNSZ; struct pci_attach_args *pa = aux; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) self; struct ispsoftc *isp = &pcs->pci_isp; bus_space_tag_t st, iot, memt; bus_space_handle_t sh, ioh, memh; pci_intr_handle_t ih; const char *intrstr; int ioh_valid, memh_valid, i; bus_addr_t iobase, mbase; bus_size_t iosize, msize; ioh_valid = memh_valid = 0; #if SCSI_ISP_PREFER_MEM_MAP == 1 if (pci_mem_find(pa->pa_pc, pa->pa_tag, MEM_MAP_REG, &mbase, &msize, NULL)) { printf(": can't find mem space\n"); } else if (bus_space_map(pa->pa_memt, mbase, msize, 0, &memh)) { printf(": can't map mem space\n"); } else { memt = pa->pa_memt; st = memt; sh = memh; memh_valid = 1; } if (memh_valid == 0) { if (pci_io_find(pa->pa_pc, pa->pa_tag, IO_MAP_REG, &iobase, &iosize)) { printf(": can't find i/o space\n"); } else if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &ioh)) { printf(": can't map i/o space\n"); } else { iot = pa->pa_iot; st = iot; sh = ioh; ioh_valid = 1; } } #else if (pci_io_find(pa->pa_pc, pa->pa_tag, IO_MAP_REG, &iobase, &iosize)) { printf(": can't find i/o space\n"); } else if (bus_space_map(pa->pa_iot, iobase, iosize, 0, &ioh)) { printf(": can't map i/o space\n"); } else { iot = pa->pa_iot; st = iot; sh = ioh; ioh_valid = 1; } if (ioh_valid == 0) { if (pci_mem_find(pa->pa_pc, pa->pa_tag, MEM_MAP_REG, &mbase, &msize, NULL)) { printf(": can't find mem space\n"); } else if (bus_space_map(pa->pa_memt, mbase, msize, 0, &memh)) { printf(": can't map mem space\n"); } else { memt = pa->pa_memt; st = memt; sh = memh; memh_valid = 1; } } #endif if (ioh_valid == 0 && memh_valid == 0) { printf(": unable to map device registers\n"); return; } #if 0 printf("\n"); #endif pcs->pci_st = st; pcs->pci_sh = sh; pcs->pci_dmat = pa->pa_dmat; pcs->pci_pc = pa->pa_pc; pcs->pci_tag = pa->pa_tag; pcs->pci_poff[BIU_BLOCK >> _BLK_REG_SHFT] = BIU_REGS_OFF; pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS_OFF; pcs->pci_poff[SXP_BLOCK >> _BLK_REG_SHFT] = PCI_SXP_REGS_OFF; pcs->pci_poff[RISC_BLOCK >> _BLK_REG_SHFT] = PCI_RISC_REGS_OFF; pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = DMA_REGS_OFF; rev = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG) & 0xff; #ifndef ISP_DISABLE_1020_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP) { isp->isp_mdvec = &mdvec; isp->isp_type = ISP_HA_SCSI_UNKNOWN; isp->isp_param = malloc(sizeof (sdparam), M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem); return; } bzero(isp->isp_param, sizeof (sdparam)); } #endif #ifndef ISP_DISABLE_1080_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP1080) { isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1080; isp->isp_param = malloc(sizeof (sdparam), M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem); return; } bzero(isp->isp_param, sizeof (sdparam)); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP1240) { isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1240; isp->isp_param = malloc(2 * sizeof (sdparam), M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem); return; } bzero(isp->isp_param, sizeof (sdparam)); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } if (pa->pa_id == PCI_QLOGIC_ISP1280) { isp->isp_mdvec = &mdvec_1080; isp->isp_type = ISP_HA_SCSI_1280; isp->isp_param = malloc(2 * sizeof (sdparam), M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem); return; } bzero(isp->isp_param, sizeof (sdparam)); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } #endif #ifndef ISP_DISABLE_12160_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP12160) { isp->isp_mdvec = &mdvec_12160; isp->isp_type = ISP_HA_SCSI_12160; isp->isp_param = malloc(2 * sizeof (sdparam), M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem); return; } bzero(isp->isp_param, sizeof (sdparam)); pcs->pci_poff[DMA_BLOCK >> _BLK_REG_SHFT] = ISP1080_DMA_REGS_OFF; } #endif #ifndef ISP_DISABLE_2100_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP2100) { isp->isp_mdvec = &mdvec_2100; isp->isp_type = ISP_HA_FC_2100; isp->isp_param = malloc(sizeof (fcparam), M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem); return; } bzero(isp->isp_param, sizeof (fcparam)); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; if (rev < 3) { /* * XXX: Need to get the actual revision * XXX: number of the 2100 FB. At any rate, * XXX: lower cache line size for early revision * XXX; boards. */ linesz = 1; } } #endif #ifndef ISP_DISABLE_2200_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP2200) { isp->isp_mdvec = &mdvec_2200; isp->isp_type = ISP_HA_FC_2200; isp->isp_param = malloc(sizeof (fcparam), M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem); return; } bzero(isp->isp_param, sizeof (fcparam)); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2100_OFF; data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG); } #endif #ifndef ISP_DISABLE_2300_SUPPORT if (pa->pa_id == PCI_QLOGIC_ISP2300 || pa->pa_id == PCI_QLOGIC_ISP2312) { isp->isp_mdvec = &mdvec_2300; isp->isp_type = ISP_HA_FC_2300; isp->isp_param = malloc(sizeof (fcparam), M_DEVBUF, M_NOWAIT); if (isp->isp_param == NULL) { printf(nomem); return; } bzero(isp->isp_param, sizeof (fcparam)); pcs->pci_poff[MBOX_BLOCK >> _BLK_REG_SHFT] = PCI_MBOX_REGS2300_OFF; data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_CLASS_REG); } #endif /* * Set up logging levels. */ #ifdef ISP_LOGDEFAULT isp->isp_dblev = ISP_LOGDEFAULT; #else isp->isp_dblev = ISP_LOGWARN|ISP_LOGERR; #ifdef SCSIDEBUG isp->isp_dblev |= ISP_LOGDEBUG1|ISP_LOGDEBUG2; #endif #ifdef DEBUG isp->isp_dblev |= ISP_LOGDEBUG0|ISP_LOGCONFIG|ISP_LOGINFO; #endif #endif #ifdef DEBUG if (oneshot) { oneshot = 0; isp_prt(isp, ISP_LOGCONFIG, vstring, ISP_PLATFORM_VERSION_MAJOR, ISP_PLATFORM_VERSION_MINOR, ISP_CORE_VERSION_MAJOR, ISP_CORE_VERSION_MINOR); } #endif isp->isp_revision = rev; /* * Make sure that command register set sanely. */ data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); data |= PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_INVALIDATE_ENABLE; /* * Not so sure about these- but I think it's important that they get * enabled...... */ data |= PCI_COMMAND_PARITY_ENABLE | PCI_COMMAND_SERR_ENABLE; pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, data); /* * Make sure that the latency timer, cache line size, * and ROM is disabled. */ data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG); data &= ~(PCI_LATTIMER_MASK << PCI_LATTIMER_SHIFT); data &= ~(PCI_CACHELINE_MASK << PCI_CACHELINE_SHIFT); data |= (0x40 << PCI_LATTIMER_SHIFT); data |= (0x10 << PCI_CACHELINE_SHIFT); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG, data); data = pci_conf_read(pa->pa_pc, pa->pa_tag, PCIR_ROMADDR); data &= ~1; pci_conf_write(pa->pa_pc, pa->pa_tag, PCIR_ROMADDR, data); if (pci_intr_map(pa, &ih)) { printf(": couldn't map interrupt\n"); free(isp->isp_param, M_DEVBUF); return; } intrstr = pci_intr_string(pa->pa_pc, ih); if (intrstr == NULL) intrstr = ""; pcs->pci_ih = pci_intr_establish(pa->pa_pc, ih, IPL_BIO, isp_pci_intr, isp, isp->isp_name); if (pcs->pci_ih == NULL) { printf(": couldn't establish interrupt at %s\n", intrstr); free(isp->isp_param, M_DEVBUF); return; } printf(": %s\n", intrstr); if (IS_FC(isp)) { DEFAULT_NODEWWN(isp) = 0x400000007F000003; DEFAULT_PORTWWN(isp) = 0x400000007F000003; } isp->isp_confopts = self->dv_cfdata->cf_flags; isp->isp_role = ISP_DEFAULT_ROLES; ISP_LOCK(isp); isp->isp_osinfo.no_mbox_ints = 1; isp_reset(isp); if (isp->isp_state != ISP_RESETSTATE) { ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); return; } ENABLE_INTS(isp); isp_init(isp); if (isp->isp_state != ISP_INITSTATE) { isp_uninit(isp); ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); return; } /* * Create the DMA maps for the data transfers. */ for (i = 0; i < isp->isp_maxcmds; i++) { if (bus_dmamap_create(pcs->pci_dmat, MAXPHYS, (MAXPHYS / NBPG) + 1, MAXPHYS, 0, BUS_DMA_NOWAIT, &pcs->pci_xfer_dmap[i])) { printf("%s: can't create dma maps\n", isp->isp_name); isp_uninit(isp); ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); return; } } /* * Do Generic attach now. */ isp_attach(isp); if (isp->isp_state != ISP_RUNSTATE) { isp_uninit(isp); ISP_UNLOCK(isp); free(isp->isp_param, M_DEVBUF); } else { ISP_UNLOCK(isp); } } #define IspVirt2Off(a, x) \ (((struct isp_pcisoftc *)a)->pci_poff[((x) & _BLK_REG_MASK) >> \ _BLK_REG_SHFT] + ((x) & 0xff)) #define BXR2(pcs, off) \ bus_space_read_2(pcs->pci_st, pcs->pci_sh, off) #define BXW2(pcs, off, v) \ bus_space_write_2(pcs->pci_st, pcs->pci_sh, off, v) static INLINE int isp_pci_rd_debounced(struct ispsoftc *isp, int off, u_int16_t *rp) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; u_int16_t val0, val1; int i = 0; do { val0 = BXR2(pcs, IspVirt2Off(isp, off)); val1 = BXR2(pcs, IspVirt2Off(isp, off)); } while (val0 != val1 && ++i < 1000); if (val0 != val1) { return (1); } *rp = val0; return (0); } static int isp_pci_rd_isr(struct ispsoftc *isp, u_int16_t *isrp, u_int16_t *semap, u_int16_t *mbp) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; u_int16_t isr, sema; if (IS_2100(isp)) { if (isp_pci_rd_debounced(isp, BIU_ISR, &isr)) { return (0); } if (isp_pci_rd_debounced(isp, BIU_SEMA, &sema)) { return (0); } } else { isr = BXR2(pcs, IspVirt2Off(isp, BIU_ISR)); sema = BXR2(pcs, IspVirt2Off(isp, BIU_SEMA)); } isp_prt(isp, ISP_LOGDEBUG3, "ISR 0x%x SEMA 0x%x", isr, sema); isr &= INT_PENDING_MASK(isp); sema &= BIU_SEMA_LOCK; if (isr == 0 && sema == 0) { return (0); } *isrp = isr; if ((*semap = sema) != 0) { if (IS_2100(isp)) { if (isp_pci_rd_debounced(isp, OUTMAILBOX0, mbp)) { return (0); } } else { *mbp = BXR2(pcs, IspVirt2Off(isp, OUTMAILBOX0)); } } return (1); } #ifndef ISP_DISABLE_2300_SUPPORT static int isp_pci_rd_isr_2300(struct ispsoftc *isp, u_int16_t *isrp, u_int16_t *semap, u_int16_t *mbox0p) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; u_int32_t r2hisr; r2hisr = bus_space_read_4(pcs->pci_st, pcs->pci_sh, IspVirt2Off(pcs, BIU_R2HSTSLO)); isp_prt(isp, ISP_LOGDEBUG3, "RISC2HOST ISR 0x%x", r2hisr); if ((r2hisr & BIU_R2HST_INTR) == 0) { *isrp = 0; return (0); } switch (r2hisr & BIU_R2HST_ISTAT_MASK) { case ISPR2HST_ROM_MBX_OK: case ISPR2HST_ROM_MBX_FAIL: case ISPR2HST_MBX_OK: case ISPR2HST_MBX_FAIL: case ISPR2HST_ASYNC_EVENT: case ISPR2HST_FPOST: case ISPR2HST_FPOST_CTIO: *isrp = r2hisr & 0xffff; *mbox0p = (r2hisr >> 16); *semap = 1; return (1); case ISPR2HST_RSPQ_UPDATE: *isrp = r2hisr & 0xffff; *mbox0p = 0; *semap = 0; return (1); default: return (0); } } #endif static u_int16_t isp_pci_rd_reg(struct ispsoftc *isp, int regoff) { u_int16_t rv; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf | BIU_PCI_CONF1_SXP); } rv = BXR2(pcs, IspVirt2Off(isp, regoff)); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf); } return (rv); } static void isp_pci_wr_reg(struct ispsoftc *isp, int regoff, u_int16_t val) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int oldconf = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { /* * We will assume that someone has paused the RISC processor. */ oldconf = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf | BIU_PCI_CONF1_SXP); } BXW2(pcs, IspVirt2Off(isp, regoff), val); if ((regoff & _BLK_REG_MASK) == SXP_BLOCK) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oldconf); } } #if !(defined(ISP_DISABLE_1080_SUPPORT) && defined(ISP_DISABLE_12160_SUPPORT)) static u_int16_t isp_pci_rd_reg_1080(struct ispsoftc *isp, int regoff) { u_int16_t rv, oc = 0; struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { u_int16_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc | BIU_PCI1080_CONF1_DMA); } rv = BXR2(pcs, IspVirt2Off(isp, regoff)); if (oc) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc); } return (rv); } static void isp_pci_wr_reg_1080(struct ispsoftc *isp, int regoff, u_int16_t val) { struct isp_pcisoftc *pcs = (struct isp_pcisoftc *) isp; int oc = 0; if ((regoff & _BLK_REG_MASK) == SXP_BLOCK || (regoff & _BLK_REG_MASK) == (SXP_BLOCK|SXP_BANK1_SELECT)) { u_int16_t tc; /* * We will assume that someone has paused the RISC processor. */ oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); tc = oc & ~BIU_PCI1080_CONF1_DMA; if (regoff & SXP_BANK1_SELECT) tc |= BIU_PCI1080_CONF1_SXP1; else tc |= BIU_PCI1080_CONF1_SXP0; BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), tc); } else if ((regoff & _BLK_REG_MASK) == DMA_BLOCK) { oc = BXR2(pcs, IspVirt2Off(isp, BIU_CONF1)); BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc | BIU_PCI1080_CONF1_DMA); } BXW2(pcs, IspVirt2Off(isp, regoff), val); if (oc) { BXW2(pcs, IspVirt2Off(isp, BIU_CONF1), oc); } } #endif static int isp_pci_mbxdma(struct ispsoftc *isp) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; bus_dma_segment_t seg; bus_size_t len; fcparam *fcp; int rseg; if (isp->isp_rquest_dma) /* been here before? */ return (0); len = isp->isp_maxcmds * sizeof (XS_T); isp->isp_xflist = (XS_T **) malloc(len, M_DEVBUF, M_WAITOK); bzero(isp->isp_xflist, len); len = isp->isp_maxcmds * sizeof (bus_dmamap_t); pci->pci_xfer_dmap = (bus_dmamap_t *) malloc(len, M_DEVBUF, M_WAITOK); /* * Allocate and map the request queue. */ len = ISP_QUEUE_SIZE(RQUEST_QUEUE_LEN(isp)); if (bus_dmamem_alloc(pci->pci_dmat, len, NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT) || bus_dmamem_map(pci->pci_dmat, &seg, rseg, len, (caddr_t *)&isp->isp_rquest, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) return (1); if (bus_dmamap_create(pci->pci_dmat, len, 1, len, 0, BUS_DMA_NOWAIT, &pci->pci_rquest_dmap) || bus_dmamap_load(pci->pci_dmat, pci->pci_rquest_dmap, (caddr_t)isp->isp_rquest, len, NULL, BUS_DMA_NOWAIT)) return (1); isp->isp_rquest_dma = pci->pci_rquest_dmap->dm_segs[0].ds_addr; /* * Allocate and map the result queue. */ len = ISP_QUEUE_SIZE(RESULT_QUEUE_LEN(isp)); if (bus_dmamem_alloc(pci->pci_dmat, len, NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT) || bus_dmamem_map(pci->pci_dmat, &seg, rseg, len, (caddr_t *)&isp->isp_result, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) return (1); if (bus_dmamap_create(pci->pci_dmat, len, 1, len, 0, BUS_DMA_NOWAIT, &pci->pci_result_dmap) || bus_dmamap_load(pci->pci_dmat, pci->pci_result_dmap, (caddr_t)isp->isp_result, len, NULL, BUS_DMA_NOWAIT)) return (1); isp->isp_result_dma = pci->pci_result_dmap->dm_segs[0].ds_addr; if (IS_SCSI(isp)) { return (0); } fcp = isp->isp_param; len = ISP2100_SCRLEN; if (bus_dmamem_alloc(pci->pci_dmat, len, NBPG, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT) || bus_dmamem_map(pci->pci_dmat, &seg, rseg, len, (caddr_t *)&fcp->isp_scratch, BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) return (1); if (bus_dmamap_create(pci->pci_dmat, len, 1, len, 0, BUS_DMA_NOWAIT, &pci->pci_scratch_dmap) || bus_dmamap_load(pci->pci_dmat, pci->pci_scratch_dmap, (caddr_t)fcp->isp_scratch, len, NULL, BUS_DMA_NOWAIT)) return (1); fcp->isp_scdma = pci->pci_scratch_dmap->dm_segs[0].ds_addr; return (0); } static int isp_pci_dmasetup(struct ispsoftc *isp, XS_T *xs, ispreq_t *rq, u_int16_t *iptrp, u_int16_t optr) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; bus_dmamap_t dmap; ispcontreq_t *crq; int segcnt, seg, error, ovseg, seglim, drq; dmap = pci->pci_xfer_dmap[isp_handle_index(rq->req_handle)]; if (xs->datalen == 0) { rq->req_seg_count = 1; goto mbxsync; } if (xs->flags & SCSI_DATA_IN) { drq = REQFLAG_DATA_IN; } else { drq = REQFLAG_DATA_OUT; } if (IS_FC(isp)) { seglim = ISP_RQDSEG_T2; ((ispreqt2_t *)rq)->req_totalcnt = xs->datalen; ((ispreqt2_t *)rq)->req_flags |= drq; } else { if (XS_CDBLEN(xs) > 12) seglim = 0; else seglim = ISP_RQDSEG; rq->req_flags |= drq; } error = bus_dmamap_load(pci->pci_dmat, dmap, xs->data, xs->datalen, NULL, xs->flags & SCSI_NOSLEEP ? BUS_DMA_NOWAIT : BUS_DMA_WAITOK); if (error) { XS_SETERR(xs, HBA_BOTCH); return (CMD_COMPLETE); } segcnt = dmap->dm_nsegs; for (seg = 0, rq->req_seg_count = 0; seg < segcnt && rq->req_seg_count < seglim; seg++, rq->req_seg_count++) { if (isp->isp_type & ISP_HA_FC) { ispreqt2_t *rq2 = (ispreqt2_t *)rq; rq2->req_dataseg[rq2->req_seg_count].ds_count = dmap->dm_segs[seg].ds_len; rq2->req_dataseg[rq2->req_seg_count].ds_base = dmap->dm_segs[seg].ds_addr; } else { rq->req_dataseg[rq->req_seg_count].ds_count = dmap->dm_segs[seg].ds_len; rq->req_dataseg[rq->req_seg_count].ds_base = dmap->dm_segs[seg].ds_addr; } } if (seg == segcnt) goto dmasync; do { crq = (ispcontreq_t *) ISP_QUEUE_ENTRY(isp->isp_rquest, *iptrp); *iptrp = ISP_NXT_QENTRY(*iptrp, RQUEST_QUEUE_LEN(isp)); if (*iptrp == optr) { isp_prt(isp, ISP_LOGDEBUG0, "Request Queue Overflow++"); bus_dmamap_unload(pci->pci_dmat, dmap); XS_SETERR(xs, HBA_BOTCH); return (CMD_EAGAIN); } rq->req_header.rqs_entry_count++; bzero((void *)crq, sizeof (*crq)); crq->req_header.rqs_entry_count = 1; crq->req_header.rqs_entry_type = RQSTYPE_DATASEG; for (ovseg = 0; seg < segcnt && ovseg < ISP_CDSEG; rq->req_seg_count++, seg++, ovseg++) { crq->req_dataseg[ovseg].ds_count = dmap->dm_segs[seg].ds_len; crq->req_dataseg[ovseg].ds_base = dmap->dm_segs[seg].ds_addr; } } while (seg < segcnt); dmasync: isp_bus_dmamap_sync(pci->pci_dmat, dmap, 0, dmap->dm_mapsize, (xs->flags & SCSI_DATA_IN) ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE); mbxsync: ISP_SWIZZLE_REQUEST(isp, rq); isp_bus_dmamap_sync(pci->pci_dmat, pci->pci_rquest_dmap, 0, pci->pci_rquest_dmap->dm_mapsize, BUS_DMASYNC_PREWRITE); return (CMD_QUEUED); } static int isp_pci_intr(void *arg) { u_int16_t isr, sema, mbox; struct ispsoftc *isp = (struct ispsoftc *)arg; struct isp_pcisoftc *p = (struct isp_pcisoftc *)isp; isp->isp_intcnt++; if (ISP_READ_ISR(isp, &isr, &sema, &mbox) == 0) { isp->isp_intbogus++; return (0); } else { isp_bus_dmamap_sync(p->pci_dmat, p->pci_result_dmap, 0, p->pci_result_dmap->dm_mapsize, BUS_DMASYNC_POSTREAD); isp->isp_osinfo.onintstack = 1; isp_intr(isp, isr, sema, mbox); isp->isp_osinfo.onintstack = 0; return (0); } } static void isp_pci_dmateardown(struct ispsoftc *isp, XS_T *xs, u_int16_t handle) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; bus_dmamap_t dmap = pci->pci_xfer_dmap[isp_handle_index(handle)]; isp_bus_dmamap_sync(pci->pci_dmat, dmap, 0, dmap->dm_mapsize, xs->flags & SCSI_DATA_IN ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(pci->pci_dmat, dmap); } static void isp_pci_reset1(struct ispsoftc *isp) { /* Make sure the BIOS is disabled */ isp_pci_wr_reg(isp, HCCR, PCI_HCCR_CMD_BIOS); } static void isp_pci_dumpregs(struct ispsoftc *isp, const char *msg) { struct isp_pcisoftc *pci = (struct isp_pcisoftc *)isp; if (msg) isp_prt(isp, ISP_LOGERR, "%s", msg); isp_prt(isp, ISP_LOGERR, "PCI Status Command/Status=%x\n", pci_conf_read(pci->pci_pc, pci->pci_tag, PCI_COMMAND_STATUS_REG)); }